i:n i 0""E' D G-EOLOGIA 2i'_'T1?11C;TURAL E L.A POJ-11 BE.-OLA DE LEMA, - í y

Tamaño: px
Comenzar la demostración a partir de la página:

Download "i:n i 0""E' D G-EOLOGIA 2i'_'T1?11C;TURAL E L.A POJ-11 BE.-OLA DE LEMA, - í y"

Transcripción

1 ' :N 0""E' D G-EOLOGA 2'_'T1?11C;TURAL E L.A POJ-11 BE.-OLA DE LEMA, - í y { t f 4 v s

2 Se ha ealzado un estudo estuctual de la Hoja, aunque po dvesos motvos que vamos a analza no ha sdo posble obtene con clusones tectoncas satsfactoas paa el conjunto de la zona estudad-a. En el campo una vez ealzada la catogafía, defndoa de - las megaestuctuas, se pocedó a la ealzacón de cotes.mas o menos pependculaes a la deccón detemnada po aquellas, cuyo t fn pmodal fue detemna el estlo de plegamento estudando - ` los mesoplegues exstentes en los afloamentos, ealzando la mayo cantdad dé meddas posble de oentacón de elementos plana. - es y lneales paa su posteo seleccón y ana.lss.! Con todos estos datos se pocedó e.1 analss estuctual s- j guendo los metodos cláscos de Wegman (1929) Sande ( ) y - Tune and Wess (1963), poyectandose los elementos S y L sobe el hemsfeo nfeo de una falslla de Smdt (áeas guales) y d.v d:.endo la zona en domnos que en nuesto caso hemos btent.,.do ha - celos concd con las deccones de las megaestuctuas. Una vez poyectadas todas las meddas se constuyen los contonos estuctuales de las planaes, ealzando el contaje de po - los, hallando los máxmos e ntentando defn los ejes estadíst - cos ( j) de plegamento en cada domno. El últmo paso es la ntepetacón y dscusón de los esultados.

3 2. Paa la eleccón de los domnos se empezó poyectando - pocos polos de S1 en áeas en donde las supefces axales ean más o menos ectlíneas y modfcando las áeas paa ntenta ob tene un smple eje-ps con los polos adyacentes de S1. Se llegó a la mposbldad de detemna domnos clíndcos y po lo tanto homogéneos especto a un 3sa A causa de es -Lo se han delmtado las áeas geogáfcas que pesentaban msma alneacón y estlo de plegues megascópcos. En total se han se lecconado cnco domnos que podemos velos en la fgua 1, y que no ha sídc posble sean homogéneos. f A contnuacón vamos a ealza un ntento de análss es tuctual sstemátco de'los dfeentes domnos, analzando los coespondentes dagamas de poyeccón de elementos planaes y lneales sobe el hemsfeo nfeo de una ed de áeas guales.. E

4 ' _ } - } f,y J 1 ` " P '111,1 } 11111,1,! {kkk,111l 1 1',t - _ = ---_ _ - ll l ',ld - - _ ' : _T " Za C :" l - s ' 1 k j E 1 ' 1 ' - ' E k! -- _ _ o 1 t! 11 _ -_ - ' '. -1-!' ' ''' ' ; ,,. f J - M - f :. t, hll E', - ` ' (,,!lkl! - ` _.: c.. V } -=_ f - _ S t F S EÍN DA 3 CARBONFERO DE LA CUENCA DE ROSA { 5 CARSOHFERO ÍN0 PRODUCTVO ( SUEM-.ERO) CARHONF f 0 PRODUCTVO ( CUENCA CENTRAL) e NFRACAR[30NFEf10 Fn l.- Da amt s csl'uctuales de las es : t c:nccnes, esgts -L-osdades y l.zeacones de la R cja de Pol. a, cae Lena. -. '

5 4.. - DOMNO Coesponde al Cabonfeo de la Cuenca de Dosa, compen de dos dagamas- En el dagama 1 han sdo poyécado,s 45 polos de Sl (es-- tatfcacón) y 5 ejes de plegue. Los polos S pesentan un máxmo del. 10% paa estatos que tenen una deccón de N 70 E y un valo medo de buzamento de 45 Paece se nsnuan dos planos de smetía uno N-- S. y oto - E-W apoxmadamente en los contonos es-uuctuales en que se ds pone S1. Esto podía suge la posbldad de que S1 haya sdo plegado en dos etapas dfo.entes cuyas dectces coesponden tes sean los defndos po los planos de smetía anteomente ctados. Los 5 L1 poyectados están compenddos en ten contono - póxmo a deccón E-W y pesentan nmesón haca el W. En el dauama 2 han sdo poyectados 20 polos de esqustosdades y un eje de una posble fase posteo. De este domno no es posble saca conclusones estuctu.alos y lo anteo está dento del. campo de las conjetuas.

6 a 5. DOMNO Coesponde al Cabonífeo de la zona N de la Hoja. Esta tgáfcamente llega hasta los paquetes poductvos de Maía Lu sa y Sotón. Compendetes dagamas. En el dagama. tes se han poyectado 164 polos de S1 y 4 ejes de plegues y en el dagama cuato, 7 polos de esqustos--,g dad y 2 ejes de plegues. Es tal la dspesón que pesentan que no es posble nnguna ntepetacón estuétual, podía pensase en dos ejes de smetía e ncluso en una coona ncompleta. No se ha dspuesto de sufcentes datos paa da una ntepetacón n squea es peculatva. DOMNO! E Coesponde al Cabonfeo de la zona E-SE, pact.camente al Westfalense tamo no poductvo. Es geogá.f.ca.mente la pate S de la Cuenca Cental. Compende dos dagamas. En el dagama 5 han sdo poyectados 216 polos de S1 y _ 18 ejes de plegues. Los polos S1 pesentan un máxmo del 7% paa estatos que tenen una deccón N W y buzamento medo de unos al RT. Paece nsnuase un plano de smetía NXW-SSE cuyo e co espondea apoxmadamente a la deccón de los ejes, poyec tados. Aunque la dspesón con especto al cculo máxmo deal

7 6. y el hecho de que exstan ejes con ángulo de nmesón haca el W apunta la exstenca de oto mpulso. El dagama 6 no hace más que confma lo apuntado ante omente aunque no de foma tán claa. Este domno es el únco en que s es posble una ntepetacón estuctual ya que aunque exste dspesón estamos - ceca del plegamento clíndco puo con una segunda fase que nos defnía un con deccón cas E-W. El dagama 7 coesponde a un afloamento en el que fue posble.med tes planos dstntos de esqustosdad apate de - la estatfcacón. ndudablemente este hecho nos hace pensa en en la exstenca de tes mpulsos dstntos. No nos ha sdo pos E ble defn a escala de la Roja estas tes esqu_stosdades. t DOMNO V Coesponde al Cabonífeo, t.atsubhulleo de la zona cento S. En el dagama 8 se han poyectado 261 polos de S1 con un máxmo de 5% paa estatos con una deccón N E y buza mento medo 50 2 al S. No es posble da nnguna ntepetacón estuctual. En el dagama 9 se han poyectado 67 polos de esqustosdad.. DOMNO V Coesponde a los mateales po-cabonífeos del ángulo NÉ y del. SW. En el dagama 10 se han poyectado 38 ejes de ple : gnes y tes planos de esqustosdad.

