Matrices y sus operaciones

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Matrices y sus operaciones"

Transcripción

1 Capítulo 1 Matrices y sus operaciones 1.1. Definiciones Dados dos enteros m, n 1 y un cuerpo conmutativo IK, llamamos matriz de m filas y n columnas con coeficientes en IK a un conjunto ordenado de n vectores del espacio IK m. C 1 (a 11, a 21,, a m1 ), C 2 (a 12, a 22,, a m2 ),, C n (a 1n, a 2n,, a mn ), Las matrices se escriben en forma de cuadro rectangular, encerrado entre paréntesis, colocando las componentes de los vectores C 1, C 2,, C n en vertical, unas a continuación de las del otro: a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Los vectores dato se denominan columnas de la matriz. La propia manera de presentar una matriz sugiere la consideración de m vectores F 1 (a 11, a 12,, a 1n ), F 2 (a 21, a 22,, a 2n ),, F m (a m1, a m2,, a mn ), del espacio IK n, los cuales reciben el nombre de filas de la matriz. Con ellos como dato se podría haber dado una definición alternativa de matriz: sería un conjunto ordenado de m vectores del espacio IK n. Cada una de las componentes de cada uno de los vectores datos se conoce como un coeficiente de la matriz. Su doble índice indica que a ij es el coeficiente situado en la fila i-ésima y en la columna j-ésima. En total hay mn coeficientes.

2 2 Capítulo 1. Matrices y sus operaciones Con frecuencia usaremos la escritura abreviada (a ij ), sobreentendiendo que i [1, m] y j [1, n]. Incluso, se aluda o no a los coeficientes, la matriz se escribe con una sola letra mayúscula, tal como A, B, M, N, etc. En estos casos, F i (A) indicará la fila i-ésima en la matriz A y C j (A) la columna j-ésima; a veces pondremos e ij (A) para indicar el coeficiente ubicado en el cruce de F i (A) con C j (A). El conjunto de todas las matrices de m filas, n columnas y coeficientes en IK se denota por el símbolo M(m, n, IK) Igualdad de matrices Por haber definido la matriz como un conjunto ordenado de n vectores, es claro que dadas dos matrices A, B M(m, n, IK) se cumple A B C j (A) C j (B), j [1, n]. Si A (a ij ), B (b ij ), como cada columna es, a su vez, una m-upla ordenada de elementos de IK, cada una de las igualdades vectoriales de antes equivale a m igualdades escalares referidas a sus componentes. Es decir, la igualdad matricial equivale a mn igualdades escalares: A B a ij b ij, i [1, m], j [1, n]. Estas igualdades conducen a otra equivalencia, ahora por filas: A B F i (A) F i (B), i [1, m] Tipos particulares de matrices Hay algunas matrices que reciben nombres propios. Entre ellas vamos a destacar las siguientes: a) Matrices columna: Corresponden al caso en que m es arbitrario pero n 1. Sus coeficientes se escriben con un solo índice, a 1 a 2 A y cada una de sus filas es un escalar.. a m,

3 1.3. Tipos particulares de matrices 3 b) Matrices fila: Ahora es m 1 y n cualquiera. También se escriben con un solo índice, A ( a 1 a 2 a n ), siendo escalares cada una de sus columnas. c) Matrices cuadradas: Se llaman así aquellas en que m n: a 11 a 12 a 1n a A 21 a 22 a 2n. a n1 a n2 a nn Tanto sus filas como sus columnas serán vectores de un mismo espacio IK n. El conjunto de todas ellas se escribe como M(n, IK). d) Matrices triangulares: Una matriz cuadrada recibe el nombre de supratriangular cuando a 11 a 12 a 1n 0 a A 22 a 2n a ij 0, i > j. 0 0 a nn En cambio, se llamará infratriangular si a a A 21 a 22 0 a ij 0, i < j. a n1 a n2 a nn Unas y otras se nombran como triangulares. e) Matrices diagonales: En toda matriz cuadrada A (a ij ), se llama diagonal al vector (a 11, a 22,, a nn ) IK n. Se dirá que esta matriz es diagonal cuando sean nulos todos los coeficientes situados fuera de la diagonal, es decir, cuando A a ij 0, i j. Estas matrices son a la vez supra e infratriangulares. A veces sus coeficientes se presentan con un solo índice, usándose las escrituras a a a n diag(a 1, a 2,, a n ).

4 4 Capítulo 1. Matrices y sus operaciones 1. Matrices escalares: Damos este nombre a las matrices diagonales A diag(a, a,, a) M(n, IK) cuyos coeficientes en la diagonal son todos iguales. Si n 1, todas las matrices son escalares y el conjunto de ellas se confunde con IK. 2. Matrices unidad: Para cada n 1, se llama así a la matriz escalar I n diag(1, 1,, 1) Cuando no haya lugar a confusión, escribiremos simplemente I. Usando las deltas de Kronecker (sección??) puede escribirse I n (δ ij ) 1.4. Multiplicación de matrices Sean tres números enteros m, r, n 1 y sean dos matrices A (a ih ) M(m, r, IK), B (b hj ) M(r, n, IK). Que la cantidad r de columnas de A coincida con la cantidad de filas de B, y, por tanto, con la cantidad de componentes numéricas de cada columna en B, permite construir una nueva matriz mediante la regla C j (A B) A B M(m, n, IK), b hj C h (A), j [1, n]. Se llama matriz producto de A por B, debiéndose insistir en que su existencia es imposible si la cantidad de columnas de A difiere de la de filas de B. Suponiendo que A B (c ij ), se tendrá C j (A B) (c 1j, c 2j,, c mj ) ( b hj (a 1h, a 2h,, a mh ) (a 1h b hj, a 2h b hj,, a mh b hj ) a 1h b hj, a 2h b hj,, a mh b hj )

5 1.5. Propiedades de la multiplicación de matrices 5 c ij e ij (A B) a ih b hj, i [1, m], j [1, n], que es la forma en que usualmente se define el producto. Por otra parte, (c i1, c i2,, c in ) ( a ih b h1, a ih b h2,, (a ih b h1, a ih b h2,, a ih b hn ) F i (A B) a ih b hn ) a ih (b h1, b h2,, b hn ) a ih F h (B), i [1, m], que sería la forma de definir el producto usando las filas Propiedades de la multiplicación de matrices Comprobando la igualdad entre los vectores columna de cada miembro de la igualdad propuesta, y nombrando los coeficientes de cada matriz con las mismas letras, pero en minúscula, indiquemos las propiedades de esta nueva operación. Proposición 1.1 La multiplicación de matrices cumple las propiedades a) Asociativa: A M(m, r, IK), B M(r, s, IK), C M(s, n, IK) (A B) C A (B C). b) Distributiva: A, B M(m, r, IK), C M(r, n, IK) (A + B) C A C + B C, A M(m, r, IK), B, C M(r, n, IK) A (B + C) A B + A C. c) De neutralidad: A M(m, n, IK) I m A A A I n. d) Asociativa mixta: A M(m, r, IK), B M(r, n, IK), a IK (aa) B a(a B) A (ab).

