Aplicación de herramientas de inteligencia de negocios en modelamiento geometalúrgico

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Aplicación de herramientas de inteligencia de negocios en modelamiento geometalúrgico"

Transcripción

1 Aplicación de herramientas de inteligencia de negocios en modelamiento geometalúrgico Verónica Escobar González, Claudio Barrientos Ochoa, Sergio Barrientos Ochoa, Dirección de Modelamiento Geometalúrgico Codelco Norte RESUMEN La Dirección de Modelamiento Geometalúrgico de Codelco Norte tiene como objetivo reconocer el comportamiento y explicar la variabilidad de la respuesta metalúrgica para los distintos minerales del yacimiento, tanto en laboratorio como en planta, sirviendo así de sustento a la planificación minera. De esta manera es posible disminuir los niveles de incertidumbre asociados a los distintos Programas de Producción, gestionar de mejor forma las mezclas de alimentación desde el punto de vista de respuesta operacional, además de servir de apoyo a la gestión de los procesos en planta concentradora y aguas abajo, entre otros beneficios. La aplicación de las herramientas de Inteligencia de Negocios, como la construcción de un Data Mart, el uso de algoritmos de Minería de Datos y el desarrollo de Sistemas de Apoyo a la Decisión han sido aplicadas con éxito en la Dirección y se han traducido en la optimización de recursos humanos, disminución en los tiempos de respuesta, aumento de la capacidad predictiva de los modelos, mayor tratamiento de volúmenes de datos, mejor entendimiento de los procesos, consideración del contexto geológico-metalúrgico en lugar de variables aisladas y la trazabilidad de los datos trabajados entre otras. La Dirección sigue desarrollando aplicaciones y analizando nuevas formas de modelamiento, entendiendo que uno de los activos más importantes de la organización es su información, por tanto un adecuado tratamiento de los datos en todos los niveles se traducirá en un mejor entendimiento de la respuesta metalúrgica y constituirá una ventaja competitiva. Este tipo de desarrollos sustentan las predicciones de parámetros metalúrgicos en la planificación minera en Codelco Norte y pueden ser extendidos a otras áreas de ingeniería y análisis. INTRODUCCIÓN La información reduce nuestra incertidumbre sobre algún aspecto de la realidad y, por tanto, nos permite tomar mejores decisiones. Desde la antigüedad, los sistemas de información se han recopilado y organizado para asistir en la Toma de Decisiones. En las últimas décadas la modernización de las bases de datos ha permitido almacenar, organizar y recuperar grandes volúmenes de información. Desgraciadamente, gran parte de esta información se genera con un fin concreto y posteriormente no se analiza ni integra con el resto de conocimiento del dominio de actuación. Un claro ejemplo de ello son las bases de datos transaccionales (sistema de información de una organización) que sirven para el funcionamiento de las aplicaciones del día a día, pero que raramente se utiliza con fines analíticos. Esto se debe, fundamentalmente, a que no se sabe cómo hacerlo, es decir, no se dispone de las personas y herramientas indicadas para ello.

2 La Dirección de Modelamiento Geometalúrgico de Codelco Norte tiene como objetivo reconocer el comportamiento y explicar la variabilidad de la respuesta metalúrgica para los distintos minerales del yacimiento, tanto en laboratorio como en planta, sirviendo así de sustento a la planificación minera. De esta manera es posible disminuir los niveles de incertidumbre asociados a los distintos Programas de Producción, gestionar de mejor forma las mezclas de alimentación desde el punto de vista de respuesta operacional, además de servir de apoyo a la gestión de los procesos en planta concentradora y aguas abajo, entre otros beneficios. Business Intelligence is a method of storing and presenting key enterprise data so that anyone in your company can quickly and easily ask questions of accurate and timely data. Effective BI allows end users to use data to understand why your business got the particular results that it did, to decide on courses of action based on past data, and to accurately forecast future results. (Lynn Langit)[1] MOTIVACIÓN Las actividades relacionadas con la anticipación en los negocios están tomando cada vez mayor relevancia, la diferencia entre las organizaciones la hace el conocimiento que son capaces de extraer de sus propias prácticas. Bajo esta premisa, la predicción de la respuesta metalúrgica se torna de vital importancia, ya que está orientada a la disminución de incertidumbre para la toma de decisiones. Es por ello que la Dirección de Modelamiento Geometalúrgico implementa distintas herramientas de Inteligencia de Negocios en sus procesos como Dirección, como la aplicación de algoritmos de Minería de Datos para el modelamiento predictivo de recuperaciones en planta, construcción de Data Mart y desarrollo de aplicaciones de reportes automatizados. METODOLOGÍA La Dirección sigue la metodología KDD (Knowledge Discovery from Databases), que consiste básicamente en el proceso de extracción de conocimiento oculto y útil a partir de los datos (en este caso corresponde a data histórica de los procesos e información de muestras geometalúrgicas) para apoyar la toma de decisiones. Las etapas incluidas en la metodología son: consolidación, selección y preprocesamiento de datos, análisis y modelamiento (minería de datos), interpretación y evaluación, visualización del conocimiento y finalmente apoyo a la toma de decisiones. Cabe señalar que el proceso es continuo y recursivo, por ejemplo en ocasiones dependiendo de los resultados se debe volver a la etapa de procesamiento de los datos. La figura 2 ilustra las etapas incluidas en la metodología KDD.

3 Figura 2 Metodología KDD (Knowledge Discovery from Databases) A continuación se analizarán con mayor detalle aquellas etapas relacionadas con mejoras en los procedimientos aplicadas directamente y aún en desarrollo por la Dirección: - Consolidación de Datos - Análisis y Modelamiento - Visualización del Conocimiento Consolidación de Datos La información geológica y metalúrgica necesaria para la generación y posterior aplicación de modelos se encuentra disponible en diferentes fuentes (archivos de texto, planillas Excel, Bases de Datos) con diferentes formatos, lo que lo hace que la extracción manual de ellos (inicialmente practicada) sea costosa en tiempo y recursos, además de susceptible a errores. Muchas áreas orientadas al análisis no cuentan con bases de datos analíticas y sistemas automáticos de consolidación, es por ello que deben realizar el proceso de manera manual, con todas las desventajas asociadas. Un Data Mart es una versión reducida de un Almacén de Datos (Data Warehouse), su alcance es un área de negocio, en este caso la Dirección de Modelamiento Geometalúrgico. Consiste en una base de datos analítica (orientada a las consultas y al análisis) que sirve de soporte a los análisis posteriores incluidos en el proceso de Minería de Datos.