8 E. _ 7. Paece nsnuase tes deccones de los ejes de plegues que son N-S, N40-50W y N40-50E..Vemos pues dos deduccones pependculaes que podían se coetáneas en el tempo y ota - dstntl. No tenemos datos paa pode stualas en el. tempo. En el dagama 11 se han poyectado 34 polos de S1 no - hemos hecho cuvas de densdad ya que son muy pocos puntos y- no son sufcentes paa se épesentatvos estadístcamente. ANÁLSS DE CONJUNTO Hacendo una síntess de los once dagamas vemos no es posble saca conclusones de foma claa. Hay una dea que pae ce apuntase en ]_os dvesos dagamas y es el pesenta una s metía axal. La dstbucón de los máxmos paece :Foma una coona ncompleta que coespondeía a un plegamento cónco. ' En conta, de esta hpótess tenemos el no habe encontó do nnguna estuctua tpo domo. El poblema adca en la falta de datos que no nos pemte saca conclusones de tpo estadsta. co. El modo de tabajo debeía habe sdo a escala 1/ apoxmadamente. Comenza a escala de afloamento, y confeccona un dagama de pocos polos de caácte puntual. El paso sguente seía. ntega estos dagamas amplando el domno y - pocuando busca su homogenedad. Sguendo este poceso se hubea llegado a establece domnos homogéneos a escale. egonal que hubean sdo los delntvos. Po desgaca la escala de tabajo 1/ del MAGNA no pemte un estudo exhaustvo que es -la únca foma de lleva a cabo la Geología Es-tuctual.

9 t h h N ' DAGRAMA POLOS DE S (CONTOR NOS 2,4,6,... 10%) Y 5L, DEL CAR30NFERO DE LA CUENCA DE ROSA t N o f x O P o - O O O O O a O O L o o E f DAGRAMA-2.- G P(^) VS ^Z, 2 S}(:) Y 1 L7, DE L Cá. :3 C7 lf L_RC DE L.A CUL:P!C.A DF ROSA

10 . Í N. F' - ll.l s --= 1 _ - DAGRAMA POLOS DF S ( CONTORNOS 1, 2,3... 8%) y 41_3 DEL CAlBONFERO DF LA LONA N. L N f l /L 2 ; 1.-L2 0 o f j u 0 O D. DAGRAMA POLOS VE S1 ( } Y 2 L2

11 f N "Y v V v S. DAGRAMA POLOS DE 5l (CONTORNOS 1,2,3,....6,7%) Y 18 L1 DEL. GARSONFERO DE LA ZONA E.-SE. N D1AGRP,1J A -G- S'1 L LCJ DF f ( l7f7?`2g, [7E 1 %) ULL t:a.rf í7 ` 1F" _ t) U E.' Lt.D '1A E. SL:.

12 1 N J e D e o a c 0 x DAGRAMA -7-4 POLOS DE SL ( ), 1 G S3(X) Y 5 S4 ( ) DEL CAP30NFLFO DE LA ZONA C.--SE. N v- w DAGF;, >:-- 2 FCL '. : :. f C? h ' 0;. C; ly4 3. S%) DEL Cff?[?Ofl L:f: l_!. C.:!,! -';:0 S.

13 N f G '; ;, ñ; l DAGRAMA-9-67 POLOS SZ(CCNTOf2NOS 1,2,3,4,5,6%) DEL 1 CARBONFERO DE LA ZONA CENTRO S. NN t. X ~ v DAGRAMA CEJES DE PJUG11-- l., 2 S. (x) Y 1 S','(-) DEL CAD?RONFERO DE LA '0::'; CF:. 0

14 N F a 4 F F a,!. ' _ DAGRAMA POLOS CF S DE LOS P+ATh_RALE5 PR E.-CARCSCtF:E",DOS k ts á

CAPÍTULO III TRABAJO Y ENERGÍA

CAPÍTULO III TRABAJO Y ENERGÍA TRAJO Y ENERGÍA CAPÍTULO III "De todos los conceptos físcos, el de enegía es pobablemente el de más vasto alcance. Todos, con fomacón técnca o no, tenen una pecepcón de la enegía y lo que esta palaba sgnfca.

Más detalles

clasificación digital

clasificación digital clasfcacón dgtal leccón 3 sumao Intoduccón. Conceptos estadístcos. Fase de entenamento. Fase de clasfcacón. Contol de caldad. La es un poceso de genealzacón temátca que, medante categozacón, convete la

Más detalles

6 Sistemas Autoorganizativos

6 Sistemas Autoorganizativos 6 Sstemas Autooganzatvos 6.1 Intoduccón Las edes de neuonas atfcales con apendzae no supevsado se han aplcado con éxto a poblemas de econocmento de patones y deteccón de señales. Estas edes constuyen clases

Más detalles

Tema 3. DINÁMICA DE UN SÓLIDO RÍGIDO.

Tema 3. DINÁMICA DE UN SÓLIDO RÍGIDO. Tema 3. DINÁMICA DE UN SÓLIDO RÍGIDO. CONTENIDOS: 3.1 Intoduccón 3. Cnemátca de la otacón alededo de un eje fjo. 3.3 Momento de una fueza y de un sstema de fuezas. 3.4 Momento angula del sóldo ígdo. 3.5

Más detalles

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos. ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:

Más detalles

AUTOCALIBRACIÓN Y SINCRONIZACIÓN DE MÚLTIPLES CÁMARAS PTZ

AUTOCALIBRACIÓN Y SINCRONIZACIÓN DE MÚLTIPLES CÁMARAS PTZ UNIVERSIDAD AUTÓNOMA DE MADRID ESCUELA POLITÉCNICA SUPERIOR AUTOCALIBRACIÓN Y SINCRONIZACIÓN DE MÚLTIPLES CÁMARAS PTZ -PROYECTO FIN DE CARRERA- Jave Gacía Ocón Mayo de 27 AUTOCALIBRACIÓN Y SINCRONIZACIÓN

Más detalles

Potencial eléctrico. Trabajo y energía potencial en el campo eléctrico. Potencial de una carga puntual: Principio de superposición

Potencial eléctrico. Trabajo y energía potencial en el campo eléctrico. Potencial de una carga puntual: Principio de superposición Potencial eléctico Intoducción. Tabajo y enegía potencial en el campo eléctico Potencial eléctico. Gadiente. Potencial de una caga puntual: Pincipio de supeposición Potencial eléctico de distibuciones

