FISICA DE LOS PROCESOS BIOLOGICOS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "FISICA DE LOS PROCESOS BIOLOGICOS"

Transcripción

1 FISICA DE LOS PROCESOS BIOLOGICOS BIOELECTROMAGNETISMO 1. Cuál es la carga total, en coulombios, de todos los electrones que hay en 3 moles de átomos de hidrógeno? Coulombios 2. Un átomo de hidrógeno consta de un electrón que orbita en torno a un protón a una distancia media de 0.529x10-10 m. Calcular las fuerzas eléctrica y gravitatoria de atracción que se ejercen mutuamente. Comentar la importancia relativa de las fuerzas eléctrica y gravitatoria a nivel atómico. m p = 1.67x10-27 Kg; m e = 9.109x10-31 Kg. F G = N F E = N 3. Una carga negativa de 0.6µC ejerce una fuerza de atracción de módulo 0.5N sobre una carga desconocida situada a una distancia de 0.25m. a) Cuál es la carga desconocida (magnitud y signo)? b) Cuales son el módulo, dirección y sentido de la fuerza que la carga desconocida ejerce sobre la carga de 0.6µC? a) q 2 = 5.80µC b) módulo: 0.5N dirección: la del vector interdistancia sentido: hacia la carga q Dos pequeñas esferas de plástico reciben cargas eléctricas positivas. Cuando están separadas 30cm, la fuerza de repulsión entre ellas es de 0.150N. Cuál es la carga de cada esfera si, a) las dos cargas son iguales; b) una esfera tiene tres veces la carga de la otra? a) C b) q 1 = C q 2 = C 5. Una carga q 1 = 4µC está en el origen de coordenadas y otra carga q 2 = 6µC está en el eje x, en el punto x = 3m. a) Hallar la fuerza ejercida sobre la carga q 2. b) Hallar la fuerza ejercida sobre q 1. c) En qué diferirán las respuestas a) y b) si q 2 vale -6µC? a) F 12 = 0.024iN b) F 21 = iN

2 6. A qué distancia de una carga puntual de 6nC tiene el campo eléctrico creado por esa carga una magnitud de 5N/C? 3.28 metros 7. Encontrar el campo eléctrico debido a una partícula de -5µC en un punto situado 0.4m por encima de esta partícula jN/C 8. Una carga puntual de 8nC está situada en el origen de coordenadas. Encontrar el campo eléctrico en el punto de coordenadas x = 1.2m, y = -1.6m i j metros 9. Dos partículas puntuales con cargas q 1 = 1nC y q 2 = 3nC, están a una distancia de 1.2m. En qué punto, a lo largo de la línea que las conecta, el campo eléctrico total debido a las dos cargas es igual a cero? 0.44 metros 10. Cuál es la magnitud de un campo eléctrico en el que la fuerza eléctrica sobre un protón es igual a su peso? N/C 11. Al hallar la aceleración del electrón o de otra partícula cargada tiene una importancia especial el cociente entre la carga y la masa de la partícula. a) Calcular e/m para un electrón. b) Cuál es el valor, dirección y sentido de la aceleración de un electrón en un campo eléctrico uniforme de valor 100N/C? Considerar que inicialmente el electrón está en reposo. a) C/Kg b) m/s a) Calcular e/m para un protón y hallar su aceleración en un campo eléctrico uniforme de valor 100N/C. b) Hallar el tiempo que tarda un protón inicialmente en reposo en dicho campo en alcanzar la velocidad 0.01c (siendo c la velocidad de la luz). a) C/Kg b) µs 13. Una carga q se coloca en el origen de coordenadas y otra carga 2q se coloca en x = a, y = 0. Hallar el potencial en x = a, y = a. V T K q a V

