Ejercicios Trabajo y Energía R. Tovar. Sección 01 Física 11. Semestre B-2004
|
|
- Carla del Río San Martín
- hace 5 años
- Vistas:
Transcripción
1 Ejercicios Trabajo y Energía R. Tovar. Sección 01 Física 11. Semestre B Un astronauta de 710 [N] flotando en el mar es rescatado desde un helicóptero que se encuentra a 15 [m] sobre el agua, por medio de una guaya. Tomando en cuenta, que fue elevado verticalmente con una aceleración ascendente cuya magnitud es g/10. Calcula el trabajo realizado por: a) Por la tensión de la guaya; b) Por el peso del astronauta; c) La energía cinética del astronauta justo en el momento en que llega al helicóptero. 2.- Un niño se desliza por una colina en un trineo partiendo del reposo desde una altura de 3.6 [m]. La masa del niño y el trineo es 40 [Kg]. Si al final del descenso alcanza una velocidad de 11.3 [m/seg], calcular aplicando consideraciones energéticas: a) El trabajo realizado por la fricción. b) Tomando en cuenta que r = 18 [m], la magnitud de la fuerza de roce 3.- La gráfica ilustra como varía con x la única fuerza F x que actúa sobre una partícula cuya masa es 3 [Kg], que se mueve en sentido positivo a lo largo del eje x. a) Calcula el trabajo que realiza F x cuando la partícula se desplaza desde x = -4 [m] a los siguientes puntos: x = -3, -2, -1, 0, 1, 2, 3 y 4 [m]. b) Si la rapidez en x = 4 [m] es 20 [m/s], calcula la rapidez correspondiente en x = 0 [m] y en x = -4 [m]. 4.- Repite el problema 3 para la fuerza F x representada en la figura anexa
2 5.- La gráfica ilustra como varía con x la única fuerza F x que actúa sobre una partícula cuya masa es 2 [Kg] y que se mueve en sentido positivo a lo largo del eje x. Calcula el trabajo que realiza F x cuando la partícula se desplaza: a) desde x = 0 [m] a x = 5 [m]. b) desde x = 5 [m] a x = 10 [m] c) desde x = 10 [m] a x = 15 [m]. d) en el recorrido completo, desde x = 0 [m] a x = 15 [m]. d) Si la rapidez en x = 0 [m] es 20 [m/s], calcula la rapidez correspondiente en x = 10 [m] y en x = 15 [m]. 6.- Un bloque de 2 [Kg] ubicado a una altura de 1 [m] se deja libe a partir del reposo desplazándose por una rampa curva y lisa. Posteriormente se desliza por una superficie horizontal rugosa recorriendo 6 [m] antes de detenerse. a) Calcula su rapidez en la parte inferior de la rampa. b) Determina el trabajo realizado por la fricción. c) Calcula el coeficiente de roce entre el bloque y la superficie horizontal 7.- Se lanzan tres pelotas idénticas desde la parte superior de un edificio cuya altura es h. La primera sale disparada horizontalmente; la segunda con ángulo α hacia arriba y la tercera con un ángulo β hacia abajo, tal como se muestra en la figura. Asumiendo que la rapidez inicial v 0 es la misma en los tres casos, compara la rapidez con la que llegan al suelo cada una de las pelotas. [Resolverlo por cinemática y por consideraciones energéticas) 8.- Un bloque desciende deslizándose por la pista curva y lisa mostrada en la figura. Posteriormente asciende por un plano inclinado rugoso cuyo coeficiente de roce cinético es µ c. Demuestra que la altura máxima hasta la que asciende el bloque por el plano es h ymax = donde θ es el ángulo de 1 + µ c cot θ inclinación del plano.
3 9.- Un bloque de 2 [Kg] presiona a un resorte cuya constante de fuerza es k = 500 [N/m], comprimiéndolo 20 [cm]. Se deja libre y el resorte se dilata impulsándolo sobre una superficie horizontal y seguidamente asciende por un plano inclinado 45º. Tomando en cuenta que toda la vía es lisa; a) calcula la velocidad del bloque cuando se separa del resorte; b) Hasta que altura respecto al suelo asciende? 10.- Suponga que un bloque de masa m se mueve inicialmente con una rapidez V 0 sobre una rampa curva y lisa cuando se encuentra a una altura h sobre el suelo. La superficie horizontal posterior a la rampa es rugosa (su coeficiente de fricción cinética es µ c ) y en su extremo derecho hay un resorte cuya constante de fuerza es k. La distancia entre el final de la rampa y la posición de equilibrio del resorte es L. a) Aplicando el Teorema del Trabajo y la Energía determina la expresión general de la compresión máxima que experimenta el resorte. b) Utiliza la expresión anterior para calcular X m si m = 10 [Kg], h = 10 [m], l = 3 [m], V 0 = 0 [m/s], µ c = 0.25 y k = 400 [N/m]. c) Aplicando el Principio de Conservación de la Energía, halla una expresión general que permita calcular la altura h hasta la que asciende el bloque luego de que rebota contra el resorte. Realiza el cálculo de h con los datos del apartado (b) La figura muestra un carrito en una montaña rusa lisa, que parte del punto A ubicado a una altura h sobre el suelo con una rapidez v 0. a) Demuestra que v B = v 0 ; y que 2 v c = v0 + gh. b) Calcula el coeficiente de roce en el tramo DE, tomando en cuenta que se detiene luego de recorrer una distancia L. c) Realiza los cálculos correspondientes si h = 30 [m]; v 0 = 10 [m/s] y L =24 [m]