4 Debido a la orientación analítica de la Dirección, es necesario contar con grandes volúmenes de datos, entonces se torna fundamental que el Data Mart se alimente de manera automática por el costo asociado a la extracción de información. En la etapa de Consolidación se recolectan los datos de distintas fuentes (Planificación, Geología, Planta Concentradora, etc.) y se les aplican mecanismo de aseguramiento de integridad, los que tienen por objetivo validar que los datos sean consistentes en su contexto. Una vez validada la información es llevada al nivel de detalle requerido (día, mes, año, turno, muestra, etc.) y almacenado en la base de datos propiamente tal. En la etapa de Consolidación se recolectan los datos de distintas fuentes (Planificación, Geología, Planta Concentradora, etc.) y se les aplican mecanismo de aseguramiento de integridad, los que tienen por objetivo validar que los datos sean consistentes en su contexto. Una vez validada la información es llevada al nivel de detalle requerido (día, mes, año, turno, muestra, etc.) y almacenado en la base de datos propiamente tal. Las ventajas de la extracción de datos automática y la disposición de un Data Mart en la Dirección son las siguientes: Reducción en el costo de extracción de información, de esta manera el personal experto puede invertir más tiempo en realizar nuevos análisis y construir modelos, en vez de consolidar datos manualmente. Incremento del número de variables disponibles para el análisis, debido a que existe una reducción en el costo de extracción. Mejora en la calidad de los datos, con la aplicación de reglas de integridad disminuye la probabilidad de encontrar en el análisis información fuera de contexto. La información es preprocesada para calcular un promedio por turno, día, semana o mes, por lo que el almacén de datos solo contiene información útil para el análisis. Análisis y Modelamiento Etapa en la cual se realizan distintas actividades orientadas a la extracción de conocimiento en sí. Usualmente se comienza con un Análisis Exploratorio de los Datos (EDA), que corresponde a un conjunto de procedimientos que apuntan al entendimiento de la data y las relaciones entre las variables. Generalmente desarrollado a través de cálculos de estadísticos y tablas resumen, como también usa herramientas de presentación gráfica de los datos. EDA fue propuesto por Tukey (1977) [2] y las actuales prácticas comprenden básicamente los siguientes pasos, que son considerados habitualmente por la Dirección en los análisis que realiza: Estadística Descriptiva, donde se examina la estadística univariada de cada una de las variables - Análisis de las distribuciones de cada variable y evolución temporal - Cálculo de los coeficientes de correlación entre las variables en estudio - Detección de valores fuera de rango (outliers)

5 - Exploración de relaciones no lineales entre diferentes variables utilizando gráficos de dispersión El modelamiento corresponde a la resolución de alguna tarea en particular, como predecir, agrupar, explicar, clasificar, entre otras. Por lo tanto se debe seleccionar una herramienta adecuada que sea capaz de dar respuesta a la necesidad planteada y donde se cumplan los requerimientos de la herramienta en sí, variables numéricas continuas por ejemplo en el caso de la regresión lineal. Data mining is the extraction of implicit, previously unknown, and potentially useful information from data. (Witten & Frank, 2000)[3] Las funciones estadísticas ofrecen diversos métodos de pronóstico para apoyar la toma de decisiones y resultan de gran utilidad al momento de descubrir patrones o construir modelos de predicción. La Minería de Datos ofrece métodos más robustos de modelamiento respecto a la estadística clásica y también requieren de una mayor potencia de cálculo, lo que hoy en día ya no supone un problema. Siguiendo la metodología KDD, la Dirección de Modelamiento Geometalúrgico ha construido diversos modelos predictivos de recuperaciones de cobre, molibdeno y leyes de Concentrado Colectivo mediante técnicas de Minería de Datos como Redes Neuronales. Emblemático es el caso de la recuperación de cobre, donde el modelo predictivo de redes neuronales ha sido capaz de predecir la recuperación real diaria en planta concentradora con errores cercanos a 1% [4] utilizando variables predictoras geológicas como mineralogías, leyes y alteraciones. El modelo de redes neuronales aprende de la historia y anticipa de manera intrínseca los parámetros de la operación, logrando predecir la recuperación y detectar anomalías en el proceso. Los modelos son sometidos a una constante evaluación por medio de conciliaciones semanales. Además de encontrar grupos de comportamientos geológicos-metalúrgicos mediante técnicas de clustering como K-Medias, como parte del análisis descriptivo previo al modelamiento predictivo. Los beneficios asociados al uso de la Minería de Datos son varios: Análisis Multivariable robusto y captura patrones complejos Mayor Capacidad de Procesamiento de Datos Aumento en la Precisión de las Predicciones Posibilita aplicación de nuevas formas de Visualización de Conocimiento Los modelos son evaluados y se cuantifican los errores Se descubren nuevas interdependencias entre las variables geológicas y metalúrgicas

6 Visualización del Conocimiento La visualización del resultado de las herramientas de Inteligencia de Negocios utilizadas con anterioridad se encuentran comprendidas en un Sistema de Apoyo a la Decisión (DSS, Decision Support System), el cual reporta de manera automatizada la información contenida en el Data Mart (variables de un plan minero por ejemplo) con su respectivo resultado en la evaluación del modelo previamente construido. En la actualidad el DSS es utilizado para predecir el comportamiento de las variables metalúrgicas en la planificación de corto plazo y visualizar las variables geológicas y químicas de interés (mineralogías de mena, participación de los dominios de alteración y leyes programadas). La figura 3 ejemplifica el DSS utilizado en la planificación semanal de producción. Se puede visualizar que expone el día perteneciente a la semana con su respectiva predicción. Además de dos gráficas, la primera representa el comportamiento de la mineralogía durante el periodo de la planificación, mientras que la segunda la mineralogía del día seleccionado. La aplicación se encuentra alojada en un servidor en desarrollo de carácter local, por lo que cualquier persona autorizada de la Dirección puede acceder al DSS y visualizar la información contenida en un programa de producción. Figura 3 SAD orientado a la planificación semanal

7 Las ventajas de esta última mejora a los procesos de la Dirección ha repercutido directamente en los tiempos de respuesta, mayor cantidad de información entregable, además de la contribución al mayor entendimiento del comportamiento de las variables geológicas y metalúrgicas. CONCLUSIONES La aplicación de las herramientas de Inteligencia de Negocios, como la construcción de un Data Mart, el uso de algoritmos de Minería de Datos y el desarrollo de Sistemas de Apoyo a la Decisión han sido aplicadas con éxito en la Dirección y se han traducido en la optimización de recursos humanos, disminución en los tiempos de respuesta, aumento de la capacidad predictiva de los modelos, mayor tratamiento de volúmenes de datos, mejor entendimiento de los procesos, consideración del contexto geológico-metalúrgico en lugar de variables aisladas y la trazabilidad de los datos trabajados entre otras. El desarrollo de aplicaciones a nivel local resulta ser una adecuada manera de solucionar y mejorar los procesos de la Dirección, dado que la informática avanza más lento que la velocidad natural del negocio. Es posible desarrollar aplicaciones que resuelvan tareas rutinarias y contribuyan al análisis y a la detección de factores de interés en otras áreas del negocio. La Dirección sigue desarrollando aplicaciones y analizando nuevas formas de modelamiento, entendiendo que uno de los activos más importantes de la organización es su información, por tanto un adecuado tratamiento de los datos en todos los niveles se traducirá en un mejor entendimiento de la respuesta metalúrgica y constituirá una ventaja competitiva. Este tipo de desarrollos sustentan las predicciones de parámetros metalúrgicos en la planificación minera en Codelco Norte y pueden ser extendidos a otras áreas de ingeniería y análisis. REFERENCES Lynn Langit (2007) Fundations of SQL Server 2005: Business Intelligence. Apress, United States of America. [1] Mamdouh Refaat (2007) Data Preparation for Data Mining Using SAS. Morgan Kaufmann, United States of America. [2] Ian H. Witten & Eibe Frank (2005) Data Mining: Practical Machine Learning Tools and Techniques. Elsevier, United States of America. [3] Dirección de Modelamiento Geometalúrgico, Codelco Norte (2010) Informe Predicciones P1-2011: Parámetros Geometalúrgicos. [4]

CURSO/GUÍA PRÁCTICA GESTIÓN EMPRESARIAL DE LA INFORMACIÓN.