Más detalles

Mauricio Riera, S' IEEE Departamento de Potencia Instituto de Ingeniería Eléctrica Facultad de Ingeniería, UDEELAR Montevideo, Uruguay

Mauricio Riera, S' IEEE Departamento de Potencia Instituto de Ingeniería Eléctrica Facultad de Ingeniería, UDEELAR Montevideo, Uruguay Poceedngs of 5º Encuento de Potenca, Instumentacón y Meddas, IEEE, Octobe 19-20, 1999, Montevdeo, Uuguay Contol De Flujo Vectoal Medante un Inveso de Coente Alejando Gómez Estudante de Ingeneía Insttuto

Más detalles

OPTIMIZACIÓN DE LOS GRÁFICOS DE CONTROL ESTADÍSTICO DE PROCESOS EWMA Y MEWMA MEDIANTE ALGORITMOS GENÉTICOS

OPTIMIZACIÓN DE LOS GRÁFICOS DE CONTROL ESTADÍSTICO DE PROCESOS EWMA Y MEWMA MEDIANTE ALGORITMOS GENÉTICOS 27 Congeso Naconal de Estadístca e Investgacón Opeatva Lleda, 8- de abl de 2003 OPTIMIZACIÓN DE LOS GRÁFICOS DE CONTROL ESTADÍSTICO DE PROCESOS EWMA Y MEWMA MEDIANTE ALGORITMOS GENÉTICOS J.C. Gacía-Díaz,

Más detalles

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado Análss de la varanza con dos factores. Introduccón Hasta ahora se ha vsto el modelo de análss de la varanza con un factor que es una varable cualtatva cuyas categorías srven para clasfcar las meddas de

Más detalles

Para caracterizar completamente una magnitud vectorial, como son la velocidad, aceleración, fuerza, etc, es preciso indicar tres cosas:

Para caracterizar completamente una magnitud vectorial, como son la velocidad, aceleración, fuerza, etc, es preciso indicar tres cosas: VECTORES Y ESCLRES Las magntudes escalaes son aquellas que quedan totalmente defndas al epesa la cantdad la undad en que se mde. Eemplos son la masa, el tempo, el tabao todas las enegías, etc. Las magntudes

Más detalles

Leyes de Kepler. Ley de Gravitación Universal

Leyes de Kepler. Ley de Gravitación Universal Leyes de Keple y Ley de Gavitación Univesal J. Eduado Mendoza oes Instituto Nacional de Astofísica Óptica y Electónica, México Pimea Edición onantzintla, Puebla, México 009 ÍNDICE 1.- PRIMERA LEY DE KEPLER

Más detalles

TEMA PRELIMINAR. Los sistemas de representación son objeto de estudio en la geometría descriptiva, la cual se fundamenta en la geometría proyectiva.

TEMA PRELIMINAR. Los sistemas de representación son objeto de estudio en la geometría descriptiva, la cual se fundamenta en la geometría proyectiva. TEMA PRELIMINAR 1. Sistemas de Repesentación y Geometía. En esta pate de la intoducción, se tata de encuada el estudio de los sistemas de epesentación dento de lo que es la geometía. Paa ello se va a intenta

Más detalles

VECTORES. En este apartado vamos a trabajar exclusivamente con los vectores en el espacio a los que vamos a llamar F 3.

VECTORES. En este apartado vamos a trabajar exclusivamente con los vectores en el espacio a los que vamos a llamar F 3. Edcaga.com VECTORES En este apatado amos a tabaa eclsamente con los ectoes en el espaco a los qe amos a llama F. VECTOR FIJO Lo pmeo tendemos qe sabe qe es n ecto. Así qe llamamos ecto fo AB a n ecto qe

Más detalles

11. COMPENSACIÓN DEL RADIO

11. COMPENSACIÓN DEL RADIO Capítlo 3: Desaollo del poama. COMPENSACIÓN DEL RADIO. Intodccón Los pntos tomados dectamente po palpacón sobe la spece de la peza en cestón no son pntos eales de dcha spece, ya qe el pnto ecodo tene las

Más detalles

PROBLEMAS DE ELECTROESTÁTICA

PROBLEMAS DE ELECTROESTÁTICA PBLMAS D LCTSTÁTICA I CAMP LCTIC N L VACI. Cagas puntuales. Cagas lineales. Cagas supeficiales 4. Flujo le de Gauss 5. Distibuciones cúbicas de caga 6. Tabajo enegía electostática 7. Poblemas Pof. J. Matín

Más detalles

TRABAJO DE LABORATORIO Nº 2: Potencial Eléctrico Mapa de Campo Eléctrico

TRABAJO DE LABORATORIO Nº 2: Potencial Eléctrico Mapa de Campo Eléctrico Univesidad Nacional del Nodeste Facultad de Ingenieía Cáteda: Física III Pofeso Adjunto: Ing. Atuo Castaño Jefe de Tabajos Pácticos: Ing. Cesa Rey Auiliaes: Ing. Andés Mendivil, Ing. José Epucci, Ing.

Más detalles

UNIVERSIDAD DE CHILE

UNIVERSIDAD DE CHILE UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS ESCUELA DE POSTGRADO PLAN PARA ENFOCAR LAS CAMPAÑAS BANCARIAS UTILIZANDO DATAMINING MAURICIO PASCUAL DE LUCA VENEGAS MIEMBROS DE LA COMISIÓN

Más detalles

Tema 2. Sistemas conservativos

Tema 2. Sistemas conservativos Tema. Sistemas consevativos Tecea pate: Fueza gavitatoia A Campo gavitatoio Una masa M cea en su vecindad un campo de fuezas, el campo gavitatoio E, dado po E u siendo u el vecto unitaio adial que sale

Más detalles

CAPÍTULO V ESTRUCTURAS ALGEBRAICAS

CAPÍTULO V ESTRUCTURAS ALGEBRAICAS ESTRUCTURAS ALGEBRAICAS 7 CAPÍTULO V ESTRUCTURAS ALGEBRAICAS Estructura Algebraca es todo conjunto no vacío en el cual se han defndo una o más leyes de composcón nterna, luego de cumplr certas propedades

Más detalles

Correlación y regresión lineal simple

Correlación y regresión lineal simple . Regresón lneal smple Correlacón y regresón lneal smple. Introduccón La correlacón entre dos varables ( e Y) se refere a la relacón exstente entre ellas de tal manera que a determnados valores de se asocan

Más detalles

UNIDAD I: CARGA Y CAMPO ELECTRICO

UNIDAD I: CARGA Y CAMPO ELECTRICO UNN Facultad de Ingeneía Físca III UNIDAD I: CARGA Y CAMPO LCTRICO Caga eléctca. Induccón eléctca. Consevacón y cuantzacón de la caga. Conductoes y asladoes. Ley de Coulomb. Analogía ente la Ley de Coulomb

Más detalles

GEOMETRÍA. punto, la recta y el plano.