4 12.- Un hombre tira del trineo de su hija mediante una cuerda de masa despreciable de la manera que se muestra en la figura, ascendiendo por una colina nevada cuya pendiente es constante e igual a 15. Tomando en cuenta que la masa del trineo es 4 [Kg], la de la niña 26 [Kg] y µ c = a) Calcula el trabajo realizado por la tensión de la cuerda luego de que recorre con velocidad constante una distancia x de 130 [m] a lo largo de la colina. b) Repite el cálculo anterior suponiendo que parte del reposo y al final de un recorrido similar su rapidez es 5 [m/s]. h 15.- Un bloque de 2 [Kg], se deja libre a partir del reposo sobre un plano inclinado liso (ángulo de inclinación θ). La distancia inicial entre el bloque y el extremo del resorte, cuya constante de fuerza es k = 100 [N/m], es 4 [m]. El resorte está fijo a la base del plano inclinado y paralelo al mismo, tal como se muestra en la figura. a) Halla la compresión máxima del resorte después de que hace contacto con el bloque. b) Hasta que punto asciende el bloque luego de rebotar. c) Repite a) y b), en el caso de un plano rugoso (µ c =0.2) 13.- Suponga que el bloque m de 5 [Kg]. mostrado en la figura inicialmente se apoya contra un resorte de constante de fuerza k = 50 [N/m], de modo que lo comprime una distancia x = 30 [cm]. Posteriormente se deja libre y el resorte se dilata impulsando al bloque a lo largo dela superficie horizontal rugosa (µ c = 0.3). a) Determina el trabajo realizado sobre el bloque por el resorte cuando éste se extiende desde la posición comprimida a la posición de equilibrio. b) Determina el trabajo realizado por la fricción en el mismo trayecto. c) Cuál es la velocidad del bloque en este instante? d) Asumiendo que el bloque no está unido al resorte Qué distancia recorrerá hasta detenerse? e) Suponiendo que el bloque está unido al resorte, de modo que éste se estira cuando sobrepasa su posición de equilibrio Cuál es en este caso la distancia x de estiramiento del resorte? 14.- Un bloque parte del reposo desde la parte superior de la vía mostrada en la figura, y se desliza hasta que sale disparada por el extremo derecho. a) Si H = 102 [m] y h = 32 [m] y tomando en cuenta que el extremo derecho de la vía es horizontal, determina la distancia horizontal recorrida hasta que hace contacto con el suelo. b) Repite el cálculo anterior suponiendo que el ángulo de inclinación del extremo derecho de la vía es 30º.
5 16.- Un bloque se desplaza a lo largo de la vía mostrada en la figura, cuya parte inicial es completamente lisa y la final es rugosa (extremo derecho). Halla la expresión general aplicando consideraciones energéticas de la distancia d que recorre el bloque en el extremo derecho de la vía antes de detenerse y úsala para hacer el cálculo respectivo, tomando en cuenta que la rapidez inicial v 0 = 12 [m/s], h = 1.1 [m]. y µ c = Un esquiador se desliza a partir del reposo por la rampa mostrada en la figura (su altura al inicio es 20 [m]). En el momento que el esquiador abandona la pista su velocidad forma un ángulo de 28º con la horizontal. Calcula: a) Aplicando consideraciones energéticas la máxima altura h por encima del extremo derecho de la rampa alcanzada por el esquiador en su salto b) El alcance horizontal X recorrida por el esquiador tomando en cuenta que cae 15 [m] por debajo del punto de despegue c) Si un segundo esquiador mucho más gordo que el primero y cuya masa es el doble que la del primero, se lanza en las mismas condiciones En este caso es cierto que la altura h y el alcance horizontal son mayores? Explica 18.- La energía cinética de un hombre que va corriendo es la mitad de la energía cinética de un niño que también corre y cuya masa es la mitad que la del hombre. Se observa que, si el hombre aumenta su rapidez en 1 [ m s], entonces su energía cinética se iguala a la del niño. Determina la rapidez inicial del hombre y del niño Se lanza una piedra, cuyo peso es w, verticalmente hacia arriba con una rapidez inicial v 0. r Suponga que la magnitud de la fuerza de roce entre el aire y la piedra es constante F r = f. a) Demuestra que la altura máxima alcanzada por la piedra es la rapidez con que la piedra retorna a la posición inicial? 2 h v0 = maz 2g(1 +. b) Cuál será f / w)
6 20.- La guaya de un ascensor que pesa [N], se rompe cuando éste se encontraba en el primer piso, de manera que su fondo estaba a 3.66 [m] por encima de un resorte de seguridad cuya constante de fuerza es k = [N/m]. Un sistema de seguridad afianza las guías de manera que al movimiento des ascensor se opone una fuerza de roce constante de 4450 [N].Calcula: a) La rapidez del ascensor en el momento que hace contacto con el resorte; b) La compresión máxima que experimenta el resorte; c) La altura hasta la que asciende luego de rebotar 21.- Un bloque de 1 [Kg], se lanza desde la base de un plano inclinado (θ = 30º). En el extremo superior del plano el bloque choca con un resorte cuya constante de fuerza es k = 10 [N/m], Tomando en cuenta que el plano es rugoso (µ e = 0.6 y µ c = 0.5) y que la distancia inicial entre el bloque y el extremo del resorte es 5 [m]. Calcula: a) La energía cinética del bloque para que la compresión máxima del resorte sea x max = 1 [m]. b) La energía cinética del bloque cuando retorna a su posición inicial Un muchacho tira de un trineo de 10 [Kg] con una cuerda que forma un ángulo θ = 45º con la horizontal y recorre 30 [m] sobre una superficie horizontal rugosa (µ c = 0.2). Calcula: a) El trabajo que realizan la fricción y la tensión de la acuerda, en el caso de que el trineo se desplaze con rapidez constante. b) Repite el cálculo anterior suponiendo que parte del reposo y al final de un recorrido similar su rapidez es 10 [m/s] 23.- Un bloque de 10 [Kg] ubicado en el punto A a 3 [m] sobre el suelo, se deja libre a partir del resposo. La vía es completamente lisa, salvo en el tramo BC que tiene 6 [m] de longitud. En el extremo derecho hay un resorte cuya constante de fuerza es k = 2250 [N/m], el cual sufre una compresión máxima X m = 0.30 [m], luego de que el bloque hace contacto con él. a) Calcula el coeficiente de roce µ c en el tramo BC. b) Calcula el coeficiente de roce µ c en el tramo BC, suponiendo que la rapidez del bloque en A era v A = 10 [m/seg] y que en este caso el resorte experimenta una compresión X m = 0.70 [m].