3 14. El potencial eléctrico a una distancia de 0.750m de una carga puntual es de 48V. Si consideramos que el potencial es cero a una distancia infinita de la carga, cuál es la magnitud y el signo de la carga eléctrica C 15. Cuatro cargas puntuales de 2µC se encuentran situadas en los vértices de un cuadrado de 4m de lado. Calcular el potencial en el centro del cuadrado (tomando como potencial cero el correspondiente al infinito) si: a) todas las cargas son positivas; b) tres de las cargas son positivas y la otra negativa; c) dos son positivas y las otras dos negativas. a) V T = V b) V T = V c) V T = 0V 16. El momento eléctrico dipolar de una molécula de agua es 6.13 x Cm. a) Si este momento dipolar se debe a un par de cargas puntuales e, a qué distancia relativa deben estar? b) Hallar la razón de esta distancia al radio de un átomo de hidrógeno 5.29x10-11 m. a) m b) Dos cargas puntuales q 1 = 2pC y q 2 = -2pC están separadas una distancia de 4µm. a) Cuál es el momento dipolar de este par de cargas? b) Hacer un dibujo indicando la dirección y sentido del momento dipolar. a) Cm 18. En un experimento electroquímico, una corriente de 0.5A pasa a través de una pila durante una hora. Si se necesitan dos electrones para neutralizar un ión, cuántos iones se neutralizan en ese tiempo? iones 19. Un tubo de vidrio lleno de gas tiene electrodos en cada extremo. Cuando se aplica una diferencia de potencial suficientemente grande entre los dos electrodos, el gas se ioniza; los electrones se desplaza hacia el electrodo positivo y los iones positivos hacia el electrodo negativo. a) Cuál es la intensidad de la corriente eléctrica en una descarga de hidrógeno si cada segundo se desplazan electrones y protones en sentidos opuestos por una sección transversal del tubo? b) Cuál es el sentido de la corriente? a) 1.065A b) el del movimiento de las cargas positivas

4 20. Por un conductor circula una corriente estacionaria de 2A. a) Cuánta carga fluye por un punto del conductor en 5 minutos? b) Si la corriente se debe a un flujo de electrones, cuántos electrones deberán pasar por dicho punto en este tiempo? a) 600C b) electrones 21. En un cierto haz de electrones, existen electrones por centímetro cúbico. La energía cinética de los electrones es 10KeV y el haz es cilíndrico con un diámetro de 1mm. a) Cuál es la velocidad de los electrones? b) Hallar la corriente del haz. a) m/s b) 0.149mA 22. En un tubo fluorescente de 3cm de diámetro pasan por un punto determinado y por cada segundo electrones y iones positivos (con una carga +e). Cuál es la corriente que circula por el tubo? A 23. a) Si una persona con las manos húmedas coge dos conductores y tiene una resistencia de 1000Ω, qué diferencia de potencial es necesaria para producir una corriente de 10mA que dejará bloqueadas las manos en los conductores? b) Qué diferencia de potencial se necesita para producir una corriente de 100mA, que causaría fibrilación ventricular en 1s aproximadamente? a) 10V b) 100V 24. Una corriente de 10A en un alambre produce una diferencia de potencial de 2V entre sus extremos. Si es un conductor óhmico, qué corriente se produciría si la diferencia de potencial fuera de 6V? y si el conductor no fuera óhmico? Para un conductor óhmico, 30A. Si el conductor no es óhmico, no podemos decir cuanto vale la resistencia R. 25. La resistencia R y la resistividad ρ de una muestra en una pila de conductividad se relacionan mediante ρ = R/k, donde k es la constante de la pila que en este caso tiene un valor igual a 42. a) Si la pila es cilíndrica, qué representa k y cuáles son sus unidades? b) Cuando la pila se llena con una disolución de sulfato de potasio, la resistencia es de 570Ω cuál es la resistividad de la solución? c) Cuál es la conductividad de la solución? a) k = l/πr 2 b) ρ = 13.57Ωm