6 6 Capítulo 1. Matrices y sus operaciones a) C j ((A B) C) s k1 c kjc k (A B) s k1 c kj( r b hkc h (A)) s ( b hk c kj )C h (A) k1 e hj (B C)C h (A) C j (A (B C)). b) C j ((A + B) C) r c hjc h (A + B) r c hj(c h (A) + C h (B)) (c hj C h (A) + c hj C h (B)) c hj C h (A) + c hj C h (B) C j (A C) + C j (B C) C j (A C + B C), C j (Ax(B + C)) e hj (B + C)C h (A) (b hj + c hj )C h (A) (b hj C h (A) + c hj C h (A)) b hj C h (A) + c hj C h (A) C j (A B) + C j (A C) C j (A B + A C). c) C j (I m A) r a hjc h (I n ) r a hje h (a 1j, a 2j,, a mj ) C j (A) δ hj C h (A) C j (A I n ). d) C j ((aa) B) r b hjc h (aa) r b hj(ac h (A)) (b hj a)c h (A) a (ab hj )C h (A) a(b hj C h (A)) b hj C h (A) ac j (AxB) C j (a(axb)) ac j (AxB) a (ab hj )C h (A) b hj C h (A) a(b hj C h (A)) e hj (ab)c h (A) C j (A (ab)). Para la propiedad conmutativa, se observa que B A no siempre existe. Lo hace si y sólo si n m, pero, como A B M(n, IK) y B A M(r, IK), no

7 1.6. Traza de una matriz cuadrada 7 son comparables en igualdad salvo que r n y sólo entonces. Es decir, A B y B A existen y pueden compararse si y sólo si se trata de matrices cuadradas con igual cantidad de filas y columnas. Aún así, los ejemplos muestran que la conmutatividad no siempre está asegurada: Traza de una matriz cuadrada Dada una matriz cuadrada A [a ij ] M(n, IK), la suma de los coeficientes situados en la diagonal, es decir, el número se conoce como traza de A. tr (A) a 11 + a a nn, Proposición 1.2 Cualesquiera que sean A, B M(n, IK), a IK, se cumple tr (A + B) tr (A) + tr (B), tr (aa) a tr (A). Basta unir las reglas operativas y la definición de traza. Este teorema indica que la traza es una forma lineal del espacio M(n, IK). Proposición 1.3 Dadas A, B M(n, IK), se cumple tr (A B) tr (B A). n n tr (A B) e ii (A B) ( a ih b hi ) i1 i1 n ( b hi a ih ) e hh (B A) tr (B A). i1

8 8 Capítulo 1. Matrices y sus operaciones 1.7. Trasposición de matrices Dada una matriz A M(m, n, IK) llamaremos traspuesta de A a una nueva matriz A t M(n, m, IK) definida por cualquiera de las reglas equivalentes C i (A t ) F i (A), i [1, m], e ji (A t ) e ij (A), i [1, m] y j [1, n], F j (A t ) C j (A), j [1, n]. Proposición 1.4 Cualesquiera que sean A, B M(m, n, IK), a IK, se cumple (A + B) t A t + B t, (aa) t aa t, (A t ) t A. 1. C i ((A + B) t ) F i (A + B) F i (A) + F i (B) C i (A t ) + C i (B t ) C i (A t + B t ), i [1, n] (A + B) t A t + B t. 2. C i ((aa) t ) F i (aa) af i (A) ac i (A t ) C i (aa t ), i [1, n] (aa) t aa t. 3. C i ((A t ) t ) F i (A t ) C i (A), i [1, n] (A t ) t A. La aplicación t : M(m, n, IK) M(n, m, IK), de ley A A t, se nombra como proceso de trasposición. De las dos primeras propiedades se sigue que se trata de una aplicación lineal. De la última se desprende que es una biyección y que su inversa es la trasposición t : M(n, m, IK) M(m, n, IK). Por tanto, la trasposición es un isomorfismo lineal de M(m, n, IK) sobre M(n, m, IK). En el caso m n (matrices cuadradas) se trata de un automorfismo inverso de sí mismo. Proposición 1.5 Dadas las matrices A M(m, r, IK), B M(r, n, IK), se cumple (A B) t B t A t.

9 1.8. Matrices simétricas y antisimétricas 9 Basta ver que, para todo i [1, n], se cumple C i ((A B) t ) F i (A B) e i1 (A)F 1 (B) + + e in (A)F n (B) e 1i (A t )C 1 (B t ) + + e ni (A t )C n (B t ) C i (B t A t ). Proposición 1.6 Si A M(n, IK) es invertible, su traspuesta también lo es y la inversa de la traspuesta es la traspuesta de la inversa. Trasponiendo en A A 1 A 1 A I, y observando que I t I porque la diagonal no se altera por trasposición, se obtiene (A A 1 ) t (A 1 ) t A t I t I (A 1 A) t A t (A 1 ) t (A t ) 1 (A 1 ) t Matrices simétricas y antisimétricas Si A M(n, IK), también A t M(n, IK). Entonces, pueden compararse en igualdad y surgen dos conceptos importantes (simetría y antisimetría) del álgebra matricial. Para su estudio será preciso suponer que IK es un cuerpo conmutativo de característica distinta de 2. Se dice que A [a ij ] M(n, IK) es una matriz simétrica cuando A t A C i (A) F i (A), i [1, n] a ji a ij, i, j [1, n]. Si A es simétrica, los elementos de la diagonal no se alteran por trasposición, luego toman valores arbitrarios. También lo hacen los elementos a ij, con i < j, situados por encima de la diagonal, mientras que cada a ji situado abajo se iguala al a ij. Entonces, el aspecto de A será a 11 a 12 a 1n a 12 a 22 a 2n. a 1n a 2n a nn Proposición 1.7 Las matrices simétricas constituyen un subespacio vectorial del M(n, IK).