5ª GUIA DE EJERCICIOS 2º SEMESTRE 2010
UNIVRSI HIL - FULT INIS - PRTMNTO FISI 5ª GUI JRIIOS 2º SMSTR 2010 NRGÍ 1.- María y José juegan deslizándose por un tobogán de superficie lisa. Usan para ello un deslizador de masa despreciable. mbos parten
TRABAJO Y ENERGÍA. a) Calcule el trabajo en cada tramo. b) Calcule el trabajo total.
TRABAJO Y ENERGÍA 1.-/ Un bloque de 20 kg de masa se desplaza sin rozamiento 14 m sobre una superficie horizontal cuando se aplica una fuerza, F, de 250 N. Se pide calcular el trabajo en los siguientes
14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N
Ejercicios de dinámica, fuerzas (4º de ESO/ 1º Bachillerato): 1º Calcular la masa de un cuerpo que al recibir una fuerza de 0 N adquiere una aceleración de 5 m/s. Sol: 4 kg. º Calcular la masa de un cuerpo
TRABAJO ENERGÍA CONSERVACIÓN DE ENERGÍA MECÁNICA
TRABAJO ENERGÍA CONSERVACIÓN DE ENERGÍA MECÁNICA 1. La figura muestra una bola de 100 g. sujeta a un resorte sin estiramiento, de longitud L 0 = 19 cm y constante K desconocida. Si la bola se suelta en
Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética
Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética Problema 1: Sobre un cuerpo que se desplaza 20 m está aplicada una fuerza constante, cuya intensidad es de
IES RIBERA DE CASTILLA ENERGÍA MECÁNICA Y TRABAJO
UNIDAD 6 ENERGÍA MECÁNICA Y TRABAJO La energía y sus propiedades. Formas de manifestarse. Conservación de la energía. Transferencias de energía: trabajo y calor. Fuentes de energía. Renovables. No renovables.
Mecánica I, 2009. Trabajo efectuado por una fuerza constante. Trabajo hecho por una fuerza variable
Departamento de Física Facultad de Ciencias Universidad de Chile Profesor: Gonzalo Gutiérrez Ayudantes: Uta Naether Felipe González Mecánica I, 2009 Guía 5: Trabajo y Energía Jueves 7 Mayo Tarea: Problemas
1. Indica cuáles son las condiciones que han de cumplirse para que el trabajo sea distinto de cero.
A) Trabajo mecánico 1. Indica cuáles son las condiciones que han de cumplirse para que el trabajo sea distinto de cero. 2. Rellena en tu cuaderno las celdas sombreadas de esta tabla realizando los cálculos
Tema 3. Trabajo y Energía
Tema 3. Trabajo y Energía CONTENIDOS Energía, trabajo y potencia. Unidades SI (conceptos y cálculos) Teorema del trabajo y la energía. Energía cinética (conceptos y cálculos) Fuerzas conservativas. Energía
Guía 7 4 de mayo 2006
Física I GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Guía 7 4 de mayo 2006 Conservación de la energía mecánica
INSTITUTO NACIONAL Dpto. de Física Prof: Aldo Scapini G.
GUÍA DE ENERGÍA Nombre:...Curso:... En la presente guía estudiaremos el concepto de Energía Mecánica, pero antes nos referiremos al concepto de energía, el cuál desempeña un papel de primera magnitud tanto
Conservación de la Energía Mecánica NOMBRE: CURSO:
NOMBRE: CURSO: La ley de conservación de la energía mecánica nos dice que la energía de un sistema aislado de influencias externas se mantiene siempre constante, lo que ocurre es una simple transformación
TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d.
C U R S O: FÍSICA COMÚN MATERIAL: FC-09 TRABAJO Y ENERGÍA La energía desempeña un papel muy importante en el mundo actual, por lo cual se justifica que la conozcamos mejor. Iniciamos nuestro estudio presentando
LANZAMIENTOS VERTICALES soluciones
LANZAMIENTOS VERTICALES soluciones 1.- Desde un puente se lanza una piedra con una velocidad inicial de 10 m/s y tarda 2 s en llegar al agua. Calcular la velocidad que lleva la piedra en el momento de
2. Qué sucede con la energía cinética de una bola que se mueve horizontalmente cuando:
PONTIFICIA UNIERSIA CATOLICA MARE Y MAESTA EPARTAMENTO E CIENCIAS BASICAS. INTROUCCION A LA FISICA Prof. Remigia Cabrera Unidad I. TRABAJO Y ENERGIA 1. emuestre que la energía cinética en el movimiento
PROBLEMAS DE DINÁMICA. 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h.