GEOMETRÍA. punto, la recta y el plano. MISIÓN 011-II GEMETRÍ STUS GEMETRÍ a geometía es la ama de las Matemáticas que tiene po objeto el estudio de las figuas geométicas. Se denomina figua geomética a cualquie conjunto no vacío de puntos del

Más detalles

EXPERIMENTACIÓN COMERCIAL(I)

EXPERIMENTACIÓN COMERCIAL(I) EXPERIMENTACIÓN COMERCIAL(I) En un expermento comercal el nvestgador modfca algún factor (denomnado varable explcatva o ndependente) para observar el efecto de esta modfcacón sobre otro factor (denomnado

Más detalles

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS Edgar Acuña Fernández Departamento de Matemátcas Unversdad de Puerto Rco Recnto Unverstaro de Mayagüez Edgar Acuña Analss de Regreson Regresón con varables

Más detalles

MODELOS DE ELECCIÓN BINARIA

MODELOS DE ELECCIÓN BINARIA MODELOS DE ELECCIÓN BINARIA Econometría I UNLP http://www.econometra1.depeco.econo.unlp.edu.ar/ Modelos de Eleccón Bnara: Introduccón Estamos nteresados en la probabldad de ocurrenca de certo evento Podemos

Más detalles

CREACIÓN DE MAPAS DENSOS BASADOS EN APARIENCIA

CREACIÓN DE MAPAS DENSOS BASADOS EN APARIENCIA CREACIÓ DE MAPAS DESOS BASADOS E APARIECIA Loenzo Fenández, Lus Paá, Davd Úbeda, Mónca Ballesta, Jose M. Maín Depatamento de Ingeneía de Sstemas Industales. Unvesdad Mguel Henández. Avda. de la Unvesdad

Más detalles

ANÁLISIS GRÁFICO DE UN MOVIMIENTO RECTILÍNEO

ANÁLISIS GRÁFICO DE UN MOVIMIENTO RECTILÍNEO Insttuto de Poesoes Atgas Físca Expemental 1 Guía páctca Nº ANÁLISIS GRÁFICO DE UN MOVIMIENTO RECTILÍNEO DISPOSITIVO EXPERIMENTAL El dspostvo expemental se muesta en la gua 1. Un egstado electónco o tme

Más detalles

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1 Escuela de Ingenería Comercal Ayudantía # 01, Conceptos Generales, Modelo de Regresón Profesor: Carlos R. Ptta 1 1 cptta@spm.uach.cl Escuela de Ingenería Comercal Ayudantía 01 Parte 01: Comentes Señale

Más detalles

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES.- Halla dos númeos que sumados den cuo poducto sea máimo. Sean e los númeos buscados. El poblema a esolve es el siguiente: máimo Llamamos p al poducto de los dos

Más detalles

Material realizado por J. David Moreno y María Gutiérrez. Asignatura: Economía Financiera

Material realizado por J. David Moreno y María Gutiérrez. Asignatura: Economía Financiera Tema - MATEMÁTICAS FINANCIERAS Materal realzado por J. Davd Moreno y María Gutérrez Unversdad Carlos III de Madrd Asgnatura: Economía Fnancera Apuntes realzados por J. Davd Moreno y María Gutérrez Advertenca

Más detalles

Deflexión de rayos luminosos causada por un cuerpo en rotación

Deflexión de rayos luminosos causada por un cuerpo en rotación 14 Defleión de ayos luminosos causada po un cuepo en otación 114 Intoducción Cuando un ayo luminoso pasa po la cecanía de un cuepo se ve obligado a abandona su tayectoia ectilínea y cuvase más o menos

Más detalles

* Introducción * Principio de mínima energía * Transformaciones de Legendre * Funciones (o potenciales) termodinámicas. Principios de mínimo.

* Introducción * Principio de mínima energía * Transformaciones de Legendre * Funciones (o potenciales) termodinámicas. Principios de mínimo. 5. otencales emonámcos * Intouccón * ncpo e mínma enegía * ansomacones e Legene * Funcones (o potencales) temonámcas. ncpos e mínmo. * Enegía lbe (potencal) e Helmholtz lt * Entalpía. * Enegía lbe e Gbbs.

Más detalles

Análisis de Regresión y Correlación

Análisis de Regresión y Correlación 1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

CUESTIONES Y PROBLEMAS DE CAMPO ELÉCTRICO. Ejercicio nº1 Cómo se manifiesta la propiedad de la materia denominada carga eléctrica?

CUESTIONES Y PROBLEMAS DE CAMPO ELÉCTRICO. Ejercicio nº1 Cómo se manifiesta la propiedad de la materia denominada carga eléctrica? UESTIONES Y POBLEMAS DE AMPO ELÉTIO Ejecicio nº ómo se manifiesta la popiedad de la mateia denominada caga eléctica? La popiedad de la mateia denominada caga eléctica se manifiesta mediante fuezas de atacción

Más detalles

Capitulo 9: Leyes de Kepler, Gravitación y Fuerzas Centrales

Capitulo 9: Leyes de Kepler, Gravitación y Fuerzas Centrales Capitulo 9: Leyes de Keple, Gavitación y Fuezas Centales Índice. Las 3 leyes de Keple 2. Campo gavitacional 4 3. Consevación de enegía 6 4. Movimiento cicula 8 5. Difeentes tayectoias 0 6. Demosta Leyes

Más detalles

DISEÑO Y MODIFICACION DE MOLDE INVERSO PARA PROTESIS MEDIANTE HERRAMIENTAS COMPUTACIONALES

DISEÑO Y MODIFICACION DE MOLDE INVERSO PARA PROTESIS MEDIANTE HERRAMIENTAS COMPUTACIONALES ONTIFICIA UNIVERSIDAD CATOLICA DE CHILE ESCUELA DE INGENIERIA DISEÑO Y MODIFICACION DE MOLDE INVERSO ARA ROTESIS MEDIANTE HERRAMIENTAS COMUTACIONALES MARÍA CONSUELO DÍAZ WICHMANN Tess aa ota al gado de

Más detalles

2.7 Cilindros, conos, esferas y pirámides

2.7 Cilindros, conos, esferas y pirámides UNIDAD Geometía.7 Cilindos, conos, esfeas y piámides 58.7 Cilindos, conos, esfeas y piámides OBJETIVOS Calcula el áea y el volumen de cilindos, conos, esfeas y piámides egulaes Resolve poblemas de solidos

Más detalles

Tema 2. DINÁMICA DE SISTEMAS DE PARTÍCULAS

Tema 2. DINÁMICA DE SISTEMAS DE PARTÍCULAS Tea. DIÁMICA DE SISTEMAS DE PARTÍCULAS. Intoduccón. Cento de asas.. Movento del cento de asas.. Masa educda..3 Consevacón del oento lneal..4 Consevacón del oento angula.3 Enegía de un sstea de patículas.3.

