Programa de Formació Continuada Societat Catalana de Cirurgia. Análisis Multivariante. Introducción. Tema 21 Joan J Sancho

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Programa de Formació Continuada Societat Catalana de Cirurgia. Análisis Multivariante. Introducción. Tema 21 Joan J Sancho"

Transcripción

1 Programa de Formació Continuada Societat Catalana de Cirurgia Análisis Multivariante Introducción Tema 21 Joan J Sancho

2 Qué es? Son todas aquellas técnicas estadísticas que simultáneamente analizan múltiples resultados en los individuos u objetos bajo investigación. Para que un análisis se considere multivariado todas las variables deben ser aleatorias y relacionadas de tal manera que el efecto que producen no pueda ser interpretado de manera individual.

3 Para qué sirve? 1. Representar datos de forma inteligible. 2.Esclarecer la distribución real de varias variables. 3.Desarrollar un modelo de predicción basado en múltiples variables. 4.Hallar las relaciones de causa-efecto entre variables.

4 Para qué sirve? 1. Representar datos de forma inteligible. 2.Esclarecer la distribución real de varias variables. 3.Desarrollar un modelo de predicción basado en múltiples variables. Probabilidad de muerte = F(Edad, ASA, APACHE II, alb) Probabilidad de supervivencia = F(T,N,M,BRAC, etc)

5 Análisis Multivariante Para qué sirve? 1. Representar datos de forma inteligible. 2.Esclarecer la distribución real de varias variables. 3.Desarrollar un modelo de predicción basado en múltiples variables. 4.Hallar las relaciones de causa-efecto entre variables.

6 Concepto (1) Dos Medias H 0 : μ1 = μ2 % % T-Squared Statistic Más de dos medias H μ μ μ : = =... g % % % F statistic

7 Concepto (2) F Bivariante H 0 : μ1 = μ2 =... μg = Hipotesis: suma los aciertos SSTreatment / df SSError / df Errores Multivariante H 0 : μ1 = μ2 =... μg % % % F = g( HE, ) Hipotesis sumas de los cuadrados y de la matriz de productos Errores sumas de los cuadrados y de la matriz de productos

8 Porqué? El propósito del análisis multivariante es medir, explicar y predecir el grado de relación que existe entre la variación (combinación lineal ponderada de las variables). El carácter multivariante del análisis descansa no sólo en el número de variables sino en las múltiples combinaciones existente entre las variables.

9 Conceptos básicos Variante: Combinación lineal ponderada de las variables bajo estudio. Escalas de medición: Partición, identificación y medida de un conjunto de variables. No métricas: cualitativas. Métricas: cuantitativas. Mediciones del error. Mediciones multivariantes. Nivel de significancia vs. Potencia de la prueba

10 Indicaciones Cuándo es necesario el análisis multivariante?: Siempre que el diseño no controle la confusión... y eso cuándo ocurre? No se puede saber a priori: el mejor método para evitar confusión es la selección aleatoria, pero no lo garantiza.

11 Introducción al Análisis Multivariante Guía para el desarrollo e interpretación de un análisis multivariante: Establecer significancia práctica tanto como significancia estadística. El tamaño de la muestra afecta todos los resultados. Conozca sus datos. Use sólo las variables necesarias. Aprenda de sus errores. Valide sus resultados.

12 Análisis Multivariante Escalas de medición Variable cuantitativa o métrica: es aquella que identifica al sujeto como diferente a los demás en cuanto a cantidad o grado. Variable cualitativa o no métrica: se va a identificar al objeto de estudio por características, propiedades, categorías o atributos que posee.

13 Escalas de medición Para variables métricas se utilizan intervalos y razones. Para variables no métricas se utilizan nominales y ordinales.

14 Escalas de medición Escala nominal: asigna un número a una característica o atributo. Escala ordinal: jerarquiza los datos en relación a la cantidad que poseen. Los intervalos y las razones son iguales sólo que las razones tienen sentido físico y los intervalos pueden tener un sentido arbitrario.

15 Tipos de Técnicas Técnicas funcionales Una variable dependiente Varias variables dependiente Cuantitativa Cualitativa Cuantitativas Cualitativas Regresión múltiple Supervivencia Discriminante múltiple (certesa) PUNTUACIONS Regresión logística (probabiilitat) Análisis de varianza MANOVA Correlación canónica Análisis Conjunto Técnicas estructurales Información cuantitativa Análisis de factores Análisis de componenetes principales Análisis de agrupamientos. Cluster analisis Escalas multidimensionales Información cualitativa Escalas multidimensionales

16 1) Objetivos del análisis 2) Diseño del análisis 3) Hipótesis del análisis 4) Realización del análisis ETAPAS 5) Interpretar resultados 6) Validación del análisis

17 Análisis Multivariante 1) Objetivos del análisis 2) Diseño del análisis 3) Hipótesis del análisis ETAPAS Define el problema Especifica los objetivos Escoge las técnicas multivariantes Establecer el problema en términos conceptuales definiendo: los conceptos las relaciones fundamentales Establecer si dichas relaciones son: de dependencia de interdependencia Se determinan las variables a observar. 4) Realización del análisis 5) Interpretar resultados 6) Validación del análisis

18 1) Objetivos del análisis 2) Diseño del análisis 3) Hipótesis del análisis 4) Realización del análisis 5) Interpretar resultados 6) Validación del análisis ETAPAS Se determina el tamaño muestral las ecuaciones a estimar (si procede) las distancias a calcular (si procede) las técnicas de estimación a emplear decidir qué hacer con los datos perdidos

19 1) Objetivos del análisis 2) Diseño del análisis 3) Hipótesis del análisis 4) Realización del análisis 5) Interpretar resultados 6) Validación del análisis ETAPAS Escoger formulación de hipótesis subyacente a la técnica: Normalidad Linealidad Independencia Homocedasticidad

20 1) Objetivos del análisis 2) Diseño del análisis 3) Hipótesis del análisis 4) Realización del análisis ETAPAS 1) Se estima el modelo 2) Se evalúa el ajuste a los datos Observaciones atípicas (outliers) 5) Interpretar resultados 6) Validación del análisis

21 1) Objetivos del análisis 2) Diseño del análisis 3) Hipótesis del análisis 4) Realización del análisis 5) Interpretar resultados 6) Validación del análisis ETAPAS Evitar la procrastinación Reespecificaciones adicionales: de las variables del modelo >> volver a los pasos 3 y 4

22 Análisis Multivariante 1) Objetivos del análisis 2) Diseño del análisis 3) Hipótesis del análisis ETAPAS Establecer la validez de los resultados obtenidos analizando sí los resultados obtenidos con la muestra se generalizar a la población de la que procede. 4) Realización del análisis 5) Interpretar resultados 6) Validación del análisis Dividir la muestra en varias partes Técnicas de remuestreo Jacknife Bootstrap

ANÁLISIS DE ENCUESTAS

ANÁLISIS DE ENCUESTAS ANÁLISIS DE ENCUESTAS TÉCNICAS MULTIVARIANTES 1. Introducción 2. Clasificación de las técnicas 3. Etapas de análisis 4. Supuestos básicos 5. Valores perdidos y anómalos introducción Definición. i ió -

Más detalles

Indicadores de la Variable.- Son aquellas cualidades o propiedades del objeto que pueden ser directamente observadas y cuantificadas en la práctica.

