Función Lineal Prof. Natalia Rodríguez 1

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Función Lineal Prof. Natalia Rodríguez 1"

Transcripción

1 Función Lineal Prof. Natalia Rodríguez 1 1 Función lineal 1.1 La función lineal Sea f una función tal que, f : IR! IR. Se llama función lineal si f (x) = mx + b con m, b 2 IR. El dominio, el codominio y el ámbito de la función lineal es el conjunto de los números reales (IR). Las siguientes son funciones lineales: 1. La función g de nida por g (x) = p 3x 2 es una función lineal, con m = p 3 y b = 2 2. La función s de nida por s (x) = 11x es una función lineal, con m = 11 y b = 0 3. La función j de nida por j (x) = 13 es una función lineal, con m = 0 y b = 13 Notemos que las funciones lineales son funciones polinomiales de grado uno con coe ciente principal m y término constante b o de grado cero con término constante b. Nota: Como la imagen de x por la función f usualmente se denota con y, es decir y = f (x), es frecuente escribir.y = mx + b: Recta El nombre de función lineal se origina ya que su representación grá ca corresponde a una línea recta, por lo tanto se llama recta al grá co de una función lineal. Si L es una recta de nida por L = f(x; y) = y = mx + bg con m y b constantes reales, diremos que L es la recta cuya ecuación es y = mx + b de esta forma decimos que la ecuación está ordenada. Pendiente de la recta Sean m, b 2 IR y sea L la recta cuya ecuación es y = mx + b:al valor m se le conoce como la pendiente de la grá ca de la función, e indica la inclinación de la recta con respecto al eje x; midiendo en sentido antihorario. La fórmula para calcular la pendiente de una recta (una función lineal) que pasa por los puntos (x 1 ; y 1 ) y (x 2 ; y 2 ) esta dada por: Ejemplos m = y 1 y 2 x 1 x 2 con x 1 6= x 2 1. El valor de la pendiente de la recta cuya ecuación es es y = 3x 2 es El valor de la pendiente de la recta cuya ecuación es es y = x es 1 2.

2 Función Lineal Prof. Natalia Rodríguez 2 El valor de la pendiente nos indica el grado de inclinación de la grá ca de la función lineal con respecto al eje x, de donde podemos señalar la siguiente propiedad sobre la monotonía de la función: Sea f es una función lineal f (x) = mx + b con f : IR! IR, entonces: Si m > 0, la función es estrictamente creciente. Si m < 0, la función es estrictamente decreciente. Si m = 0, la función es constante. El valor de b representa la intersección de la grá ca con el eje de las ordenadas (eje y), por lo que se dice que la recta interseca al eje y en el punto (0; b) : Y se puede determinar con un simple despeje sobre el criterio de la función, conociendo un punto del grá co de la función (x 0 ; y 0 ): y 0 = m x 0 + b =) b = y 0 m x 0 Proposición: Dados dos puntos existe una y sólo una recta que los contiene. Así, si conocemos dos puntos A (x 1 ; y 1 ) y B (x 2 ; y 2 ), podemos hallar la ecuación de la recta que los contiene, de la siguiente manera: 1. Encontrar la pendiente m de la recta. 2. Conociendo el valor de m y las coodenadas de un único punto A (x 1 ; y 1 ) ó B (x 2 ; y 2 ) podemos depejar b de y 1 = mx 1 + b ó y 2 = mx 2 + b: 3. Conociendo m y b podemos escribir la ecuación de la recta y = mx + b. Ejemplo: 1. Considere los puntos P (1; 2) y Q ( 1; 3) y determine: a. el criterio de la función lineal, cuya grá ca contine a los puntos P y Q: b. si la recta anterior es estrictamente creciente o estrictamente decreciente. Solución: a. Para determinar el criterio de una función lineal y = mx + b, basta encontrar las constantes reales m y b correspondiente a la pendiente y la intersección con el eje y respectivamente:

3 Función Lineal Prof. Natalia Rodríguez 3 Sabemos que m = y 1 y 2 ; donde podemos tomar P x1 y1 (1; 2) y Q x 2 y 2 ( 1; 3) es decir: x 1 = x 1 x 2 1; y 1 = 2 y x 2 = 1; y 2 = 3, entonces: y 1 = mx 1 + b utilicemos el punto P m = y 1 y 2 x 1 x 2 2 = b = = = b = b b = 5 2 Por lo que el criterio de la función lineal esta dado por y = 1 2 x + 5 x + 5, o bien f (x) = 2 2 b. La función anterior es una función estrictamente decreciente, pues m = 1 2 < 0. Ejercicios 1. Halle la ecuación de la recta que contiene a los puntos (3; 2) y (5; 6) : R/ y = 2x Si f es una función lineal tal que f ( 2) = 3 y f (5) = 2; halle el criterio de f: R/ 5x + 11 y = 7 3. Hallar la ecuación de la recta que contiene al punto (2; 3) y tiene una pendiente igual a 2. Nota: En algunos casos la ecuación de la recta no está ordenada, así para identi car el valor de la pendiente y el valor de b de la ecuación, es conveniente ordenarla de la forma ya descrita. Ejemplo Hallar la pendiente m y la intersección b con el eje y de la recta cuya ecuación es 5x y+2 = 0