5 c) σ = 0.073Ω -1 m Una barra de carbón de radio 0.1mm se utiliza para construir una resistencia. La resistividad de este material es Ω.m. Qué longitud de la barra de carbón se necesita para obtener una resistencia de 10Ω? 8.98mm 27. Las siguientes mediciones de intensidad de corriente eléctrica y de diferencias de potencial se hicieron en una resistencia fabricada con cable de nicromo: I(A) V(V) a) Dibujar una gráfica de V en función de I. b) Este material obedece la ley de Ohm? c) Cuál es su resistencia? b) Si c) 3.88Ω 28. Un condensador tiene una capacidad de 6.17µF. Cuánta carga debe eliminarse para bajar la diferencia de potencial entre las placas en 50V. C C 29. Los dos condensadores de la figura están conectados en paralelo a una batería de forma que la diferencia de potencial a través de cada uno de ellos es V. Demostrar que un solo condensador C p almacenará la misma cantidad de carga si C p = C 1 + C 2 (C p se denomina capacidad equivalente). C Un condensador de aire está hecho con dos placas paralelas separadas una distancia de 1.2mm. La magnitud de la carga en cada placa es de 0.024µF cuando la diferencia de potencial es de 200V. a) Cuál es la capacidad del condensador? b) Cuál es el área de cada placa? c) Cuál es la energía total almacenada? a) F b) 0.016m 2 c) J 31. Un condensador plano-paralelo de 0.25mF de capacidad está cargado a una diferencia de potencial de 96V. Qué energía tendrá el condensador? Si la separación entre placas es de 0.12mm, qué campo eléctrico hay entre las placas? Suponer que entre las placas hay vacío. V

6 1.152 Julios N/C 32. Un condensador de placas paralelas de 8µF tiene una separación entre placas de 4mm y está cargado a una diferencia de potencial de 500V. Calcular la densidad de energía en la región comprendida entre las placas en unidades de J/m J/m Tenemos dos resistencias iguales de 2Ω, cómo debemos colocarlas si queremos que la potencia total sea máxima, en serie o en paralelo? Hay que colocarlas en paralelo 34. Tenemos un conjunto de resistencias de 1, 4.5, 8.5, 12 y 33Ω formando un circuito en serie con una fuente de f.e.m. que suministra 5V. Calcular la corriente, la caída de tensión y la potencia consumida en cada una de las resistencias. I = 84.75mA, la misma para todas las resistencias. V(1Ω) = 84.75mV; V(4.5Ω) = 0.38V; V(8.5Ω) = 0.72V; V(12Ω) = 1.02V; V(33Ω) = 28V. P(1Ω) = W; P(4.5Ω) = 0.032W; P(8.5Ω) = 0.061W; P(12Ω) = 0.086W; P(33Ω) = 0.24W. 35. Tenemos un conjunto de resistencias de 1, 4.5, 8.5, 12 y 33Ω dispuestas en paralelo en un circuito con una fuente de f.e.m. que suministra 5V. Calcular la corriente, la caída de tensión y la potencia consumida en cada una de las resistencias. I(1Ω) = 5A; I(4.5Ω) = 1.11A; I(8.5Ω) = 0.59A; I(12Ω) = 0.42A; I(33Ω) = 0.15A. V = 5V, la misma para todas las resistencias. P(1Ω) = 25W; P(4.5Ω) = 5.54W; P(8.5Ω) = 2.96W; P(12Ω) = 2.12W; P(33Ω) = 0.74W. 36. En un circuito sencillo en el cual hay un generador de f.e.m. que suministra 24V, tenemos conectado un aparato cuya resistencia es de 1000Ω. Queremos medir la intensidad de la corriente que circula por el circuito con un amperímetro de resistencia interna 1Ω, que debemos colocar en serie con la resistencia. Cuál es el error que introducimos en el valor de la corriente eléctrica al determinarla experimentalmente con el amperímetro? un 0.01% 37. En el circuito anterior, queremos medir la caída de potencial en la resistencia de 1000Ω y para eso utilizamos un voltímetro que ponemos en paralelo con la resistencia. Para que la intensidad que pasa por la resistencia del circuito sea

7 prácticamente la misma que cuando no tenemos conectado el voltímetro, nos interesa que la resistencia del voltímetro sea muy grande o muy pequeña? La resistencia debe ser lo más grande posible. 38. Se conecta una resistencia variable R a una fuente que suministra una caída de potencial V que permanece constante, independientemente del valor de R. Para un valor R = R 1, la corriente es de 6A. Cuando R aumenta hasta un valor R 2 = R 1 +10Ω, la corriente cae hasta 2A. Hallar R 1 y V. R 1 = 2.5Ω; V = 15V. 39. Determinar la fuerza que actúa sobre un protón que se mueve con velocidad v = im/s en un campo magnético B = 2kT jn 40. Una carga q = -2.64nC se mueve con velocidad de im/s. Hallar la fuerza que actúa sobre la carga si el campo magnético B es: a) 0.48jT; b) 0.65i+0.65jT; c) 0.75iT; d) 0.65i+0.65kT. a) kn b) kn c) 0N d) jn 41. Por un conductor rectilíneo largo circula una corriente de 10A. Hallar la magnitud del campo magnético a una distancia de: a) 10cm; b) 50cm; c) 2m del centro del conductor. a) T b) T c) T 42. Un solenoide de 2.7m de longitud posee un radio de 0.85cm y 600 vueltas. Por él circula una corriente de 2.5A. Determinar aproximadamente el campo magnético B sobre el eje del solenoide. 0.11T