Indicadores de la Variable.- Son aquellas cualidades o propiedades del objeto que pueden ser directamente observadas y cuantificadas en la práctica. Las variables de un estudio. La variable es determinada característica o propiedad del objeto de estudio, a la cual se observa y/o cuantifica en la investigación y que puede variar de un elemento a otro

Más detalles

TITULACIÓN: NEGOCIOS INTERNACIONALES ASIGNATURA: ESTADÍSTICA CURSO: PRIMERO SEMESTRE: SEGUNDO TIPO: FORMACIÓN BÁSICA IDIOMA: CASTELLANO CRÉDITOS: 6

TITULACIÓN: NEGOCIOS INTERNACIONALES ASIGNATURA: ESTADÍSTICA CURSO: PRIMERO SEMESTRE: SEGUNDO TIPO: FORMACIÓN BÁSICA IDIOMA: CASTELLANO CRÉDITOS: 6 TITULACIÓN: NEGOCIOS INTERNACIONALES ASIGNATURA: ESTADÍSTICA CURSO: PRIMERO SEMESTRE: SEGUNDO TIPO: FORMACIÓN BÁSICA IDIOMA: CASTELLANO CRÉDITOS: 6 OBJETIVOS: Conceptos básicos: población, muestra y variable.

Más detalles

ANALISIS MULTIVARIANTE

ANALISIS MULTIVARIANTE ANALISIS MULTIVARIANTE Es un conjunto de técnicas que se utilizan cuando se trabaja sobre colecciones de datos en las cuáles hay muchas variables implicadas. Los principales problemas, en este contexto,

Más detalles

ANÁLISIS DISCRIMINANTE

ANÁLISIS DISCRIMINANTE ANÁLISIS DISCRIMINANTE ANÁLISIS DISCRIMINANTE 1. Introducción 2. Etapas 3. Caso práctico Análisis de dependencias introducción varias relaciones una relación 1 variable dependiente > 1 variable dependiente

Más detalles

UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE INGENIERÍAS MAESTRÍA EN INGENIERÍA DE SISTEMAS Y COMPUTACIÓN ANÁLISIS MULTIVARIADO

UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE INGENIERÍAS MAESTRÍA EN INGENIERÍA DE SISTEMAS Y COMPUTACIÓN ANÁLISIS MULTIVARIADO UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE INGENIERÍAS MAESTRÍA EN INGENIERÍA DE SISTEMAS Y COMPUTACIÓN ANÁLISIS MULTIVARIADO OBJETIVO GENERAL El curso es de un nivel matemático intermedio y tiene

Más detalles

Material del curso Análisis de datos procedentes de investigaciones mediante programas informáticos Manuel Miguel Ramos Álvarez

Material del curso Análisis de datos procedentes de investigaciones mediante programas informáticos Manuel Miguel Ramos Álvarez Curso de Análisis de investigaciones con programas Informáticos 1 UNIVERSIDAD DE JAÉN Material del curso Análisis de datos procedentes de investigaciones mediante programas informáticos Manuel Miguel Ramos

Más detalles

MATEMÁTICAS aplicadas a las Ciencias Sociales II

MATEMÁTICAS aplicadas a las Ciencias Sociales II MATEMÁTICAS aplicadas a las Ciencias Sociales II UNIDAD 1: SISTEMAS DE ECUACIONES. MÉODO DE GAUSS Sistemas de ecuaciones lineales Sistemas equivalentes. Transformaciones que mantienen la equivalencia.

Más detalles

Nombre de la asignatura: Diseño de Experimentos Ambientales

Nombre de la asignatura: Diseño de Experimentos Ambientales Nombre de la asignatura: Diseño de Experimentos Ambientales Créditos: 2-2-4 Aportación al perfil Toda actividad encaminada a aportar acervo a toda ciencia y saber humano, sea bajo el enfoque experimental

Más detalles

La Estadística y el método científico. Datos Estadísticos. Tipos de Datos

La Estadística y el método científico. Datos Estadísticos. Tipos de Datos Apuntes de Métodos Estadísticos I Prof. Gudberto J. León R. I- 9 La Estadística y el método científico Los métodos estadísticos utilizan el método científico, que consiste en cinco pasos básicos: 1. Definir

Más detalles

MANUAL SIMPLIFICADO DE ESTADÍSTICA APLICADA VIA SPSS

MANUAL SIMPLIFICADO DE ESTADÍSTICA APLICADA VIA SPSS 1 MANUAL SIMPLIFICADO DE ESTADÍSTICA APLICADA VIA SPSS Medidas de tendencia central Menú Analizar: Los comandos del menú Analizar (Estadística) ejecutan los procesamientos estadísticos. Sus comandos están

Más detalles

MATEMÁTICAS CONTENIDOS MÍNIMOS DE 1º E.S.O.

MATEMÁTICAS CONTENIDOS MÍNIMOS DE 1º E.S.O. MATEMÁTICAS CONTENIDOS MÍNIMOS DE 1º E.S.O. Calcular el valor de posición de cualquier cifra en cualquier número natural. Aplicar las propiedades fundamentales de la suma, resta, multiplicación y división

Más detalles

Material del curso Análisis de datos procedentes de investigaciones mediante programas informáticos Manuel Miguel Ramos Álvarez

Material del curso Análisis de datos procedentes de investigaciones mediante programas informáticos Manuel Miguel Ramos Álvarez Curso de Análisis de investigaciones con programas Informáticos 1 UNIVERSIDAD DE JAÉN Material del curso Análisis de datos procedentes de investigaciones mediante programas informáticos Manuel Miguel Ramos

Más detalles

1.1. Introducción y conceptos básicos

1.1. Introducción y conceptos básicos Tema 1 Variables estadísticas Contenido 1.1. Introducción y conceptos básicos.................. 1 1.2. Tipos de variables estadísticas................... 2 1.3. Distribuciones de frecuencias....................