4 Función Lineal Prof. Natalia Rodríguez 4 Solución: Debemos llevar la ecuación 5x y + 2 = 0 a la forma y = mx + b: 5x y + 2 = 0 =) y = 5x 2 =) y = 5x 2 1 =) y = 5x 1 =) y = 5x De donde es claro que m = 5 y b = 2. Ejercicio: 1. Hallar la pendiente m y la intersección b con el eje y de la recta cuya ecuación es 3 3y + 6x = 0: R/ m = 2 y b = 1 2. Hallar la pendiente m y el punto de intersección con el eje y de la recta cuya ecuación es 5x 10y + 2 = 0? R/ m = 1 2 ; y el punto de intersección con el eje y es 0; 1 : 5 3. Hallar la pendiente m y la intersección b con el eje y de la recta cuya ecuación es 3 + 6x 3y = 0? R/ m = 2 b = Grá ca de una función lineal. Considere f : IR! IR una función lineal con criterio f (x) = mx + b; o bien, y = mx + b; con m; b 2 IR: La representación grá ca de f corresponde a una linea recta formada por todos los pares ordenados de la forma (x; y) ; tales que y = mx + b: Dado que una recta queda determinada si se conocen dos de sus puntos, entonces para trazar su grá ca basta conocer al menos dos de ellos, generalmente, siempre que sea posible podemos buscar las intersección de la recta con los ejes coordenados, sin embargo cualquier par de puntos sobre la recta funcionan para este efecto. Para determinar dos puntos sobre la grá ca de la función lineal, basta tomar dos valores convenientes en el dominio y encontrar sus respectivas imagenes. Además recordemos que para determinar las intersección con los ejes de una recta L cuya ecuación es y = mx + b están dadas por: La intersección con el eje x se da en el punto representado por el par ordenado (x 0 ; 0) : La intersección con el eje y se da en el punto representado por el par ordenado (0; y 0 ) :

5 Función Lineal Prof. Natalia Rodríguez 5 De nición Dada una recta, representada en un plano cartesiano; existen sólo 4 posibilidades para ella: i) Estrictamente creciente ii) Estrictamente decreciente Note que: iii) Recta horizontal (constante) iv) Recta vertical 1. En el caso iv) la recta dada no puede representar la grá ca de una función. En este caso la ecuación de este tipo de recta viene dada por x = x 1 : 2. En el caso iii), observe que 8x 2 IR se cumple que y = b. Por lo tanto, esta recta sí puede representar la grá ca de una función lineal; cuyo criterio es de la forma y = b; b 2 IR; esta función se denomina función lineal constante. Observación: En el criterio y = b; se tiene que y = 0 x + b; por lo tanto m = 0; de donde podemos veri car que la recta no tiene inclinación. Ejemplo: Trazar la grá ca de la recta cuya ecuación es y = 4x + 8 (*) Solución: Recordemos que es necesario dos puntos diferentes cualesquiera sobre la recta, para este caso las intesecciones con los bastarán para este trabajo a. Encontrar la intersección con el eje x; para lo cuál hacemos y = 0 en (*) 0 = 4x = 4x 8 4 = x ) x = 2 Por lo tanto el punto de intersección con el eje x es ( 2; 0)

6 Función Lineal Prof. Natalia Rodríguez 6 b. Encontrar la intersección con el eje y; para lo cuál hacemos x = 0 en (*) y = y = 8 Por lo tanto el punto de intersección con el eje y es (0; 8) c. Teniendo los dos puntos anteriores podemos gra carlos en el sistema de coordenadas rectangulares, luego podemos trazar la recta que contiene a esos puntos como se muestra en la siguiente gura: ( 0,8) ( 2,0) De nición (función identidad). Sea f una función real de variable real, se dice que f es la función identidad si 8x 2 D f ; se cumple que f (x) = x: Ejercicio: Realice la grá ca de la función f : IR! IR; de nida por f (x) = x: Rectas paralelas y perpendiculares. De nición (Rectas paralelas). Sean f y g funciones lineales; con criterios y = m 1 x+b 1 y y = m 2 x+b 2 ; respectivamente. Las grá cas de f y g corresponden a rectas paralelas, si sólo si m 1 = m 2 : Notación: Se acostumbra denotar que las grá cas de f y g son paralelas, de la forma fkg: Entonces bajo este convenio, la de nición anterior se denota: fkg () m 1 = m 2 De nición (Rectas perpendiculares). Sean f y g funciones lineales; con criterios y = m 1 x+b 1 y y = m 2 x+b 2 ; respectivamente. Las grá cas de f y g corresponden a rectas perpendiculares, si sólo si m 1 m 2 = 1: Notación: Se acostumbra denotar que las grá cas de f y g son perpendiculares, de la forma f? g: Entonces bajo este convenio, la de nición anterior se denota: f? g () m 1 m 2 = 1

7 Función Lineal Prof. Natalia Rodríguez 7 Algunos ejemplos 1. Halle la ecuación de recta que pasa por el punto (2; 3) y es paralela a la recta 4x 2y 4 = 0: R/ y = 2x 7 2. Halle la ecuación de la recta que pasa por el punto ( 2; 5) y es paralela a la recta que pasa por los puntos ( 1; 3) y ( 3; 4) :R/. y = 7 2 x 2: 3. Halle el criterio de las funciones lineales paralelas f y g representadas en las siguiente grá ca. y 10 5 x 4 f R/ f (x) = 2x + 10 y g (x) = 2x 4: 4. Si las grá cas de las funciones f (x) = (7 2k) x + kx + 5 y g (x) = 3 (4k 1) x representan rectas paralelas; halles el valor de k: R/ k = 2: 5. Halle la ecuación de la recta que pasa por el punto (2; 3) y que es perpendicular a la recta con ecuación 2x 3y 1 = 0: R/ y = 3 2 x: 6. Halle la ecuación de la recta que pasa por el punto ( 1; 2) y es perpendicular a la recta que pasa por ( 3; 1) y (2; 3) : R/ y = 5 2 x : 7. Halle las ecuaciones de las rectas perpeniculares f y g representadas en la siguiente grá ca. y 4 6 x 9

8 Función Lineal Prof. Natalia Rodríguez 8 Respuesta: f (x) = 2 3 x + 4 y g (x) = 3 2 x 9

Funciones Reales de Variable Real

Funciones Reales de Variable Real 1 Capítulo 6 Funciones Reales de Variable Real M.Sc. Alcides Astorga M., Lic. Julio Rodríguez S. Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet

Más detalles

Precálculo 2130034 Prof.: Gerardo Varela

Precálculo 2130034 Prof.: Gerardo Varela Definición de función Una función con dominio D es un conjunto W de pares ordenados tales que, para cada en D, ha eactamente un par ordenado (, ) en W que tiene a en la primera posición. Terminología Definición

Más detalles

2 año secundario. Función Lineal MINISTERIO DE EDUCACIÓN. Se llama función lineal porque la potencia de la x es 1. Su gráfico es una recta.