MAGNETISMO INDUCCIÓN ELECTROMAGNÉTICA FÍSICA II - 2011 GUÍA Nº4

MAGNETISMO INDUCCIÓN ELECTROMAGNÉTICA FÍSICA II - 2011 GUÍA Nº4 GUÍA Nº4 Problema Nº1: Un electrón entra con una rapidez v = 2.10 6 m/s en una zona de campo magnético uniforme de valor B = 15.10-4 T dirigido hacia afuera del papel, como se muestra en la figura: a)

Más detalles

Problemas de Campo eléctrico 2º de bachillerato. Física

Problemas de Campo eléctrico 2º de bachillerato. Física Problemas de Campo eléctrico 2º de bachillerato. Física 1. Un electrón, con velocidad inicial 3 10 5 m/s dirigida en el sentido positivo del eje X, penetra en una región donde existe un campo eléctrico

Más detalles

Sol: 1,3 10-4 m/s. Sol: I = σωr 2 /2

Sol: 1,3 10-4 m/s. Sol: I = σωr 2 /2 2 ELETOINÉTI 1. Por un conductor filiforme circula una corriente continua de 1. a) uánta carga fluye por una sección del conductor en 1 minuto? b) Si la corriente es producida por el flujo de electrones,

Más detalles

Tema 13: CORRIENTE ELÉCTRICA Y CIRCUITOS ELÉCTRICOS

Tema 13: CORRIENTE ELÉCTRICA Y CIRCUITOS ELÉCTRICOS Tema 13: CORRIENTE ELÉCTRICA Y CIRCUITOS ELÉCTRICOS CORRIENTE ELÉCTRICA Y MOVIMIENTO DE CARGAS Problema 1: Una corriente de 3.6 A fluye a través de un faro de automóvil. Cuántos Culombios de carga fluyen

Más detalles

EJERCICIOS DE POTENCIAL ELECTRICO

EJERCICIOS DE POTENCIAL ELECTRICO EJERCICIOS DE POTENCIAL ELECTRICO 1. Determinar el valor del potencial eléctrico creado por una carga puntual q 1 =12 x 10-9 C en un punto ubicado a 10 cm. del mismo como indica la figura 2. Dos cargas

Más detalles

Relación de Problemas: CORRIENTE ELECTRICA

Relación de Problemas: CORRIENTE ELECTRICA Relación de Problemas: CORRIENTE ELECTRICA 1) Por un conductor de 2.01 mm de diámetro circula una corriente de 2 A. Admitiendo que cada átomo tiene un electrón libre, calcule la velocidad de desplazamiento

Más detalles

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: FI120: FÍICA GENERAL II GUÍA#5: Conducción eléctrica y circuitos. Objetivos de aprendizaje Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: Conocer y analizar la corriente

Más detalles

PROBLEMAS PROPUESTOS

PROBLEMAS PROPUESTOS PROBLEMAS PROPUESTOS Repaso de conceptos 1. Dada la función y = x 2 + 5x - 8 a) Hallar y y y/ x cuando pasamos del punto x 0 = 1.0 al x 1 = 1.2 b) Idem pero al pasar de x 0 = 1.0 al x 2 = 0.8 2. Dada la

Más detalles

corriente) C Aquí q esta en Coulomb, t en segundos, I en Amperes (1A= 1 ) s

corriente) C Aquí q esta en Coulomb, t en segundos, I en Amperes (1A= 1 ) s UNA CORRIENTE i de electricidad existe en cualquier región donde sean transportadas cargas eléctricas desde un punto a otro punto de esa región.supóngase que la carga se mueve a través de un alambre.si