Más detalles

Corrección topográfica de la imagen para mejorar las clasificaciones en zonas montañosas. Por Carmen Recondo. Modelos y métodos.

Corrección topográfica de la imagen para mejorar las clasificaciones en zonas montañosas. Por Carmen Recondo. Modelos y métodos. Po Camen Recondo Coeccón toogáfca de la magen aa mejoa la clafcacone en zona montañoa. Modelo método. Jonada de Coeccón Toogáfca de mágene de Satélte Camu de Mee. Unvedad de Ovedo. 7 de dcembe de 009.

Más detalles

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA CMPO GRVIORIO FC 0 NDLUCÍ. a) Explique qué se entiende po velocidad de escape y deduzca azonadamente su expesión. b) Razone qué enegía había que comunica a un objeto de masa m, situado a una altua h sobe

Más detalles

Definir los conceptos de autoinducción, inducción mutua. Analizar circuitos con bobinas y resistencias. Definir energía magnética.

Definir los conceptos de autoinducción, inducción mutua. Analizar circuitos con bobinas y resistencias. Definir energía magnética. Capítulo 8 nduccón electomagnétca 8.1 ntoduccón 8. Fenómenos de nduccón electomagnétca 8.3 Ley Faaday. Ley de Lenz 8.4 nduccón mutua. Autonduccón 8.5 Ccuto L 8.6 Enegía almacenada en una autonduccón. 8.7

Más detalles

LOCALIZACIÓN DE FALTAS EN SISTEMAS DE DISTRIBUCIÓN DE ENERGÍA ELÉCTRICA USANDO MÉTODOS BASADOS EN EL MODELO Y MÉTODOS BASADOS EN EL CONOCIMIENTO

LOCALIZACIÓN DE FALTAS EN SISTEMAS DE DISTRIBUCIÓN DE ENERGÍA ELÉCTRICA USANDO MÉTODOS BASADOS EN EL MODELO Y MÉTODOS BASADOS EN EL CONOCIMIENTO LOCALIZACIÓN DE FALTAS EN SISTEMAS DE DISTRIBUCIÓN DE ENERGÍA ELÉCTRICA USANDO MÉTODOS BASADOS EN EL MODELO Y MÉTODOS BASADOS EN EL CONOCIMIENTO Juan José MORA FLÓREZ ISBN: 978-84-69-453-8 Dpòst legal:

Más detalles

6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS

6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS 6.. Gáficas de ectas usando m b Po ejemplo, paa gafica la ecta Maca el valo de b (odenada al oigen) sobe el eje, es deci el punto (0,). A pati de ese punto, como la pendiente es, se toma una unidad a la

Más detalles

1.1 Ejercicios Resueltos Tema 1

1.1 Ejercicios Resueltos Tema 1 .. EJERCICIOS RESUELTOS TEMA. Ejerccos Resueltos Tema Ejemplo: Probarque ++3+ + n 3 + 3 +3 3 + + n 3 n (n +) Ã n (n +)! - Para n es certa, tambén lo comprobamos para n, 3,... ( + ) + 3 (+) supuesto certa

Más detalles

X X 1. MECÁNICA GENERAL 1.4. FUNDAMENTOS DE ANÁLISIS TENSORIAL. 1.4.1. Introducción

X X 1. MECÁNICA GENERAL 1.4. FUNDAMENTOS DE ANÁLISIS TENSORIAL. 1.4.1. Introducción Fndmentos y eoís Físcs ES Aqtect. MECÁNCA GENERAL.4. FUNDAMENOS DE ANÁLSS ENSORAL.4.. ntodccón L myoí de ls mgntdes físcs y elcones mtemátcs ente ls msms qedn pefectmente defnds tbjndo con escles y ectoes.

Más detalles

2.4 La circunferencia y el círculo

2.4 La circunferencia y el círculo UNI Geometía. La cicunfeencia y el cículo. La cicunfeencia y el cículo JTIVS alcula el áea del cículo y el peímeto de la cicunfeencia. alcula el áea y el peímeto de sectoes y segmentos ciculaes. alcula

Más detalles

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia Investgacón y Técncas de Mercado Prevsón de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): s de Tendenca Profesor: Ramón Mahía Curso 00-003 I.- Introduccón Hasta el momento,

Más detalles

TEMA 4 Variables aleatorias discretas Esperanza y varianza

TEMA 4 Variables aleatorias discretas Esperanza y varianza Métodos Estadístcos para la Ingenería Curso007/08 Felpe Ramírez Ingenería Técnca Químca Industral TEMA 4 Varables aleatoras dscretas Esperanza y varanza La Probabldad es la verdadera guía de la vda. Ccerón

Más detalles

Regla del Triángulo. (a) (b) (c) 1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0101) Repaso de Vectores

Regla del Triángulo. (a) (b) (c) 1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0101) Repaso de Vectores 1 Físc Genel I Plelos 5. Pofeso RodgoVeg R 11) Repso de Vectoes 1) Repso de Opecones Vectoles Us l sum ectol, usndo l egl del tángulo l del plelogmo. Clcul l mgntud deccón de l sum usndo teoem del seno

Más detalles

Parte 3: Electricidad y Magnetismo

Parte 3: Electricidad y Magnetismo Pate 3: Electicidad y Magnetismo 1 Pate 3: Electicidad y Magnetismo Los fenómenos ligados a la electicidad y al magnetismo, han sido obsevados y estudiados desde hace muchos siglos. No obstante ello, las

Más detalles

CAPITULO 5. TRABAJO Y ENERGIA.

CAPITULO 5. TRABAJO Y ENERGIA. CAPITULO 5. TRABAJO Y ENERGIA. El poblema undamental de la Mecánca es descb como se moveán los cuepos s se conocen las uezas aplcadas sobe él. La oma de hacelo es aplcando la segunda Ley de Newton, peo

Más detalles

WICC 2012 202 ALGORITMO CON COBERTURA MUESTRAL EN DATA MINING APLICADO AL ESTUDIO DE LA BIODIVERSIDAD

WICC 2012 202 ALGORITMO CON COBERTURA MUESTRAL EN DATA MINING APLICADO AL ESTUDIO DE LA BIODIVERSIDAD WICC 202 202 ALGORITMO CON COBERTURA MUETRAL EN DATA MINING APLICADO AL ETUDIO DE LA BIODIVERIDAD Cstóbal R. anta Maía Depatamento de Ingeneía UNLAM Macelo oa Facultad de Agonomía Cáteda de Mcobología

Más detalles

Media es la suma de todas las observaciones dividida por el tamaño de la muestra.