2 año secundario. Función Lineal MINISTERIO DE EDUCACIÓN. Se llama función lineal porque la potencia de la x es 1. Su gráfico es una recta. año secundario Función Lineal Se llama función lineal porque la potencia de la x es. Su gráfico es una recta. Y en general decimos que es de la forma : f(x)= a. x + b donde a y b son constantes, a recibe

Más detalles

CUADERNO DE TRABAJO 2

CUADERNO DE TRABAJO 2 1 COLEGIO UNIVERSITARIO DE CARTAGO ELECTRÓNICA MATEMÁTICA ELEMENTAL EL-103 CUADERNO DE TRABAJO 2 Elaborado por: Msc. Adriana Rivera Meneses II Cuatrimestre 2014 2 ESTIMADO ESTUDIANTE: Continuamos con el

Más detalles

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA Funciones José R. Jiménez F. Temas de pre-cálculo I ciclo 007 Funciones 1 Índice 1. Funciones 3 1.1. Introducción...................................

Más detalles

Funciones polinomiales de grados cero, uno y dos

Funciones polinomiales de grados cero, uno y dos Funciones polinomiales de grados cero, uno y dos A una función p se le llama polinomio si: p x = a n x n + a n 1 x n 1 + + a 2 x 2 + a 1x + a 0 Donde un entero no negativo y los números a 0, a 1, a 2,

Más detalles

Álgebra y Trigonometría CNM-108

Álgebra y Trigonometría CNM-108 Álgebra y Trigonometría CNM-108 Clase 2 Ecuaciones, desigualdades y funciones Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

MÉTODOS DE ELIMINACIÓN Son tres los métodos de eliminación más utilizados: Método de igualación, de sustitución y de suma o resta.

MÉTODOS DE ELIMINACIÓN Son tres los métodos de eliminación más utilizados: Método de igualación, de sustitución y de suma o resta. ECUACIONES SIMULTÁNEAS DE PRIMER GRADO CON DOS INCÓGNITAS. Dos o más ecuaciones con dos incógnitas son simultáneas cuando satisfacen iguales valores de las incógnitas. Para resolver ecuaciones de esta

Más detalles

Unidad 4: Vectores. 4.1 Introducción. 4.2 Vectores: enfoque geométrico

Unidad 4: Vectores. 4.1 Introducción. 4.2 Vectores: enfoque geométrico Unidad 4: Vectores 4.1 Introducción En este capítulo daremos el concepto de vector, el cual es una herramienta fundamental tanto para la física como para la matemática. La historia de los vectores se remonta

Más detalles

SISTEMAS DE COORDENADAS SISTEMA COORDENADO UNIDIMENSIONAL

SISTEMAS DE COORDENADAS SISTEMA COORDENADO UNIDIMENSIONAL SISTEMAS DE COORDENADAS En la vida diaria, nos encontramos con el problema de ordenar algunos objetos; de tal manera que es necesario agruparlos, identificarlos, seleccionarlos, estereotiparlos, etc.,

Más detalles

TEMA 8: FUNCIONES. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 8: FUNCIONES. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 009 TEMA 8: FUNCIONES. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/009 TEMA 08: FUNCIONES. 1. Correspondencia.. Funciones. 3. Representación

Más detalles

FUNCION LINEAL. TEOREMA: Toda recta en el plano coordenado es la gráfica de una ecuación de primer grado en dos variables

FUNCION LINEAL. TEOREMA: Toda recta en el plano coordenado es la gráfica de una ecuación de primer grado en dos variables FUNCION LINEAL TEOREMA: Toda recta en el plano coordenado es la gráfica de una ecuación de primer grado en dos variables Toda ecuación de primer grado suele designarse como una ecuación lineal. Toda ecuación

Más detalles

Funciones definidas a trozos

Funciones definidas a trozos Concepto de función Dominio de una función Características de las funciones Intersecciones con los ejes Crecimiento y decrecimiento Máximos y mínimos Continuidad y discontinuidad Simetrías Periodicidad

Más detalles

n es la ordenada en el origen, el punto de corte de la recta con el eje de ordenadas (el vertical, y)

n es la ordenada en el origen, el punto de corte de la recta con el eje de ordenadas (el vertical, y) Una función es una relación entre 2 magnitudes, de manera que a cada valor de x de la primera le corresponde un único valor de y, de la segunda. Este valor también se designa por f(x) y se conoce como

Más detalles

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2 SISTEMA DE ACCESO COMÚN A LAS CARRERAS DE INGENIERÍA DE LA UNaM III. UNIDAD : FUNCIONES POLINÓMICAS III..1 POLINOMIOS La expresión 5x + 7 x + 4x 1 recibe el nombre de polinomio en la variable x. Es de

Más detalles

a < b y se lee "a es menor que b" (desigualdad estricta) a > b y se lee "a es mayor que b" (desigualdad estricta)

a < b y se lee a es menor que b (desigualdad estricta) a > b y se lee a es mayor que b (desigualdad estricta) Desigualdades Dadas dos rectas que se cortan, llamadas ejes (rectangulares si son perpendiculares, y oblicuos en caso contrario), un punto puede situarse conociendo las distancias del mismo a los ejes,

Más detalles

Concepto de función. El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D.

Concepto de función. El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D. Concepto de función Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B en la cual todos los elementos de A tienen a lo sumo una imagen en B, es decir una imagen o ninguna. Función

Más detalles

1. Funciones y sus gráficas

1. Funciones y sus gráficas FUNCIONES 1. Funciones sus gráficas Función es una relación entre dos variables a las que, en general se les llama e. es la variable independiente. es la variable dependiente. La función asocia a cada

Más detalles

SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3).

SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3). SOLUCIONES CIRCUNFERENCIA 1. Ecuación de la circunferencia cuyo centro es el punto (1,) y que pasa por el punto (,). Para determinar la ecuación de la circunferencia es necesario conocer el centro y el

Más detalles

Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica

Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica 10 Funciones lineales Objetivos En esta quincena aprenderás a: Identificar problemas en los que intervienen magnitudes directamente proporcionales. Calcular la función que relaciona a esas magnitudes a

Más detalles

1. Cambios de base en R n.

1. Cambios de base en R n. er Curso de Ingeniero de Telecomunicación. Álgebra. Curso 8-9. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema 5. Cambios de Base. Aplicaciones Lineales. Teoría y Ejercicios Resueltos..

Más detalles

ELIJA CUATRO DE LOS SEIS BLOQUES PROPUESTOS.

ELIJA CUATRO DE LOS SEIS BLOQUES PROPUESTOS. PRUEBAS DE ACCESO A LA UNIVERSIDAD Curso 008-009 MATEMÁTICAS II ELIJA CUATRO DE LOS SEIS BLOQUES PROPUESTOS. Bloque 1. Dado el número real a, se considera el sistema a) Discuta el sistema según los valores

Más detalles

http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17

http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 1 CONCEPTOS BÁSICOS 1.1 DEFINICIONES Una función liga dos variables numéricas a las que, habitualmente, se les llama x e y. x es la

Más detalles

Cuadernillo de Apuntes de Matemáticas I. Luis Ignacio Sandoval Paéz

Cuadernillo de Apuntes de Matemáticas I. Luis Ignacio Sandoval Paéz Cuadernillo de Apuntes de Matemáticas I Luis Ignacio Sandoval Paéz 1 Índice Números reales 1.1 Clasificación de los números reales. 5 1.2 Propiedades. 7 1.3Interpretación geométrica de los números reales.

Más detalles

Ejercicios de Matemática para. Bachillerato. Miguel Ángel Arias Vílchez

Ejercicios de Matemática para. Bachillerato. Miguel Ángel Arias Vílchez Ejercicios de Matemática para Bachillerato Miguel Ángel Arias Vílchez 009 Profesor Miguel Ángel Arias Vílchez 009 Se pretende mediante este material contribuir a que los estudiantes que se preparan de

Más detalles

Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f)

Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f) MATEMÁTICAS EJERCICIOS RESUELTOS DE FUNCIONES FUNCIONES A. Introducción teórica A.1. Definición de función A.. Dominio y recorrido de una función, f() A.. Crecimiento y decrecimiento de una función en

Más detalles

3.1 DEFINICIÓN. Figura Nº 1. Vector

3.1 DEFINICIÓN. Figura Nº 1. Vector 3.1 DEFINICIÓN Un vector (A) una magnitud física caracterizable mediante un módulo y una dirección (u orientación) en el espacio. Todo vector debe tener un origen marcado (M) con un punto y un final marcado

Más detalles

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Funciones de Antonio Francisco Roldán López de Hierro * Convocatoria de 200 Las siguientes páginas contienen las soluciones de los ejercicios propuestos

Más detalles

Capítulo 3 Soluciones de ejercicios seleccionados

Capítulo 3 Soluciones de ejercicios seleccionados Capítulo 3 Soluciones de ejercicios seleccionados Sección 3.1.4 1. Dom a = [ 1, 1]. Dom b = R. Dom c = (, 4). Dom d = ( 1, ). Dom e = R ( 1, 3] y Dom f = R {, }. 5x 4 x < 1, (x 1)(3x ) x < 1,. (f + g)(x)

Más detalles

Geometria Analítica Laboratorio #1 Sistemas de Coordenadas

Geometria Analítica Laboratorio #1 Sistemas de Coordenadas 1. Verificar las identidades siguientes: 1) P (3, 3), Q( 1, 3), R(4, 0) Laboratorio #1 Sistemas de Coordenadas 2) O( 10, 2), P ( 6, 3), Q( 5, 1) 2. Demuestre que los puntos dados forman un triángulo isósceles.

Más detalles

Función Cuadrática *

Función Cuadrática * Función Cuadrática * Edward Parra Salazar Colegio Madre del Divino Pastor 10-1 Una función f : A B, f(x) = ax 2 + bx + c, donde A y B son subconjuntos de R, a, b, c R, a 0, se llama una función cuadrática.

Más detalles

Introducción. Esperamos que el presente texto contenga el material básico para el desarrollo de este curso, bienvenido y... A estudiar!

Introducción. Esperamos que el presente texto contenga el material básico para el desarrollo de este curso, bienvenido y... A estudiar! Introducción La Geometría Analítica, es fundamental para el estudio y desarrollo de nuevos materiales que nos facilitan la vida diaria, razón por la cual esta asignatura siempre influye en la vida de todo

Más detalles

Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta:

Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta: Todo el mundo sabe que dos puntos definen una recta, pero los matemáticos son un poco diferentes y, aún aceptando la máxima universal, ellos prefieren decir que un punto y un vector nos definen una recta.

Más detalles

1. Dominio, simetría, puntos de corte y periodicidad

1. Dominio, simetría, puntos de corte y periodicidad Estudio y representación de funciones 1. Dominio, simetría, puntos de corte y periodicidad 1.1. Dominio Al conjunto de valores de x para los cuales está definida la función se le denomina dominio. Se suele

Más detalles

3ª Parte: Funciones y sus gráficas

3ª Parte: Funciones y sus gráficas 3ª Parte: Funciones y sus gráficas Relaciones funcionales. Estudio gráfico y algebraico de funciones 1. Interpretación de gráficas 1. Un médico dispone de 1hora diaria para consulta. El tiempo que podría,

Más detalles

En la siguiente gráfica se muestra una función lineal y lo que representa m y b.

