TEMA 5: INTRODUCCIÓN A LA SIMETRÍA MOLECULAR

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 5: INTRODUCCIÓN A LA SIMETRÍA MOLECULAR"

Transcripción

1 Tema 5 Simetría Molecular 1 TEMA 5: INTRODUCCIÓN A LA SIMETRÍA MOLECULAR La simetría de una molécula determina muchas de sus propiedades e incluso determina cómo se producen algunas reacciones. El estudio de la simetría molecular es fundamental porque permite completar análisis teóricos y experimentales sobre la estructura de las moléculas. Los principios básicos de la simetría molecular se pueden aplicar en las teorías de química cuántica, espectroscopia molecular y otros estudios físico-químicos. Por tanto, la simetría es muy útil en química porque permite: - Predecir ciertas propiedades como actividad óptica, presencia de un momento dipolar,... - Predecir el resultado de la interacción con algún tipo de radiación electromagnética, en particular, con la radiación infrarroja mediante la espectroscopia. - Describir el tipo de orbitales de la molécula, que son los responsables de los enlaces existentes en la molécula: teoría de orbitales moleculares. En el tema anterior se ha estudiado la teoría VSEPR, modelo que permite predecir de forma sencilla la geometría de las moléculas. A partir de la forma de la molécula se puede analizar su simetría. Para conocer la simetría debemos conocer en primer lugar la estructura de Lewis y la geometría de la molécula. ELEMENTOS Y OPERACIONES DE SIMETRÍA Operación de Simetría: Es un movimiento que, realizado sobre una especie cualquiera, conduce a una configuración equivalente a la inicial. Por equivalente se entiende una configuración indistinguible, pero no necesariamente idéntica. Si se pudiera hacer una foto a la molécula desde el mismo punto antes y después de la operación de simetría ambas fotos serían idénticas, es decir, se vería lo mismo. Por ejemplo, si se realiza un giro de 180º en torno al eje donde se encuentra el par de electrones solitarios en la molécula de agua, el resultado se llega a una situación idéntica a la inicial.

2 2 Simetría Molecular Tema 5 180º H O H H O H A cada operación de simetría (por ejemplo, la rotación) se le asocia un elemento de simetría. Elementos de simetría: Son las entidades geométricas (puntos, líneas y planos) respecto de las cuales se realizan las operaciones de simetría (por ejemplo, cuando se rota la molécula de agua en torno al eje donde se sitúa el par solitario, el eje es el elemento de simetría). La posibilidad de efectuar una operación de simetría con una molécula pone de manifiesto que esa molécula posee el correspondiente elemento de simetría. Se describen a continuación cada uno de los elementos de simetría así como las operaciones a que dan lugar cada uno de ellos (Tabla 1). Tabla 1. Elementos y operaciones de simetría Elemento Operación Descripción Identidad E Molécula inalterada Rotación C n Rotación de 360º/n en torno al eje Eje de rotación propio de orden n, C n Rotación Rotación 2 C n 3 C n Rotación de 2 (360º/n) en torno al eje Rotación de 3 (360º/n) en torno al eje Rotación C n n 1 Rotación de (n 1) (360º/n) en torno al eje Rotación C n n = E Plano de simetría, σ (σ h, σ v, σ d ) Reflexión σ Reflexión en el plano (como si fuera un espejo doble) Centro de inversión, i (centro de simetría) Inversión i Proyección de cada átomo en línea recta a través y a igual distancia del centro i Eje de rotación impropio de orden n, S n Rotación impropia S n Rotación de 360º/n en torno al eje seguida de una reflexión en un plano σ h

3 Tema 5 Simetría Molecular 3 - Operación Identidad (E): Deja la molécula inalterada. Esta operación se puede realizar sobre todas las moléculas, aunque no tengan simetría y ninguna otra operación sea posible. - Elemento: eje de rotación propia de orden n, C n (es la línea a través de la cual se produce la rotación). Operación de rotación propia (C n ): La molécula resulta aparentemente inalterada tras una rotación de 360/n. En general: un eje de rotación propia de orden n C n tiene n operaciones C n C n n = E Ejemplos: H 2 O: eje de rotación propia de orden 2 (binario) C 2. Operación C 1 2 : giro de 180º (360º/2) en torno al eje. Operación C 2 2 : dos giros de 180º (360º) en torno al eje: coincide con E NH 3 : eje de rotación propia de orden 3 (terciario) C 3. Hay tres operaciones asociadas a este eje: C 3 ( C 1 3 ) giro de 120º (360º/3) en torno al eje. C 2 3 giro de 240º (360º/3 x 2) en torno al eje. C 3 3 giro de 360º (360º/3 x 3) en torno al eje. Son tres giros de 120º seguidos: E - Elemento: plano de simetría (σ). Operación Reflexión (σ): la molécula queda aparentemente inalterada tras una reflexión en un plano. Dos reflexiones sucesivas en el mismo plano equivalen a E. Por lo tanto un plano de simetría genera dos operaciones de simetría diferentes. Figura 1. Planos de simetría (σ) de la molécula de H 2 O.

4 4 Simetría Molecular Tema 5 La molécula de H2O tiene dos planos de simetría que contienen al eje de rotación. Son planos verticales1 σv Tipos de planos de simetría (Figura 2): - Plano de simetría horizontal (σh): se sitúa perpendicular al eje de rotación propia principal (el de mayor orden) - Plano de simetría vertical (σv): plano que contiene al eje de rotación propia principal - Plano de simetría diédrico (σd): plano que biseca el ángulo diedro determinado por el eje de rotación principal y dos ejes binarios adyacentes perpendiculares al principal. Figura 2. Tipos de planos de simetría (σ). Ejemplo de molécula con los tres tipos de planos de simetría: benceno (se sitúa perpendicular al plano del papel; este plano es σh) : C6, σh perpendicular a C6, tres planos σv que contienen a C6 y tres planos σd que bisecan los ángulos formados por dos σv (Figura 3). Figura 3. Planos de simetría del benceno. 1 Por convenio el eje principal se alinea con el eje z (eje vertical habitualmente). Como estos planos contienen al eje principal C2 vertical, por eso se denominan así.