Más detalles

INVESTIGACION Y ESTADISTICA I GLOSARIO GUIA PARA LOS CONCEPTOS BASICOS DE LA LOGICA CUANTITATIVA 1

INVESTIGACION Y ESTADISTICA I GLOSARIO GUIA PARA LOS CONCEPTOS BASICOS DE LA LOGICA CUANTITATIVA 1 INVESTIGACION Y ESTADISTICA I GLOSARIO GUIA PARA LOS CONCEPTOS BASICOS DE LA LOGICA CUANTITATIVA I. El problema y las hipótesis María Teresa Sirvent Qué caracteriza a una pregunta científica que orienta

Más detalles

Programa de Postgrado en Tecnología, Administración y Ges

Programa de Postgrado en Tecnología, Administración y Ges Programa de Postgrado en Tecnología, Administración y Gestión del Agua Universidad de Murcia Máster en Consultoría hidrológica y manejo de ecosistemas acuáticos: Sistemas de Información Geográfica Estimación

Más detalles

DESARROLLO DE LA PROGRAMACIÓN PARA 4º ESO Opción B. Bloque 1. Contenidos comunes.

DESARROLLO DE LA PROGRAMACIÓN PARA 4º ESO Opción B. Bloque 1. Contenidos comunes. DESARROLLO DE LA PROGRAMACIÓN PARA 4º ESO Opción B Contenidos mínimos según real decreto 1631/2006 Bloque 1. Contenidos comunes. o Planificación y utilización de procesos de razonamiento y estrategias

Más detalles

Facultad de Ciencias Económicas y Empresariales Ekonomi Eta Enpresa Zientzien Fakultatea. Programa de la Asignatura

Facultad de Ciencias Económicas y Empresariales Ekonomi Eta Enpresa Zientzien Fakultatea. Programa de la Asignatura Código: 11232 Licenciatura: LITM Curso: 2º Línea Curricular: Cuatrimestre: 1º Créditos: 6 Facultad de Ciencias Económicas y Empresariales Ekonomi Eta Enpresa Zientzien Fakultatea Programa de la Asignatura

Más detalles

Investigación de Mercados

Investigación de Mercados Investigación de Mercados 1 Sesión No. 3 Nombre: Proceso de Medición Contextualización Para qué sirve el proceso de medición? Cada vez que te solicitan calificar o responder algún cuestionario, se trata

Más detalles

Puede considerarse un caso especial de l análisis de regresión en donde la variable dependiente es dicotómica («Sí» [1] o «No» [0])

Puede considerarse un caso especial de l análisis de regresión en donde la variable dependiente es dicotómica («Sí» [1] o «No» [0]) Regresión logística Puede considerarse un caso especial de l análisis de regresión en donde la variable dependiente es dicotómica («Sí» [1] o «No» [0]) Se trata de calcular la probabilidad en la que una

Más detalles

ANEXO I. MATERIAS DE BACHILLERATO

ANEXO I. MATERIAS DE BACHILLERATO El artículo 29 en su apartado 6 del R.D. 1892/2008, dice: El establecimiento de las líneas generales de la metodología, el desarrollo y los contenidos de los ejercicios que integran tanto la fase general

Más detalles

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II 2º BACHILLERATO (Modalidad: Humanidades y Ciencias Sociales) Desarrollado en Decreto 67/2008, de 19 de junio. B.O.C.M.: 27 de junio de 2008. PROGRAMACIÓN

Más detalles

TÉCNICO SUPERIOR UNIVERSITARIO EN DESARROLLO DE NEGOCIOS

TÉCNICO SUPERIOR UNIVERSITARIO EN DESARROLLO DE NEGOCIOS TÉCNICO SUPERIOR UNIVERSITARIO EN HOJA DE ASIGNATURA CON DESGLOSE DE UNIDADES TEMÁTICAS 1. Nombre de la asignatura Estadística para negocios. 2. Competencias Administrar el proceso de ventas mediante estrategias,

Más detalles

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales Matemáticas 2º BTO Aplicadas a las Ciencias Sociales CONVOCATORIA EXTRAORDINARIA DE JUNIO 2014 MÍNIMOS: No son contenidos mínimos los señalados como de ampliación. I. PROBABILIDAD Y ESTADÍSTICA UNIDAD

Más detalles

Introducción a la estadística y SPSS

Introducción a la estadística y SPSS Introducción a la estadística y SPSS Marcelo Rodríguez Ingeniero Estadístico - Magister en Estadística Universidad Católica del Maule Facultad de Ciencias Básicas Pedagogía en Matemática Estadística I

Más detalles

Introducción: Modelos, Escalas y Métricas. Valentin Laime. Calidad de Software

Introducción: Modelos, Escalas y Métricas. Valentin Laime. Calidad de Software Calidad de Software: Introducción: Modelos, Escalas y Métricas Valentin Laime Calidad de Software 10/28/2014 1 Modelos Un modelo es una abstracción de la realidad, que permite abstraer detalles y visualizar

Más detalles

TASACION DE INMUEBLES URBANOS

TASACION DE INMUEBLES URBANOS TASACION DE INMUEBLES URBANOS Estadística para Tasadores A tener en cuenta Toda muestra de datos será incompleta Toda muestra es aleatoria Datos desordenados no sirven Calcular valores típicos Encontrar

Más detalles

La calidad de los datos ha mejorado, se ha avanzado en la construcción de reglas de integridad.

La calidad de los datos ha mejorado, se ha avanzado en la construcción de reglas de integridad. MINERIA DE DATOS PREPROCESAMIENTO: LIMPIEZA Y TRANSFORMACIÓN El éxito de un proceso de minería de datos depende no sólo de tener todos los datos necesarios (una buena recopilación) sino de que éstos estén

Más detalles

Análisis multivariable

Análisis multivariable Análisis multivariable Las diferentes técnicas de análisis multivariante cabe agruparlas en tres categorías: «Análisis de dependencia» tratan de explicar la variable considerada independiente a través

Más detalles

El concepto de asociación estadística. Tema 6 Estadística aplicada Por Tevni Grajales G.