En la siguiente gráfica se muestra una función lineal y lo que representa m y b. FUNCIÓN LINEAL. La función lineal o de primer grado es aquella que se representa gráficamente por medio de una línea recta. Dicha función tiene una ecuación lineal de la forma f()= =m+b, en donde m b son

Más detalles

4.1 EL SISTEMA POLAR 4.2 ECUACIONES EN COORDENADAS POLARES 4.3 GRÁFICAS DE ECUACIONES EN COORDENADAS

4.1 EL SISTEMA POLAR 4.2 ECUACIONES EN COORDENADAS POLARES 4.3 GRÁFICAS DE ECUACIONES EN COORDENADAS 4 4.1 EL SISTEMA POLAR 4. ECUACIONES EN COORDENADAS POLARES 4.3 GRÁFICAS DE ECUACIONES EN COORDENADAS POLARES: RECTAS, CIRCUNFERENCIAS, PARÁBOLAS, ELIPSES, HIPÉRBOLAS, LIMACONS, ROSAS, LEMNISCATAS, ESPIRALES.

Más detalles

Universidad de la Frontera. Geometría Anaĺıtica: Departamento de Matemática y Estadística. Cĺınica de Matemática. J. Labrin - G.

Universidad de la Frontera. Geometría Anaĺıtica: Departamento de Matemática y Estadística. Cĺınica de Matemática. J. Labrin - G. Universidad de la Frontera Departamento de Matemática y Estadística Cĺınica de Matemática 1 Geometría Anaĺıtica: J. Labrin - G.Riquelme 1. Los puntos extremos de un segmento son P 1 (2,4) y P 2 (8, 4).

Más detalles

Gráficas de funciones

Gráficas de funciones Apuntes Tema 1 Gráficas de funciones 1.1 Gráficas de funciones a) Función constante: f(x) = k b) Recta vertical: x = k c) Función lineal: f(x) = mx Todas pasan por el origen O(0, 0). 2 d) Función afín:

Más detalles

Funciones y gráficas (1)

Funciones y gráficas (1) Funciones y gráficas (1) Introducción Uno de los conceptos más importantes en matemática es el de función. El término función fue usado por primera vez en 1637 por el matemático francés René Descartes

Más detalles

FUNCIONES 1. DEFINICION DOMINIO Y RANGO

FUNCIONES 1. DEFINICION DOMINIO Y RANGO 1. DEFINICION DOMINIO Y RANGO FUNCIONES Antes de definir función, uno de los conceptos fundamentales y de mayor importancia de todas las matemáticas, plantearemos algunos ejercicios que nos eran de utilidad

Más detalles

i. y = 0,25x k. x = 2 l. y = -3 n. 2y 2x = 0

i. y = 0,25x k. x = 2 l. y = -3 n. 2y 2x = 0 TRABAJO PRÁCTICO Nº1 1. Identificar la pendiente y ordenada al origen de las siguientes rectas. Graficar y escribir para cada una dominio, imagen, crecimiento, decrecimiento, raíces. a. y = 2x + 1 d. y

Más detalles

8LÍMITES Y DERIVADAS. Problema 1. Problema 2. Problema 3

8LÍMITES Y DERIVADAS. Problema 1. Problema 2. Problema 3 CONTENIDOS Límite y asíntotas Cálculo de límites Continuidad Derivadas Estudio de funciones Problemas de optimización Varias de las características de diferentes tipos de funciones ya han sido estudiadas

Más detalles

I. RELACIONES Y FUNCIONES 1.1. PRODUCTO CARTESIANO { }

I. RELACIONES Y FUNCIONES 1.1. PRODUCTO CARTESIANO { } I. RELACIONES Y FUNCIONES PAREJAS ORDENADAS Una pareja ordenada se compone de dos elementos x y y, escribiéndose ( x, y ) donde x es el primer elemento y y el segundo elemento. Teniéndose que dos parejas

Más detalles

Funciones uno-uno, sobre y biunívocas

Funciones uno-uno, sobre y biunívocas Funciones uno-uno, sobre y biunívocas La inversa (biunívocas) de una función es una regla que actúa en la salida de la función y produce la entrada correspondiente. Así, la inversa deshace o invierte lo

Más detalles

Ejemplo Traza la gráfica de los puntos: ( 5, 4), (3, 2), ( 2, 0), ( 1, 3), (0, 4) y (5, 1) en el plano cartesiano.

Ejemplo Traza la gráfica de los puntos: ( 5, 4), (3, 2), ( 2, 0), ( 1, 3), (0, 4) y (5, 1) en el plano cartesiano. Plano cartesiano El plano cartesiano se forma con dos rectas perpendiculares, cuyo punto de intersección se denomina origen. La recta horizontal recibe el nombre de eje X o eje de las abscisas y la recta

Más detalles

CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática

CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática CAPITULO Aplicaciones de la Derivada Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Créditos Primera edición impresa: Rosario Álvarez, 1988. Edición Latex: Marieth

Más detalles

Funciones. Catedrática Recinto Universitario de Mayagüez AFAMaC Residencial Sept. 4 de 2010

Funciones. Catedrática Recinto Universitario de Mayagüez AFAMaC Residencial Sept. 4 de 2010 Funciones Prof. Nilsa I. Toro Catedrática Recinto Universitario de Mayagüez AFAMaC Residencial Sept. 4 de 010 Introducción Es frecuente que se describa una cantidad en términos de otra; por ejemplo: 1.