CURSO/GUÍA PRÁCTICA GESTIÓN EMPRESARIAL DE LA INFORMACIÓN. SISTEMA EDUCATIVO inmoley.com DE FORMACIÓN CONTINUA PARA PROFESIONALES INMOBILIARIOS. CURSO/GUÍA PRÁCTICA GESTIÓN EMPRESARIAL DE LA INFORMACIÓN. Business Intelligence. Data Mining. PARTE PRIMERA Qué es

Más detalles

Inteligencia en Redes de Comunicaciones. Tema 7 Minería de Datos. Julio Villena Román, Raquel M. Crespo García, José Jesús García Rueda

Inteligencia en Redes de Comunicaciones. Tema 7 Minería de Datos. Julio Villena Román, Raquel M. Crespo García, José Jesús García Rueda Inteligencia en Redes de Comunicaciones Tema 7 Minería de Datos Julio Villena Román, Raquel M. Crespo García, José Jesús García Rueda {jvillena, rcrespo, rueda}@it.uc3m.es Índice Definición y conceptos

Más detalles

MINERÍA DE DATOS. Teleprocesos y Sistemas Distribuidos Licenciatura en Sistemas de Información FACENA - UNNE. Octubre - 2003

MINERÍA DE DATOS. Teleprocesos y Sistemas Distribuidos Licenciatura en Sistemas de Información FACENA - UNNE. Octubre - 2003 MINERÍA DE DATOS Teleprocesos y Sistemas Distribuidos Licenciatura en Sistemas de Información FACENA - UNNE Octubre - 2003 CONTENIDO Qué es Data Warehousing Data Warehouse Objetivos del Data Warehouse

Más detalles

MINERIA DE DATOS Y Descubrimiento del Conocimiento

MINERIA DE DATOS Y Descubrimiento del Conocimiento MINERIA DE DATOS Y Descubrimiento del Conocimiento UNA APLICACIÓN EN DATOS AGROPECUARIOS INTA EEA Corrientes Maximiliano Silva La información Herramienta estratégica para el desarrollo de: Sociedad de

Más detalles

SISTEMAS DE INFORMACION GERENCIAL LIC.PATRICIA PALACIOS ZULETA

SISTEMAS DE INFORMACION GERENCIAL LIC.PATRICIA PALACIOS ZULETA SISTEMAS DE INFORMACION GERENCIAL LIC.PATRICIA PALACIOS ZULETA Qué es inteligencia de negocios? (BI) Business Intelligence es la habilidad para transformar los datos en información, y la información en

Más detalles

Proyecto técnico MINERÍA DE DATOS. Febrero 2014. www.osona-respon.net info@osona-respon.net

Proyecto técnico MINERÍA DE DATOS. Febrero 2014. www.osona-respon.net info@osona-respon.net Proyecto técnico MINERÍA DE DATOS Febrero 2014 www.osona-respon.net info@osona-respon.net 0. Índice 0. ÍNDICE 1. INTRODUCCIÓN... 2 2. LOS DATOS OCULTOS... 3 2.1. Origen de la información... 3 2.2. Data

Más detalles

CURSO MINERÍA DE DATOS AVANZADO

CURSO MINERÍA DE DATOS AVANZADO CURSO MINERÍA DE DATOS AVANZADO La minería de datos (en inglés, Data Mining) se define como la extracción de información implícita, previamente desconocida y potencialmente útil, a partir de datos. En

Más detalles

DES: Programa(s) Educativo(s): Tipo de materia: Clave de la materia: Semestre:

DES: Programa(s) Educativo(s): Tipo de materia: Clave de la materia: Semestre: : : lemas propios de la. lemas propios de la. lemas propios de la. lemas propios de la. lemas propios de la. lemas propios de la. lemas propios de la. 12 6 lemas propios de la. 12 6 lemas propios de la.

Más detalles

Weka como herramienta de data mining

Weka como herramienta de data mining Weka como herramienta de data mining Lic. Aldave Rojas Isaac Alberto Instituto Tecnológico Superior de Ciudad Serdán Abstract El presente trabajo muestra un ejemplo introductorio a la herramienta de Data

Más detalles

Habilidades y Herramientas para trabajar con datos

Habilidades y Herramientas para trabajar con datos Habilidades y Herramientas para trabajar con datos Marcelo Ferreyra X Jornadas de Data Mining & Business Intelligence Universidad Austral - Agenda 2 Tipos de Datos Herramientas conceptuales Herramientas

Más detalles

Minería de Datos. Vallejos, Sofia

Minería de Datos. Vallejos, Sofia Minería de Datos Vallejos, Sofia Contenido Introducción: Inteligencia de negocios (Business Intelligence). Descubrimiento de conocimiento en bases de datos (KDD). Minería de Datos: Perspectiva histórica.

Más detalles

Minería de Datos. Vallejos, Sofia

Minería de Datos. Vallejos, Sofia Minería de Datos Contenido Introducción: Inteligencia de negocios (Business Intelligence). Componentes Descubrimiento de conocimiento en bases de datos (KDD). Minería de Datos: Perspectiva histórica. Fases

Más detalles

Guía docente de la asignatura

Guía docente de la asignatura Guía docente de la asignatura Asignatura Materia Minería de Datos Complementos de Computación Módulo Titulación Grado en Ingeniería Informática Plan 463 45220 Periodo de impartición 1 er Cuatrimestre Tipo/Carácter

Más detalles

Introducción a la Minería de Datos

Introducción a la Minería de Datos Introducción a la Minería de Datos Abdelmalik Moujahid, Iñaki Inza y Pedro Larrañaga Departamento de Ciencias de la Computación e Inteligencia Artificial Universidad del País Vasco Índice 1 Minería de

Más detalles

Presentación. Introducción a las técnicas de reconocimiento de patrones. Materia de doctorado en ingeniería/informática

Presentación. Introducción a las técnicas de reconocimiento de patrones. Materia de doctorado en ingeniería/informática Presentación Introducción a las técnicas de reconocimiento de patrones Materia de doctorado en ingeniería/informática Tópicos de minería de datos Materia optativa de LCC Docente: Pablo M. Granitto Horarios:

Más detalles

Visión global del KDD

Visión global del KDD Visión global del KDD Series Temporales Máster en Computación Universitat Politècnica de Catalunya Dra. Alicia Troncoso Lora 1 Introducción Desarrollo tecnológico Almacenamiento masivo de información Aprovechamiento

Más detalles

MINERÍA DE DATOS Y DESCUBRIMIENTO DE CONOCIMIENTO (DATA MINING AND KNOWLEDGE DISCOVERY)

MINERÍA DE DATOS Y DESCUBRIMIENTO DE CONOCIMIENTO (DATA MINING AND KNOWLEDGE DISCOVERY) MINERÍA DE DATOS Y DESCUBRIMIENTO DE CONOCIMIENTO (DATA MINING AND KNOWLEDGE DISCOVERY) Autor: Lic. Manuel Ernesto Acosta Aguilera Entidad: Facultad de Economía, Universidad de La Habana Dirección: Edificio

Más detalles

BUSINESS INTELLIGENCE. www.sbi-technology.com

BUSINESS INTELLIGENCE. www.sbi-technology.com BUSINESS INTELLIGENCE www.sbi-technology.com SBI Technology SRL Maipú 1492 Piso 2 S2000CGT - Rosario Rep. Argentina Tel: (54 341) 530 0815 www.sbi-technology.com Copyright - SBI Technology SRL - Todos

Más detalles

Introducción a la Minería de Datos (Data Mining)