PROBLEMAS DE DINÁMICA 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h. 2. Un vehículo de 800 kg se mueve en un tramo recto y horizontal
El aro se encuentra en equilibrio? 53 o. 37 o 37º. Los tres dinamómetros, miden en Newton. III 0,5 1,0 1,5 0 0,5 1,0 1,5
-Un aro metálico de masa despreciable se encuentra sujetado, mediante hilos, por los tres dinamómetros, tal como se muestra en la figura. partir de la representación de la lectura de los tres instrumentos:
po= FO. t (2) La cantidad del lado derecho recibe el nombre de impulso de la fuerza para el intervalo t =t f t i.
IMPULSO po 1.1 Qué es el impulso mecánico? El impulso de una fuerza F es gual al cambio en el momento de la partícula. Supongamos que una fuerza F actúa sobre una partícula y que esta fuerza puede variar
INSTITUCION EDUCATIVA SAN JORGE MONTELIBANO
INSTITUCION EDUCATIVA SAN JORGE MONTELIBANO GUAS DE ESTUDIO PARA LOS GRADOS: 11º AREA: FISICA PROFESOR: DALTON MORALES TEMA DE LA FISICA A TRATAR: ENERGÍA I La energía desempeña un papel muy importante
2. Dado el campo de fuerzas F x, Solución: W = 6 J
UNIVERSIDD DE OVIEDO Escuela Politécnica de Ingeniería de Gijón Curso 013-4 1. Dos objetos, uno con masa doble que el otro, cuelgan de los extremos de la cuerda de una polea fija de masa despreciable y
Capítulo 4 Trabajo y energía
Capítulo 4 Trabajo y energía 17 Problemas de selección - página 63 (soluciones en la página 116) 10 Problemas de desarrollo - página 69 (soluciones en la página 117) 61 4.A PROBLEMAS DE SELECCIÓN Sección
UNGS 1er semestre 2009 Física General. Guía de problemas nº 4 Trabajo - Energía. Problemas de Nivel 1.
UNGS 1er semestre 009 Física General. Guía de problemas nº 4 Trabajo - Energía. Problemas de Nivel 1. 1.- Un niño, de 00 N de peso, sube 10 m de altura con la ayuda de una escalera vertical. Halle el trabajo
ESPECIALIDADES : GUIA DE PROBLEMAS N 3
ASIGNATURA : ESPECIALIDADES : Ing. CIVIL Ing. MECANICA Ing. ELECTROMECANICA Ing. ELECTRICA GUIA DE PROBLEMAS N 3 2015 1 GUIA DE PROBLEMAS N 3 PROBLEMA Nº1 Un carro de carga que tiene una masa de 12Mg es
GUIA DE PROBLEMAS. 3) La velocidad de un auto en función del tiempo, sobre un tramo recto de una carretera, está dada por
Unidad : Cinemática de la partícula GUIA DE PROBLEMAS 1)-Un automóvil acelera en forma uniforme desde el reposo hasta 60 km/h en 8 s. Hallar su aceleración y desplazamiento durante ese tiempo. a = 0,59
Experimento 7 MOMENTO LINEAL. Objetivos. Teoría. Figura 1 Dos carritos sufren una colisión parcialmente inelástica
Experimento 7 MOMENTO LINEAL Objetivos 1. Verificar el principio de conservación del momento lineal en colisiones inelásticas, y 2. Comprobar que la energía cinética no se conserva en colisiones inelásticas
El trabajo W efectuado por un agente que ejerce una fuerza constante es igual al producto punto entre la fuerza F y el desplazamiento d
El trabajo W efectuado por un agente que ejerce una fuerza constante es igual al producto punto entre la fuerza F y el desplazamiento d W F d Fd cos Si la fuerza se expresa en newton (N) y el desplazamiento
TRABAJO Y ENERGÍA Página 1 de 13
TRABAJO Y ENERGÍA Página 1 de 13 EJERCICIOS DE TRABAJO Y ENERGÍA RESUELTOS: Ejemplo 1: Calcular el trabajo necesario para estirar un muelle 5 cm, si la constante del muelle es 1000 N/m. La fuerza necesaria
PROBLEMAS RESUELTOS DE PLANO INCLINADO. Erving Quintero Gil Ing. Electromecánico Bucaramanga Colombia 2010
PROBLEMAS RESUELOS DE PLANO INCLINADO Erving Quintero Gil Ing. Electromecánico Bucaramanga Colombia 010 Para cualquier inquietud o consulta escribir a: quintere@hotmail.com quintere@gmail.com quintere006@yahoo.com
Física I (Biociencias y Geociencias) - 2015. PRÁCTICO 6 (Momento lineal y choque, Momento angular, Propiedades elásticas de los materiales)
Física I (Biociencias y Geociencias) - 2015 PRÁCTICO 6 (Momento lineal y choque, Momento angular, Propiedades elásticas de los materiales) 6.1 (A) Un coche de 1000 kg y un camión de 2000 kg corren ambos
Energía mecánica y Caída Libre y lanzamiento vertical hacia arriba
Soluciones Energía mecánica y Caída Libre y lanzamiento vertical hacia arriba Si no se dice otra cosa, no debe considerarse el efecto del roce con el aire. 1.- Un objeto de masa m cae libremente de cierta
E G m g h r CONCEPTO DE ENERGÍA - CINÉTICA - POTENCIAL - MECÁNICA
Por energía entendemos la capacidad que posee un cuerpo para poder producir cambios en sí mismo o en otros cuerpos. Es una propiedad que asociamos a los cuerpos para poder explicar estos cambios. Ec 1
FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Energía y trabajo (II)
1(7) Ejercicio nº 1 Se desea trasladar 40 m por una superficie horizontal un cuerpo de 12 kg tirando con una fuerza de 40 que forma un ángulo de 60º con la horizontal. Si el coeficiente de rozamiento vale
TRABAJO Y ENERGÍA. Campos de fuerzas
TRABAJO Y ENERGÍA 1. Campos de fuerzas. Fuerzas dependientes de la posición. 2. Trabajo. Potencia. 3. La energía cinética: Teorema de la energía cinética. 4. Campos conservativos de fuerzas. Energía potencial.