5 Tema 5 Simetría Molecular 5 - Elemento de simetría: centro de inversión (o centro de simetría): i. El centro de inversión puede coincidir o no con un átomo (siempre coincide con el centro de masas de molécula). Operación Inversión (i): la molécula queda aparentemente inalterada cuando cada átomo se proyecta trazando una línea recta que pase por un punto, de modo que la distancia del átomo al punto sea igual a la distancia punto-átomo proyectado. El elemento de simetría centro de inversión genera dos operaciones de simetría: i, E (al aplicarlo dos veces). Ejemplos: 1) SF 6 2) CO 2 El átomo de C es el centro de inversión O C O O C O 3) N 2 El centro de inversión es equidistante de los dos átomos de N. En este caso, el centro de inversión no coincide con ningún átomo. N N N N 4) CH 4 : Las moléculas tetraédricas no tienen centro de inversión H 1 H 2 H 3 H 4 H 4 H 3 H 2 H 1

6 6 Simetría Molecular Tema 5 - Elemento: Eje de rotación impropia S n. Operación de rotación impropia S n : Es una operación compuesta. La molécula queda aparentemente inalterada cuando se produce una rotación con un ángulo determinado seguida de una reflexión en un plano perpendicular al eje sobre el que se rota. Como se puede observar en la Figura 4, un S 1 equivale a un σ h y un S 2 equivale a un i. Figura 4. Ejes de rotación impropia S 1 y S 2. Grupos Puntuales de Simetría: su asignación Cada molécula tiene un conjunto de elementos de simetría, que dan lugar a un conjunto de operaciones de simetría. Este conjunto describe la simetría completa de la molécula y se denomina grupo puntual de simetría. Así podemos clasificar las moléculas, según su simetría, en grupos puntuales. Las operaciones de simetría de un grupo puntual se comportan matemáticamente como un grupo. El tratamiento matemático de las propiedades y comportamiento de los grupos se llama Teoría de Grupos. Cada grupo puntual de simetría tiene una tabla de caracteres que recoge toda la información necesaria sobre el grupo. Conociendo los elementos y las operaciones de simetría de una molécula y, por tanto, su grupo puntual de simetría podemos: a) predecir ciertas propiedades de la misma: la presencia de momento dipolar, su actividad óptica, etc. b) predecir el resultado de la interacción de la misma con la radiación infrarroja. c) describir el tipo de orbitales responsables del enlace en la misma.

7 Tema 5 Simetría Molecular 7 Clasificación de las moléculas en grupos puntuales de simetría: árbol de simetría Siguiendo este árbol lógico podemos determinar el grupo puntual de cualquier molécula (en realidad de cualquier objeto). Los nombres de los grupos se relacionan con los elementos de simetría que contienen las moléculas. Para clasificar una molécula debemos encontrar si tiene o no la serie de elementos de simetría presentes en el árbol anterior, aunque también podemos buscar todos los elementos de simetría que tiene y compararlos con los de los grupos puntuales (Ver tabla de elementos de cada grupo puntual de simetría).

8 8 Simetría Molecular Tema 5

9 Tema 5 Simetría Molecular 9 Ejemplos de clasificación de diferentes moléculas en sus correspondientes grupos puntuales de simetría, siguiendo el árbol de simetría: CO 2 : lineal, i D h H 2 O: no lineal, se va siguiendo el árbol C 2v (C 2, σ v, σ v ) NH 3 : no lineal, se va siguiendo el árbol C 3v (C 2, 3σ v que contienen los enlaces de la molécula) PCl 5 : no lineal, se va siguiendo el árbol D 3h (C 3, 3 C 2, 3σ v que contienen los ejes, σ h, S 3 - coincide con C 3 ) Tablas de Caracteres Cada grupo puntual viene descrito por una única tabla de caracteres que tiene forma de matriz. Una tabla de caracteres contiene, de una forma simbólica, información sobre como algo que nos interese (un orbital, un enlace,...) se ve afectado por las operaciones de un grupo puntual determinado.

10 10 Simetría Molecular Tema 5 Figura 5. Tabla de caracteres del grupo puntual de simetría C 3v. 1. El número total de operaciones de simetría en un grupo se llama orden (h). Para determinar el orden de un grupo basta simplemente sumar el número total de operaciones indicadas en la parte superior de la tabla de caracteres. 2. Las operaciones de simetría se ordenan en clases de simetría. Todas las operaciones de una clase tienen idénticos caracteres para sus matrices de transformación y vienen agrupados en la misma columna de la tabla de caracteres. 3. El número de representaciones irreducibles es igual al número de clases de simetría. Esto significa que la tabla de caracteres es cuadrada. 4. La suma de los cuadrados de las dimensiones (caracteres debajo de E) de las representaciones irreducibles es igual al orden del grupo. 5. Para cualquier representación irreducible, la suma de los cuadrados de los caracteres es igual al orden del grupo. 6. Las representaciones irreducibles son ortogonales. La suma de los productos de sus caracteres para cada operación de cualquier par de representaciones irreducibles es cero. 7. Una representación totalmente simétrica aparece en todos los grupos. Se caracteriza por tener todos los caracteres igual a 1.

11 Tema 5 Simetría Molecular 11 Ejemplo: Propiedades de la Tabla de caracteres C 3v - Todas las representaciones monodimensionales se designan por A o B; las bidimensionales por E y las tridimensionales por T. - Las representaciones monodimensionales que son simétricas con respecto a la rotación 2π/n alrededor del eje principal C n (simétrica significa: χ(c n ) = 1) se designan A, mientras que las antisimétricas (χ(c n ) = -1) se designan B. - Los subíndices 1 y 2 se emplean generalmente junto con A y B para designar aquellas representaciones que son, respectivamente, simétricas o antisimétricas con respecto a un C 2 perpendicular al eje de rotación principal, si faltara tal eje C 2, a un plano vertical de simetría. - Las primas y dobles primas se unen a todas las letras, cuando convenga, para indicar aquellas que son, respectivamente, simétrica y antisimétrica con respecto a σ h. - En los grupos con centro de inversión, el subíndice g (del alemán gerade) se coloca a las representaciones que son simétricas con respecto a la inversión y el subíndice u (del alemán ungerade) se coloca a las representaciones antisimétricas con respecto a la inversión.

12 12 Simetría Molecular Tema 5 Aplicación de la simetría en la predicción de algunas propiedades moleculares La simetría de una molécula nos permite determinar si la molécula es polar o quiral. Molécula polar: Un enlace covalente entre dos átomos es polar cuando los dos átomos no comparten por igual los electrones debido a que éstos están desplazados hacia el átomo más electronegativo. La magnitud del desplazamiento de la carga en un enlace covalente polar viene dada por el momento dipolar de enlace (µ e ). Este momento dipolar de enlace es un vector y se representa utilizando una flecha con su comienzo cruzado ( ) señalando al átomo más electronegativo. Cuanto mayor es la diferencia de electronegatividad entre los átomos mayor es el momento dipolar de enlace. H Cl Cuando en una molécula existen más de dos átomos es necesario sumar todos los vectores correspondientes a los momentos dipolares de enlace para obtener el momento dipolar total de la molécula (µ). Una molécula tiene momento dipolar cuando la suma de todos los vectores señalados es diferente de cero. Los momentos dipolares de las moléculas pueden medirse experimentalmente utilizando campos eléctricos y la unidad que se utiliza habitualmente para expresar los valores de momento dipolar es el debye (D). O C O H O H Momentos dipolares de moléculas: HCl (1.04 D); CO 2 (0 D), H 2 O (1.84 D). La polaridad de una molécula viene condicionada por su geometría. La presencia de ciertos elementos de simetría imponen que el momento dipolar total de la molécula sea cero (molécula apolar o no polar) o que éste no exista en determinadas direcciones del espacio. a) Si hay un centro de inversión la molécula es apolar. b) Una molécula no puede presentar el vector momento dipolar perpendicular a un plano de simetría.