Introducción a la Minería de Datos (Data Mining) a la Minería de Datos (Data Mining) IT-Nova Facultad de Ingeniería Informática y Telecomunicaciones Iván Amón Uribe, MSc Minería de Datos Diapositivas basadas parcialmente en material de Inteligencia Analítica

Más detalles

Aprendizaje Automático y Data Mining. Bloque IV DATA MINING

Aprendizaje Automático y Data Mining. Bloque IV DATA MINING Aprendizaje Automático y Data Mining Bloque IV DATA MINING 1 Índice Definición y aplicaciones. Grupos de técnicas: Visualización. Verificación. Descubrimiento. Eficiencia computacional. Búsqueda de patrones

Más detalles

v.1.0 Clase 5 Docente: Gustavo Valencia Zapata

v.1.0 Clase 5 Docente: Gustavo Valencia Zapata v.1.0 Clase 5 Docente: Gustavo Valencia Zapata Temas Clase 5: Conceptos de Minería de Datos Herramientas de DM Referencias Minería de datos Proceso de DM www.gustavovalencia.com Minería de datos La minería

Más detalles

Introducción Qué es Minería de Datos?

Introducción Qué es Minería de Datos? Conceptos Básicos Introducción Qué es Minería de Datos? Extracción de información o de patrones (no trivial, implícita, previamente desconocida y potencialmente útil) de grandes bases de datos. Introducción

Más detalles

2. CLASIFICACIÓN DE LA ACTIVIDAD CURRICULAR, FORMACIÓN PRÁCTICA Y CARGA HORARIA

2. CLASIFICACIÓN DE LA ACTIVIDAD CURRICULAR, FORMACIÓN PRÁCTICA Y CARGA HORARIA CÓDIGO ASIGNATURA 1131-3 DEPARTAMENTO: Ingeniería e Investigaciones Tecnológicas ASIGNATURA: DATA MINING y DATA WAREHOUSE Plan 2009 Ingeniería en Informática Año: 5 (Electiva - Ingeniería de Software)

Más detalles

Los futuros desafíos de la Inteligencia de Negocios. Richard Weber Departamento de Ingeniería Industrial Universidad de Chile rweber@dii.uchile.

Los futuros desafíos de la Inteligencia de Negocios. Richard Weber Departamento de Ingeniería Industrial Universidad de Chile rweber@dii.uchile. Los futuros desafíos de la Inteligencia de Negocios Richard Weber Departamento de Ingeniería Industrial Universidad de Chile rweber@dii.uchile.cl El Vértigo de la Inteligencia de Negocios CRM: Customer

Más detalles

Text Mining. Laura Alonso i Alemany. Facultad de Matemática, Astronomía y Física UNC, Córdoba (Argentina) http://www.cs.famaf.unc.edu.

Text Mining. Laura Alonso i Alemany. Facultad de Matemática, Astronomía y Física UNC, Córdoba (Argentina) http://www.cs.famaf.unc.edu. Facultad de Matemática, Astronomía y Física UNC, Córdoba (Argentina) http://www.cs.famaf.unc.edu.ar/ laura SADIO 12, 13 y 14 de Marzo de 2008 grupo de PLN en FaMAF http://www.cs.famaf.unc.edu.ar/ pln/

Más detalles

DESARROLLO E IMPLANTANCIÓN DE UN SISTEMA ACADEMICO PARA EL ICM

DESARROLLO E IMPLANTANCIÓN DE UN SISTEMA ACADEMICO PARA EL ICM DESARROLLO E IMPLANTANCIÓN DE UN SISTEMA ACADEMICO PARA EL ICM Sergio Bauz Olvera 1, Washington Jama 2 1 Ingeniero en Estadística e Informática 2003 2 Director de Tesis de Grado, Ing. Washington Jama.

Más detalles

Inteligencia de Negocios Introducción. Por Elizabeth León Guzmán, Ph.D. Profesora Ingeniería de Sistemas Grupo de Investigación MIDAS

Inteligencia de Negocios Introducción. Por Elizabeth León Guzmán, Ph.D. Profesora Ingeniería de Sistemas Grupo de Investigación MIDAS Inteligencia de Negocios Introducción Por Elizabeth León Guzmán, Ph.D. Profesora Ingeniería de Sistemas Grupo de Investigación MIDAS Agenda 1.Introducción 2.Definición 3.ETL 4.Bodega de Datos 5.Data Mart

Más detalles

Secretaría de Docencia Dirección de Estudios Profesionales

Secretaría de Docencia Dirección de Estudios Profesionales I. IDENTIFICACIÓN DEL CURSO PROGRAMA DE ESTUDIO POR COMPETENCIAS Minería de Datos ORGANISMO ACADÉMICO: FACULTAD DE INGENIERÍA Programa Educativo: Ingeniería en Computación Área de docencia: Tratamiento

Más detalles

OPTATIVA I: MINERIA DE DATOS

OPTATIVA I: MINERIA DE DATOS UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA Clave: 08MSU007H Clave: 08USU4053W FACULTAD DE INGENIERÍA PROGRAMA DEL CURSO: OPTATIVA I: MINERIA DE DATOS DES: Programa(s) Educativo(s): Tipo de materia: Clave de la

Más detalles

Inteligencia de Negocios (Business Intelligence)

Inteligencia de Negocios (Business Intelligence) ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA DE SISTEMAS Programa de Pregrado Modalidad de Experiencia Laboral Artículo El uso de la Minería de Datos en la Inteligencia de Negocios (Business Intelligence)

Más detalles

IBM PERFORMANCE EVENTS. Smarter Decisions. Better Results.

IBM PERFORMANCE EVENTS. Smarter Decisions. Better Results. Smarter Decisions. Better Results. 1 Aumente el valor de su BI con Análisis Predictivo José Ignacio Marín SPSS Sales Engineer 25/11/2010 2 Agenda Cómo está cambiando la toma de decisiones La potencia del

Más detalles

1. INTRODUCCIÓN AL CONCEPTO DE LA INVESTIGACIÓN DE MERCADOS 1.1. DEFINICIÓN DE INVESTIGACIÓN DE MERCADOS 1.2. EL MÉTODO CIENTÍFICO 2.

1. INTRODUCCIÓN AL CONCEPTO DE LA INVESTIGACIÓN DE MERCADOS 1.1. DEFINICIÓN DE INVESTIGACIÓN DE MERCADOS 1.2. EL MÉTODO CIENTÍFICO 2. 1. INTRODUCCIÓN AL CONCEPTO DE LA INVESTIGACIÓN DE MERCADOS 1.1. DEFINICIÓN DE INVESTIGACIÓN DE MERCADOS 1.2. EL MÉTODO CIENTÍFICO 2. GENERALIDADES SOBRE LAS TÉCNICAS DE INVESTIGACIÓN SOCIAL Y DE MERCADOS

Más detalles

How organizations are influenced by Business Analytics? Octubre 2014

How organizations are influenced by Business Analytics? Octubre 2014 How organizations are influenced by Business Analytics? Octubre 2014 El boom de los datos Fuente: Gestión. Artículo: Big Data: La nueva moneda en el mundo de los negocios. Martes, 07 de octubre del 2014

Más detalles

Minería de Datos. Universidad Politécnica de Victoria

Minería de Datos. Universidad Politécnica de Victoria Minería de Datos Universidad Politécnica de Victoria 1 Motivación Nuevas Necesidades del Análisis de Grandes Volúmenes de Datos El aumento del volumen y variedad de información que se encuentra informatizada