10 10 Capítulo 1. Matrices y sus operaciones Si A y B son simétricas y a IK, se tiene (A + B) t A t + B t A + B, (aa) t aa t aa. Se denota por S(n, IK) y no se trata de un subanillo, pues en general (A B) t B t A t B A A B. Se dice que A es una matriz antisimétrica (o hemisimétrica) cuando A t A C i (A) F i (A), i [1, n] a ji a ij, i, j [1, n]. Si A es antisimétrica los elementos diagonales, por coincidir con sus opuestos, son nulos. Para i < j, a ji se iguala a a ij, luego sólo toman valores arbitrarios los situados encima de la diagonal. La matriz, pues, se presenta así: 0 a 12 a 1n a 12 0 a 2n. a 1n a 2n 0 Proposición 1.8 Las matrices antisimétricas constituyen un subespacio vectorial del M(n, IK). Si A y B son antisimétricas y a IK, se tiene (A + B) t A t + B t ( A) + ( B) (A + B), (aa) t aa t a( A) (aa). Se denota por A(n, IK) y tampoco se trata de un subanillo porque (A B) t B t A t ( B) ( A) B A (A B).

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices Estructura del tema. Conceptos básicos y ejemplos Operaciones básicas con matrices Método de Gauss Rango de una matriz Concepto de matriz regular y propiedades Determinante asociado a una

Más detalles

Operaciones con vectores y matrices ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES. Ana Morata Gasca

Operaciones con vectores y matrices ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES. Ana Morata Gasca ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES Ana Morata Gasca 1 DEFINICIÓN DE VECTOR Un vector es todo segmento de recta dirigido en el espacio. CARACTERÍSTICAS DE UN VECTOR Origen o Punto de aplicación:

Más detalles

Comenzaremos recordando algunas definiciones y propiedades estudiadas en el capítulo anterior.

Comenzaremos recordando algunas definiciones y propiedades estudiadas en el capítulo anterior. Capítulo 2 Matrices En el capítulo anterior hemos utilizado matrices para la resolución de sistemas de ecuaciones lineales y hemos visto que, para n, m N, el conjunto de las matrices de n filas y m columnas

Más detalles

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre CURSO CERO Departamento de Matemáticas Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre Capítulo 1 La demostración matemática Demostración por inducción El razonamiento por inducción es una

Más detalles

Matrices: Conceptos y Operaciones Básicas

Matrices: Conceptos y Operaciones Básicas Matrices: Conceptos y Operaciones Básicas Departamento de Matemáticas, CCIR/ITESM 8 de septiembre de 010 Índice 111 Introducción 1 11 Matriz 1 113 Igualdad entre matrices 11 Matrices especiales 3 115 Suma

Más detalles

Tema 3. Espacios vectoriales

Tema 3. Espacios vectoriales Tema 3. Espacios vectoriales Estructura del tema. Definición y propiedades. Ejemplos. Dependencia e independencia lineal. Conceptos de base y dimensión. Coordenadas Subespacios vectoriales. 0.1. Definición

Más detalles

Álgebra lineal y matricial

Álgebra lineal y matricial Capítulo Álgebra lineal y matricial.. Vectores y álgebra lineal Unconjuntodennúmerosreales(a,,a n )sepuederepresentar: como un punto en el espacio n-dimensional; como un vector con punto inicial el origen

Más detalles

Estructuras algebraicas

Estructuras algebraicas Tema 2 Estructuras algebraicas básicas 2.1. Operación interna Definición 29. Dados tres conjuntos A, B y C, se llama ley de composición en los conjuntos A y B y resultado en el conjunto C, y se denota

Más detalles

Valores propios y vectores propios

Valores propios y vectores propios Capítulo 6 Valores propios y vectores propios En este capítulo investigaremos qué propiedades son intrínsecas a una matriz, o su aplicación lineal asociada. Como veremos, el hecho de que existen muchas

Más detalles

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente.

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente. ÁLGEBRA DE MATRICES Página 49 REFLEXIONA Y RESUELVE Elección de presidente Ayudándote de la tabla, estudia detalladamente los resultados de la votación, analiza algunas características de los participantes

Más detalles

Las matrices Parte 1-2 o bachillerato

Las matrices Parte 1-2 o bachillerato Parte 1-2 o bachillerato wwwmathandmatesurlph 2014 1 Introducción Generalidades 2 Definición Ejercicio 1 : Suma de dos matrices cuadradas 2x2 Ejercicio 2 : Suma de dos matrices cuadradas 3x3 Propiedades

Más detalles

Espacios vectoriales

Espacios vectoriales Espacios vectoriales Problemas teóricos Muchos de estos problemas me los han enseñado mis colegas: profesores Flor de María Correa Romero, Carlos Domínguez Albino, Sergio González Govea, Myriam Rosalía

Más detalles

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases. BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Sistemas de Ecuaciones Lineales y Matrices Oscar G Ibarra-Manzano, DSc Departamento de Area Básica - Tronco Común DES de Ingenierías Facultad de Ingeniería, Mecánica, Eléctrica y Electrónica Trimestre

Más detalles

Nota 1. Los determinantes de orden superior a 3 se calculan aplicando las siguientes propiedades:

Nota 1. Los determinantes de orden superior a 3 se calculan aplicando las siguientes propiedades: Capítulo 1 DETERMINANTES Definición 1 (Matriz traspuesta) Llamaremos matriz traspuesta de A = (a ij ) a la matriz A t = (a ji ); es decir la matriz que consiste en poner las filas de A como columnas Definición

Más detalles

ÁLGEBRA LINEAL. Apuntes elaborados por. Juan González-Meneses López. Curso 2008/2009. Departamento de Álgebra. Universidad de Sevilla.