Problemas de Energía Cinética, Energía Potencial y Conservación de Energía Mecánica
Problemas de Energía Cinética, Energía Potencial y Conservación de Energía Mecánica Ejemplos y ejercicios extraídos del texto Física para ingeniería y ciencia, Volumen 1, 3era. Edición. Ohanian y Markert,
EJERCICIOS DE TRABAJO, POTENCIA Y ENERGÍA. CONSERVACIÓN DE LA ENERGÍA MECÁNICA. 4º E.S.O.
EJERCICIOS DE TRABAJO, POTENCIA Y ENERGÍA. CONSERVACIÓN DE LA ENERGÍA MECÁNICA. 4º La finalidad de este trabajo implica tres pasos: a) Leer el enunciado e intentar resolver el problema sin mirar la solución.
TALLER SOBRE SISTEMA DE PARTÍCULAS Y CUERPO RÍGIDO
UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS- ESCUELA DE FÍSICA FÍSICA MECÁNICA (00000) TALLER SOBRE SISTEMA DE PARTÍCULAS Y CUERPO RÍGIDO Preparado por: Diego Luis Aristizábal Ramírez
PROBLEMAS RESUELTOS TEMA: 3
PROBLEMAS RESUELTOS TEMA: 3 1. Una partícula de 3 kg se desplaza con una velocidad de cuando se encuentra en. Esta partícula se encuentra sometida a una fuerza que varia con la posición del modo indicado
Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2012 Problemas (Dos puntos por problema).
Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 01 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Suponga que trabaja para una gran compañía de transporte y que
Nombre:..Curso:.. GUIA DE TRABAJO Y POTENCIA MECANICA. Un niño traslada una caja desde el punto A al punto B recorriendo 4 m (fig.
Nombre:..Curso:.. GUIA DE TRABAJO Y POTENCIA MECANICA Trabajo realizado por una fuerza. Un niño traslada una caja desde el punto A al punto B recorriendo 4 m (fig. N 1), fig N 1 Desde el punto de vista
ENERGÍA Y MOVIMIENTO. Energía mecánica Energía y temperatura Ondas
Energía y temperatura Ondas ENERGÍA Y MOVIMIENTO Física y Química 4º ESO: guía interactiva para la resolución de ejercicios I.E.S. Élaios Departamento de Física y Química EJERCICIO 1 De las situaciones
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA 1.- El bloque mostrado se encuentra afectado por fuerzas que le permiten desplazarse desde A hasta B.
TRABAJO Y ENERGÍA: CHOQUES
. TRABAJO Y ENERGÍA: CHOQUES Una bola de acero que cae verticalmente rebota en una placa ríida que forma un ánulo con la horizontal. Calcular para que la bola sala con una velocidad horizontal después
Capítulo 5 Oscilaciones
Capítulo 5 Oscilaciones 9 Problemas de selección - página 77 (soluciones en la página 120) 6 Problemas de desarrollo - página 82 (soluciones en la página 121) 75 5.A PROBLEMAS DE SELECCIÓN Sección 5.A
TRABAJO Y ENERGIA MECANICA
TRABAJO Y ENERGIA MECANICA 1. Si una persona saca de un pozo una cubeta de 20 [kg] y realiza 6.000 [J] de trabajo, cuál es la profundidad del pozo? (30,6 [m]) 2. Una gota de lluvia (3,35x10-5 [kg] apx.)
TRABAJO Y ENERGÍA - EJERCICIOS
TRABAJO Y ENERGÍA - EJERCICIOS Hallar la energía potencial gravitatoria adquirida por un alpinista de 80 kg que escala una montaña de.00 metros de altura. Epg mgh 0,5 kg 9,8 m / s 0,8 m 3,9 J Su energía
ELABORADO POR JULIO CESAR MACIAS ZAMORA TRABAJO, ENERGIA Y POTENCIA
3.5. Trabajo mecánico, potencia y energía. 1. Un paquete es lanzado por un plano inclinado 0º con la horizontal con una elocidad de 8m/s en un punto del plano. Llega a un punto situado 7 m más arriba de
Resumen fórmulas de energía y trabajo
Resumen fórmulas de energía y trabajo Si la fuerza es variable W = F dr Trabajo r Si la fuerza es constante r r r W = F Δ = F Δ cosθ r Si actúan varias fuerzas r r r r r W total = Δ + F Δ + + Δ = W + W
CUESTIONARIOS FÍSICA 4º ESO
DPTO FÍSICA QUÍMICA. IES POLITÉCNICO CARTAGENA CUESTIONARIOS FÍSICA 4º ESO UNIDAD 5 Trabajo, potencia y energía Mª Teresa Gómez Ruiz 2010 HTTP://WWW. POLITECNICOCARTAGENA. COM/ ÍNDICE Página PRIMER CUESTIONARIO.