Más detalles

De qué tratará el curso. Otras consideraciones. Objetivos. Introducción. Motivación Explosión en la disponibilidad de información:

De qué tratará el curso. Otras consideraciones. Objetivos. Introducción. Motivación Explosión en la disponibilidad de información: Datamining y Aprendizaje Automatizado Prof. Carlos Iván Chesñevar Email: cic@cs.uns.edu.ar Http:\\cs.uns.edu.ar\~cic Departamento de Cs. e Ing. de la Computación Universidad Nacional del Sur Bahía Blanca,

Más detalles

Introducción a selección de. Blanca A. Vargas Govea blanca.vargas@cenidet.edu.mx Reconocimiento de patrones cenidet Octubre 1, 2012

Introducción a selección de. Blanca A. Vargas Govea blanca.vargas@cenidet.edu.mx Reconocimiento de patrones cenidet Octubre 1, 2012 Introducción a selección de atributos usando WEKA Blanca A. Vargas Govea blanca.vargas@cenidet.edu.mx Reconocimiento de patrones cenidet Octubre 1, 2012 Contenido 1 Introducción a WEKA El origen Interfaces

Más detalles

MATERIAL DE APOYO CASO PRÁCTICO SISTEMA INTEGRAL PARA LA PROYECCION Y DETECCION DE LA PREVENCION DEL DELITO, MEDIANTE MINERIA DE DATOS.

MATERIAL DE APOYO CASO PRÁCTICO SISTEMA INTEGRAL PARA LA PROYECCION Y DETECCION DE LA PREVENCION DEL DELITO, MEDIANTE MINERIA DE DATOS. MATERIAL DE APOYO CASO PRÁCTICO SISTEMA INTEGRAL PARA LA PROYECCION Y DETECCION DE LA PREVENCION DEL DELITO, MEDIANTE MINERIA DE DATOS. PRESENTA MTIE. Erik Guerrero Bravo. Tula de Allende Hidalgo Septiembre

Más detalles

MINERÍA DE DATOS: ÁREA DE OPORTUNIDADES

MINERÍA DE DATOS: ÁREA DE OPORTUNIDADES MINERÍA DE DATOS: ÁREA DE OPORTUNIDADES Actualmente se vive una época donde se tiene una enorme cantidad de datos que se generan diariamente (del orden de Terabytes, Petabytes 1 (Han, Kamber, & Pei, 2012))

Más detalles

Un modelo predictivo para reducir la tasa de ausentismo en atenciones médicas programadas

Un modelo predictivo para reducir la tasa de ausentismo en atenciones médicas programadas Un modelo predictivo para reducir la tasa de ausentismo en atenciones médicas programadas Ing. Juan Miguel Moine Ing. Cristian Germán Bigatti Ing. Guillermo Leale Est. Graciela Carnevali Est. Esther Francheli

Más detalles

INTELIGENCIA DE NEGOCIOS. Business Intelligence. Alumno: Toledo Paucar Jorge

INTELIGENCIA DE NEGOCIOS. Business Intelligence. Alumno: Toledo Paucar Jorge INTELIGENCIA DE NEGOCIOS Business Intelligence Alumno: Toledo Paucar Jorge INTELIGENCIA DE NEGOCIOS Business Intelligence Es un conjunto de conceptos y metodologías para mejorar la toma de decisiones.

Más detalles

UNIVERSIDAD DE COSTA RICA SISTEMA DE ESTUDIOS DE POSGRADO POSGRADO EN COMPUTACION E INFORMATICA JUSTIFICACIÓN OBJETIVO GENERAL OBJETIVOS ESPECÍFICOS

UNIVERSIDAD DE COSTA RICA SISTEMA DE ESTUDIOS DE POSGRADO POSGRADO EN COMPUTACION E INFORMATICA JUSTIFICACIÓN OBJETIVO GENERAL OBJETIVOS ESPECÍFICOS UNIVERSIDAD DE COSTA RICA SISTEMA DE ESTUDIOS DE POSGRADO POSGRADO EN COMPUTACION E INFORMATICA PF-3808 Minería de Datos II Semestre del 2009 Profesor: Dr. Francisco J. Mata (correo: fmatach@racsa.co.cr;

Más detalles

Ingeniería del conocimiento. Sesión 1 Por qué estudiar aprendizaje automático?

Ingeniería del conocimiento. Sesión 1 Por qué estudiar aprendizaje automático? Ingeniería del conocimiento Sesión 1 Por qué estudiar aprendizaje automático? 1 Agenda Qué vamos a ver en la asignatura? Para qué sirve todo esto? Cómo aprobar la asignatura? 2 Extracción del conocimiento

Más detalles

Minería de datos (Introducción a la minería de datos)

Minería de datos (Introducción a la minería de datos) Minería de datos (Introducción a la minería de datos) M. en C. Sergio Luis Pérez Pérez UAM CUAJIMALPA, MÉXICO, D. F. Trimestre 14-I. Sergio Luis Pérez (UAM CUAJIMALPA) Curso de minería de datos 1 / 24

Más detalles

MINING SOLUTIONS LIMITADA

MINING SOLUTIONS LIMITADA MINING SOLUTIONS LIMITADA Contenido... 1 Resumen Ejecutivo... 3... 4 Nuestros Servicios... 5 Administración de proyectos... 6 Operación y mantenimiento sobre los Sistema de Manejo de la Información Geológica

Más detalles

Business Intelligence: Competir con Información

Business Intelligence: Competir con Información Business Intelligence: Competir con Información Reus, 16 de Noviembre de 2011 Página 1 Página 2 Sumario Sistemas de Información - Introducción Introducción Business Intelligence Datawarehouse OLAP Data

Más detalles

Minería de Datos JESÚS ANTONIO GONZÁLEZ BERNAL. Universidad UPP

Minería de Datos JESÚS ANTONIO GONZÁLEZ BERNAL. Universidad UPP Universidad Politécnica de Puebla UPP JESÚS ANTONIO GONZÁLEZ BERNAL 1 2 Evolución de la Tecnología BD 1960 s y antes Creación de las BD en archivos primitivos 1970 s hasta principios de los 1980 s BD Jerárquicas

Más detalles

Servicio Business Intellingence integrado con Data Management & Big Data Del dato al conocimiento

Servicio Business Intellingence integrado con Data Management & Big Data Del dato al conocimiento Servicio Business Intellingence integrado con & Big Del dato al conocimiento Servicio BI integral: Business Intelligence es la habilidad para transformar los datos en información, y la información en conocimiento,

Más detalles

TÓPICOS AVANZADOS DE BASES DE DATOS

TÓPICOS AVANZADOS DE BASES DE DATOS TÓPICOS AVANZADOS DE BASES DE DATOS 1. DATOS DE LA ASIGNATURA. Nombre de la asignatura: TÓPICOS AVANZADOS DE BASES DE DATOS Carrera: Ingeniería en Sistemas Computacionales Clave de la asignatura: Modulo

Más detalles

Text Mining. Laura Alonso i Alemany. Facultad de Matemática, Astronomía y Física UNC, Córdoba (Argentina) http://www.cs.famaf.unc.edu.