ÁLGEBRA LINEAL. Apuntes elaborados por. Juan González-Meneses López. Curso 2008/2009. Departamento de Álgebra. Universidad de Sevilla. ÁLGEBRA LINEAL Apuntes elaborados por Juan González-Meneses López. Curso 2008/2009 Departamento de Álgebra. Universidad de Sevilla. Índice general Tema 1. Matrices. Determinantes. Sistemas de ecuaciones

Más detalles

Espacios vectoriales y aplicaciones lineales

Espacios vectoriales y aplicaciones lineales Capítulo 3 Espacios vectoriales y aplicaciones lineales 3.1 Espacios vectoriales. Aplicaciones lineales Definición 3.1 Sea V un conjunto dotado de una operación interna + que llamaremos suma, y sea K un

Más detalles

CURSO BÁSICO DE FÍSICA MECÁNICA PROYECTO UNICOMFACAUCA TU PROYECTO DE VIDA

CURSO BÁSICO DE FÍSICA MECÁNICA PROYECTO UNICOMFACAUCA TU PROYECTO DE VIDA UNICOMFACAUCA TU DE VIDA Tabla de contenido... 2 PARTES DE UN VECTOR... 3 Notación... 5 Tipos de vectores... 5 Componentes de un vector... 6 Operaciones con vectores... 7 Suma de vectores... 7 Resta de

Más detalles

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define.

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define. VECTORES El estudio de los vectores es uno de tantos conocimientos de las matemáticas que provienen de la física. En esta ciencia se distingue entre magnitudes escalares y magnitudes vectoriales. Se llaman

Más detalles

NÚMEROS NATURALES Y NÚMEROS ENTEROS

NÚMEROS NATURALES Y NÚMEROS ENTEROS NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de un rebaño) y de

Más detalles

ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN. Apuntes de. para la titulación de

ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN. Apuntes de. para la titulación de E.T.S. DE INGENIERÍA INFORMÁTICA Apuntes de ÁLGEBRA LINEAL para la titulación de INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN Fco. Javier Cobos Gavala Amparo Osuna Lucena Rafael Robles Arias Beatriz Silva

Más detalles

Capítulo 1. Vectores en el plano. 1.1. Introducción

Capítulo 1. Vectores en el plano. 1.1. Introducción Índice general 1. Vectores en el plano 2 1.1. Introducción.................................... 2 1.2. Qué es un vector?................................ 3 1.2.1. Dirección y sentido............................

Más detalles

1. MANEJO DE SUMATORIOS. PROPIEDADES Y EJERCICIOS.

1. MANEJO DE SUMATORIOS. PROPIEDADES Y EJERCICIOS. 1. MANEJO DE SUMATORIOS. PROPIEDADES Y EJERCICIOS. El sumatorio o sumatoria) es un operador matemático, representado por la letra griega sigma mayúscula Σ) que permite representar de manera abreviada sumas

Más detalles

1. ESPACIOS VECTORIALES

1. ESPACIOS VECTORIALES 1 1. ESPACIOS VECTORIALES 1.1. ESPACIOS VECTORIALES. SUBESPACIOS VECTORIALES Denición 1. (Espacio vectorial) Decimos que un conjunto no vacío V es un espacio vectorial sobre un cuerpo K, o K-espacio vectorial,

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Tema 3 Aplicaciones Lineales 3.1 Introducción Se presentan en este tema las aplicaciones entre espacios vectoriales, particularmente las aplicaciones lineales, que de una manera informal pueden definirse

Más detalles

CAPÍTULO II. 2 El espacio vectorial R n

CAPÍTULO II. 2 El espacio vectorial R n CAPÍTULO II 2 El espacio vectorial R n A una n upla (x 1, x 2,..., x n ) de números reales se le denomina vector de n coordenadas o, simplemente, vector. Por ejemplo, el par ( 3, 2) es un vector de R 2,

Más detalles

9. MATRICES 189 9.1. DEFINICIÓN Y NOTACIONES... 189 9.2. OPERACIONES CON MATRICES... 190 9.3. MATRICES CUADRADAS... 192 9.3.1.

9. MATRICES 189 9.1. DEFINICIÓN Y NOTACIONES... 189 9.2. OPERACIONES CON MATRICES... 190 9.3. MATRICES CUADRADAS... 192 9.3.1. ÍNDICE 9. MATRICES 189 9.1. DEFINICIÓN Y NOTACIONES....................... 189 9.2. OPERACIONES CON MATRICES..................... 190 9.3. MATRICES CUADRADAS.......................... 192 9.3.1. Matrices

Más detalles

x : N Q 1 x(1) = x 1 2 x(2) = x 2 3 x(3) = x 3

x : N Q 1 x(1) = x 1 2 x(2) = x 2 3 x(3) = x 3 3 Sucesiones - Fernando Sánchez - - Cálculo I de números racionales 03 10 2015 Los números reales son aproximaciones que se van haciendo con números racionales. Estas aproximaciones se llaman sucesiones

Más detalles

Espacios vectoriales y Aplicaciones lineales

Espacios vectoriales y Aplicaciones lineales Espacios vectoriales y Aplicaciones lineales Espacios vectoriales. Subespacios vectoriales Espacios vectoriales Definición Sea V un conjunto dotado de una operación interna + que llamaremos suma, y sea

Más detalles

Valores y vectores propios de una matriz. Juan-Miguel Gracia

Valores y vectores propios de una matriz. Juan-Miguel Gracia Juan-Miguel Gracia Índice 1 Valores propios 2 Polinomio característico 3 Independencia lineal 4 Valores propios simples 5 Diagonalización de matrices 2 / 28 B. Valores y vectores propios Definiciones.-

Más detalles

Apéndice A. Repaso de Matrices

Apéndice A. Repaso de Matrices Apéndice A. Repaso de Matrices.-Definición: Una matriz es una arreglo rectangular de números reales dispuestos en filas y columnas. Una matriz com m filas y n columnas se dice que es de orden m x n de

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Primeras definiciones Una aplicación lineal de un K-ev de salida E a un K-ev de llegada F es una aplicación f : E F tal que f(u + v) = f(u) + f(v) para todos u v E f(λ u) = λ f(u)

Más detalles

E. T. S. de Ingenieros Industriales Universidad Politécnica de Madrid. Grado en Ingeniería en Tecnologías Industriales. Grado en Ingeniería Química

E. T. S. de Ingenieros Industriales Universidad Politécnica de Madrid. Grado en Ingeniería en Tecnologías Industriales. Grado en Ingeniería Química E. T. S. de Ingenieros Industriales Universidad Politécnica de Madrid Grado en Ingeniería en Tecnologías Industriales Grado en Ingeniería Química Apuntes de Álgebra ( Curso 2014/15) Departamento de Matemática

Más detalles

Tema 2. Aplicaciones lineales y matrices.