Media es la suma de todas las observaciones dividida por el tamaño de la muestra. Estadístcos Los estadístcos son valores calculados con los datos de una varable cuanttatva y que mden alguna de las característcas de la dstrbucón muestral. Las prncpales característcas son: tendenca central,

Más detalles

Cálculo del Campo Magnético en el Interior de Edificaciones con Sistemas de Protección Contra Rayos

Cálculo del Campo Magnético en el Interior de Edificaciones con Sistemas de Protección Contra Rayos Infomacón Tecnológca Cálculo Vol. 20(3), del Campo 45-54 (2009) Magnétco en el Inteo de Edfcacones con Sstemas do:10.1612/nf.tecnol.4063t.08 Cálculo del Campo Magnétco en el Inteo de Edfcacones con Sstemas

Más detalles

Matemáticas Aplicadas CC. SS. I -- I. E. S. Sabinar

Matemáticas Aplicadas CC. SS. I -- I. E. S. Sabinar Matemátcas Aplcadas. SS. I -- I. E. S. Saba MATEMÁTIAS INANIERAS EN 1º BTO.. SS. 1. PORENTAJES 1.1 Aumetos y dsmucoes pocetuales. Ídce de vaacó 1.2 Aumetos y dsmucoes pocetuales ecadeados. Ídce de vaacó

Más detalles

EQUILIBRIO LÍQUIDO VAPOR EN UN SISTEMA NO IDEAL

EQUILIBRIO LÍQUIDO VAPOR EN UN SISTEMA NO IDEAL EQUILIBRIO LÍQUIDO VAPOR EN UN SISTEMA NO IDEAL OBJETIVO El alumno obtendrá el punto azeotrópco para el sstema acetona-cloroformo, calculará los coefcentes de actvdad de cada componente a las composcones

Más detalles

La fuerza gravitatoria entre dos masas viene dada por la ley de gravitación universal de Newton, cuya expresión vectorial es

La fuerza gravitatoria entre dos masas viene dada por la ley de gravitación universal de Newton, cuya expresión vectorial es LGUNS CUESTIONES TEÓICS SOE LOS TEMS Y.. azone si las siuientes afimaciones son vedadeas o falsas a) El tabajo que ealiza una fueza consevativa sobe una patícula que se desplaza ente dos puntos, es meno

Más detalles

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVIACIÓN 1 GRAVIACIÓN INRODUCCIÓN MÉODO 1. En geneal: Se dibujan las fuezas que actúan sobe el sistema. Se calcula la esultante po el pincipio de supeposición. Se aplica la ª ley de Newton

Más detalles

TEMA 1: MODELOS DE REPRESENTACIÓN DE OBJETOS 3D

TEMA 1: MODELOS DE REPRESENTACIÓN DE OBJETOS 3D TEMA : MODELOS DE REPRESENTACIÓN DE OBJETOS 3D.. MODELOS DE SUPERFICIES Exsten vaas azones paa quee epesenta un objeto medante un modelo de supefce: Cuando el objeto msmo es una supefce que podemos supone

Más detalles

Soluciones Actividades Tema 1

Soluciones Actividades Tema 1 Soluciones Actividades Tema 1 Actividades Unidad 1.- Busca infomación y discimina ente ciencia o falsa ciencia. a) Mal de ojo y amuletos. b) Astología: ceencia en los hoóscopos. c) Astonomía y viajes planetaios.

Más detalles

www.fisicaeingenieria.es Vectores y campos

www.fisicaeingenieria.es Vectores y campos www.fisicaeingenieia.es Vectoes y campos www.fisicaeingenieia.es www.fisicaeingenieia.es ) Dados los vectoes a = 4$ i + 3$ j + k$ y c = $ i + $ j 7k$, enconta las componente de oto vecto unitaio, paa que

Más detalles

CAMPO GRAVITATORIO FCA 04 ANDALUCÍA

CAMPO GRAVITATORIO FCA 04 ANDALUCÍA CAPO GAVIAOIO FCA 04 ANDALUCÍA. a) Al desplazase un cuepo desde una posición A hasta ota B, su enegía potencial disminuye. Puede aseguase que su enegía cinética en B es mayo que en A? azone la espuesta.

Más detalles

"FABRICACIÓN Y MONTAJE DE UNA ESTRUCTURA METÁLICA"

FABRICACIÓN Y MONTAJE DE UNA ESTRUCTURA METÁLICA B I B L I O T E C A Insttuto Tecnológco de la Constuccón nsttuto lecnológco de la Constuccón, A.C. "FABRICACIÓN Y MONTAJE DE UNA ESTRUCTURA METÁLICA" T E I Que psa olotene el ttulo de: "Ingeneo Constuoto

Más detalles

Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó

Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó Comparacón entre dstntos Crteros de decsón (, TIR y PRI) Por: Pablo Lledó Master of Scence en Evaluacón de Proyectos (Unversty of York) Project Management Professonal (PMP certfed by the PMI) Profesor

Más detalles

Fundamentos de Física Estadística: Problema básico, Postulados

Fundamentos de Física Estadística: Problema básico, Postulados Fundamentos de Físca Estadístca: Problema básco, Postulados y Formalsmos. Problema básco de la Mecánca Estadístca del Equlbro (MEE) El problema básco de la MEE es la determnacón de la relacón termodnámca

Más detalles

TRANSISTORES EFECTO DE CAMPO

TRANSISTORES EFECTO DE CAMPO Intoduccón TANSISTOES EFECTO E CAMPO El desepeño del tanssto efecto de capo (FET) popuesto po W. Shockley en 952, es dfeente del desepeño del BJT. El paáeto de contol paa un FET es el voltaje en vez de

Más detalles

CONTROVERSIAS A LAS BASES TÉCNICO ECONOMICAS PRELIMINARES PROCESO TARIFARIO CONCESIONARIA COMPAÑÍA DE TELÉFONOS DE COYHAIQUE S.A.