13 Tema 5 Simetría Molecular 13 de rotación. c) Una molécula no puede presentar el vector momento dipolar perpendicular a un eje En resumen, una molécula no puede ser polar si pertenece a cualquiera de los grupos puntuales siguientes: a) Cualquier grupo que incluya un centro de inversión. b) Cualquiera de los grupos D (D n, D nh, D nd ). c) Los grupos T d, O h e I h. Por tanto, los únicos grupos permitidos son: C 1, C s, C n, C nv, C nh y C v. Molécula quiral: Una molécula quiral (del término griego que significa mano) es aquella que no puede superponerse con su imagen especular. Las moléculas quirales son ópticamente activas, lo que significa que pueden girar el plano de la luz polarizada. Una molécula quiral y su imagen especular se denominan enantiómeros (de la palabra griega que significa ambos). Los enantiómeros tienen propiedades muy parecidas con la salvedad de que rotan el plano de la luz polarizada en sentidos contrarios. El ángulo con que giran el plano de la luz polarizada se mide con un polarímetro. Una mezcla de enantiómeros en proporción 1:1 se denomina mezcla racémica. En términos de simetría, una molécula quiral es aquella que no tiene un eje de rotación impropio S n. Para aplicar esta definición hay que tener en cuenta que S 1 = σ y S 2 = i. En consecuencia los grupos puntuales permitidos para las moléculas quirales son: C 1, C n y D n, mientras que los prohibidos son C s, C nv, C nh, C v, D h, D nh, D nd, T d, O h, I h (por poseer plano de simetría), C i (por poseer centro de simetría) y S n. Ejemplos de moléculas quirales:

14 14 Simetría Molecular Tema 5 La amina de la siguiente figura pertenece al grupo puntual de simetría S 4 (no es quiral) Conceptos básicos de estereoquímica Isómeros constitucionales: moléculas que poseen la misma composición cuantitativa pero que difieren en su conectividad. Estereoisómeros: moléculas con la misma conectividad pero diferente distribución espacial de los átomos. Existen dos tipos de estereoisómeros: diastereoisómeros y enantiómeros. - Enantiómeros: estereoisómeros que son imágenes especulares entre sí pero que no pueden superponerse. Son siempre dos. - Diastereoisómeros: estereoisómeros que no son enantiómeros. No son imágenes especulares. Algunos autores distingue aquí a los confórmeros (isómeros conformacionales) que proceden de considerar diferentes representaciones de una molécula generadas por rotación alrededor de enlaces simples, pero otros ni siquieran los consideran isómeros apoyándose en que no existen de forma aislada y por lo tanto no pueden presentar propiedades diferenciadas.

Tema 1. Operaciones y elementos de simetría. Objetivos:

Tema 1. Operaciones y elementos de simetría. Objetivos: Tema 1. Operaciones y elementos de simetría. Objetivos: Reconocer los elementos de simetría de una molécula Enunciar las operaciones de simetría generadas por cada elemento de simetría Combinar dos operaciones

Más detalles

GEOMETRÍA MOLECULAR. Lic. Lidia Iñigo

GEOMETRÍA MOLECULAR. Lic. Lidia Iñigo GEOMETRÍA MOLECULAR Lic. Lidia Iñigo Hemos dicho al estudiar uniones químicas que un enlace covalente es polar cuando existe cierta diferencia de electronegatividad entre los átomos que se unen. La magnitud

Más detalles

SIMETRÍA. http://www.chem.ox.ac.uk/courses/molecular_symmetry/part2.html http://www.chem.ox.ac.uk/vrchemistry/sym/splash.html

SIMETRÍA. http://www.chem.ox.ac.uk/courses/molecular_symmetry/part2.html http://www.chem.ox.ac.uk/vrchemistry/sym/splash.html SIMETRÍA Elementos y operaciones de simetría Grupos puntuales de simetría Modelo de repulsión de pares de electrones de la capa de valencia (VSEPR) Simetría de las moléculas Tablas de caracteres http://www.chem.ox.ac.uk/courses/molecular_symmetry/part2.html

Más detalles

Geometría Tridimensional

Geometría Tridimensional Capítulo 4 Geometría Tridimensional En dos dimensiones trabajamos en el plano mientras que en tres dimensiones trabajaremos en el espacio, también provisto de un sistema de coordenadas. En el espacio,

Más detalles

Tema 1: Simetría y teoría de grupos. Química Inorgánica III.

Tema 1: Simetría y teoría de grupos. Química Inorgánica III. Tema 1: Simetría y teoría de grupos. Química Inorgánica III. Simetría y Vida Maurits Cornelis Escher (1898-1972). Simetría y Vida Tema 1: Simetría y teoría de grupos. Simetría y Vida Tema 1: Simetría

Más detalles

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano 24 Unidad II Vectores 2.1 Magnitudes escalares y vectoriales Unidad II. VECTORES Para muchas magnitudes físicas basta con indicar su valor para que estén perfectamente definidas y estas son las denominadas

Más detalles

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define.

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define. VECTORES El estudio de los vectores es uno de tantos conocimientos de las matemáticas que provienen de la física. En esta ciencia se distingue entre magnitudes escalares y magnitudes vectoriales. Se llaman

Más detalles

Biopolímero s (4831)

Biopolímero s (4831) Biopolímero s (4831) 2.2. Interacciones electrostáticas Las interacciones que se presentan entre iones, dipolos permanentes o inducidos, cuadrupolos permanentes o inducidos, etc. reciben el nombre de interacciones

Más detalles

Definición de vectores

Definición de vectores Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre

Más detalles

Singularidad del carbono

Singularidad del carbono Singularidad del carbono Su configuración electrónica y su tamaño determinan que sea el único elemento químico que puede: Formar enlaces covalentes sencillos, dobles o triples con otros átomos de carbono.