Más detalles

Funciones más usuales 1

Funciones más usuales 1 Funciones más usuales 1 1. La función constante Funciones más usuales La función constante Consideremos la función más sencilla, por ejemplo. La imagen de cualquier número es siempre 2. Si hacemos una

Más detalles

Características de funciones que son inversas de otras

Características de funciones que son inversas de otras Características de funciones que son inversas de otras Si f es una función inyectiva, llamamos función inversa de f y se representa por f 1 al conjunto. f 1 = a, b b, a f} Es decir, f 1 (x, y) = { x =

Más detalles

LA CIRCUNFERENCIA EN EL PLANO CARTESIANO

LA CIRCUNFERENCIA EN EL PLANO CARTESIANO LA CIRCUNFERENCIA EN EL PLANO CARTESIANO Si un hombre es perseverante, aunque sea duro de entendimiento se hará inteligente; y aunque sea débil se transformará en fuerte Leonardo Da Vinci TRASLACION DE

Más detalles

Unidad 2 Modelos de optimización

Unidad 2 Modelos de optimización Unidad 2 Modelos de optimización Objetivos Al nalizar la unidad, el alumno: Construirá modelos matemáticos de optimización. Resolverá problemas prácticos con el método gráfico. Matemáticas para negocios

Más detalles

Rectas y Parábolas. Sistemas de coordenadas rectangulares (Plano Cartesiano)

Rectas y Parábolas. Sistemas de coordenadas rectangulares (Plano Cartesiano) Rectas y Parábolas Prof. Gabriel Rivel Pizarro Sistemas de coordenadas rectangulares (Plano Cartesiano) El sistemas de coordenadas rectangulares se representa en un plano, mediante dos rectas perpendiculares.

Más detalles

Espacio afín. Transformaciones afines y movimientos

Espacio afín. Transformaciones afines y movimientos Capítulo Espacio afín. Transformaciones afines y movimientos. Espacio afín y espacio afín métrico Definición. El espacio afín (tridimensional) está constituido por los siguientes elementos. El espacio

Más detalles

Estudio Gráfico de Funciones

Estudio Gráfico de Funciones Esquema 1 2 Esquema 1 2 Definición es una correspondencia entre dos conjuntos A B tal que a cada elemento del conjunto A le corresponde un único valor solo uno del conjunto B. La gráfica de la función

Más detalles

5.1Definición transformación lineal de núcleo ó kernel, e imagen de una transformación lineal y sus propiedades

5.1Definición transformación lineal de núcleo ó kernel, e imagen de una transformación lineal y sus propiedades 5- ransformaciones Lineales 5Definición transformación lineal de núcleo ó kernel, e imagen de una transformación lineal sus propiedades Se denomina transformación lineal a toda función,, cuo dominio codominio

Más detalles

Representación gráfica de funciones

Representación gráfica de funciones Gráfica de una fución Representación gráfica de funciones La gráfica de una función está formada por el conjunto de puntos (x, y) para todos los valores de x pertenecientes al Dominio de la función gráfica

Más detalles

Funciones lineales. Año Hombres Mujeres 2008 40.3% 35.2% 2009 42.9% 37.6% 2010 45.1% 40.6%

Funciones lineales. Año Hombres Mujeres 2008 40.3% 35.2% 2009 42.9% 37.6% 2010 45.1% 40.6% Capítulo Funciones lineales Todos los días leemos, en los medios de comunicación, información basada en datos recopilados de fuentes estadísticas. En el Ecuador, el organismo encargado de recopilar datos

Más detalles

1. Vectores 1.1. Definición de un vector en R2, R3 (Interpretación geométrica), y su generalización en Rn.

1. Vectores 1.1. Definición de un vector en R2, R3 (Interpretación geométrica), y su generalización en Rn. 1. VECTORES INDICE 1.1. Definición de un vector en R 2, R 3 (Interpretación geométrica), y su generalización en R n...2 1.2. Operaciones con vectores y sus propiedades...6 1.3. Producto escalar y vectorial

Más detalles

Nivelación de Matemática MTHA UNLP 1. Los números reales se pueden representar mediante puntos en una recta.

Nivelación de Matemática MTHA UNLP 1. Los números reales se pueden representar mediante puntos en una recta. Nivelación de Matemática MTHA UNLP 1 1. Desigualdades 1.1. Introducción. Intervalos Los números reales se pueden representar mediante puntos en una recta. 1 0 1 5 3 Sean a y b números y supongamos que

Más detalles

Funciones, x, y, gráficos

Funciones, x, y, gráficos Funciones, x, y, gráficos Vamos a ver los siguientes temas: funciones, definición, dominio, codominio, imágenes, gráficos, y algo más. Recordemos el concepto de función: Una función es una relación entre

Más detalles

Lección 7 - Coordenadas rectangulares y gráficas

Lección 7 - Coordenadas rectangulares y gráficas Lección 7 - Coordenadas rectangulares gráficas Coordenadas rectangulares gráficas Objetivos: Al terminar esta lección podrás usar un sistema de coordenadas rectangulares para identificar puntos en un plano

Más detalles

Aplicaciones de vectores

Aplicaciones de vectores Aplicaciones de vectores Coordenadas del punto medio de un segmento Las coordenadas del punto medio de un segmento son la semisuma de las coordenadas de los extremos. Ejemplo: Hallar las coordenadas del

Más detalles

Aproximación local. Plano tangente. Derivadas parciales.

Aproximación local. Plano tangente. Derivadas parciales. Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 004-005 Aproximación local. Plano tangente. Derivadas parciales. 1. Plano tangente 1.1. El problema de la aproximación

Más detalles

b1ct Propuesta Actividades Recuperación Matemáticas

b1ct Propuesta Actividades Recuperación Matemáticas b1ct Propuesta Actividades Recuperación Matemáticas Bloque Números 1 Resuelve: a. Si tomas como valor de 11. 1 la aproximación. 1, qué errores absoluto y relativo has cometido?. Solución: 0. 000; 0. 0%

Más detalles

Resolución del examen de Selectividad de Matemáticas Aplicadas a las Ciencias Sociales II Andalucía Junio de 2009

Resolución del examen de Selectividad de Matemáticas Aplicadas a las Ciencias Sociales II Andalucía Junio de 2009 Resolución del eamen de Selectividad de Matemáticas Aplicadas a las Ciencias Sociales II Andalucía Junio de 2009 Antonio Francisco Roldán López de Hierro * de junio de 2009 Opción A Ejercicio Sea la igualdad

Más detalles

Tipos de funciones. Clasificación de funciones

Tipos de funciones. Clasificación de funciones Tipos de funciones Clasificación de funciones Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación,

Más detalles

ESTÁTICA 2. VECTORES. Figura tomada de http://www.juntadeandalucia.es/averroes/~04001205/fisiqui/imagenes/vectores/473396841_e1de1dd225_o.