El concepto de asociación estadística. Tema 6 Estadística aplicada Por Tevni Grajales G. El concepto de asociación estadística Tema 6 Estadística aplicada Por Tevni Grajales G. En gran medida la investigación científica asume como una de sus primera tareas, identificar las cosas (características

Más detalles

MATEMÁTICAS 3º E.S.O

MATEMÁTICAS 3º E.S.O MATEMÁTICAS 3º E.S.O Desarrollado en DECRETO 48/2015, de 14 de mayo (B.O.C.M. Núm. 118; 20 de mayo de 2015) PROGRAMACIÓN DIDÁCTICA I.E.S. JOSÉ HIERRO (GETAFE) CURSO: 2015-16 Pág 1 de 11 1. CONTENIDOS Y

Más detalles

Técnicas de análisis para el uso de resultados de encuestas y estudios aplicados al VIH/sida. Por: Prof. Elena del C. Coba

Técnicas de análisis para el uso de resultados de encuestas y estudios aplicados al VIH/sida. Por: Prof. Elena del C. Coba Técnicas de análisis para el uso de resultados de encuestas y estudios aplicados al VIH/sida Por: Prof. Elena del C. Coba Encuestas y estudios aplicados al VIH/sida Definir la fuente de los datos: Datos

Más detalles

MEDICION DE TSH NEONATAL, SU INCERTIDUMBRE Y CONTROL INTERNO

MEDICION DE TSH NEONATAL, SU INCERTIDUMBRE Y CONTROL INTERNO MEDICION DE TSH NEONATAL, SU INCERTIDUMBRE Y CONTROL INTERNO Dra. LINA VALLEJOS ROJAS BOGOTÁ, NOVIEMBRE 2009 El laboratorio de procesamiento de TSH NEONATAL tiene la responsabilidad de garantizar que los

Más detalles

MARKETING AGRARIO SEGMENTACION DE MERCADO

MARKETING AGRARIO SEGMENTACION DE MERCADO MARKETING AGRARIO SEGMENTACION DE MERCADO CONCEPTO DE SEGMENTACIÓN El concepto de mercado admite varias acepciones. En la teoría económica actual se entiende el mercado fundamentalmente como un conjunto

Más detalles

1. Introducción a la estadística 2. Estadística descriptiva: resumen numérico y gráfico de datos 3. Estadística inferencial: estimación de parámetros

1. Introducción a la estadística 2. Estadística descriptiva: resumen numérico y gráfico de datos 3. Estadística inferencial: estimación de parámetros TEMA 0: INTRODUCCIÓN Y REPASO 1. Introducción a la estadística 2. Estadística descriptiva: resumen numérico y gráfico de datos 3. Estadística inferencial: estimación de parámetros desconocidos 4. Comparación

Más detalles

DIPLOMADO EN RELACIONES LABORALES Estadística Asistida por Ordenador Curso 2008-2009

DIPLOMADO EN RELACIONES LABORALES Estadística Asistida por Ordenador Curso 2008-2009 Índice general 6. Regresión Múltiple 3 6.1. Descomposición de la variabilidad y contrastes de hipótesis................. 4 6.2. Coeficiente de determinación.................................. 5 6.3. Hipótesis

Más detalles

Apuntes de Metodología de la Investigación en Turismo

Apuntes de Metodología de la Investigación en Turismo Apuntes de Metodología de la Investigación en Turismo DIRECCIÓN Amparo Sancho Perez COLABORACIÓN Bernardí Cabrer Borrás Gregorio Garcia Mesanat Juan Manuel Perez Mira Otras colaboraciones: Pilar González

Más detalles

Tema 1: Introducción a la Estadística

Tema 1: Introducción a la Estadística Tema 1: Introducción a la Estadística Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 1: Introducción a la Estadística Curso 2009-2010

Más detalles

INFORMÁTICA APLICADA AL ANÁLISIS ECONÓMICO - FONDO SOCIAL EUROPEO ANÁLISIS CLUSTER IDEA CONCEPTUAL BÁSICA: DEFINICIÓN:

INFORMÁTICA APLICADA AL ANÁLISIS ECONÓMICO - FONDO SOCIAL EUROPEO ANÁLISIS CLUSTER IDEA CONCEPTUAL BÁSICA: DEFINICIÓN: IDEA CONCEPTUAL BÁSICA: La heterogeneidad de una población constituye la materia prima del análisis cuantitativo...... sin embargo, en ocasiones, el individuo u objeto particular, aislado, resulta un "recipiente"

Más detalles

Presentación 3. Antecedentes 4. Qué evalúa el examen? 5. Componentes, estructura y ejemplos 5

Presentación 3. Antecedentes 4. Qué evalúa el examen? 5. Componentes, estructura y ejemplos 5 Guía RAE Ingeniería Mecánica Énfasis Industrial ENERO 2013 1 Índice Presentación 3 Antecedentes 4 Qué evalúa el examen? 5 Componentes, estructura y ejemplos 5 2 Presentación Estimado/a estudiante Los exámenes

Más detalles

UNIVERSIDAD DE CIENCIAS EMPRESARIALES Y SOCIALES. Facultad de Psicología y Ciencias Sociales. Carrera Sociología

UNIVERSIDAD DE CIENCIAS EMPRESARIALES Y SOCIALES. Facultad de Psicología y Ciencias Sociales. Carrera Sociología UNIVERSIDD DE CIENCIS EMPRESRILES Y SOCILES Facultad de Psicología y Ciencias Sociales Carrera Sociología Curso ESTDÍSTIC STIC I Clase 6: nálisis de Correlación n Lineal Simple Prof. Titular: Lic. Rubén

Más detalles

320514 - APTM - Análisis de Procesos Textiles y de Mercados

320514 - APTM - Análisis de Procesos Textiles y de Mercados Unidad responsable: Unidad que imparte: Curso: Titulación: Créditos ECTS: 2015 320 - EET - Escuela de Ingeniería de Terrassa 714 - ETP - Departamento de Ingeniería Textil y Papelera MÁSTER UNIVERSITARIO