Tema 2. Aplicaciones lineales y matrices. Tema 2 Aplicaciones lineales y matrices. 1 Índice general 2. Aplicaciones lineales y matrices. 1 2.1. Introducción....................................... 2 2.2. Espacio Vectorial.....................................

Más detalles

MATEMÁTICAS II. Departamento de Matemáticas I.E.S. A Xunqueira I (Pontevedra)

MATEMÁTICAS II. Departamento de Matemáticas I.E.S. A Xunqueira I (Pontevedra) MATEMÁTICAS II 1 José M. Ramos González Este libro es totalmente gratuito y solo vale la tinta y el papel en que se imprima. Es de libre divulgación y no está sometido a ningún copyright. Tan solo se

Más detalles

Objetivos: Al inalizar la unidad, el alumno:

Objetivos: Al inalizar la unidad, el alumno: Unidad 7 transformaciones lineales Objetivos: Al inalizar la unidad, el alumno: Comprenderá los conceptos de dominio e imagen de una transformación. Distinguirá cuándo una transformación es lineal. Encontrará

Más detalles

21.1.2. TEOREMA DE DETERMINACIÓN DE APLICACIONES LINEALES

21.1.2. TEOREMA DE DETERMINACIÓN DE APLICACIONES LINEALES Aplicaciones lineales. Matriz de una aplicación lineal 2 2. APLICACIONES LINEALES. MATRIZ DE UNA APLICACIÓN LINEAL El efecto que produce el cambio de coordenadas sobre una imagen situada en el plano sugiere

Más detalles

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES. ÁLGEBRA PARA INGENIEROS (Solucionario)

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES. ÁLGEBRA PARA INGENIEROS (Solucionario) Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS (Solucionario) 2 Í N D I C E CAPÍTULO : MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES CAPÍTULO 2: ESPACIOS VECTORIALES

Más detalles

Matrices. Definiciones básicas de matrices. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx

Matrices. Definiciones básicas de matrices. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx Matrices Definiciones básicas de matrices wwwmathcommx José de Jesús Angel Angel jjaa@mathcommx MathCon c 2007-2008 Contenido 1 Matrices 2 11 Matrices cuadradas 3 12 Matriz transpuesta 4 13 Matriz identidad

Más detalles

Curso cero Matemáticas en informática :

Curso cero Matemáticas en informática : y Curso cero Matemáticas en informática : y Septiembre 2007 y y Se llama matriz de orden m n a cualquier conjunto de elementos dispuestos en m filas y n columnas: a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n

Más detalles

Repaso de matrices, determinantes y sistemas de ecuaciones lineales

Repaso de matrices, determinantes y sistemas de ecuaciones lineales Tema 1 Repaso de matrices, determinantes y sistemas de ecuaciones lineales Comenzamos este primer tema con un problema de motivación. Problema: El aire puro está compuesto esencialmente por un 78 por ciento

Más detalles

1 Espacios y subespacios vectoriales.

1 Espacios y subespacios vectoriales. UNIVERSIDAD POLITÉCNICA DE CARTAGENA Departamento de Matemática Aplicada y Estadística Espacios vectoriales y sistemas de ecuaciones 1 Espacios y subespacios vectoriales Definición 1 Sea V un conjunto

Más detalles

Conceptos Básicos de Algebra Lineal y Geometría Multidimensional. Alvaro Cofré Duvan Henao

Conceptos Básicos de Algebra Lineal y Geometría Multidimensional. Alvaro Cofré Duvan Henao Conceptos Básicos de Algebra Lineal y Geometría Multidimensional Alvaro Cofré Duvan Henao ii Índice general 1 Sistemas de ecuaciones lineales 1 11 El método de eliminación de Gauss 3 12 Determinantes 8

Más detalles

MATRICES PRODUCTO DE MATRICES POTENCIAS NATURALES DE MATRICES CUADRADAS

MATRICES PRODUCTO DE MATRICES POTENCIAS NATURALES DE MATRICES CUADRADAS Tema 1.- MATRICES MATRICES PRODUCTO DE MATRICES POTENCIAS NATURALES DE MATRICES CUADRADAS Fundamentos Matemáticos de la Ingeniería 1 Un poco de historia Lord Cayley es uno de los fundadores de la teoría

Más detalles

Matrices Invertibles y Elementos de Álgebra Matricial

Matrices Invertibles y Elementos de Álgebra Matricial Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CCIR/ITESM 12 de enero de 2011 Índice 91 Introducción 1 92 Transpuesta 1 93 Propiedades de la transpuesta 2 94 Matrices

Más detalles

Objetivos: Al inalizar la unidad, el alumno:

Objetivos: Al inalizar la unidad, el alumno: Unidad 3 espacios vectoriales Objetivos: Al inalizar la unidad, el alumno: Describirá las características de un espacio vectorial. Identiicará las propiedades de los subespacios vectoriales. Ejempliicará

Más detalles

Semana 14 [1/28] Matrices. 22 de julio de Matrices

Semana 14 [1/28] Matrices. 22 de julio de Matrices Semana 14 [1/28] 22 de julio de 2007 Definiciones básicas Semana 14 [2/28] Definiciones básicas Matriz Una matriz A, de m filas y n columnas con coeficientes en el cuerpo à (en este apunte à será Ê ó C)

Más detalles

Álgebra matricial. 2.1. Adición y trasposición

Álgebra matricial. 2.1. Adición y trasposición Capítulo 2 Álgebra matricial Estas notas están basadas en las realizadas por el profesor Manuel Jesús Gago Vargas para la asignatura Métodos matemáticos: Álgebra lineal de la Licenciatura en Ciencias y

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Problemas teóricos Sistemas de ecuaciones lineales con parámetros En los siguientes problemas hay que resolver el sistema de ecuaciones lineales para todo valor del parámetro

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Departamento de Matemáticas, CCIR/ITESM 4 de enero de 2 Índice 3.. Objetivos................................................ 3.2. Motivación...............................................