Text Mining. Laura Alonso i Alemany. Facultad de Matemática, Astronomía y Física UNC, Córdoba (Argentina) http://www.cs.famaf.unc.edu. Facultad de Matemática, Astronomía y Física UNC, Córdoba (Argentina) http://www.cs.famaf.unc.edu.ar/~laura SADIO 26 de Marzo, 9 y 23 de Abril y 7 de mayo de 2010 grupo de PLN en FaMAF http://www.cs.famaf.unc.edu.ar/~pln/

Más detalles

Curso Data Mining y Aplicaciones en Riesgo de Crédito

Curso Data Mining y Aplicaciones en Riesgo de Crédito RW.02 RW.01 Transferencia Internacional de Curso Data Mining y Aplicaciones en Riesgo de Crédito RICHARD WEBER PhD. En Investigación de Operaciones del Instituto de Tecnología de Aachen, Alemania La actividad

Más detalles

Botón menú Objetivo de la Minería de datos.

Botón menú Objetivo de la Minería de datos. Titulo de Tutorial: Minería de Datos N2 Botón menú: Introducción. Las instituciones y empresas privadas coleccionan bastante información (ventas, clientes, cobros, pacientes, tratamientos, estudiantes,

Más detalles

Diseño e Implementación de un Sistema para la Segmentación de Clientes de una Operadora Celular

Diseño e Implementación de un Sistema para la Segmentación de Clientes de una Operadora Celular Diseño e Implementación de un Sistema para la Segmentación de Clientes de una Operadora Celular AUTORES: Fabián Cabrera Cuenca 1, Sergio Jonathan León García 2, Ilse Lorena Ycaza Díaz 3, Juan Aurelio Alvarado

Más detalles

LA MINERÍA DE DATOS EN LA EXTRACCIÓN DE CONOCIMIENTOS APLICADOS A PROBLEMAS RELACIONADOS CON LA EDUCACIÓN

LA MINERÍA DE DATOS EN LA EXTRACCIÓN DE CONOCIMIENTOS APLICADOS A PROBLEMAS RELACIONADOS CON LA EDUCACIÓN LA MINERÍA DE DATOS EN LA EXTRACCIÓN DE CONOCIMIENTOS APLICADOS A PROBLEMAS RELACIONADOS CON LA EDUCACIÓN Blanca Maricela Ibarra Murrieta, Ricardo Blanco Vega y María Angélica García Fierro Departamento

Más detalles

KDD y MD. Dr. Juan Pedro Febles Rodríguez BIOINFO CITMA 2005. Juan Pedro Febles KDD y MD

KDD y MD. Dr. Juan Pedro Febles Rodríguez BIOINFO CITMA 2005. Juan Pedro Febles KDD y MD KDD y MD Dr. Juan Pedro Febles Rodríguez BIOINFO febles@bioinfo.cu http://www.bioinfo.cu CITMA 2005 Temas a tratar Algunos antecedentes académicos. El proceso de descubrimiento de conocimientos en Datos

Más detalles

(Procesos de Minería de Datos)

(Procesos de Minería de Datos) (rocesos de Minería de Datos) Guía de Aprendizaje Información al estudiante 1. Datos Descriptivos Titulación MASTER UNIVERSITARIO EN INGENIERÍA INFORMÁTICA Módulo Materia Asignatura Carácter SISTEMAS Y

Más detalles

v.1.0 Clase 1 Docente: Gustavo Valencia Zapata

v.1.0 Clase 1 Docente: Gustavo Valencia Zapata v.1.0 Clase 1 Docente: Gustavo Valencia Zapata Temas Clase 1: Introducción a la Inteligencia de Negocios Hitos y personajes Arquitectura de BI Evolución de la Información Inteligencia de Negocios (BI)

Más detalles

Artículos de Minería de Datos de Dataprix Introducción a la minería de datos

Artículos de Minería de Datos de Dataprix Introducción a la minería de datos Published on Dataprix (http://www.dataprix.com) Principal > Artículos de Minería de Datos de Dataprix By Dataprix Created 26/12/2009-17:13 Artículos de Minería de Datos de Dataprix Introducción a la minería

Más detalles

ÍNDICE. Introducción... Capítulo 1. Inteligencia de negocios y sistemas de información. Informes... 1

ÍNDICE. Introducción... Capítulo 1. Inteligencia de negocios y sistemas de información. Informes... 1 Introducción... XI Capítulo 1. Inteligencia de negocios y sistemas de información. Informes... 1 Finalidad de los sistemas de información y origen del Business Intelligence... 1 Herramientas para la toma

Más detalles

INSTITUTO MATEMÁTICO Y ACTUARIAL MEXICANO DIPLOMADO EN MINERÍA DE DATOS

INSTITUTO MATEMÁTICO Y ACTUARIAL MEXICANO DIPLOMADO EN MINERÍA DE DATOS INSTITUTO MATEMÁTICO Y ACTUARIAL MEXICANO DIPLOMADO EN MINERÍA DE DATOS Por qué es importante la Minería de Datos? 2 La Minería de Datos es un proceso que permite obtener conocimiento a partir de los datos

Más detalles

Sistemas de Información para la Gestión. Unidad 3 Aplicaciones de Sistemas

Sistemas de Información para la Gestión. Unidad 3 Aplicaciones de Sistemas para la Gestión Unidad 3 Aplicaciones de Sistemas U.N.Sa. Facultad de Cs.Económicas SIG 2010 UNIDAD 3: APLICACIONES DE SISTEMAS Aplicaciones empresariales: Sistemas empresariales. Sistemas de administración

Más detalles

Introducción al DataMining

Introducción al DataMining Introducción al DataMining Lluís Garrido garrido@ecm.ub.es Universitat de Barcelona Índice Qué es el DataMining? Qué puede hacer el DataMining? Cómo hacer el DataMining? Técnicas Metodología del DataMining

Más detalles

1. Entender los principios de Business Intelligence y sus implicancias para la innovación en los negocios.

1. Entender los principios de Business Intelligence y sus implicancias para la innovación en los negocios. ENFIN748 Business Intelligence y Data Mining Financiero Profesor: PhD. David Díaz E-mail Profesor: ddiaz@unegocios.cl E-mail Tareas: BI-DM@unegocios.cl PRESENTACIÓN DEL CURSO El objetivo de éste curso

Más detalles

RW.02 RW.01. Curso Data Mining y Aplicaciones en Riesgo de Crédito

RW.02 RW.01. Curso Data Mining y Aplicaciones en Riesgo de Crédito RW.02 RW.01 Curso Data Mining y Aplicaciones en Riesgo de Crédito RICHARD WEBER PhD. En Investigación de Operaciones del Instituto de Tecnología de Aachen, Alemania La actividad comercial de las empresas

Más detalles

código Java Solicitudes Reportes AJI resultados API

código Java Solicitudes Reportes AJI resultados API Analizador Java Inteligente Agüero Martin Jorge, miembro IT-Lab de la Universidad de Palermo, agüero.marin@gmail.com López De Luise María Daniela, miembro IT-Lab de la Universidad de Palermo, mlopez74@palermo.edu

Más detalles

Aplicación de técnicas de minería de datos para la evaluación del rendimiento académico y la deserción estudiantil

Aplicación de técnicas de minería de datos para la evaluación del rendimiento académico y la deserción estudiantil Aplicación de técnicas de minería de datos para la evaluación del rendimiento académico y la deserción estudiantil Osvaldo M. Spositto spositto@unlam.edu.ar Martín E. Etcheverry metcheverry@unlam.edu.ar

Más detalles

Gestión de la Información

Gestión de la Información Gestión de la Información Sociedad de la Información Recurso Información Sistemas de Información Tecnologías de la Información Internet ii Fundamentos de SI: Gestión de la Información 49 Un Sistema de

Más detalles

Base de datos II Facultad de Ingeniería. Escuela de computación.