Más detalles

cinve PROGRAMA de FORMACIÓN AVANZADA en MÉTODOS CUANTITATIVOS ORIENTACIÓN ECONOMÍA ORIENTACIÓN FINANZAS Departamento de Educación

cinve PROGRAMA de FORMACIÓN AVANZADA en MÉTODOS CUANTITATIVOS ORIENTACIÓN ECONOMÍA ORIENTACIÓN FINANZAS Departamento de Educación PROGRAMA de FORMACIÓN AVANZADA en MÉTODOS CUANTITATIVOS ORIENTACIÓN ECONOMÍA ORIENTACIÓN FINANZAS UNIVERSIDAD ORT U r u g u a y Facultad de Administración y Ciencias Sociales cinve Departamento de Educación

Más detalles

(Tomado de: http://www.liccom.edu.uy/bedelia/cursos/metodos/material/estadistica/var_cuanti.html)

(Tomado de: http://www.liccom.edu.uy/bedelia/cursos/metodos/material/estadistica/var_cuanti.html) VARIABLES CUANTITATIVAS (Tomado de: http://www.liccom.edu.uy/bedelia/cursos/metodos/material/estadistica/var_cuanti.html) Variables ordinales y de razón. Métodos de agrupamiento: Variables cuantitativas:

Más detalles

Estadística II ADD-1021

Estadística II ADD-1021 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: (Créditos) SATCA 1 Estadística II Ingeniería en Administración ADD-1021 2 3 5 2.- PRESENTACIÓN Caracterización de la

Más detalles

INDICE Prefacio 1 Introducción 2 Organizaciones de los datos para que transmitan un significado: tablas y graficas

INDICE Prefacio 1 Introducción 2 Organizaciones de los datos para que transmitan un significado: tablas y graficas INDICE Prefacio 1 Introducción 1-1 Preámbulo 1-2 Reseña histórica 1-3 Subdivisiones de la estadística 1-4 Estrategia, suposiciones y enfoque 2 Organizaciones de los datos para que transmitan un significado:

Más detalles

2.- Métodos para la medición de la pobreza

2.- Métodos para la medición de la pobreza 2.- Métodos para la medición de la pobreza Existen tres enfoques principales para la medición de la pobreza y cada uno contiene diversas metodologías para la identificación de los pobres (Boltvinik, 1999).

Más detalles

Estadística I Ejercicios Tema 3 Curso 2015/16

Estadística I Ejercicios Tema 3 Curso 2015/16 Estadística I Ejercicios Tema 3 Curso 2015/16 1. En la siguiente tabla se representa la distribución conjunta de frecuencias (relativas) de 2 variables: calificación en Estadística I, y número de horas

Más detalles

Los contenidos básicos exigibles a la finalización del curso serán:

Los contenidos básicos exigibles a la finalización del curso serán: 1. CONTENIDOS BÁSICOS. Los contenidos básicos exigibles a la finalización del curso serán: BLOQUE I: ESTADÍSTICA Y PROBABILIDAD Población y muestra. Tipos de caracteres estadísticos: cualitativos y cuantitativos.

Más detalles

ESTADISTICA PARA RELACIONES LABORALES

ESTADISTICA PARA RELACIONES LABORALES ESTADISTICA PARA RELACIONES LABORALES CURSO 2010 TURNO NOCTURNO CLASE 14/4/2010 Variables Hemos visto que nos interesa caracterizar a nuestra unidades de análisis. Las VARIABLES nos permiten hacer esa

Más detalles

Diplomado en Estadística y Control de Calidad

Diplomado en Estadística y Control de Calidad UNIVERSIDAD DE EL SALVADOR Diplomado en Estadística y Control de Calidad Presenta: Escuela de Matemática, Facultad de Ciencias Naturales y Matemática, Universidad de El Salvador. Director General: Dr.

Más detalles

AEF-1024 3-2 - 5. o Permite establecer inferencias sobre una población, conclusiones a partir de la información que arrojan las pruebas de hipótesis.

AEF-1024 3-2 - 5. o Permite establecer inferencias sobre una población, conclusiones a partir de la información que arrojan las pruebas de hipótesis. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: SATCA 1 Estadística Inferencial I Ingenierías en Logística e Industrial AEF-1024 3-2 - 5 2.- PRESENTACIÓN Caracterización

Más detalles

El proceso de investigación científica

El proceso de investigación científica El proceso de investigación científica Contenidos 1. Investigación, generación de conocimiento, la ciencia en Psicología 7 2. Función de la Estadística en Psicología 8 3. Conceptos estadísticos básicos

Más detalles

Web: www.iesmarmenor.org Curso 2012-2013 MATEMÁTICAS-I 1ª EVALUACIÓN 2ª EVALUACIÓN 3ª EVALUACIÓN. La recta en el plano. (1 semana)

Web: www.iesmarmenor.org Curso 2012-2013 MATEMÁTICAS-I 1ª EVALUACIÓN 2ª EVALUACIÓN 3ª EVALUACIÓN. La recta en el plano. (1 semana) MATEMÁTICAS-I DISTRIBUCIÓN TEMPORAL DE LOS CONTENIDOS 1ª EVALUACIÓN 2ª EVALUACIÓN 3ª EVALUACIÓN Aritmética y Álgebra Trigonometría (4 semanas) Números complejos Vectores en el plano La recta en el plano

Más detalles

TEMA I CONTEXTUALIZACIÓN Y REVISIÓN GENERAL DE TEMA LAS 1 TÉCNICAS MULTIVARIANTES

TEMA I CONTEXTUALIZACIÓN Y REVISIÓN GENERAL DE TEMA LAS 1 TÉCNICAS MULTIVARIANTES TEMA I CONTEXTUALIZACIÓN Y REVISIÓN GENERAL DE TEMA LAS 1 TÉCNICAS MULTIVARIANTES Guión 1. Introducción 2. El método científico Definición y características Tres supuestos o principios Marco conceptual

Más detalles

Gerenciamiento Técnico de Proyectos

Gerenciamiento Técnico de Proyectos Gerenciamiento Técnico de Proyectos Elementos de Estadística Distribución de Frecuencias Qué es Estadística? Estadística es la ciencia de recolectar, organizar, presentar, analizar e interpretar datos

Más detalles

Técnicas Cuantitativas para el Management y los Negocios

Técnicas Cuantitativas para el Management y los Negocios Segundo cuatrimestre - 4 Técnicas Cuantitativas para el Management y los Negocios Mag. María del Carmen Romero 4 romero@econ.unicen.edu.ar Módulo III: APLICACIONES Contenidos Módulo III Unidad 9. Análisis