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Ejercicio Dada la matriz A = 0 2 0 a) Escribir explícitamente la aplicación lineal f : 2 cuya matriz asociada con respecto a las bases canónicas es A. En primer lugar definimos las

Más detalles

Programa Tracker : Cómo generar Vectores y sumarlos

Programa Tracker : Cómo generar Vectores y sumarlos Programa Tracker : Cómo generar Vectores y sumarlos Esta guía explica cómo usar vectores, la posibilidad de sumarlos, presentar los resultados directamente en pantalla y compararlos de forma gráfica y

Más detalles

SISTEMA DIÉDRICO PARA INGENIEROS. David Peribáñez Martínez DEMO

SISTEMA DIÉDRICO PARA INGENIEROS. David Peribáñez Martínez DEMO SISTEMA DIÉDRICO PARA INGENIEROS David Peribáñez Martínez SISTEMA DIÉDRICO PARA INGENIEROS David Peribáñez Martínez Valderrebollo 20, 1 A 28031 MADRID 1ª Edición Ninguna parte de esta publicación, incluido

Más detalles

Matrices Invertibles y Elementos de Álgebra Matricial

Matrices Invertibles y Elementos de Álgebra Matricial Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CCIR/ITESM 12 de enero de 2011 Índice 91 Introducción 1 92 Transpuesta 1 93 Propiedades de la transpuesta 2 94 Matrices

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

Traslaciones, Homotecias, Giros y Simetrías

Traslaciones, Homotecias, Giros y Simetrías Traslaciones, Homotecias, Giros y Simetrías Traslaciones Nombre e indicación Comando equivalente Vector entre Dos puntos Vector [A, B] Seleccionamos el icono correspondiente a la herramienta Vector entre

Más detalles

1 Estática Básica Prohibida su reproducción sin autorización. CONCEPTOS DE FISICA MECANICA. Conceptos de Física Mecánica

1 Estática Básica Prohibida su reproducción sin autorización. CONCEPTOS DE FISICA MECANICA. Conceptos de Física Mecánica 1 CONCEPTOS DE FISICA MECANICA Introducción La parte de la física mecánica se puede dividir en tres grandes ramas de acuerdo a lo que estudia cada una de ellas. Así, podemos clasificarlas según lo siguiente:

Más detalles

ESTÁTICA 2. VECTORES. Figura tomada de http://www.juntadeandalucia.es/averroes/~04001205/fisiqui/imagenes/vectores/473396841_e1de1dd225_o.

ESTÁTICA 2. VECTORES. Figura tomada de http://www.juntadeandalucia.es/averroes/~04001205/fisiqui/imagenes/vectores/473396841_e1de1dd225_o. ESTÁTICA Sesión 2 2 VECTORES 2.1. Escalares y vectores 2.2. Cómo operar con vectores 2.2.1. Suma vectorial 2.2.2. Producto de un escalar y un vector 2.2.3. Resta vectorial 2.2.4. Vectores unitarios 2.2.5.

Más detalles

CUPES L. Ciencias experimentales. Configuración Electrónica. Recopiló: M.C. Macaria Hernández Chávez

CUPES L. Ciencias experimentales. Configuración Electrónica. Recopiló: M.C. Macaria Hernández Chávez CUPES L Ciencias experimentales Configuración Electrónica Recopiló: M.C. Macaria Hernández Chávez 1. Existen 7 niveles de energía o capas donde pueden situarse los electrones, numerados del 1, el más interno,

Más detalles

CURSO BÁSICO DE FÍSICA MECÁNICA PROYECTO UNICOMFACAUCA TU PROYECTO DE VIDA

CURSO BÁSICO DE FÍSICA MECÁNICA PROYECTO UNICOMFACAUCA TU PROYECTO DE VIDA UNICOMFACAUCA TU DE VIDA Tabla de contenido... 2 PARTES DE UN VECTOR... 3 Notación... 5 Tipos de vectores... 5 Componentes de un vector... 6 Operaciones con vectores... 7 Suma de vectores... 7 Resta de

Más detalles

La ventana de Microsoft Excel

La ventana de Microsoft Excel Actividad N 1 Conceptos básicos de Planilla de Cálculo La ventana del Microsoft Excel y sus partes. Movimiento del cursor. Tipos de datos. Metodología de trabajo con planillas. La ventana de Microsoft

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 QUÍMICA TEMA 3: ENLACES QUÍMICOS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 QUÍMICA TEMA 3: ENLACES QUÍMICOS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 QUÍMICA TEMA : ENLACES QUÍMICOS Junio, Ejercicio, Opción B Reserva 1, Ejercicio 2, Opción A Reserva, Ejercicio 2, Opción A Reserva 4, Ejercicio, Opción B

Más detalles

Los números racionales

Los números racionales Los números racionales Los números racionales Los números fraccionarios o fracciones permiten representar aquellas situaciones en las que se obtiene o se debe una parte de un objeto. Todas las fracciones

Más detalles

Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios. Dra. Noemí L. Ruiz Limardo 2009

Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios. Dra. Noemí L. Ruiz Limardo 2009 Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios Dra. Noemí L. Ruiz Limardo 2009 Objetivos de la Lección Al finalizar esta lección los estudiantes: Identificarán, de una lista de expresiones

Más detalles

TEMA 8: TRAZADOS GEOMÉTRICOS

TEMA 8: TRAZADOS GEOMÉTRICOS EDUCACIÓN PLÁSTICA Y VISUAL 3º DE LA E.S.O. TEMA 8: TRAZADOS GEOMÉTRICOS En dibujo técnico, es fundamental conocer los trazados geométricos básicos para construir posteriormente formas o figuras de mayor

Más detalles

UNIVERSIDAD CENTRAL DEL ECUADOR FACULTAD DE CIENCIAS QUÍMICAS FUNDAMENTOS ESPECTROSCOPICOS ORBITALES ATÓMICOS

UNIVERSIDAD CENTRAL DEL ECUADOR FACULTAD DE CIENCIAS QUÍMICAS FUNDAMENTOS ESPECTROSCOPICOS ORBITALES ATÓMICOS UNIVERSIDAD CENTRAL DEL ECUADOR FACULTAD DE CIENCIAS QUÍMICAS FUNDAMENTOS ESPECTROSCOPICOS Integrantes: Walter Bermúdez Lizbeth Sánchez Curso: Jueves 10:00 a 12:00 ORBITALES ATÓMICOS 1.- Definición de

Más detalles

Colegio Alexander von Humboldt - Lima. Tema: La enseñanza de la matemática está en un proceso de cambio

Colegio Alexander von Humboldt - Lima. Tema: La enseñanza de la matemática está en un proceso de cambio Refo 07 2004 15 al 19 de noviembre 2004 Colegio Alexander von Humboldt - Lima Tema: La enseñanza de la matemática está en un proceso de cambio La enseñanza de la matemática debe tener dos objetivos principales:

Más detalles

TEMA 4 FRACCIONES MATEMÁTICAS 1º ESO

TEMA 4 FRACCIONES MATEMÁTICAS 1º ESO TEMA 4 FRACCIONES Criterios De Evaluación de la Unidad 1 Utilizar de forma adecuada las fracciones para recibir y producir información en actividades relacionadas con la vida cotidiana. 2 Leer, escribir,

Más detalles

www.fundibeq.org Es de aplicación a aquellos estudios o situaciones en que es necesario priorizar entre un conjunto de elementos.

www.fundibeq.org Es de aplicación a aquellos estudios o situaciones en que es necesario priorizar entre un conjunto de elementos. GRAÁFICOS DE GESTIÓON (LINEALES, BARRAS Y TARTAS) 1.- INTRODUCCIÓN Este documento introduce los Gráficos de Gestión de uso más común y de mayor utilidad: Gráficos Lineales, Gráficos de Barras y Gráficos

Más detalles

Wise Up Kids! En matemáticas, a la división de un objeto o unidad en varias partes iguales o a un grupo de esas divisiones se les denomina fracción.