CONTROVERSIAS A LAS BASES TÉCNICO ECONOMICAS PRELIMINARES PROCESO TARIFARIO CONCESIONARIA COMPAÑÍA DE TELÉFONOS DE COYHAIQUE S.A. CONTROVERSIAS A LAS BASES TÉCNICO ECONOMICAS PRELIMINARES PROCESO TARIFARIO CONCESIONARIA COMPAÑÍA DE TELÉFONOS DE COYHAIQUE S.A. PERÍODO 201-2020 Introduccón Las Bases Técnco Económcas Prelmnares, en

Más detalles

Adaptación de impedancias

Adaptación de impedancias .- El tansfomado ideal Adaptación de impedancias I +V +V TI Tansfomado ideal V elaciones V-I: V = I = a. I, válidas paa cualquie fecuencia. a Si se conecta una esistencia al secundaio, ente el nodo +V

Más detalles

IES Fco Ayala de Granada Junio de 2014 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 2 opción A, modelo_1 Junio 2014

IES Fco Ayala de Granada Junio de 2014 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 2 opción A, modelo_1 Junio 2014 IES Fco Ayala de Ganada Junio de 014 (Modelo 1) Soluciones Gemán-Jesús Rubio Luna Opción A Ejecicio 1 opción A, modelo_1 Junio 014 Sea f : R R definida po f(x) x + ax + bx + c. [1 7 puntos] Halla a, b

Más detalles

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA INSTITUT DE FÍSIC MECÁNIC NEWTNIN Cuso 009 áctco I Cnemátc de l tícul y Movmento eltvo NT: Los sguentes eeccos están odendos po tem y, dento de cd tem, en un oden cecente de dfcultd lgunos eeccos se encuentn

Más detalles

MAGNITUDES ESCALARES Y VECTORIALES. Dr. CARLOS MOSQUERA

MAGNITUDES ESCALARES Y VECTORIALES. Dr. CARLOS MOSQUERA 1 MAGNITUDES ESCALARES Y VECTRIALES D. CARLS MSQUERA 2 Mgntudes escles y vectoles Defncones; popeddes y opecones En los conceptos de mecánc que desollemos, nos encontemos con dos dfeentes tpos de mgntudes:

Más detalles

Problemas aritméticos

Problemas aritméticos 3 Poblemas aitméticos Antes de empeza Objetivos En esta quincena apendeás a: Recoda y pofundiza sobe popocionalidad diecta e invesa, popocionalidad compuesta y epatos popocionales. Recoda y pofundiza sobe

Más detalles

UNIDAD Nº 2 VECTORES Y FUERZAS

UNIDAD Nº 2 VECTORES Y FUERZAS UNIVERSIDAD DE SANTIAGO DE CHILE DEPARTAMENTO DE FISICA FISICA EXPERIMENTAL PLAN ANUAL INGENIERIA FISICA 1 e SEMESTRE 2012 UNIDAD Nº 2 VECTORES Y FUERZAS OBJETIVOS Medi el módulo de un vecto fueza usando

Más detalles

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo Evaluacón Económca de Proyectos de Inversón 1 ANTECEDENTES GENERALES. La evaluacón se podría defnr, smplemente, como el proceso en el cual se determna el mérto, valor o sgnfcanca de un proyecto. Este proceso

Más detalles

SUPERV 1. UBICACIÓN ING.GILBERTO RODRIGUEZ SAENZ SUPERVISOR. CAMPAMENTO Y/O OFICINA DE SUPERVISION - ANDAHUAYLAS r PROVINCIA DE ANDAHUAYLAS PERU

SUPERV 1. UBICACIÓN ING.GILBERTO RODRIGUEZ SAENZ SUPERVISOR. CAMPAMENTO Y/O OFICINA DE SUPERVISION - ANDAHUAYLAS r PROVINCIA DE ANDAHUAYLAS PERU 1. UBICACIÓN El áea de influencia se encuenta ente las Regiones de Ayacucho y Apuimac, pasando la vía po los distitos de Chiaa, Ocos, Uipa ( Chincheos), Chicmo, Talavea (Andahuaylas), así como, Kishuaa,

Más detalles

Ecuación de Laplace y Ecuación de Poisson Teorema de Unicidad. Métodos de las Imágenes. Campos y Ondas UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA

Ecuación de Laplace y Ecuación de Poisson Teorema de Unicidad. Métodos de las Imágenes. Campos y Ondas UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA Electostática táti Clase 3 Ecuación de Laplace y Ecuación de Poisson Teoema de Unicidad. Métodos de las Imágenes Campos y Ondas FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA 2 E V m

Más detalles

PROBLEMAS DE ÓPTICA. FÍSICA 2 BACHILLERATO. Profesor: Félix Muñoz Jiménez

PROBLEMAS DE ÓPTICA. FÍSICA 2 BACHILLERATO. Profesor: Félix Muñoz Jiménez PROBEMS DE ÓPTIC. FÍSIC BCHIERTO. Pofeo: Félx Muñoz Jméez Poblema º Calcula el ídce de efaccó elatvo del vdo al acete. Halla la velocdad de popagacó y la logtud de oda, e el acete y e el vdo de u ayo de

Más detalles

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el /5 Conceptos pevios PRODUCTO VECTORIAL DE DO VECTORE. Es oto vecto cuyo módulo viene dado po: a b a b senα. u diección es pependicula al plano en el ue se encuentan los dos vectoes y su sentido viene dado

Más detalles

GRAFICANDO EN COORDENADAS POLARES

GRAFICANDO EN COORDENADAS POLARES GRAFICANDO EN COORDENADAS POLARES Maía Guadalupe Amado Moeno, Ángel Gacía Velázquez Instituto Tecnológico de Meicali, Baja Califonia, Méico lupitaamado@hotmail.com, angel.g0@hotmail.com RESUMEN El tabajo

Más detalles

v i CIRCUITOS ELÉCTRICOS (apuntes para el curso de Electrónica)

v i CIRCUITOS ELÉCTRICOS (apuntes para el curso de Electrónica) IUITOS EÉTIOS (apuntes para el curso de Electrónca) os crcutos eléctrcos están compuestos por: fuentes de energía: generadores de tensón y generadores de corrente y elementos pasos: resstores, nductores

Más detalles

Elementos de la geometría plana

Elementos de la geometría plana Elementos de la geometía plana Elementos de la geometía plana El punto Los elementos básicos de la geometía plana El punto es el elemento mínimo del plano. Los otos elementos geométicos están fomados po

Más detalles

SIMULACIÓN DE PRESIÓN NO ESTÁTICA EN YACIMIENTOS MEDIANTE SOLUCIONES FUNDAMENTALES

SIMULACIÓN DE PRESIÓN NO ESTÁTICA EN YACIMIENTOS MEDIANTE SOLUCIONES FUNDAMENTALES FARAUTE Cens. y Tec., 3(): 4-5, 8. ISSN 698-748 Depósto Legal PP4CA67 SIMULACIÓN DE PRESIÓN NO ESTÁTICA EN YACIMIENTOS MEDIANTE SOLUCIONES FUNDAMENTALES Smulaton Of Tansent Resevo Pessue Based On Fundamental

Más detalles

Macroeconomía Abierta

Macroeconomía Abierta Macoeconomía Abeta of. chad oca Gaay hoca@yahoo.com http://chadoca.blogspot.com Unvesdad Naconal Mayo de an Macos ontfca Unvesdad Católca del eú Lma eú 009 chad oca. INDICE Capítulo. Cuentas Naconales