Más detalles

Prof. Dr. José Perea Dpto. Producción Animal ANÁLISIS DE EXPERIMENTOS

Prof. Dr. José Perea Dpto. Producción Animal ANÁLISIS DE EXPERIMENTOS Prof. Dr. José Perea Dpto. Producción Animal ANÁLISIS DE EXPERIMENTOS ANÁLISIS DE EXPERIMENTOS 1. Introducción 2. Comparación de dos medias 3. Comparación de más de dos medias 4. Pruebas post-hoc 5. ANCOVA

Más detalles

Tema 5. Variables aleatorias discretas

Tema 5. Variables aleatorias discretas Tema 5. Variables aleatorias discretas Resumen del tema 5.1. Definición de variable aleatoria discreta 5.1.1. Variables aleatorias Una variable aleatoria es una función que asigna un número a cada suceso

Más detalles

RADIOGRAFÍA DEL CONSUMIDOR AÑO 2014. La vulnerabilidad de los consumidores

RADIOGRAFÍA DEL CONSUMIDOR AÑO 2014. La vulnerabilidad de los consumidores RADIOGRAFÍA DEL CONSUMIDOR AÑO 2014 La vulnerabilidad de los consumidores CARACTERÍSTICAS DEL ESTUDIO OBJETIVO: Caracterizar a los consumidores en Chile, elaborando tipologías de acuerdo a diferentes variables.

Más detalles

INVESTIGACIÓN EX POST-FACTO. Guido Galindo Lara Noelia Cea Mayo Rocío Cancela Gordillo Sara Valilla Gigante

INVESTIGACIÓN EX POST-FACTO. Guido Galindo Lara Noelia Cea Mayo Rocío Cancela Gordillo Sara Valilla Gigante INVESTIGACIÓN EX POST-FACTO Guido Galindo Lara Noelia Cea Mayo Rocío Cancela Gordillo Sara Valilla Gigante INVESTIGACIÓN EX POST-FACTO E INVESTIGACIÓN EXPERIMENTAL Investigación ex post-facto Investigación

Más detalles

ERRORES CONCEPTUALES DE ESTADÍSTICA EN ESTUDIANTES

ERRORES CONCEPTUALES DE ESTADÍSTICA EN ESTUDIANTES ERRORES CONCEPTUALES DE ESTADÍSTICA EN ESTUDIANTES DE BÁSICA PRIMARIA EN LA CIUDAD DE PEREIRA José R. Bedoya Universidad Tecnológica de Pereira Pereira, Colombia La formación estadística en la ciudadanía,

Más detalles

Población, Unidad de Análisis, Criterios de Inclusión y Exclusión.

Población, Unidad de Análisis, Criterios de Inclusión y Exclusión. Población Población, Unidad de Análisis, Criterios de Inclusión y Exclusión. Muestra: Identificación y Reclutamiento. Nomenclatura En esta aproximación conceptual consideraremos a Población como sinónimo

Más detalles

Apuntes de Estadística Inferencial

Apuntes de Estadística Inferencial Apuntes de Estadística Inferencial Francisco Juárez García Jorge A. Villatoro Velázquez Elsa Karina López Lugo Primera Edición, 00. 00 Francisco Juárez García Instituto Nacional de Psiquiatría Ramón de

Más detalles

EVALUACION Y CLASIFICACION DE CARGOS

EVALUACION Y CLASIFICACION DE CARGOS EVALUACION Y CLASIFICACION DE CARGOS EVALUACION DE CARGOS Es el proceso de analizar y de comparar el contenido de los cargos, para colocarlos en un orden de clases, que sirvan de base a un sistema de remuneración.

Más detalles

ORIENTACIONES PARA EL TRABAJO PRÁCTICO OBLIGATORIO (Gloria Martí)

ORIENTACIONES PARA EL TRABAJO PRÁCTICO OBLIGATORIO (Gloria Martí) ORIENTACIONES PARA EL TRABAJO PRÁCTICO OBLIGATORIO (Gloria Martí) PARTES OBLIGATORIAS DEL TRABAJO: - Portada - Índice o sumario - Breve introducción, explicando las intenciones del trabajo, su estructura,

Más detalles

GRADO TURISMO TEMA 1: VARIABLES Y DATOS TURÍSTICOS

GRADO TURISMO TEMA 1: VARIABLES Y DATOS TURÍSTICOS GRADO TURISMO TEMA 1: VARIABLES Y DATOS TURÍSTICOS Prof. Rosario Martínez Verdú Versió en valencià: Prof. Rosa Yagüe TEMA 1: VARIABLES y DATOS TURÍSTICOS 1. Clasificación de las variables y de los datos.

Más detalles

Test ( o Prueba ) de Hipótesis

Test ( o Prueba ) de Hipótesis Test de Hipótesis 1 Test ( o Prueba ) de Hipótesis Ejemplo: Una muestra de 36 datos tiene una media igual a 4.64 Qué puede deducirse acerca de la población de donde fue tomada? Se necesita contestar a

Más detalles

Tratamiento y Educación de Niños con Autismo y Problemas de Comunicación relacionados

Tratamiento y Educación de Niños con Autismo y Problemas de Comunicación relacionados TEACCH Tratamiento y Educación de Niños con Autismo y Problemas de Comunicación relacionados Todos los niños se benefician de los mismos métodos pedagógicos que los niños con autismo Lorna Wing Basado

Más detalles

TALLER No. 1 Capitulo 1: Conceptos Básicos de Bases de datos

TALLER No. 1 Capitulo 1: Conceptos Básicos de Bases de datos TALLER No. 1 Capitulo 1: Conceptos Básicos de Bases de datos 1. La base de datos se puede considerar como una unificación de varios archivos de datos independientes, cuyo propósito básico es evitar la

Más detalles

INSTITUCIÓN EDUCATIVA CASD ARMENIA Q GESTIÓN ACADÉMICA DISEÑO PEDAGÓGICO- PLAN DE UNIDAD DE APRENDIZAJE

INSTITUCIÓN EDUCATIVA CASD ARMENIA Q GESTIÓN ACADÉMICA DISEÑO PEDAGÓGICO- PLAN DE UNIDAD DE APRENDIZAJE INSTITUCIÓN EDUCATIVA CASD ARMENIA Q GESTIÓN ACADÉMICA DISEÑO PEDAGÓGICO- PLAN DE UNIDAD DE APRENDIZAJE GA-DP-R21 DOCENTE: WILTHON ANDRES GIRALDO SUAREZ - HENRY GALLEGO VILLAMIL ÁREA : CIENCIAS NATURALES