Wise Up Kids! En matemáticas, a la división de un objeto o unidad en varias partes iguales o a un grupo de esas divisiones se les denomina fracción. Fracciones o Quebrados En matemáticas, a la división de un objeto o unidad en varias partes iguales o a un grupo de esas divisiones se les denomina fracción. Las fracciones pueden ser representadas de

Más detalles

A RG. Giro de un punto A respecto del eje vertical, e. Giro de un punto A respecto del eje de punta, e.

A RG. Giro de un punto A respecto del eje vertical, e. Giro de un punto A respecto del eje de punta, e. Giro de un punto A respecto del eje vertical, e. A''' A''' 2 e A'' 60 El giro es otro de los procedimietos utilizados en diédrico para resolver construcciones. Aquí vamos a ver solo uno de sus aspectos:

Más detalles

Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x

Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Los polinomios Los polinomios Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Elementos de un polinomio Los términos: cada

Más detalles

Ahora podemos comparar fácilmente las cantidades de cada tamaño que se vende. Estos valores de la matriz se denominan elementos.

Ahora podemos comparar fácilmente las cantidades de cada tamaño que se vende. Estos valores de la matriz se denominan elementos. Materia: Matemática de 5to Tema: Definición y Operaciones con Matrices 1) Definición Marco Teórico Una matriz consta de datos que se organizan en filas y columnas para formar un rectángulo. Por ejemplo,

Más detalles

Corresponde a la operación que consiste en no hacer nada. Todos los objetos poseen al menos este elemento

Corresponde a la operación que consiste en no hacer nada. Todos los objetos poseen al menos este elemento ELEMENTOS Y OPERACIONES DE SIMETRÍA Identidad (E) Corresponde a la operación que consiste en no hacer nada. Todos los objetos poseen al menos este elemento Eje de simetría (Cn) Eje que pasa por el objeto

Más detalles

FUNDAMENTOS FÍSICOS DE LA RADIOASTRONOMÍA. CAPÍTULO 1. Propiedades de la radiación electromagnética

FUNDAMENTOS FÍSICOS DE LA RADIOASTRONOMÍA. CAPÍTULO 1. Propiedades de la radiación electromagnética Página principal El proyecto y sus objetivos Cómo participar Cursos de radioastronomía Material Novedades FUNDAMENTOS FÍSICOS DE LA RADIOASTRONOMÍA Índice Introducción Capítulo 1 Capítulo 2 Capítulo 3

Más detalles

PRÁCTICA - I DETERMINACION DE LOS ELEMENTOS CARDINALES DE UN SISTEMA ÓPTICO

PRÁCTICA - I DETERMINACION DE LOS ELEMENTOS CARDINALES DE UN SISTEMA ÓPTICO PRÁCTICA - I DETERMINACION DE LOS ELEMENTOS CARDINALES DE UN SISTEMA ÓPTICO 1- OBJETIVO Y FUNDAMENTO TEORICO A efectos de cálculo, el comportamiento paraxial de un sistema óptico puede resumirse en el

Más detalles

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido Tema 3 Medidas de tendencia central Contenido 31 Introducción 1 32 Media aritmética 2 33 Media ponderada 3 34 Media geométrica 4 35 Mediana 5 351 Cálculo de la mediana para datos agrupados 5 36 Moda 6

Más detalles

FUERZAS INTERMOLECULARES

FUERZAS INTERMOLECULARES FUERZAS INTERMOLECULARES Lic. Lidia Iñigo Las fuerzas intermoleculares, como su nombre lo indica, son las fuerzas que unen moléculas. Ya deberías saber que no todas las sustancias forman moléculas. Existen

Más detalles

Te damos los elementos básicos de los vectores para que puedas entender las operaciones básicas.

Te damos los elementos básicos de los vectores para que puedas entender las operaciones básicas. 4 año secundario Vectores, refrescando conceptos adquiridos Te damos los elementos básicos de los vectores para que puedas entender las operaciones básicas. El término vector puede referirse al: concepto

Más detalles

Análisis de propuestas de evaluación en las aulas de América Latina

Análisis de propuestas de evaluación en las aulas de América Latina Este trabajo de evaluación tiene como objetivo la caracterización de figuras del espacio. Para ello el alumno debe establecer la correspondencia entre la representación de la figura y algunas de sus propiedades.

Más detalles

GRUPOS PUNTUALES. 4.- Si un plano de simetría contiene un eje de orden n, existen n planos que contienen el eje. formando entre ellos ángulos de

GRUPOS PUNTUALES. 4.- Si un plano de simetría contiene un eje de orden n, existen n planos que contienen el eje. formando entre ellos ángulos de GRUPOS PUNTUALES Existen algunas relaciones entre elementos de simetría que pueden ser útiles a la hora de deducir cuales son los conjuntos de estos que forman grupo. 1.- Todos los elementos de simetría

Más detalles

Representación de un Vector

Representación de un Vector VECTORES Vectores Los vectores se caracterizan por tener una magnitud, expresable por un número real, una dirección y un sentido. Un ejemplo de vectores son los desplazamientos. Otro ejemplo de vectores

Más detalles

Información importante. 1. El potencial eléctrico. Preuniversitario Solidario. 1.1. Superficies equipotenciales.

Información importante. 1. El potencial eléctrico. Preuniversitario Solidario. 1.1. Superficies equipotenciales. 1.1 Superficies equipotenciales. Preuniversitario Solidario Información importante. Aprendizajes esperados: Es guía constituye una herramienta que usted debe manejar para poder comprender los conceptos

Más detalles

ESTATICA. Componentes ortogonales de una fuerza. Seminario Universitario Física

ESTATICA. Componentes ortogonales de una fuerza. Seminario Universitario Física ESTATICA Es la parte de la física que estudia las fuerzas en equilibrio. Si sobre un cuerpo no actúan fuerzas o actúan varias fuerzas cuya resultante es cero, decimos que el cuerpo está en equilibrio.

Más detalles

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones Fracciones. Las fracciones y los números Racionales Las fracciones se utilizan cotidianamente en contextos relacionados con la medida, el reparto o como forma de relacionar dos cantidades. Tenemos entonces

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II ANDALUCÍA CNVCATRIA JUNI 009 SLUCIÓN DE LA PRUEBA DE ACCES AUTR: José Luis Pérez Sanz pción A Ejercicio En este límite nos encontramos ante la indeterminación. Agrupemos la

Más detalles

Geometría analítica. Impreso por Juan Carlos Vila Vilariño Centro I.E.S. PASTORIZA

Geometría analítica. Impreso por Juan Carlos Vila Vilariño Centro I.E.S. PASTORIZA Conoce los vectores, sus componentes y las operaciones que se pueden realizar con ellos. Aprende cómo se representan las rectas y sus posiciones relativas. Impreso por Juan Carlos Vila Vilariño Centro

Más detalles

ESTRUCTURA DE LA MATERIA QCA 09 ANDALUCÍA

ESTRUCTURA DE LA MATERIA QCA 09 ANDALUCÍA 1.- Considere el elemento cuya configuración electrónica es 1s 2 2s 2 2p 6 3s 2 3p 4. a) De qué elemento se trata? b) Justifique el periodo y el grupo del sistema periódico a los que pertenece. c) Cuál

Más detalles

TABLA DE DECISION. Consideremos la siguiente tabla, expresada en forma genérica, como ejemplo y establezcamos la manera en que debe leerse.