Más detalles

Guía de ejercicios 5to A Y D

Guía de ejercicios 5to A Y D Potencial eléctrico. Guía de ejercicios 5to A Y D 1.- Para transportar una carga de +4.10-6 C desde el infinito hasta un punto de un campo eléctrico hay que realizar un trabajo de 4.10-3 Joules. Calcular

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos Boletín 5 Campo eléctrico Ejercicio 1 La masa de un protón es 1,67 10 7 kg y su carga eléctrica 1,6 10 19 C. Compara la fuerza de repulsión eléctrica entre dos protones situados en

Más detalles

Solución: a) M = masa del planeta, m = masa del satélite, r = radio de la órbita.

Solución: a) M = masa del planeta, m = masa del satélite, r = radio de la órbita. 1 PAU Física, junio 2010. Fase específica OPCIÓN A Cuestión 1.- Deduzca la expresión de la energía cinética de un satélite en órbita circular alrededor de un planeta en función del radio de la órbita y

Más detalles

EXAMEN FÍSICA PAEG UCLM. SEPTIEMBRE 2013. SOLUCIONARIO OPCIÓN A. PROBLEMA 1

EXAMEN FÍSICA PAEG UCLM. SEPTIEMBRE 2013. SOLUCIONARIO OPCIÓN A. PROBLEMA 1 OPCIÓN A. PROBLEMA 1 Una partícula de masa 10-2 kg vibra con movimiento armónico simple de periodo π s a lo largo de un segmento de 20 cm de longitud. Determinar: a) Su velocidad y su aceleración cuando

Más detalles

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO. F = m a

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO. F = m a Física P.A.U. ELECTOMAGNETISMO 1 ELECTOMAGNETISMO INTODUCCIÓN MÉTODO 1. En general: Se dibujan las fuerzas que actúan sobre el sistema. Se calcula la resultante por el principio de superposición. Se aplica

Más detalles

Trabajo Practico 1: Fuerza Eléctrico y Campo Eléctrico

Trabajo Practico 1: Fuerza Eléctrico y Campo Eléctrico Universidad Nacional del Nordeste Facultad de Ingeniería Cátedra: Física III Profesor Adjunto: Ing. Arturo Castaño Jefe de Trabajos Prácticos: Ing. Cesar Rey Auxiliares: Ing. Andrés Mendivil, Ing. José

Más detalles

Instrucciones Sólo hay una respuesta correcta por pregunta. Salvo que se indique explícitamente lo contrario, todas las resistencias, bombillas o

Instrucciones Sólo hay una respuesta correcta por pregunta. Salvo que se indique explícitamente lo contrario, todas las resistencias, bombillas o 1. Una partícula de 2 kg, que se mueve en el eje OX, realiza un movimiento armónico simple. Su posición en función del tiempo es x(t) = 5 cos (3t) m y su energía potencial es E pot (t) = 9 x 2 (t) J. (SEL

Más detalles

Módulo 1: Electrostática Condensadores. Capacidad.

Módulo 1: Electrostática Condensadores. Capacidad. Módulo 1: Electrostática Condensadores. Capacidad. 1 Capacidad Hemos visto la relación entre campo eléctrico y cargas, y como la interacción entre cargas se convierte en energía potencial eléctrica Ahora

Más detalles

TEMA: CAMPO ELÉCTRICO

TEMA: CAMPO ELÉCTRICO TEMA: CAMPO ELÉCTRICO C-J-06 Una carga puntual de valor Q ocupa la posición (0,0) del plano XY en el vacío. En un punto A del eje X el potencial es V = -120 V, y el campo eléctrico es E = -80 i N/C, siendo

Más detalles

Departamento de Física y Química

Departamento de Física y Química 1 PAU Física, septiembre 2010. Fase general. OPCION A Cuestión 1.- Una partícula que realiza un movimiento armónico simple de 10 cm de amplitud tarda 2 s en efectuar una oscilación completa. Si en el instante

Más detalles

1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen.

1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen. Física 2º de Bachillerato. Problemas de Campo Eléctrico. 1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen. 2.-

Más detalles

CIRCUITOS DC Y AC. En las fuentes reales, ya sean de voltaje o corriente, siempre se disipa una cierta cantidad de energía en forma de calor.