Problemas de Física 1 o Bachillerato
Problemas de Física o Bachillerato Principio de conservación de la energía mecánica. Desde una altura h dejamos caer un cuerpo. Hallar en qué punto de su recorrido se cumple E c = 4 E p 2. Desde la parte
APUNTES DE FÍSICA Y QUÍMICA
Departamento de Física y Química I.E.S. La Arboleda APUNTES DE FÍSICA Y QUÍMICA 1º de Bachillerato Volumen II. Física Unidad VII TRABAJO Y ENERGÍA Física y Química 1º de Bachillerato 1.- CONCEPTO DE ENERGÍA
Guía para el examen de 4ª y 6ª oportunidad de FÍsica1
4a 4a 6a Guía para el examen de 4ª y 6ª oportunidad de FÍsica1 Capitulo 1 Introducción a la Física a) Clasificación y aplicaciones b) Sistemas de unidades Capitulo 2 Movimiento en una dimensión a) Conceptos
EJERCICIOS PROPUESTOS. Qué transferencias de energía se producen cuando el viento incide sobre las velas de un barco?
8 ENERGÍA Y TRABAJO EJERCICIOS PROPUESTOS 8.1 Qué transferencias de energía se producen cuando el viento incide sobre las velas de un barco? Parte de la energía cinética del viento se transfiere a las
TRABAJO Y ENERGIA 1. Para un objeto que se mueve en una dimensión, el trabajo W hecho sobre el objeto por una fuerza constante aplicada F es
TRABAJO Y ENERGIA 1 TRABAJO Y ENERGIA La primera figura muestra un esquiador que partiendo del reposo desciende por una superficie uniforme Cuál será la velocidad del esquiador cuando llegue al final de
Tema 4. Sistemas de partículas
Física I. Curso 2010/11 Departamento de Física Aplicada. ETSII de Béjar. Universidad de Salamanca Profs. Alejandro Medina Domínguez y Jesús Ovejero Sánchez Tema 4. Sistemas de partículas Índice 1. Introducción
FÍSICA Y QUÍMICA - 4º ESO LAS FUERZAS PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA
PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA 1. Todo cuerpo tiene tendencia a permanecer en su estado de movimiento. Esta tendencia recibe el nombre de inercia. 2. La masa es una medida
La masa es la magnitud física que mide la inercia de los cuerpos: N
Pág. 1 16 Las siguientes frases, son verdaderas o falsas? a) Si el primer niño de una fila de niños que corren a la misma velocidad lanza una pelota verticalmente hacia arriba, al caer la recogerá alguno
Energía. Preguntas de Opción Múltiple.
Energía. Preguntas de Opción Múltiple. Física- PSI Nombre Opción Múltiple 1. Se empuja un bloque con una cierta masa a una distancia d y se aplica una fuerza F en sentido paralelo al desplazamiento. Cuánto
1. El vector de posición de una partícula viene dado por la expresión: r = 3t 2 i 3t j.
1 1. El vector de posición de una partícula viene dado por la expresión: r = 3t 2 i 3t j. a) Halla la posición de la partícula para t = 3 s. b) Halla la distancia al origen para t = 3 s. 2. La velocidad
TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS
TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1. CONCEPTO DE TRABAJO: A) Trabajo de una fuerza constante Todos sabemos que cuesta trabajo tirar de un sofá pesado, levantar una pila de libros
W = Fx. Trabajo Mecánico y Energía
El Trabajo W inver4do sobre un sistema por un agente que ejerce una fuerza constante sobre el sistema es el producto de la magnitud F de la fuerza, la magnitud X del desplazamiento del punto de aplicación
COLECCIÓN DE PROBLEMAS DE FÍSICA ELEMENTAL
1 COLECCIÓN DE PROBLEMAS DE FÍSICA ELEMENTAL Los problemas que se plantean a continuación corresponden a problemas seleccionados para hacer un repaso general previo a un examen libre paracompletar la enseñanza
Trabajo y Energía. W = FO. xo. t t =mvo. vo= ( 1 2 m vo2 )= K, y, F z = U E = K +U. E =K + i. U i
Trabajo y Energía Trabajo vo xo=m vo xo W = FO. xo FO: Fuerza aplicada, XOes el desplazamiento. Usando la Segunda Ley de Newton: W = m t t =mvo. vo= ( 1 2 m vo2 )= K, Teorema del Trabajo y la Energía K
TEMA 7: TRABAJO Y ENERGÍA.
Física y Química 4 ESO TRABAJO Y ENERGÍA Pág. 1 TEMA 7: TRABAJO Y ENERGÍA. DEFINICIÓN DE ENERGÍA La energía no es algo tangible. Es un concepto físico, una abstracción creada por la mente humana que ha
Encuentre la respuesta para cada uno de los ejercicios que siguen. No se debe entregar, es solo para que usted aplique lo aprendido en clase.
Taller 1 para el curso Mecánica I. Pág. 1 de 11 UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE INGENIERÍA MECÁNICA Taller No 1 - Curso: Mecánica I Grupo: Encuentre la respuesta para cada uno de los ejercicios
PROBLEMAS SELECCIONADOS DE DINÁMICA / TRABAJO Y ENERGÍA
PROBLEMAS SELECCIONADOS DE DINÁMICA / TRABAJO Y ENERGÍA Antonio J. Barbero / Alfonso Calera Belmonte / Mariano Hernández Puche Departamento de Física Aplicada UCLM Escuela Técnica Superior de Agrónomos
GUÍA DE PROBLEMAS N 3: TRABAJO Y ENERGÍA
GUÍA DE PROBLEMAS N 3: Premisa de Trabajo: En la resolución de cada ejercicio debe quedar manifiesto: el diagrama de fuerzas que actúan sobre el cuerpo o sistema de cuerpos en estudio, la identificación
FRICCIÓN TRABAJO Y POTENCIA.