TABLA DE DECISION. Consideremos la siguiente tabla, expresada en forma genérica, como ejemplo y establezcamos la manera en que debe leerse. TABLA DE DECISION La tabla de decisión es una herramienta que sintetiza procesos en los cuales se dan un conjunto de condiciones y un conjunto de acciones a tomar según el valor que toman las condiciones.

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 4 La recta en el plano Elaborado por la Profesora Doctora María Teresa

Más detalles

TRANSFORMACIONES EN EL PLANO

TRANSFORMACIONES EN EL PLANO TRANSFORMACIONES EN EL PLANO Conceptos teóricos Una transformación del plano es una aplicación del plano en el mismo. Esto significa que es un procedimiento que, a todo punto M del plano, asocia un punto

Más detalles

Programa Presupuestos de Sevillana de Informática.

Programa Presupuestos de Sevillana de Informática. Programa Presupuestos de Sevillana de Informática. Introducción. En sus inicios, el programa Presupuestos estaba pensado únicamente para escribir e imprimir presupuestos, facilitando el trabajo con un

Más detalles

PRISMA OBLICUO > REPRESENTACIÓN Y DESARROLLO POR EL MÉTODO DE LA SECCIÓN NORMAL

PRISMA OBLICUO > REPRESENTACIÓN Y DESARROLLO POR EL MÉTODO DE LA SECCIÓN NORMAL 1. CARACTERÍSTICAS GENERALES DEL PRISMA OBLICUO Desde el punto de vista de la representación en SISTEMA DIÉDRICO, el prisma oblicuo presenta dos características importantes que lo diferencian del prisma

Más detalles

De cualquier manera, solo estudiaremos en esta unidad los compuestos inorgánicos.

De cualquier manera, solo estudiaremos en esta unidad los compuestos inorgánicos. Unidad 3 Ácidos, Hidróxidos y Sales: óxidos básicos, óxidos ácidos, hidróxidos, hidrácidos o ácidos binarios, ácidos ternarios, sales binarias, ternarias y cuaternarias. Formación y nomenclatura. Enlaces

Más detalles

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico q 1 q 2 Prof. Félix Aguirre 35 Energía Electrostática Potencial Eléctrico La interacción electrostática es representada muy bien a través de la ley de Coulomb, esto es: mediante fuerzas. Existen, sin embargo,

Más detalles

2) PRÁCTICAS DE BIOLOGÍA (2º de Bachillerato) IDENTIFICACIÓN DE CROMOSOMAS HUMANOS Y REALIZACIÓN DE UN IDEOGRAMA DE UN CARIOTIPO

2) PRÁCTICAS DE BIOLOGÍA (2º de Bachillerato) IDENTIFICACIÓN DE CROMOSOMAS HUMANOS Y REALIZACIÓN DE UN IDEOGRAMA DE UN CARIOTIPO 2) PRÁCTICAS DE BIOLOGÍA (2º de Bachillerato) IDENTIFICACIÓN DE CROMOSOMAS HUMANOS Y REALIZACIÓN DE UN IDEOGRAMA DE UN CARIOTIPO OBJETIVO El objetivo de esta práctica es aprender a reconocer los cromosomas

Más detalles

Matrices: Conceptos y Operaciones Básicas

Matrices: Conceptos y Operaciones Básicas Matrices: Conceptos y Operaciones Básicas Departamento de Matemáticas, CCIR/ITESM 8 de septiembre de 010 Índice 111 Introducción 1 11 Matriz 1 113 Igualdad entre matrices 11 Matrices especiales 3 115 Suma

Más detalles

TEMA V TEORÍA DE CUADRIPOLOS LINEALES. 5.1.-Introducción. 5.2.-Parámetros de Impedancia a circuito abierto.

TEMA V TEORÍA DE CUADRIPOLOS LINEALES. 5.1.-Introducción. 5.2.-Parámetros de Impedancia a circuito abierto. TEMA V TEORÍA DE CUADRIPOLOS LINEALES 5.1.-Introducción. 5.2.-Parámetros de Impedancia a circuito abierto. 5.3.-Parámetros de Admitancia a cortocircuito. 5.4.-Parámetros Híbridos (h, g). 5.5.-Parámetros

Más detalles

Teclado sobre una PDA para Personas con Parálisis Cerebral

Teclado sobre una PDA para Personas con Parálisis Cerebral Manual de Usuario - 1 - - 2 - Teclado sobre una PDA para Personas con Parálisis Cerebral Capítulo 1. MANUAL DE USUARIO 12.1 Descripción de la aplicación Este programa le permitirá llevar a cabo las siguientes

Más detalles

Vectores: Producto escalar y vectorial

Vectores: Producto escalar y vectorial Nivelación de Matemática MTHA UNLP 1 Vectores: Producto escalar y vectorial Versores fundamentales Dado un sistema de coordenadas ortogonales, se considera sobre cada uno de los ejes y coincidiendo con

Más detalles

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente.

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente. ÁLGEBRA DE MATRICES Página 49 REFLEXIONA Y RESUELVE Elección de presidente Ayudándote de la tabla, estudia detalladamente los resultados de la votación, analiza algunas características de los participantes

Más detalles

1. Generalidades. Nombre de la asignatura o unidad de aprendizaje. Apertura de negocios. Clave asignatura. Ciclo LA945. Modulo tercero (integración)

1. Generalidades. Nombre de la asignatura o unidad de aprendizaje. Apertura de negocios. Clave asignatura. Ciclo LA945. Modulo tercero (integración) Nombre de la asignatura o unidad de aprendizaje Apertura de negocios Ciclo Modulo tercero (integración) Clave asignatura LA945 Objetivo general de la asignatura: El alumno analizará las bases para la apertura

Más detalles

SUMA Y RESTA DE FRACCIONES

SUMA Y RESTA DE FRACCIONES SUMA Y RESTA DE FRACCIONES CONCEPTOS IMPORTANTES FRACCIÓN: Es la simbología que se utiliza para indicar que un todo será dividido en varias partes (se fraccionará). Toda fracción tiene dos partes básicas:

Más detalles

Qué son los monomios?