Base de datos II Facultad de Ingeniería. Escuela de computación. Base de datos II Facultad de Ingeniería. Escuela de computación. Introducción Este manual ha sido elaborado para orientar al estudiante de Bases de datos II en el desarrollo de sus prácticas de laboratorios,

Más detalles

ETL: Extractor de datos georreferenciados

ETL: Extractor de datos georreferenciados ETL: Extractor de datos georreferenciados Dr. Juan Pablo Díaz Ezcurdia Doctor Honoris Causa Suma Cum Laude Master en Telecomunicaciones Master en Gestión Educativa Coordinador de la comisión de CSIRT de

Más detalles

PROGRAMA DE CURSO. Personal 6 10 3.0 0 7. Electivo para ICC FI2002 Electromagnetismo. Competencia a la que Tributa el Curso. Propósito del Curso

PROGRAMA DE CURSO. Personal 6 10 3.0 0 7. Electivo para ICC FI2002 Electromagnetismo. Competencia a la que Tributa el Curso. Propósito del Curso PROGRAMA DE CURSO Código Nombre CC5206 Introducción a la Minería de Datos Nombre en Inglés Introduction to Data Mining SCT es Horas de Horas Docencia Horas de Trabajo Docentes Cátedra Auxiliar Personal

Más detalles

Pero que es el Data Mining? Como esta tecnología puede resolver los problemas diarios de las organizaciones? Cuál es el ciclo de vida de un DM?

Pero que es el Data Mining? Como esta tecnología puede resolver los problemas diarios de las organizaciones? Cuál es el ciclo de vida de un DM? Introducción En vista de los comentarios y sugerencias que nos hicieron, via mail y por chat, sobre la posibilidad de la creación de nuevo conocimiento, he creido conveniente introducir el tema Data Mining

Más detalles

MEJORA EN LA EFICIENCIA OPERACIONAL: AUDI AG

MEJORA EN LA EFICIENCIA OPERACIONAL: AUDI AG MEJORA EN LA EFICIENCIA OPERACIONAL: AUDI AG NECESIDADES DEL NEGOCIO Vender vehículos de lujo bajo demanda en un negocio desafiante, especialmente desde la perspectiva de recopilación de datos, ya que

Más detalles

Data Mining Técnicas y herramientas

Data Mining Técnicas y herramientas Data Mining Técnicas y herramientas Introducción POR QUÉ? Empresas necesitan aprender de sus datos para crear una relación one-toone con sus clientes. Recogen datos de todos lo procesos. Datos recogidos

Más detalles

BUSINESS INTELLIGENCE

BUSINESS INTELLIGENCE BUSINESS INTELLIGENCE Técnicas, herramientas y aplicaciones María Pérez Marqués Business Intelligence. Técnicas, herramientas y aplicaciones María Pérez Marqués ISBN: 978-84-943055-2-8 EAN: 9788494305528

Más detalles

opinoweb el poder de sus datos Descubra LA NECESIDAD DE PREDECIR

opinoweb el poder de sus datos Descubra LA NECESIDAD DE PREDECIR opinoweb SOFTWARE FOR MARKET RESEARCH LA NECESIDAD DE PREDECIR Actualmente las empresas no sólo necesitan saber con exactitud qué aconteció en el pasado para comprender mejor el presente, sino también

Más detalles

TÉCNICAS DE MINERÍA DE DATOS Y TEXTO APLICADAS A LA SEGURIDAD AEROPORTUARIA

TÉCNICAS DE MINERÍA DE DATOS Y TEXTO APLICADAS A LA SEGURIDAD AEROPORTUARIA TÉCNICAS DE MINERÍA DE DATOS Y TEXTO APLICADAS A LA SEGURIDAD AEROPORTUARIA MSC ZOILA RUIZ VERA Empresa Cubana de Aeropuertos y Servicios Aeronáuticos Abril 2010 ANTECEDENTES El proyecto Seguridad es una

Más detalles

UNIVERSIDAD DE SANTIAGO DE CHILE INGENIERIA COMERCIAL APLICACIÓN COMPUTACIONAL I INTELIGENCIA DE NEGOCIOS

UNIVERSIDAD DE SANTIAGO DE CHILE INGENIERIA COMERCIAL APLICACIÓN COMPUTACIONAL I INTELIGENCIA DE NEGOCIOS UNIVERSIDAD DE SANTIAGO DE CHILE INGENIERIA COMERCIAL APLICACIÓN COMPUTACIONAL I INTELIGENCIA DE NEGOCIOS Integrante: Profesor: Maximiliano Heise Luis Ríos Fecha de entrega: miércoles 18 de abril de 2012

Más detalles

OBTENCIÓN DE PATRONES Y REGLAS EN EL PROCESO ACADÉMICO DE LA UNIVERSIDAD DE LAS CIENCIAS INFORMÁTICAS UTILIZANDO TÉCNICAS DE MINERÍA DE DATOS

OBTENCIÓN DE PATRONES Y REGLAS EN EL PROCESO ACADÉMICO DE LA UNIVERSIDAD DE LAS CIENCIAS INFORMÁTICAS UTILIZANDO TÉCNICAS DE MINERÍA DE DATOS OBTENCIÓN DE PATRONES Y REGLAS EN EL PROCESO ACADÉMICO DE LA UNIVERSIDAD DE LAS CIENCIAS INFORMÁTICAS UTILIZANDO TÉCNICAS DE MINERÍA DE DATOS Ernesto González Díaz 1, Zady Pérez Hernández 2, Ivet Espinosa

Más detalles

HADES: Hidrocarburos Análisis de Datos de Estaciones de Servicio

HADES: Hidrocarburos Análisis de Datos de Estaciones de Servicio Hidrocarburos: Análisis de Pablo Burgos Casado (Jefe de Área Desarrollo (SGTIC - MITYC)) María Teresa Simino Rueda Rubén Pérez Gómez Israel Santos Montero María Ángeles Rodelgo Sanchez 1. INTRODUCCIÓN

Más detalles

Área Académica: Sistemas Computacionales. Tema: Introducción a almacén de datos. Profesor: Mtro Felipe de Jesús Núñez Cárdenas

Área Académica: Sistemas Computacionales. Tema: Introducción a almacén de datos. Profesor: Mtro Felipe de Jesús Núñez Cárdenas Área Académica: Sistemas Computacionales Tema: Introducción a almacén de datos Profesor: Mtro Felipe de Jesús Núñez Cárdenas Periodo: Agosto Noviembre 2011 Keywords Almacén de Datos, Datawarehouse, Arquitectura

Más detalles

código Java Solicitudes Reportes AJI resultados API

código Java Solicitudes Reportes AJI resultados API Analizador Java Inteligente López De Luise María Daniela, miembro IT-Lab de la Universidad de Palermo, mlopez74@palermo.edu Agüero Martín Jorge, miembro IT-Lab de la Universidad de Palermo, agüero.martin@gmail.com

Más detalles

Clase 1 Módulo: Data Warehouse & Datamart Docente: Gustavo Valencia Zapata

Clase 1 Módulo: Data Warehouse & Datamart  Docente: Gustavo Valencia Zapata v.1.0 Clase 1 Docente: Gustavo Valencia Zapata Temas Clase 1: El Rol de TI en BI BI Retos de TI en BI Evolución de la Información Arquitectura de BI Referencias www.gustavovalencia.com Evolución de la