ESTÁTICA 2. VECTORES. Figura tomada de http://www.juntadeandalucia.es/averroes/~04001205/fisiqui/imagenes/vectores/473396841_e1de1dd225_o. ESTÁTICA Sesión 2 2 VECTORES 2.1. Escalares y vectores 2.2. Cómo operar con vectores 2.2.1. Suma vectorial 2.2.2. Producto de un escalar y un vector 2.2.3. Resta vectorial 2.2.4. Vectores unitarios 2.2.5.

Más detalles

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado

Más detalles

MATEMÁTICA CPU Práctica 2. Funciones Funciones lineales y cuadráticas

MATEMÁTICA CPU Práctica 2. Funciones Funciones lineales y cuadráticas ECT UNSAM MATEMÁTICA CPU Práctica Funciones Funciones lineales cuadráticas FUNCIONES Damiana al irse del parque olvidó de subir a su perro Vicente en la parte trasera de su camioneta Los gráficos hacen

Más detalles

Tema 7: ESPACIOS VECTORIALES AFINES

Tema 7: ESPACIOS VECTORIALES AFINES Tema 7: ESPACIOS VECTORIALES AFINES Prof. Rafael López Camino Departamento de Geometría y Topología Universidad de Granada Material docente para el alumno Asignatura: Geometría I. Curso 2003/04 Licenciatura:

Más detalles

ESTATICA: TIPOS DE MAGNITUDES: CARACTERÍSTICAS DE UN VECTOR. Rama de la física que estudia el equilibrio de los cuerpos.

ESTATICA: TIPOS DE MAGNITUDES: CARACTERÍSTICAS DE UN VECTOR. Rama de la física que estudia el equilibrio de los cuerpos. ESTATICA: Rama de la física que estudia el equilibrio de los cuerpos. TIPOS DE MAGNITUDES: MAGNITUD ESCALAR: Es una cantidad física que se especifica por un número y una unidad. Ejemplos: La temperatura

Más detalles

3.1 Funciones de Variable Real

3.1 Funciones de Variable Real 3 CAPÍTULO TRES Ejercicios propuestos 3.1 Funciones de Variable Real 1. La gráfica de una función puede tener más de una intersección con el eje Y. 2. Un dominio de la función de variable real f (x)= 2x

Más detalles

Lic. Manuel de Jesús Campos Boc

Lic. Manuel de Jesús Campos Boc UNIVERSIDAD MARIANO GÁLVEZ DE GUATEMALA FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN DIRECCIÓN GENERAL DE CENTRO UNIVERSITARIOS CENTRO UNIVERSITARIO DE VILLA NUEVA CURSO MATEMÁTICAS APLICADA I 0 Lic. Manuel

Más detalles

A 10. 1) El conjunto solución de 3x 2 9x = (x 3) 2 es A) 2) Una solución de 2x 2 =x(4 x) + 1 es A) 1

A 10. 1) El conjunto solución de 3x 2 9x = (x 3) 2 es A) 2) Una solución de 2x 2 =x(4 x) + 1 es A) 1 ) El conjunto solución de x 9x = (x ) es,, ) Una solución de x =x( x) + es 7 5 ) El producto de dos números enteros positivos es 60 y el número menor es las tres quintas partes del número mayor. Cuál es

Más detalles

4. FUNCION LINEAL Y ECUACIÓN DE LA RECTA

4. FUNCION LINEAL Y ECUACIÓN DE LA RECTA Función Lineal Ecuación de la Recta 4. FUNCION LINEAL Y ECUACIÓN DE LA RECTA El concepto de función es el mejor objeto que los matemáticos han podido inventar para epresar el cambio que se produce en las

Más detalles

TRAZADO DE LA GRÁFICA DE LAS DERIVADA DE UNA FUNCIÓN

TRAZADO DE LA GRÁFICA DE LAS DERIVADA DE UNA FUNCIÓN UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO COLEGIO DE CIENCIAS Y HUMANIDADES PLANTEL VALLEJO ÁREA DE MATEMÁTICAS CÁLCULO DIFERENCIAL E INTEGRA I TRAZADO DE LA GRÁFICA DE LAS DERIVADA DE UNA FUNCIÓN ELEAZAR

Más detalles

Capítulo 3: APLICACIONES DE LAS DERIVADAS

Capítulo 3: APLICACIONES DE LAS DERIVADAS Capítulo : Aplicaciones de la derivada 1 Capítulo : APLICACIONES DE LAS DERIVADAS Dentro de las aplicaciones de las derivadas quizás una de las más importantes es la de conseguir los valores máimos y mínimos

Más detalles

2FUNCIONES CUADRÁTICAS

2FUNCIONES CUADRÁTICAS CONTENIDOS El modelo cuadrático La función cuadrática Desplazamientos de la gráfica Máximos, mínimos, ceros, crecimiento y decrecimiento Ecuaciones cuadráticas Sistemas mixtos En este capítulo se analizan

Más detalles

Posteriormente el matemático suizo Leonard Euler (1707-1783) fue el primero que utilizó el símbolo y = f(x) en la forma que ahora lo utilizamos.