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

Álgebra II, licenciatura. Examen parcial I. Variante α.

Álgebra II, licenciatura. Examen parcial I. Variante α. Engrape aqu ı No doble Álgebra II, licenciatura. Examen parcial I. Variante α. Operaciones con matrices. Sistemas de ecuaciones lineales. Nombre: Calificación ( %): examen escrito tarea 1 tarea 2 asist.+

Más detalles

1. INVERSA DE UNA MATRIZ REGULAR

1. INVERSA DE UNA MATRIZ REGULAR . INVERSA DE UNA MATRIZ REGULAR Calcular la inversa de una matriz regular es un trabajo bastante tedioso. A través de ejemplos se expondrán diferentes técnicas para calcular la matriz inversa de una matriz

Más detalles

Grupos. Subgrupos. Teorema de Lagrange. Operaciones.

Grupos. Subgrupos. Teorema de Lagrange. Operaciones. 1 Tema 1.-. Grupos. Subgrupos. Teorema de Lagrange. Operaciones. 1.1. Primeras definiciones Definición 1.1.1. Una operación binaria en un conjunto A es una aplicación α : A A A. En un lenguaje más coloquial

Más detalles

Subespacios vectoriales en R n

Subespacios vectoriales en R n Subespacios vectoriales en R n Víctor Domínguez Octubre 2011 1. Introducción Con estas notas resumimos los conceptos fundamentales del tema 3 que, en pocas palabras, se puede resumir en técnicas de manejo

Más detalles

Tema 7: Valores y vectores propios

Tema 7: Valores y vectores propios Tema 7: es y clausura s Espacios y Permutaciones es y clausura Una permutación p = {p 1, p 2,..., p n } de los números {1, 2,..., n} es una nueva ordenación de los elementos {1, 2,..., n}, es decir, un

Más detalles

Curso de Procesamiento Digital de Imágenes

Curso de Procesamiento Digital de Imágenes Curso de Procesamiento Digital de Imágenes Impartido por: Elena Martínez Departamento de Ciencias de la Computación IIMAS, UNAM, cubículo 408 http://turing.iimas.unam.mx/~elena/teaching/pdi-lic.html elena.martinez@iimas.unam.mx

Más detalles

1 v 1 v 2. = u 1v 1 + u 2 v 2 +... u n v n. v n. y v = u u = u 2 1 + u2 2 + + u2 n.

1 v 1 v 2. = u 1v 1 + u 2 v 2 +... u n v n. v n. y v = u u = u 2 1 + u2 2 + + u2 n. Ortogonalidad Producto interior Longitud y ortogonalidad Definición Sean u y v vectores de R n Se define el producto escalar o producto interior) de u y v como u v = u T v = u, u,, u n ) Ejemplo Calcular

Más detalles

Matrices equivalentes. El método de Gauss

Matrices equivalentes. El método de Gauss Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar

Más detalles

1. APLICACIONES LINEALES

1. APLICACIONES LINEALES 1 1 APLICACIONES LINEALES El objetivo de este capítulo es el estudio de las aplicaciones lineales u homomorfismos entre espacios vectoriales Este tipo de aplicaciones respeta la estructura de espacio vectorial

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS EXPRESIONES ALGEBRAICAS. POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Estas expresiones del área son expresiones algebraicas, ya que además de números aparecen letras. Son también expresiones algebraicas: bac,

Más detalles

Ahora podemos comparar fácilmente las cantidades de cada tamaño que se vende. Estos valores de la matriz se denominan elementos.

Ahora podemos comparar fácilmente las cantidades de cada tamaño que se vende. Estos valores de la matriz se denominan elementos. Materia: Matemática de 5to Tema: Definición y Operaciones con Matrices 1) Definición Marco Teórico Una matriz consta de datos que se organizan en filas y columnas para formar un rectángulo. Por ejemplo,

Más detalles

Tema III. Capítulo 2. Sistemas generadores. Sistemas libres. Bases.

Tema III. Capítulo 2. Sistemas generadores. Sistemas libres. Bases. Tema III Capítulo 2 Sistemas generadores Sistemas libres Bases Álgebra Lineal I Departamento de Métodos Matemáticos y de Representación UDC 2 Sistemas generadores Sistemas libres Bases 1 Combinación lineal

Más detalles

13.TRANSFORMACIONES LINEALES 273 13.1. DEFINICIÓN DE TRANSFORMACIÓN LINEAL... 273 13.2. DETERMINACIÓN DE UNA TRANSFORMACIÓN LINEAL... 275 13.3.

13.TRANSFORMACIONES LINEALES 273 13.1. DEFINICIÓN DE TRANSFORMACIÓN LINEAL... 273 13.2. DETERMINACIÓN DE UNA TRANSFORMACIÓN LINEAL... 275 13.3. ÍNDICE 13.TRANSFORMACIONES LINEALES 273 13.1. DEFINICIÓN DE TRANSFORMACIÓN LINEAL............. 273 13.2. DETERMINACIÓN DE UNA TRANSFORMACIÓN LINEAL...... 275 13.3. REPRESENTACIÓN MATRICIAL DE UNA TRANSFORMACIÓN

Más detalles

elemento neutro y elemento unidad: inversa aditiva (opuesto): para todo λ K 0, existe un único µ K tal que λµ = 1;

elemento neutro y elemento unidad: inversa aditiva (opuesto): para todo λ K 0, existe un único µ K tal que λµ = 1; 3. Espacios Vectoriales 3.1. Definición de espacio vectorial Un cuerpo es una estructura algebraica (K, +, ) formada por un conjunto K no vacio y dos operaciones internas + y que verifican las siguientes

Más detalles

Contenido. 2 Operatoria con matrices. 3 Determinantes. 4 Matrices elementales. 1 Definición y tipos de matrices

Contenido. 2 Operatoria con matrices. 3 Determinantes. 4 Matrices elementales. 1 Definición y tipos de matrices elementales Diciembre 2010 Contenido Definición y tipos de matrices elementales 1 Definición y tipos de matrices 2 3 4 elementales 5 elementales Definición 1.1 (Matriz) Una matriz de m filas y n columnas

Más detalles

SISTEMAS DE ECUACIONES LINEALES Y MATRICES

SISTEMAS DE ECUACIONES LINEALES Y MATRICES y SISTEMAS DE ECUACIONES ES Y MATRICES Sergio Stive Solano 1 Febrero de 2015 1 Visita http://sergiosolanosabie.wikispaces.com y SISTEMAS DE ECUACIONES ES Y MATRICES Sergio Stive Solano 1 Febrero de 2015

Más detalles

MATRICES OPERACIONES BÁSICAS CON MATRICES

MATRICES OPERACIONES BÁSICAS CON MATRICES MATRICES OPERACIONES BÁSICAS CON MATRICES ANTECEDENTES En el año 1850, fueron introducidas por J.J. Sylvester El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A.