Más detalles

TEORIA RELATIVISTA DE LA GRAVITACION EN LA EXPANSION COSMOLOGICA

TEORIA RELATIVISTA DE LA GRAVITACION EN LA EXPANSION COSMOLOGICA ORIA RLAIVISA D LA RAVIACION N LA XPANSION COSMOLOICA Rodolfo CARABIO Posiguiendo el estudio eoía Relativista de la avitación basada en la Relatividad special, se analizaa a continuación la aplicación

Más detalles

2.5 Especialidades en la facturación eléctrica

2.5 Especialidades en la facturación eléctrica 2.5 Especaldades en la facturacón eléctrca Es necesaro destacar a contnuacón algunos aspectos peculares de la facturacón eléctrca según Tarfas, que tendrán su mportanca a la hora de establecer los crteros

Más detalles

INTRODUCCION AL ANALISIS VECTORIAL

INTRODUCCION AL ANALISIS VECTORIAL JOSÉ MILCIDEZ DÍZ, REL CSTILLO, ERNNDO VEG PONTIICI UNIVERSIDD JVERIN, DEPRTMENTO DE ÍSIC INTRODUCCION L NLISIS VECTORIL Intoducción Pate Pate 3 Pate 4 (Pate ) Donde encuente el símbolo..! conduce a una

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

TEMA 8: PRÉSTAMOS ÍNDICE

TEMA 8: PRÉSTAMOS ÍNDICE TEM 8: PRÉSTMOS ÍNDICE 1. CONCEPTO DE PRÉSTMO: SISTEMS DE MORTIZCIÓN DE PRÉSTMOS... 1 2. NOMENCLTUR PR PRÉSTMOS DE MORTIZCIÓN FRCCIOND... 3 3. CUDRO DE MORTIZCIÓN GENERL... 3 4. MORTIZCIÓN DE PRÉSTMO MEDINTE

Más detalles

UNIDAD 3: CONFIGURACIONES COMPUESTAS

UNIDAD 3: CONFIGURACIONES COMPUESTAS 4/5/009 Undad 3 lectónca UNA 3: ONFGUAONS OMPUSTAS OJTO PATULA l alumn estudaá ls dfeentes tps de cnfguacnes y su análss 3. nexnes en cascada, cascde y alngtn 3. Pa etalmentad 3.3 cut MOS, de fuente de

Más detalles

Índice INTRODUCCIÓN... 11 1.1 MARCO DE LA TESIS...11 1.1.1 ALCANCE DE LA TESIS...12 1.2 OBJETIVOS...13 1.3 ESTRUCTURA DE LA TESIS...

Índice INTRODUCCIÓN... 11 1.1 MARCO DE LA TESIS...11 1.1.1 ALCANCE DE LA TESIS...12 1.2 OBJETIVOS...13 1.3 ESTRUCTURA DE LA TESIS... Índce INTRODUCCIÓN.... MARCO DE LA TESIS..... ALCANCE DE LA TESIS.... OBJETIVOS...3.3 ESTRUCTURA DE LA TESIS...4 PROBLEMÁTICA DE LA INSPECCIÓN VISUAL AUTOMATIZADA... 7. LA INSPECCIÓN INDUSTRIAL...8.. TAXONOMÍA

Más detalles

Diseño y Análisis de Experimentos en el SPSS 1

Diseño y Análisis de Experimentos en el SPSS 1 Dseño y Análss de Expermentos en el SPSS EJEMPLO. Los sguentes datos muestran las meddas de hemoglobna (gramos por 00 ml) en la sangre de 40 ejemplares de una espece de truchas marrones. Las truchas se

Más detalles

CAPÍTULO 3 METODOLOGÍA. En el siguiente capítulo se presenta al inicio, definiciones de algunos conceptos actuariales

CAPÍTULO 3 METODOLOGÍA. En el siguiente capítulo se presenta al inicio, definiciones de algunos conceptos actuariales CAPÍTULO 3 METODOLOGÍA En el sguente capítulo se presenta al nco, defncones de algunos conceptos actuarales que se utlzan para la elaboracón de las bases técncas del Producto de Salud al gual que la metodología

Más detalles

9 Ángulos y rectas OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Recta, semirrecta y segmento. Rectas paralelas, perpendiculares y secantes.

9 Ángulos y rectas OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Recta, semirrecta y segmento. Rectas paralelas, perpendiculares y secantes. 826464 _ 0341-0354.qxd 12/2/07 10:04 Página 341 Ángulo y ecta INTRODUCCIÓN RESUMEN DE LA UNIDAD A nueto alededo encontamo ecta y ángulo que influyen en nueto movimiento: calle, avenida, plano, etc. El

Más detalles

INVIRTIENDO EN PUBLICIDAD: ESTRATEGIAS DE LAS EMPRESAS DEL SECTOR COMERCIAL ECUATORIANO

INVIRTIENDO EN PUBLICIDAD: ESTRATEGIAS DE LAS EMPRESAS DEL SECTOR COMERCIAL ECUATORIANO ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS HUMANISTICAS Y ECONOMICAS INVIRTIENDO EN PUBLICIDAD: ESTRATEGIAS DE LAS EMPRESAS DEL SECTOR COMERCIAL ECUATORIANO Resumen: Las decsones de

Más detalles

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA Alca Maroto, Rcard Boqué, Jord Ru, F. Xaver Rus Departamento de Químca Analítca y Químca Orgánca Unverstat Rovra Vrgl. Pl. Imperal Tàrraco,

Más detalles

paz final.qxp 21/06/2007 10:35 PÆgina 1 Cuadernos de Educación en Valores 6 QUEVIVA LA PAZ! P o r p r e g u n t a r q u e n o q u e d e

paz final.qxp 21/06/2007 10:35 PÆgina 1 Cuadernos de Educación en Valores 6 QUEVIVA LA PAZ! P o r p r e g u n t a r q u e n o q u e d e Cuadenos de Educación en Valoes 6 QUEVIVA LA PAZ! pegunta ue no uede Hola, me llamo Calota Vendetta y llevo muchos años tabajando como maesta en difeentes países del mundo. Desde peueña he ueido se aventuea,

Más detalles

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Física Geneal Poecto PMME - Cuso 8 Instituto de Física Facultad de Inenieía UdelaR TÍTULO MOVIMIENTO RELATIVO MOVIMIENTO E PROYECTIL. EL ALEGRE CAZAOR QUE VUELVE A SU CASA CON UN FUERTE OLOR ACÁ. AUTORES

Más detalles

Unidad II: Análisis de la combustión completa e incompleta. 2. 1. Aire

Unidad II: Análisis de la combustión completa e incompleta. 2. 1. Aire 4 Undad II: Análss de la combustón completa e ncompleta. 1. Are El are que se usa en las reaccones de combustón es el are atmosférco. Ya se djo en la Undad I que, debdo a que n el N n los gases nertes

Más detalles