INSTITUTO POLITÉCNICO NACIONAL CECyT N 13 RICARDO FLORES MAGÓN LABORATORIO DE FÍSICA II PRÁCTICA No. 10 FRICCIÓN TRABAJO Y POTENCIA. NOMBRE. GRUPO. No. BOLETA. FECHA. EQUIPO No. ASISTENCIA. BATA. REPORTE.
6 Energía mecánica y trabajo
6 Energía mecánica y trabajo EJERCICIOS PROPUESTOS 6.1 Indica tres ejemplos de sistemas o cuerpos de la vida cotidiana que tengan energía asociada al movimiento. Una persona que camina, un automóvil que
TRABAJO Y ENERGIA: FUERZAS NO CONSERVATIVAS
TRJO Y ENERGI: FUERZS NO CONSERVTIVS Determinar (atendiendo a los conceptos de trabajo y energía, es decir, sin utilizar la 2ª ley de Newton) la aceleración que alcanza un bloque de masa m al bajar por
TALLER DE TRABAJO Y ENERGÍA
TALLER DE TRABAJO Y ENERGÍA EJERCICIOS DE TRABAJO 1. Un bloque de 9kg es empujado mediante una fuerza de 150N paralela a la superficie, durante un trayecto de 26m. Si el coeficiente de fricción entre la
Ejercicios de cinemática
Ejercicios de cinemática 1.- Un ciclista recorre 32,4 km. en una hora. Calcula su rapidez media en m/s. (9 m/s) 2.- La distancia entre dos pueblos es de 12 km. Un ciclista viaja de uno a otro a una rapidez
frenado?. fuerza F = xi - yj desde el punto (0,0) al
1. Calcular el trabajo realizado por la fuerza F = xi + yj + + zk al desplazarse a lo largo de la curva r = cos ti + sen tj + 3tk desde el punto A(1,0,0) al punto B(0,1,3π/2), puntos que corresponden a
INTERCAMBIO MECÁNICO (TRABAJO)
Colegio Santo Ángel de la guarda Física y Química 4º ESO Fernando Barroso Lorenzo INTERCAMBIO MECÁNICO (TRABAJO) 1. Un cuerpo de 1 kg de masa se encuentra a una altura de 2 m y posee una velocidad de 3
PRIMERA EVALUACIÓN. Física del Nivel Cero A
PRIMERA EVALUACIÓN DE Física del Nivel Cero A Marzo 9 del 2012 VERSION CERO (0) NOTA: NO ABRIR ESTA PRUEBA HASTA QUE SE LO AUTORICEN! Este examen, sobre 70 puntos, consta de 32 preguntas de opción múltiple
1erg = 10^-7 J, y la libra- pie (lb pie), donde 1lb pie = 1.355 J.
El TRABAJO efectuado por una fuerza F se define de la siguiente manera. Como se muestra en la figura, una fuerza F actúa sobre un cuerpo. Este presenta un desplazamiento vectorial s. La componente de F
Energía. Teorema de conservación de la energía.
Tarea 2. 1 Energía. Teorema de conservación de la energía. 3 Energía Es la capacidad que tiene un cuerpo para realizar un trabajo (u otra transformación). A su vez, el trabajo es capaz de aumentar la energía
1. Trabajo y energía TRABAJO HECHO POR UNA FUERZA CONSTANTE
Trabajo y energía 1. Trabajo y energía Hasta ahora hemos estudiado el movimiento traslacional de un objeto en términos de las tres leyes de Newton. En este análisis la fuerza ha jugado un papel central.
Slide 1 / 31. Slide 2 / 31. Slide 3 / 31. mfd. mfd. mfd
1 Se empuja un bloque con una cierta masa a una distancia d y se aplica una fuerza F en sentido paralelo al desplazamiento. uánto trabajo realiza la fuerza F en el bloque? Slide 1 / 31 mfd cero Fd F/d
Teorema trabajo-energía: el trabajo efectuado por un cuerpo es igual al cambio de energía cinética o potencia.
INSTITUCION EDUCATIVA NACIONAL LOPERENA DEPARTAMENTO DE CIENCIAS NATURALES. FISICA I. CUESTIONARIO GENERAL IV PERIODO. NOTA: Es importante que cada una de las cuestiones así sean tipo Icfes, deben ser
Para revisarlos ponga cuidado en los paréntesis. No se confunda.
Ejercicios MRUA Para revisarlos ponga cuidado en los paréntesis. No se confunda. 1.- Un cuerpo se mueve, partiendo del reposo, con una aceleración constante de 8 m/s 2. Calcular: a) la velocidad que tiene
PROBLEMAS M.A.S. Y ONDAS
PROBLEMAS M.A.S. Y ONDAS 1) Una masa de 50 g unida a un resorte realiza, en el eje X, un M.A.S. descrito por la ecuación, expresada en unidades del SI. Establece su posición inicial y estudia el sentido
CINEMÁTICA I FYQ 1º BAC CC.