Más detalles

HPC y Supercómputo Aplicado a la Evaluación de Recursos

HPC y Supercómputo Aplicado a la Evaluación de Recursos HPC y Supercómputo Aplicado a la Evaluación de Recursos Julián Ortiz Álvaro Parra Exequiel Sepúlveda 5 Seminario de Acercamiento Tecnológico Codelco Digital: Minería del Futuro Temas Contexto ALGES Laboratorio

Más detalles

UN PASEO POR BUSISNESS INTELLIGENCE

UN PASEO POR BUSISNESS INTELLIGENCE UN PASEO POR BUSISNESS INTELLIGENCE Ponentes: Agreda, Rafael Chinea, Linabel Agenda Sistemas de Información Transaccionales Qué es Business Intelligence? Usos y funcionalidades Business Intelligence Ejemplos

Más detalles

Minería de datos: predicción de la deserción escolar mediante el algoritmo de árboles de decisión y el algoritmo de los k vecinos más cercanos

Minería de datos: predicción de la deserción escolar mediante el algoritmo de árboles de decisión y el algoritmo de los k vecinos más cercanos Minería de datos: predicción de la deserción escolar mediante el algoritmo de árboles de decisión y el algoritmo de los k vecinos más cercanos Sergio Valero Orea 1, Alejandro Salvador Vargas 1, Marcela

Más detalles

Introducción. Growing on the CRM industry during 2001. Significant. decrease 4% Ns/nc 2% Slight decrease 4% Remains 5% Significant.

Introducción. Growing on the CRM industry during 2001. Significant. decrease 4% Ns/nc 2% Slight decrease 4% Remains 5% Significant. Introducción During next decade the number of Data Mining projects will increase dramatically (more than 300%) to improve the relationship with the customer and help companies to listen to their customers

Más detalles

Análisis de Incidentes Informáticos usando Modelos de Asociación y Métodos del Análisis de Datos Multivariante.

Análisis de Incidentes Informáticos usando Modelos de Asociación y Métodos del Análisis de Datos Multivariante. Análisis de Incidentes Informáticos usando Modelos de Asociación y Métodos del Análisis de Datos Multivariante. García, Alejandro (1), Corso, Cynthia Lorena (2), Gibellini, Fabián (3), Rapallini, Marcos

Más detalles

Guía docente de la asignatura

Guía docente de la asignatura Guía docente de la asignatura Asignatura Materia Módulo Titulación Plan Pre-procesamiento de la información y modelado basado en datos Explotación de la información Explotación de la información Máster

Más detalles

Máster Universitario en Modelización e Investigación Matemática, Estadística y Computación

Máster Universitario en Modelización e Investigación Matemática, Estadística y Computación 5.5.1. Denominación: Introducción a la Minería de Datos 5.5.2. Breve Descripción del Contenido: Introducción a la minería de datos. Aprendizaje supervisado, modelos no paramétricos y modelos generalizados

Más detalles

SISTEMA DE INFORMACION DE GESTION DE TARJETAS DE CREDITO USANDO DATA MART E INTELIGENCIA DE NEGOCIOS PARA EL AREA COMERCIAL DEL BANCO RIPLEY PERU

SISTEMA DE INFORMACION DE GESTION DE TARJETAS DE CREDITO USANDO DATA MART E INTELIGENCIA DE NEGOCIOS PARA EL AREA COMERCIAL DEL BANCO RIPLEY PERU SISTEMA DE INFORMACION DE GESTION DE TARJETAS DE CREDITO USANDO DATA MART E INTELIGENCIA DE NEGOCIOS PARA EL AREA COMERCIAL DEL BANCO RIPLEY PERU AGENDA INTRODUCCION PLANTEAMIENTO METODOLOGICO ANTECEDENTES

Más detalles

LA GESTIÓN DEL CONOCIMIENTO

LA GESTIÓN DEL CONOCIMIENTO Plan de Formación 2006 ESTRATEGIAS Y HABILIDADES DE GESTIÓN DIRECTIVA MÓDULO 9: 9 LA ADMINISTRACIÓN ELECTRÓNICA EN LA SOCIEDAD DE LA INFORMACIÓN LA GESTIÓN DEL CONOCIMIENTO José Ramón Pereda Negrete Jefe

Más detalles

Diploma en Business Analytics

Diploma en Business Analytics Diploma en Business Analytics JULIO 2010 FACULTAD DE INGENIERÍA Y CIENCIAS www.uai.cl Por qué un Diploma en Business Analytics? El análisis metódico e inteligente de datos es una actividad estratégica

Más detalles

Contenido del Curso. Descubrimiento de Conocimiento a partir de datos. Introducción. Motivación

Contenido del Curso. Descubrimiento de Conocimiento a partir de datos. Introducción. Motivación Contenido del Curso Descubrimiento de Conocimiento a partir de Datos ISISTAN UNCPBA sschia@exa.unicen.edu.ar http://www.exa.unicen.edu.ar/catedras/dbdiscov/ Introducción al KDD Etapas Pre-procesamiento

Más detalles

Carlos Daniel Quattrocchi

Carlos Daniel Quattrocchi PRESENTA Lic. Héctor Iglesias Licenciado en Informática. Profesional independiente, ha desempeñado la actividad en informática desarrollando e implementando sistemas, capacitando y asesorando a numerosas

Más detalles

DIPLOMADOS. Universidad de Chile. Diplomado en Business Intelligence. Colección: Postales

DIPLOMADOS. Universidad de Chile. Diplomado en Business Intelligence. Colección: Postales DIPLOMADOS Colección: Postales Universidad de Chile Diplomado en Business Intelligence 2015 Por qué La Universidad de Chile? No cualquier Diplomado No cualquier Universidad Es la institución de educación

Más detalles

Credit Scoring Hecho en Chile Un caso de Éxito Dr. Richard Weber, Departamento de Ingeniería Industrial, Universidad de Chile

Credit Scoring Hecho en Chile Un caso de Éxito Dr. Richard Weber, Departamento de Ingeniería Industrial, Universidad de Chile Credit Scoring Hecho en Chile Un caso de Éxito Dr. Richard Weber, Departamento de Ingeniería Industrial, Universidad de Chile Modelos Analíticos de Scoring Motivación original: Predecir qué clientes fallarán

Más detalles

BUSINESS INTELLIGENCE A TRAVÉS

BUSINESS INTELLIGENCE A TRAVÉS 07 de Agosto de 2012 BUSINESS INTELLIGENCE A TRAVÉS DEL COACHING Impartido Por: Andrés Pluma Velázquez No es posible gestionar lo que no se puede medir William Hewlet (HP Company). En este sentido, hay

Más detalles

(Data Analytics) Guía de Aprendizaje Información al estudiante

(Data Analytics) Guía de Aprendizaje Información al estudiante (Data Analytics) Guía de Aprendizaje Información al estudiante 1. Datos Descriptivos Titulación Grado en Matemáticas e Informática Módulo Materia Asignatura Carácter SISTEMAS Y SERVICIOS BASADOS EN EL

Más detalles

APOYO PARA LA TOMA DE DECISIONES

APOYO PARA LA TOMA DE DECISIONES APOYO PARA LA TOMA DE DECISIONES Cátedra: Gestión de Datos Profesor: Santiago Pérez Año: 2006 Bibliografía: Introducción a las Bases de Datos. DATE - 1 - 1. INTRODUCCION APOYO PARA LA TOMA DE DECISIONES

Más detalles