Más detalles

La aplicación derivada sobre el espacio E de los polinomios en una variable, E D E, es

La aplicación derivada sobre el espacio E de los polinomios en una variable, E D E, es Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS 1 Aplicaciones lineales Núcleo e Imagen Tipos de aplicaciones lineales Sean E y E k-espacios vectoriales Definición 11 Una

Más detalles

VECTORES MAGNITUDES ESCALARES Y MAGNITUDES VECTORIALES.

VECTORES MAGNITUDES ESCALARES Y MAGNITUDES VECTORIALES. VECTORES ING. MARTA LIDIA MERLOS ARAGÓN Resumen. Los vectores son de vital importancia para el estudio de la Estática, la Dinámica, Mecánica de los Fluidos, Electricidad magnetismo, entre otras aplicaciones

Más detalles

Álgebra Lineal Ma1010

Álgebra Lineal Ma1010 Álgebra Lineal Ma1010 es en R n y producto punto Departamento de Matemáticas ITESM es en R n y producto punto Álgebra Lineal - p. 1/40 En este apartado se introduce el concepto de vectores en el espacio

Más detalles

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2 SISTEMA DE ACCESO COMÚN A LAS CARRERAS DE INGENIERÍA DE LA UNaM III. UNIDAD : FUNCIONES POLINÓMICAS III..1 POLINOMIOS La expresión 5x + 7 x + 4x 1 recibe el nombre de polinomio en la variable x. Es de

Más detalles

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS 2 Í N D I C E CAPÍTULO MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES MATRICES. MATRIZ. DEFINICIÓN 2. ALGUNOS

Más detalles

4 APLICACIONES LINEALES. DIAGONALIZACIÓN

4 APLICACIONES LINEALES. DIAGONALIZACIÓN 4 APLICACIONES LINEALES DIAGONALIZACIÓN DE MATRICES En ocasiones, y con objeto de simplificar ciertos cálculos, es conveniente poder transformar una matriz en otra matriz lo más sencilla posible Esto nos

Más detalles

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES Capítulo 6 MATRICES Y DETERMINANTES 6.. Introducción Las matrices y los determinantes son herramientas del álgebra que facilitan el ordenamiento de datos, así como su manejo. Los conceptos de matriz y

Más detalles

FORMA CANONICA DE JORDAN Y ECUACIONES DIFERENCIALES LINEALES A COEFICIENTES CONSTANTES

FORMA CANONICA DE JORDAN Y ECUACIONES DIFERENCIALES LINEALES A COEFICIENTES CONSTANTES FORMA CANONICA DE JORDAN Y ECUACIONES DIFERENCIALES LINEALES A COEFICIENTES CONSTANTES Eleonora Catsigeras 6 de mayo de 997 Notas para el curso de Análisis Matemático II Resumen Se enuncia sin demostración

Más detalles

3. Equivalencia y congruencia de matrices.

3. Equivalencia y congruencia de matrices. 3. Equivalencia y congruencia de matrices. 1 Transformaciones elementales. 1.1 Operaciones elementales de fila. Las operaciones elementales de fila son: 1. H ij : Permuta la fila i con la fila j. 2. H

Más detalles

UNIDAD I NÚMEROS REALES

UNIDAD I NÚMEROS REALES UNIDAD I NÚMEROS REALES Los números que se utilizan en el álgebra son los números reales. Hay un número real en cada punto de la recta numérica. Los números reales se dividen en números racionales y números

Más detalles

Al consejero A no le gusta ninguno de sus colegas como presidente. Dos consejeros (C y E) están de acuerdo en los mismos candidatos (B, C y D).

Al consejero A no le gusta ninguno de sus colegas como presidente. Dos consejeros (C y E) están de acuerdo en los mismos candidatos (B, C y D). ÁLGEBRA DE MATRICE Página 48 Ayudándote de la tabla... De la tabla podemos deducir muchas cosas: Al consejero A no le gusta ninguno de sus colegas como presidente. B solo tiene un candidato el C. Dos consejeros

Más detalles

Tema 1. VECTORES (EN EL PLANO Y EN EL ESPACIO)

Tema 1. VECTORES (EN EL PLANO Y EN EL ESPACIO) Vectores Tema. VECTORES (EN EL PLANO Y EN EL ESPACIO Definición de espacio vectorial Un conjunto E es un espacio vectorial si en él se definen dos operaciones, una interna (suma y otra externa (producto

Más detalles

9.1 Primeras definiciones

9.1 Primeras definiciones Tema 9- Grupos Subgrupos Teorema de Lagrange Operaciones 91 Primeras definiciones Definición 911 Una operación binaria en un conjunto A es una aplicación α : A A A En un lenguaje más coloquial una operación

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS Definición: se llama matriz de m filas y n columnas sobre un cuerpo K (R ó C), a una ordenación rectangular de la forma Notación: a11 a...... a1n a21 a...... a2n A = M M M donde cada elemento a ij Є K

Más detalles

Iniciación a las Matemáticas para la ingenieria

Iniciación a las Matemáticas para la ingenieria Iniciación a las Matemáticas para la ingenieria Los números naturales 8 Qué es un número natural? 11 Cuáles son las operaciones básicas entre números naturales? 11 Qué son y para qué sirven los paréntesis?