www.matyfyq.com Página 1 de 5 Pregunta 1: La posición de una partícula en el plano viene dada por la ecuación vectorial: r(t) = (t 2 4) i + (t + 2) j En unidades del SI calcula: a) La posición de la partícula
Fuerza Aérea Argentina. Escuela de Aviación Militar Asignatura: Física Actividades Ingreso 2012
Fuerza Aérea Argentina. Escuela de Aviación Militar Asignatura: Física Actividades Ingreso 2012 Unidad 1: Fuerzas Programa analítico Medidas de una fuerza. Representación gráfica de fuerzas. Unidad de
TALLER DE TRABAJO Y ENERGÍA
TALLER DE TRABAJO Y ENERGÍA EJERCICIOS DE TRABAJO 1. Un mecánico empuja un auto de 2500 kg desde el reposo hasta alcanzar una rapidez v, realizando 5000 J de trabajo en el proceso. Durante este tiempo,
PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B y C, FÍSICA
PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B y C, FÍSICA DATOS DEL ASPIRANTE Apellidos: CALIFICACIÓN PRUEBA Nombre: D.N.I. o Pasaporte: Fecha de nacimiento: / / Instrucciones: Lee atentamente
Trabajo, energía y potencia
Empecemos! Si bien en semanas anteriores hemos descrito las formas en las que se puede presentar la energía y algunas transformaciones que pueden darse en el proceso de producción, distribución y uso de
GUÍA DE APOYO PARA TRABAJO COEF. 2 SEGUNDO AÑO MEDIO TRABAJO Y ENERGÍA
Liceo N 1 de niñas Javiera Carrera Departamento de Física. Prof.: L. Lastra- M. Ramos. GUÍA DE APOYO PARA TRABAJO COEF. 2 SEGUNDO AÑO MEDIO TRABAJO Y ENERGÍA Estimada alumna la presente guía corresponde
10.- Qué se entiende por sistema material? Un insecto podría ser un sistema material? De qué tipo?
Tema 4. Energía. 1 TEMA 4. LA ENERGÍA. 1. LA ENERGÍA. 8.- Relaciona mediante flechas las dos columnas. 2. LOS SISTEMAS MATERIALES Y LA ENERGÍA. 10.- Qué se entiende por sistema material? Un insecto podría
ENERGÍA (II) FUERZAS CONSERVATIVAS
NRGÍA (II) URZAS CONSRVATIVAS IS La Magdalena. Avilés. Asturias Cuando elevamos un cuerpo una altura h, la fuerza realiza trabajo positivo (comunica energía cinética al cuerpo). No podríamos aplicar la
164 Ecuaciones diferenciales
64 Ecuaciones diferenciales Ejercicios 3.6. Mecánica. Soluciones en la página 464. Una piedra de cae desde el reposo debido a la gravedad con resistencia despreciable del aire. a. Mediante una ecuación
Experimento 6 LA CONSERVACIÓN DE LA ENERGÍA Y EL TEOREMA DEL TRABAJO Y LA ENERGÍA. Objetivos. Teoría
Experimento 6 LA CONSERVACIÓN DE LA ENERGÍA Y EL TEOREMA DEL TRABAJO Y LA ENERGÍA Objetivos 1. Definir las energías cinética, potencial y mecánica. Explicar el principio de conservación de la energía mecánica
2. V F El momento cinético (o angular) de una partícula P respecto de un punto O se expresa mediante L O = OP m v
FONAMENTS FÍSICS ENGINYERIA AERONÀUTICA SEGONA AVALUACIÓ TEORIA TEST (30 %) 9-juny-2005 COGNOMS: NOM: DNI: PERM: 1 Indique si las siguientes propuestas son VERDADERAS o FALSAS encerrando con un círculo
CINEMÁTICA II: MRUA. 370 GUÍA DE FÍSICA Y QUÍMICA 1. Bachillerato MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. PROBLEMAS RESUELTOS
CINEMÁTICA II: MRUA PROBLEMAS RESUELTOS PROBLEMA RESUELTO Una persona lanza un objeto desde el suelo verticalmente hacia arriba con velocidad inicial de 0 m/s. Calcula: a) La altura máxima alcanzada. b)
2. CLASIFICACIÓN DE LOS CHOQUES SEGÚN LA EXISTENCIA O NO DE VÍNCULOS EXTERNOS
COLISIONES O CHOQUES 1. INTRODUCCIÓN Las colisiones o choques son procesos en los cuales partículas o cuerpos entran durante un determinado tiempo Δt en interacción de magnitud tal, que pueden despreciarse,
Examen de Física I. Dinámica, Energía, Leyes de Kepler, L.G.U. Soluciones
Examen de Física I Dinámica, Energía, Leyes de Kepler, L.G.U. Soluciones 1. a) Enuncie las leyes de Kepler. Kepler enunció tres leyes que describían el movimiento planetario: 1 a ley o ley de las órbitas.
Práctica La Conservación de la Energía
Práctica La Conservación de la Energía Eduardo Rodríguez Departamento de Física, Universidad de Concepción 30 de junio de 2003 La Conservación de la Energía Un péndulo en oscilación llega finalmente al
Capítulo 1. Mecánica
Capítulo 1 Mecánica 1 Velocidad El vector de posición está especificado por tres componentes: r = x î + y ĵ + z k Decimos que x, y y z son las coordenadas de la partícula. La velocidad es la derivada temporal
ALGUNOS EJERCICIOS RESUELTOS DE TRABAJO Y ENERGÍA (BOLETÍN DEL TEMA 1)
I..S. l-ándalus. Dpto de ísica y Química. ísica º Bachillerato LGUS JRCICIS RSULTS D TRBJ Y RGÍ (BLTÍ DL TM ). Un bloque de 5 kg desliza con velocidad constante por una superficie horizontal mientras se
FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS
1 FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1.1. A QUÉ LLAMAMOS TRABAJO? 1. Un hombre arrastra un objeto durante un recorrido de 5 m, tirando de él con una fuerza de 450 N mediante una cuerda que forma
GUIA. 1- Un. balde con. cuando el. balde: de 2 m/s. en un 40% esté: más despacio. despreciable. rozamiento). propio peso? 4- Un.
GUIA DINÁMICA 1- Un balde con mezcla cuelga del cable de una grúa. Analizar las interacciones presentes y hacerr el diagrama de cuerpo libre del balde en cada caso. Comparar las intensidades de las fuerzas