Qué son los monomios? Qué son los monomios? Recordemos qué es una expresión algebraica. Definición Una expresión algebraica es aquella en la que se utilizan letras, números y signos de operaciones. Si se observan las siguientes

Más detalles

VECTORES. Se representa gráficamente por medio de una flecha, por ejemplo: Todos los vectores poseen las siguientes características:

VECTORES. Se representa gráficamente por medio de una flecha, por ejemplo: Todos los vectores poseen las siguientes características: Un vector v es un segmento orientado. VECTORES Se representa gráficamente por medio de una flecha, por ejemplo: Todos los vectores poseen las siguientes características: Punto de aplicación: es el lugar

Más detalles

Operación de Microsoft Excel. Guía del Usuario Página 79. Centro de Capacitación en Informática

Operación de Microsoft Excel. Guía del Usuario Página 79. Centro de Capacitación en Informática Manejo básico de base de datos Unas de las capacidades de Excel es la de trabajar con listas o tablas de información: nombres, direcciones, teléfonos, etc. Excel puede trabajar con tablas de información

Más detalles

Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice

Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice 1 Polinomios Dedicaremos este apartado al repaso de los polinomios. Se define R[x] ={a 0 + a 1 x + a 2 x 2 +... +

Más detalles

En muchas ocasiones resulta muy útil que la información contenida en un libro de Excel se visualice gráficamente.

En muchas ocasiones resulta muy útil que la información contenida en un libro de Excel se visualice gráficamente. Un grafico es una representación de los datos de una hoja de cálculo a través de figuras o líneas que permiten un análisis e interpretación más claros de los mismos. En muchas ocasiones resulta muy útil

Más detalles

CÓMO HACER MOSAICOS AL ESTILO ESCHER POR: ELÍAS LOYOLA CAMPOS

CÓMO HACER MOSAICOS AL ESTILO ESCHER POR: ELÍAS LOYOLA CAMPOS CÓMO HACER MOSAICOS AL ESTILO ESCHER POR: ELÍAS LOYOLA CAMPOS AUTORETRATO 1943 El 17 de junio de 1998, se cumplió el primer centenario del natalicio del genial grabador Mauricio Cornelio Escher, quien

Más detalles

Relaciones entre conjuntos

Relaciones entre conjuntos Relaciones entre conjuntos Parejas ordenadas El orden de los elementos en un conjunto de dos elementos no interesa, por ejemplo: {3, 5} = {5, 3} Por otra parte, una pareja ordenada consiste en dos elementos,

Más detalles

EL ORDENADOR RECURSO TIC PARA UNA METODOLOGÍA TRANSVERSAL E INTERDISCIPLINAR: MATEMÁTICAS - TECNOLOGÍA

EL ORDENADOR RECURSO TIC PARA UNA METODOLOGÍA TRANSVERSAL E INTERDISCIPLINAR: MATEMÁTICAS - TECNOLOGÍA EL ORDENADOR RECURSO TIC PARA UNA METODOLOGÍA TRANSVERSAL E INTERDISCIPLINAR: MATEMÁTICAS - TECNOLOGÍA Resumen AUTORIA MARÍA JOSÉ ALFONSO GARCÍA TEMÁTICA INTERDISCIPLINARIEDAD MATEMÁTICAS Y TECNOLOGÍA

Más detalles

Criterios para decidir qué gráfico usar en cada trabajo estadístico

Criterios para decidir qué gráfico usar en cada trabajo estadístico Criterios para decidir qué gráfico usar en cada trabajo estadístico No todos los tipos de gráficos son adecuados para un conjunto concreto de datos. Algunos de ellos sólo valen para un fin, y otros se

Más detalles

SUMA Y RESTA DE VECTORES

SUMA Y RESTA DE VECTORES SUMA Y RESTA DE VECTORES Definición de vectores Un vector es la expresión que proporciona la medida de cualquier magnitud vectorial. Un vector es todo segmento de recta dirigido en el espacio. Cada vector

Más detalles

Potencial eléctrico. du = - F dl

Potencial eléctrico. du = - F dl Introducción Como la fuerza gravitatoria, la fuerza eléctrica es conservativa. Existe una función energía potencial asociada con la fuerza eléctrica. Como veremos, la energía potencial asociada a una partícula

Más detalles

ACTIVIDADES DA UNIDADE 14: O ENLACE QUÍMICO

ACTIVIDADES DA UNIDADE 14: O ENLACE QUÍMICO ACTIVIDADES DA UNIDADE 14: O ENLACE QUÍMICO 1 Puede formarse un enlace iónico entre átomos de un mismo elemento químico? Por qué? No. El enlace químico se produce entre átomos con valores muy diferentes

Más detalles

OSCILOSCOPIO FUNCIONAMIENTO:

OSCILOSCOPIO FUNCIONAMIENTO: OSCILOSCOPIO El osciloscopio es un instrumento electrónico - digital o analógico- que permite visualizar y efectuar medidas sobre señales eléctricas. Para esto cuenta con una pantalla con un sistema de

Más detalles

MICROSOFT EXCEL 2007. Introducción: Qué es y para qué sirve Excel2007? TECNOLOGIA/ INFORMATICA: MS-EXCEL

MICROSOFT EXCEL 2007. Introducción: Qué es y para qué sirve Excel2007? TECNOLOGIA/ INFORMATICA: MS-EXCEL MICROSOFT EXCEL 2007 Qué es y para qué sirve Excel2007? Excel 2007 es una hoja de cálculo integrada en Microsoft Office. Esto quiere decir que si ya conoces otro programa de Office, como Word, Access,

Más detalles

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices Estructura del tema. Conceptos básicos y ejemplos Operaciones básicas con matrices Método de Gauss Rango de una matriz Concepto de matriz regular y propiedades Determinante asociado a una

Más detalles

De la teoría a la demostración.

De la teoría a la demostración. Los orbitales híbridos sp el ángulo de 0º: De la teoría a la demostración. Antonio José Sánchez. Introducción objetivo Describir los datos experimentales es el objetivo de toda ciencia. En Química, los

Más detalles

Clases de apoyo de matemáticas Fracciones y decimales Escuela 765 Lago Puelo Provincia de Chubut

Clases de apoyo de matemáticas Fracciones y decimales Escuela 765 Lago Puelo Provincia de Chubut Clases de apoyo de matemáticas Fracciones y decimales Escuela 765 Lago Puelo Provincia de Chubut Este texto intenta ser un complemento de las clases de apoyo de matemáticas que se están realizando en la

Más detalles

ESTATICA: TIPOS DE MAGNITUDES: CARACTERÍSTICAS DE UN VECTOR. Rama de la física que estudia el equilibrio de los cuerpos.