Posteriormente el matemático suizo Leonard Euler (1707-1783) fue el primero que utilizó el símbolo y = f(x) en la forma que ahora lo utilizamos. Una función en matemáticas, es un término que se usa para indicar la relación entre dos o más magnitudes. El matemático alemán Gottfried Wilhelm Leibniz (1646-1716) fue el primero que utilizó el término

Más detalles

Rige a partir de la convocatoria 01-2015

Rige a partir de la convocatoria 01-2015 LISTADO DE OBJETIVOS Y CONTENIDOS QUE SE MEDIRÁN EN LAS PRUEBAS DE CERTIFICACIÓN DE LOS PROGRAMAS: Bachillerato por Madurez Suficiente Bachillerato de Educación Diversificada a Distancia Este documento

Más detalles

Funciones 1. Ejercicios básicos sobre funciones. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx

Funciones 1. Ejercicios básicos sobre funciones. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx Funciones Ejercicios básicos sobre funciones www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 007-008 Contenido. Introducción. Ejercicios Introducción Los aspectos básicos a estudiar

Más detalles

Ejercicios de Análisis propuestos en Selectividad

Ejercicios de Análisis propuestos en Selectividad Ejercicios de Análisis propuestos en Selectividad.- Dada la parábola y 4, se considera el triángulo rectángulo T( r ) formado por los ejes coordenados y la tangente a la parábola en el punto de abscisa

Más detalles

Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores

Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Universidad Politécnica de Madrid 5 de marzo de 2010 2 4.1. Planificación

Más detalles

BLOQUE IV. Funciones. 10. Funciones. Rectas y parábolas 11. Funciones racionales, irracionales, exponenciales y logarítmicas 12. Límites y derivadas

BLOQUE IV. Funciones. 10. Funciones. Rectas y parábolas 11. Funciones racionales, irracionales, exponenciales y logarítmicas 12. Límites y derivadas BLOQUE IV Funciones 0. Funciones. Rectas y parábolas. Funciones racionales, irracionales, exponenciales y logarítmicas. Límites y derivadas 0 Funciones. Rectas y parábolas. Funciones Dado el rectángulo

Más detalles

CÁLCULO DIFERENCIAL. Amaury Camargo y Favián Arenas A. Universidad de Córdoba Facultad de Ciencias Básicas e Ingenierías Departamento de Matemáticas

CÁLCULO DIFERENCIAL. Amaury Camargo y Favián Arenas A. Universidad de Córdoba Facultad de Ciencias Básicas e Ingenierías Departamento de Matemáticas CÁLCULO DIFERENCIAL Amaury Camargo y Favián Arenas A. Universidad de Córdoba Facultad de Ciencias Básicas e Ingenierías Departamento de Matemáticas Cálculo Diferencial UNIDAD 1 2. Funciones y modelos 2.1.

Más detalles

9 Geometría. analítica. 1. Vectores

9 Geometría. analítica. 1. Vectores 9 Geometría analítica 1. Vectores Dibuja en unos ejes coordenados los vectores que nacen en el origen de coordenadas y tienen sus extremos en los puntos: A(, ), B(, ), C(, ) y D(, ) P I E N S A C A L C

Más detalles

Recuerdas qué es? Constante de proporcionalidad Es el cociente de cualquiera de las razones que intervienen en una proporción.

Recuerdas qué es? Constante de proporcionalidad Es el cociente de cualquiera de las razones que intervienen en una proporción. Recuerdas qué es? Coordenadas de un punto Un punto del plano viene definido por un par ordenado de números. La primera coordenada es la abscisa del punto, la segunda coordenada es la ordenada del punto.

Más detalles

Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1

Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1 Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1 TEMA 4 - FUNCIONES ELEMENTALES 4.1 CONCEPTO DE FUNCIÓN DEFINICIÓN : Una función real de variable real es una aplicación de un subconjunto

Más detalles

Tema 0: Funciones y gráficas

Tema 0: Funciones y gráficas Matemáticas I Tema 0: Funciones y gráficas 24/9/2012 Edgar Martínez-Moro. Índice Objetivos de aprendizaje Funciones Función inversa Funciones lineales Inversa de una función lineal Ajustando funciones

Más detalles

8 Geometría. analítica. 1. Vectores

8 Geometría. analítica. 1. Vectores Geometría analítica 1. Vectores Dibuja en unos ejes coordenados los vectores que nacen en el origen de coordenadas y tienen sus extremos en los puntos: A(, ), B(, ), C(, ) y D(, ) P I E N S A C A L C U

Más detalles

TEMA 7 GEOMETRÍA ANALÍTICA

TEMA 7 GEOMETRÍA ANALÍTICA Nueva del Carmen, 35. 470 Valladolid. Tel: 983 9 63 9 Fax: 983 89 96 TEMA 7 GEOMETRÍA ANALÍTICA. Objetivos / Criterios de evaluación O.7. Concepto y propiedades de los vectores O.7. Operaciones con vectores:

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás 30 de septiembre de 014 Índice general 1. Año 000 7 1.1. Modelo 000 - Opción A.................... 7 1..

Más detalles

TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1

TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1 TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1 TEMA 10 - FUNCIONES ELEMENTALES 10.1 CONCEPTO DE FUNCIÓN DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder

Más detalles

GUIA DE EJERCICIOS. d) 12x - 9y + 2 = 0 e) 2x+ y - 6 = 0

GUIA DE EJERCICIOS. d) 12x - 9y + 2 = 0 e) 2x+ y - 6 = 0 ECUACIÓN DE LA RECTA Y PENDIENTE GUIA DE EJERCICIOS ) Encontrar la pendiente de la recta determinada por cada uno de los guientes pares de números: a) (, ) y (5, ) b) (, -3) y (-, ) c) (, 6) y (8, 56)

Más detalles

Calculadora ClassPad

Calculadora ClassPad Calculadora ClassPad Tema: Ejercicios varios sobre Análisis de funciones y optimización. Nivel: 1º y º de Bachiller Comentario: La siguiente actividad que propongo es para la evaluación de los conceptos

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 4 La recta en el plano Elaborado por la Profesora Doctora María Teresa

Más detalles

3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función

3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función TEMA 3 FUNCIONES 3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función Una función es una relación establecida entre dos variables que asocia a cada valor de la primera variable

Más detalles

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula:

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula: 1. Dada la función f(x) = : a) Encontrar el dominio, las AH y las AV. b) Intervalos de crecimiento, decrecimiento, máximos y mínimos relativos. c) Primitiva que cumpla que F(0) = 0. a) Para encontrar el

Más detalles