Más detalles

CURSO DE ESTADISTICA Y HERRAMIENTAS PARA ANALISIS. Estadística y Herramientas cuantitativas. Obligatoria NÚMERO DE CREDITOS: 2

CURSO DE ESTADISTICA Y HERRAMIENTAS PARA ANALISIS. Estadística y Herramientas cuantitativas. Obligatoria NÚMERO DE CREDITOS: 2 Error! Marcador no definido. Página 1 de 5 1. IDENTIFICACIÓN CURSO DE ESTADISTICA Y HERRAMIENTAS PARA ANALISIS NOMBRE DE LA OFRECIDO PARA: CARÁCTER DE LA Estadística y Herramientas cuantitativas Maestria

Más detalles

10) Cronograma de actividades 11) Resultados esperados 12) Conclusiones 13) Bibliografía 14) Anexos

10) Cronograma de actividades 11) Resultados esperados 12) Conclusiones 13) Bibliografía 14) Anexos 1) Título 2) Índice 3) Introducción 4) Marco teórico oteorías del tema oantecedentes odatos estadísticos 5) Planteamiento del problema opregunta de investigación 6) Hipótesis 7) Justificación 8) Objetivos

Más detalles

CICLO FORMATIVO GRADO SUPERIOR COMERCIO INTERNACIONAL

CICLO FORMATIVO GRADO SUPERIOR COMERCIO INTERNACIONAL CICLO FORMATIVO GRADO SUPERIOR COMERCIO INTERNACIONAL MÓDULO PROFESIONAL SISTEMA DE INFORMACIÓN DE MERCADOS Curso 2º Año académico 2014 15 Liceo español Luis Buñuel 1 2º Comercio Internacional ÍNDICE 1.

Más detalles

GRAFICOS DE CONTROL DATOS TIPO VARIABLES

GRAFICOS DE CONTROL DATOS TIPO VARIABLES GRAFICOS DE CONTROL DATOS TIPO VARIABLES PROCESO Maquinaria Métodos Materias Primas Proceso Producto Mano de Obra Condiciones Ambientales VARIACIÓN Fundamentalmente, las cinco fuentes más importantes de

Más detalles

Eduardo Kido 26-Mayo-2004 ANÁLISIS DE DATOS

Eduardo Kido 26-Mayo-2004 ANÁLISIS DE DATOS ANÁLISIS DE DATOS Hoy día vamos a hablar de algunas medidas de resumen de datos: cómo resumir cuando tenemos una serie de datos numéricos, generalmente en variables intervalares. Cuando nosotros tenemos

Más detalles

Asignatura: Econometría. Conceptos MUY Básicos de Estadística

Asignatura: Econometría. Conceptos MUY Básicos de Estadística Asignatura: Econometría Conceptos MUY Básicos de Estadística Ejemplo: encuesta alumnos matriculados en la UMH Estudio: Estamos interesados en conocer el nivel de renta y otras características de los estudiantes

Más detalles

ANÁLISIS ESTADÍSTICO DE DATOS USANDO MINITAB

ANÁLISIS ESTADÍSTICO DE DATOS USANDO MINITAB ANÁLISIS ESTADÍSTICO DE DATOS USANDO MINITAB Tercera Edición EDGAR ACUÑA FERNANDEZ UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ DEPARTAMENTO DE MATEMATICAS e-mail:edgar@math.uprm.edu homepage:math.uprm.edu/~edgar

Más detalles

MATERIALES Y MÉTODOS. el semestre 2010-A el cual ascendió a 1048 alumnos en la Facultad de

MATERIALES Y MÉTODOS. el semestre 2010-A el cual ascendió a 1048 alumnos en la Facultad de E MATERIALES Y MÉTODOS. 1. ÁMBITO DE ESTUDIO. El universo estuvo dado por el total de alumnos matriculados en el semestre 2010-A el cual ascendió a 1048 alumnos en la Facultad de Ciencias Administrativas

Más detalles

Mapa Curricular / Matemáticas Séptimo Grado

Mapa Curricular / Matemáticas Séptimo Grado ESTADO LIBRE ASOCIADO DE PUERTO RICO Programa de Matemáticas Mapa Curricular / Matemáticas Séptimo Grado Estándar, Dominio N.SO.7.2.1 Modela la suma, resta, multiplicación y división con números enteros,

Más detalles

TEMA : MEDICION - REQUISITOS- PROCEDIMIENTO PARA CONSTRUIR UN INSTRUMENTO DE MEDICION

TEMA : MEDICION - REQUISITOS- PROCEDIMIENTO PARA CONSTRUIR UN INSTRUMENTO DE MEDICION TEMA : MEDICION - REQUISITOS- PROCEDIMIENTO PARA CONSTRUIR UN INSTRUMENTO DE MEDICION Resumen Cap. 8 del libro Introducción a la Investigación Pedagógica de Ary, Jacobs y Razavieh y cap 9. del libro Metodología

Más detalles

SPSS: ANOVA de un Factor

SPSS: ANOVA de un Factor SPSS: ANOVA de un Factor El análisis de varianza (ANOVA) de un factor nos sirve para comparar varios grupos en una variable cuantitativa. Esta prueba es una generalización del contraste de igualdad de

Más detalles

MODELOS DE RECUPERACION

MODELOS DE RECUPERACION RECUPERACIÓN Y ORGANIZACIÓN DE LA INFORMACIÓN INGENIERÍA INFORMÁTICA RECUPERACIÓN Y ACCESO A LA INFORMACIÓN MODELOS DE RECUPERACION AUTOR: Rubén García Broncano NIA 100065530 grupo 81 1 INDICE 1- INTRODUCCIÓN

Más detalles

TEMA 1. Introducción

TEMA 1. Introducción TEMA 1. Introducción Francisco José Ribadas Pena, Santiago Fernández Lanza Modelos de Razonamiento y Aprendizaje 5 o Informática ribadas@uvigo.es, sflanza@uvigo.es 28 de enero de 2013 1.1 Aprendizaje automático

Más detalles

Obtener el título. Por lo tanto las condiciones académicas para recibir el título de Ingeniero en Computación son todas las siguientes:

Obtener el título. Por lo tanto las condiciones académicas para recibir el título de Ingeniero en Computación son todas las siguientes: Obtener el título Para obtener el título se deberá tener en cuenta tanto la estructura del plan de estudio como el currículo. Es decir, para ser ingeniero se tienen que cumplir ambas exigencias en paralelo:

Más detalles

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL Objetivo terminal: Calcular e interpretar medidas de tendencia central para un conjunto de datos estadísticos. Objetivos específicos: 1. Mencionar las características

Más detalles

MODELOS DE RIESGO DE CRÉDITO. Álvaro Caballo Trebol María Coronado Vaca

MODELOS DE RIESGO DE CRÉDITO. Álvaro Caballo Trebol María Coronado Vaca MODELOS DE RIESGO DE CRÉDITO Álvaro Caballo Trebol María Coronado Vaca 1 ÍNDICE 1. MODELOS DE PROBABILIDAD DE IMPAGO. 1. CARACTERÍSTICAS PRINCIPALES DE LOS MODELOS UTILZADOS. 2. MODELO CONSTRUIDO 2. PROPUESTA

Más detalles

Statgraphics Centurión

Statgraphics Centurión Facultad de Ciencias Económicas y Empresariales. Universidad de Valladolid 1 Statgraphics Centurión I.- Nociones básicas El paquete Statgraphics Centurión es un programa para el análisis estadístico que

Más detalles

Conceptos básicos de estadística para clínicos

Conceptos básicos de estadística para clínicos Conceptos básicos de estadística para clínicos Víctor Abraira A Coruña. Noviembre 2008 Programa Valor p : qué significa? Aleatorización Pruebas de hipótesis para variables continuas Pruebas de hipótesis

Más detalles

Sistemas de Generación de Energía Eléctrica HIDROLOGÍA BÁSICA. Universidad Tecnológica De Pereira

Sistemas de Generación de Energía Eléctrica HIDROLOGÍA BÁSICA. Universidad Tecnológica De Pereira 2010 Sistemas de Generación de Energía Eléctrica HIDROLOGÍA BÁSICA Universidad Tecnológica De Pereira Conceptos Básicos de Hidrología La hidrología es una ciencia clave en el estudio de los sistemas de

Más detalles

Administración de Empresas. 11 Métodos dinámicos de evaluación de inversiones 11.1

Administración de Empresas. 11 Métodos dinámicos de evaluación de inversiones 11.1 Administración de Empresas. 11 Métodos dinámicos de evaluación de inversiones 11.1 TEMA 11: MÉTODOS DINÁMICOS DE SELECCIÓN DE INVERSIONES ESQUEMA DEL TEMA: 11.1. Valor actualizado neto. 11.2. Tasa interna

Más detalles

Capítulo 17 Análisis de correlación lineal: Los procedimientos Correlaciones bivariadas y Correlaciones parciales

Capítulo 17 Análisis de correlación lineal: Los procedimientos Correlaciones bivariadas y Correlaciones parciales Capítulo 17 Análisis de correlación lineal: Los procedimientos Correlaciones bivariadas y Correlaciones parciales Cuando se analizan datos, el interés del analista suele centrarse en dos grandes objetivos:

Más detalles

ÍNDICE. Introducción... Capítulo 1. El concepto de Data Mining... 1

ÍNDICE. Introducción... Capítulo 1. El concepto de Data Mining... 1 ÍNDICE Introducción... XV Capítulo 1. El concepto de Data Mining... 1 Introducción... 1 Una definición de Data Mining... 3 El proceso de Data Mining... 6 Selección de objetivos... 8 La preparación de los

Más detalles

aplicado al Experiencia La gestión de un servicio y, por ende, la

aplicado al Experiencia La gestión de un servicio y, por ende, la EN PORTADA 6 Sigma aplicado al Experiencia En este artículo vamos a dar una visión más particular sobre la aplicabilidad de 6 Sigma al sector Servicios. Existe abundante literatura al respecto, pero sobre

Más detalles

MICRO CURRÍCULO del ÁREA DE: Matemáticas Fecha Grado OCTAVO Sesión 1-20 (I Periodo) Unidad y temas

MICRO CURRÍCULO del ÁREA DE: Matemáticas Fecha Grado OCTAVO Sesión 1-20 (I Periodo) Unidad y temas Fecha Grado OCTAVO Sesión 1-20 (I Periodo) y temas UNIDAD 1 Expresiones Algebraicas - Definamos el concepto de álgebra - Algunos conceptos algebraicos (Término algebraico, coeficiente, factor literal,

Más detalles

CURSO MINERÍA DE DATOS AVANZADO

CURSO MINERÍA DE DATOS AVANZADO CURSO MINERÍA DE DATOS AVANZADO La minería de datos (en inglés, Data Mining) se define como la extracción de información implícita, previamente desconocida y potencialmente útil, a partir de datos. En

Más detalles

7.- PRUEBA DE HIPOTESIS

7.- PRUEBA DE HIPOTESIS 7.- PRUEBA DE HIPOTEI 7.1. INTRODUCCIÓN La estadística inferencial es el proceso de usar la información de una muestra para describir el estado de una población. in embargo es frecuente que usemos la información

Más detalles

DYANE Versión 4 Diseño y Análisis de Encuestas

DYANE Versión 4 Diseño y Análisis de Encuestas DYANE Versión 4 Diseño y Análisis de Encuestas Miguel Santesmases Mestre ÍNDICE Prólogo 1. Finalidad de la obra 2. Novedades de la cuarta versión del programa. 2.1. Diseño de cuestionarios electrónicos.

Más detalles

INDICADORES DE DIAGNOSTICO, SEGUIMIENTO EVALUACIÓN Y RESULTADOS. ELEMENTOS CONCEPTUALES PARA SU DEFINICIÓN Y APLICACIÓN

INDICADORES DE DIAGNOSTICO, SEGUIMIENTO EVALUACIÓN Y RESULTADOS. ELEMENTOS CONCEPTUALES PARA SU DEFINICIÓN Y APLICACIÓN INDICADORES DE DIAGNOSTICO, SEGUIMIENTO EVALUACIÓN Y RESULTADOS. ELEMENTOS CONCEPTUALES PARA SU DEFINICIÓN Y APLICACIÓN Versión () Santa Fe de Bogotá, D. C., () de 1996 DEPARTAMENTO NACIONAL DE PLANEACIÓN

Más detalles

Data Mining Técnicas y herramientas

Data Mining Técnicas y herramientas Data Mining Técnicas y herramientas Introducción POR QUÉ? Empresas necesitan aprender de sus datos para crear una relación one-toone con sus clientes. Recogen datos de todos lo procesos. Datos recogidos

Más detalles