ESTATICA: TIPOS DE MAGNITUDES: CARACTERÍSTICAS DE UN VECTOR. Rama de la física que estudia el equilibrio de los cuerpos. ESTATICA: Rama de la física que estudia el equilibrio de los cuerpos. TIPOS DE MAGNITUDES: MAGNITUD ESCALAR: Es una cantidad física que se especifica por un número y una unidad. Ejemplos: La temperatura

Más detalles

Código/Título de la Unidad Didáctica: MATEMÁTICAS BASICAS APLICADAS EN EL MECANIZADO. Actividad nº/título: REGLA DE TRES y SISTEMAS DE COORDENADAS

Código/Título de la Unidad Didáctica: MATEMÁTICAS BASICAS APLICADAS EN EL MECANIZADO. Actividad nº/título: REGLA DE TRES y SISTEMAS DE COORDENADAS Código/Título de la Unidad Didáctica: MATEMÁTICAS BASICAS APLICADAS EN EL MECANIZADO Actividad nº/título: REGLA DE TRES y SISTEMAS DE COORDENADAS Introducción a la actividad Material Didáctico: Tiempo:

Más detalles

Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta:

Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta: Todo el mundo sabe que dos puntos definen una recta, pero los matemáticos son un poco diferentes y, aún aceptando la máxima universal, ellos prefieren decir que un punto y un vector nos definen una recta.

Más detalles

MATEMÁTICAS CON LA HOJA DE CÁLCULO

MATEMÁTICAS CON LA HOJA DE CÁLCULO MATEMÁTICAS CON LA HOJA DE CÁLCULO Podemos dar a esta aplicación un uso práctico en el aula de Matemáticas en varios sentidos: Como potente calculadora: sucesiones, límites, tablas estadísticas, parámetros

Más detalles

ANÁLISIS DE DATOS NO NUMERICOS

ANÁLISIS DE DATOS NO NUMERICOS ANÁLISIS DE DATOS NO NUMERICOS ESCALAS DE MEDIDA CATEGORICAS Jorge Galbiati Riesco Los datos categóricos son datos que provienen de resultados de experimentos en que sus resultados se miden en escalas

Más detalles

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite

Más detalles

CHOQUE.(CANTIDAD DE MOVIMIENTO )

CHOQUE.(CANTIDAD DE MOVIMIENTO ) APUNTES Materia: Tema: Curso: Física y Química Momento Lineal 4º ESO CHOQUE.(CANTIDAD DE MOVIMIENTO ) CANTIDAD DE MOVIMIENTO Si un cuerpo de masa m se está moviendo con velocidad v, la cantidad de movimiento

Más detalles

FORMACIÓN DE EQUIPOS DE E-LEARNING 2.0 MÓDULO DE DISEÑO Y PRODUCCIÓN DE MATERIALES UNIDAD 6 B

FORMACIÓN DE EQUIPOS DE E-LEARNING 2.0 MÓDULO DE DISEÑO Y PRODUCCIÓN DE MATERIALES UNIDAD 6 B 141 1 FORMACIÓN DE EQUIPOS DE E-LEARNING 2.0 Unidad 6 B 142 2 Índice SEGUIMIENTO DE PERSONAS 1 INFORMES 2 143 3 SEGUIMIENTO DE PERSONAS E INFORMES EN MOODLE El seguimiento de los participantes en Moodle

Más detalles

Aproximación local. Plano tangente. Derivadas parciales.

Aproximación local. Plano tangente. Derivadas parciales. Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 004-005 Aproximación local. Plano tangente. Derivadas parciales. 1. Plano tangente 1.1. El problema de la aproximación

Más detalles

Líneas Equipotenciales

Líneas Equipotenciales Líneas Equipotenciales A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. En esta experiencia se estudia

Más detalles

ENSAYOS MECÁNICOS II: TRACCIÓN

ENSAYOS MECÁNICOS II: TRACCIÓN 1. INTRODUCCIÓN. El ensayo a tracción es la forma básica de obtener información sobre el comportamiento mecánico de los materiales. Mediante una máquina de ensayos se deforma una muestra o probeta del

Más detalles

CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION

CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION Como hemos dicho anteriormente, los instrumentos de medición hacen posible la observación de los fenómenos eléctricos y su cuantificación. Ahora

Más detalles

Unidad: Representación gráfica del movimiento

Unidad: Representación gráfica del movimiento Unidad: Representación gráfica del movimiento Aplicando y repasando el concepto de rapidez Esta primera actividad repasa el concepto de rapidez definido anteriormente. Posición Esta actividad introduce

Más detalles

Enunciado unidades fraccionarias fracción fracciones equivalentes comparar operaciones aritméticas fracciones propias Qué hacer deslizador vertical

Enunciado unidades fraccionarias fracción fracciones equivalentes comparar operaciones aritméticas fracciones propias Qué hacer deslizador vertical Enunciado Si la unidad la dividimos en varias partes iguales, podemos tomar como nueva unidad de medida una de estas partes más pequeñas. Las unidades fraccionarias son necesarias cuando lo que queremos

Más detalles

Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte

Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte En esta unidad vamos a estudiar los números racionales, esto es, los que se pueden expresar en

Más detalles

Vectores no colineales.

Vectores no colineales. Vectores no colineales. Por definición son aquellos vectores que no tienen igual dirección. La resultante de los mismos no surge de la suma algebraica de los módulos de dichos vectores, sino que deben

Más detalles

DOMINIO Y RANGO página 89. Cuando se grafica una función existen las siguientes posibilidades:

DOMINIO Y RANGO página 89. Cuando se grafica una función existen las siguientes posibilidades: DOMINIO Y RANGO página 89 3. CONCEPTOS Y DEFINICIONES Cuando se grafica una función eisten las siguientes posibilidades: a) Que la gráfica ocupe todo el plano horizontalmente (sobre el eje de las ). b)

Más detalles

Ingeniería Gráfica Aplicada

Ingeniería Gráfica Aplicada Acotación Ingeniería Gráfica Aplicada Curso 2010-11 Manuel I. Bahamonde García Índice Acotación 1. Principios generales de acotación 2. Método de acotación 3. Acotación de círculos, radios, arcos, cuadrados

Más detalles

GEOMETRÍA DESCRIPTIVA SISTEMAS DE PROYECCIÓN

GEOMETRÍA DESCRIPTIVA SISTEMAS DE PROYECCIÓN GEOMETRÍA DESCRIPTIVA La Geometría Descriptiva es la ciencia de representación gráfica, sobre superficies bidimensionales, de los problemas del espacio donde intervengan, puntos, líneas y planos. La Geometría

Más detalles

VECTORES: VOCABULARIO 1. Abscisa de un punto. 2. Ordenada de un punto. 3. Concepto de vector. 4. Coordenadas o componentes de un vector. 5.

VECTORES: VOCABULARIO 1. Abscisa de un punto. 2. Ordenada de un punto. 3. Concepto de vector. 4. Coordenadas o componentes de un vector. 5. VECTORES: VOCABULARIO 1. Abscisa de un punto. 2. Ordenada de un punto. 3. Concepto de vector. 4. Coordenadas o componentes de un vector. 5. Elementos de un vector. 6. Concepto de origen de un vector. 7.

Más detalles