Más detalles

Espacios vectoriales. Bases. Coordenadas

Espacios vectoriales. Bases. Coordenadas Capítulo 5 Espacios vectoriales. Bases. Coordenadas OPERACIONES ENR n Recordemos que el producto cartesiano de dos conjuntos A y B consiste en los pares ordenados (a,b) tales que a A y b B. Cuando consideramos

Más detalles

Ejemplo 1.2 En el capitulo anterior se demostró que el conjunto. V = IR 2 = {(x, y) : x, y IR}

Ejemplo 1.2 En el capitulo anterior se demostró que el conjunto. V = IR 2 = {(x, y) : x, y IR} Subespacios Capítulo 1 Definición 1.1 Subespacio Sea H un subconjunto no vacio de un espacio vectorial V K. Si H es un espacio vectorial sobre K bajo las operaciones de suma y multiplicación por escalar

Más detalles

Vectores en R n y producto punto

Vectores en R n y producto punto Vectores en R n y producto punto Departamento de Matemáticas, CCIR/ITESM 10 de enero de 011 Índice 4.1. Introducción............................................... 1 4.. Vector..................................................

Más detalles

MATEMÁTICAS I. Licenciatura de Administración y Dirección de Empresas. Fernando Casas, María Vicenta Ferrer, Pura Vindel. Departament de Matemàtiques

MATEMÁTICAS I. Licenciatura de Administración y Dirección de Empresas. Fernando Casas, María Vicenta Ferrer, Pura Vindel. Departament de Matemàtiques MATEMÁTICAS I Licenciatura de Administración y Dirección de Empresas Fernando Casas, María Vicenta Ferrer, Pura Vindel Departament de Matemàtiques Universitat Jaume I 2 Estas notas constituyen el material

Más detalles

Lección 9: Polinomios

Lección 9: Polinomios LECCIÓN 9 c) (8 + ) j) [ 9.56 ( 9.56)] 8 q) (a x b) d) ( 5) 4 k) (6z) r) [k 0 (k 5 k )] e) (. 0.) l) (y z) s) (v u ) 4 f) ( 5) + ( 4) m) (c d) 7 t) (p + q) g) (0 x 0.) n) (g 7 g ) Lección 9: Polinomios

Más detalles

Polinomios y Fracciones Algebraicas

Polinomios y Fracciones Algebraicas Tema 4 Polinomios y Fracciones Algebraicas En general, a lo largo de este tema trabajaremos con el conjunto de los números reales y, en casos concretos nos referiremos al conjunto de los números complejos.

Más detalles

Matriz identidad y su propiedad principal

Matriz identidad y su propiedad principal Matriz identidad y su propiedad principal Objetivos Dar la definición de la matriz identidad y establecer su propiedad principal Requisitos Notación para entradas de matrices, producto de matrices, la

Más detalles

3.1 DEFINICIÓN. Figura Nº 1. Vector

3.1 DEFINICIÓN. Figura Nº 1. Vector 3.1 DEFINICIÓN Un vector (A) una magnitud física caracterizable mediante un módulo y una dirección (u orientación) en el espacio. Todo vector debe tener un origen marcado (M) con un punto y un final marcado

Más detalles

Práctica 3 Cálculo Matricial

Práctica 3 Cálculo Matricial Matrices.nb 1 Práctica 3 Cálculo Matricial Práctica de ÁlgebraLineal,E.U.A.T.,Grupos 1ºA y 1ºC,Curso 2005 2006 En esta práctica describiremos cómo definir matrices con Mathematica y cómo realizar algunas

Más detalles

ÁLGEBRA LINEAL SAUL EDUARDO HERNANDEZ CANO RED TERCER MILENIO

ÁLGEBRA LINEAL SAUL EDUARDO HERNANDEZ CANO RED TERCER MILENIO ÁLGEBRA LINEAL ÁLGEBRA LINEAL SAUL EDUARDO HERNANDEZ CANO RED TERCER MILENIO AVISO LEGAL Derechos Reservados 2012, por RED TERCER MILENIO S.C. Viveros de Asís 96, Col. Viveros de la Loma, Tlalnepantla,

Más detalles

Formas bilineales y cuadráticas.

Formas bilineales y cuadráticas. Tema 4 Formas bilineales y cuadráticas. 4.1. Introducción. Conocidas las nociones de espacio vectorial, aplicación lineal, matriz de una aplicación lineal y diagonalización, estudiaremos en este tema dos

Más detalles

4.1 El espacio dual de un espacio vectorial

4.1 El espacio dual de un espacio vectorial Capítulo 4 Espacio dual Una de las situaciones en donde se aplica la teoría de espacios vectoriales es cuando se trabaja con espacios de funciones, como vimos al final del capítulo anterior. En este capítulo

Más detalles

1. Suma y producto de polinomios. Propiedades

1. Suma y producto de polinomios. Propiedades ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Resumen teoría Prof. Alcón 1. Suma y producto de polinomios. Propiedades Sea (A, +,.) un anillo conmutativo. Llamamos polinomio en una indeterminada x con coeficientes

Más detalles

Matemática 2 MAT022. Clase 1 (Complementos) Departamento de Matemática Universidad Técnica Federico Santa María. Matrices

Matemática 2 MAT022. Clase 1 (Complementos) Departamento de Matemática Universidad Técnica Federico Santa María. Matrices Matemática 2 MAT022 Clase 1 (Complementos) Departamento de Matemática Universidad Técnica Federico Santa María Tabla de Contenidos 1 Matrices Propiedades Tabla de Contenidos Matrices 1 Matrices Propiedades

Más detalles

Una matriz es una tabla ordenada (por filas y columnas) de escalares a i j de la forma: ... ... a... ...

Una matriz es una tabla ordenada (por filas y columnas) de escalares a i j de la forma: ... ... a... ... MATRICES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales. Tienen también muchas aplicaciones

Más detalles

5.1Definición transformación lineal de núcleo ó kernel, e imagen de una transformación lineal y sus propiedades

5.1Definición transformación lineal de núcleo ó kernel, e imagen de una transformación lineal y sus propiedades 5- ransformaciones Lineales 5Definición transformación lineal de núcleo ó kernel, e imagen de una transformación lineal sus propiedades Se denomina transformación lineal a toda función,, cuo dominio codominio

Más detalles