CIRCUITOS DC Y AC. En las fuentes reales, ya sean de voltaje o corriente, siempre se disipa una cierta cantidad de energía en forma de calor. CIRCUITOS DC Y AC 1. Fuentes de tensión y corriente ideales.- Una fuente ideal de voltaje se define como un generador de voltaje cuya salida V=V s es independiente de la corriente suministrada. El voltaje

Más detalles

Fisica III -10 - APENDICES. - APENDICE 1 -Conductores -El generador de Van de Graaff

Fisica III -10 - APENDICES. - APENDICE 1 -Conductores -El generador de Van de Graaff Fisica III -10 - APENDICES - APENDICE 1 -Conductores -El generador de Van de Graaff - APENDICE 2 - Conductores, dirección y modulo del campo en las proximidades a la superficie. - Conductor esférico. -

Más detalles

POTENCIAL ELECTRICO. 1. Establezca la distinción entre potencial eléctrico y energía potencial eléctrica.

POTENCIAL ELECTRICO. 1. Establezca la distinción entre potencial eléctrico y energía potencial eléctrica. POTENCIAL ELECTRICO 1. Establezca la distinción entre potencial eléctrico y energía potencial eléctrica. Energía potencial eléctrica es la energía que posee un sistema de cargas eléctricas debido a su

Más detalles

EXAMEN FISICA PAEG UCLM. JUNIO 2014. SOLUCIONARIO

EXAMEN FISICA PAEG UCLM. JUNIO 2014. SOLUCIONARIO OPCIÓN A. POBLEMA 1. Un planeta gigante tiene dos satélites, S1 y S2, cuyos periodos orbitales son T 1 = 4.52 días terrestres y T 2 = 15.9 días terrestres respectivamente. a) Si el radio de la órbita del

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos oletín 6 Campo magnético Ejercicio Un electrón se acelera por la acción de una diferencia de potencial de 00 V y, posteriormente, penetra en una región en la que existe un campo magnético

Más detalles

ESCULA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER DE ELECTROSTATICA

ESCULA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER DE ELECTROSTATICA ESCULA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER DE ELECTROSTATICA Aceleración de la gravedad 9,8m/s Constante de permitividad 8,85x10-1 Nm /C Masa del protón 1,67x10-7 kg Masa

Más detalles

Unidad Nº 9 Inducción magnética

Unidad Nº 9 Inducción magnética Unidad Nº 9 Inducción magnética Inducción magnética 9.1 - Se coloca una bobina de alambre que contiene 500 espiras circulares con radio de 4 cm entre los polos de un electroimán grande, donde el campo

Más detalles

Ejercicios Propuestos Inducción Electromagnética.

Ejercicios Propuestos Inducción Electromagnética. Ejercicios Propuestos Inducción Electromagnética. 1. Un solenoide de 2 5[] de diámetro y 30 [] de longitud tiene 300 vueltas y lleva una intensidad de corriente de 12 [A]. Calcule el flujo a través de

Más detalles

SOCIEDAD PERUANA DE FÍSICA PRIMERA PRUEBA DE CLASIFICACION 2012

SOCIEDAD PERUANA DE FÍSICA PRIMERA PRUEBA DE CLASIFICACION 2012 SOCIEDAD PERUANA DE FÍSICA PRIMERA PRUEBA DE CLASIFICACION 2012 Sede Lima - Facultad de Ciencias Físicas Universidad Nacional Mayor de San Marcos Inicio de Prueba 10:00 A.M. Finalización de Prueba 13:00

Más detalles

Ejercicios trabajo y energía de selectividad

Ejercicios trabajo y energía de selectividad Ejercicios trabajo y energía de selectividad 1. En un instante t 1 la energía cinética de una partícula es 30 J y su energía potencial 12 J. En un instante posterior, t 2, la energía cinética de la partícula

Más detalles

PROBLEMAS DE ELECTROSTÁTICA

PROBLEMAS DE ELECTROSTÁTICA PROBLEMAS DE ELECTROSTÁTICA 1.-Deducir la ecuación de dimensiones y las unidades en el SI de la constante de Permitividad eléctrica en el vacío SOLUCIÓN : N -1 m -2 C 2 2.- Dos cargas eléctricas puntuales

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos oletín 7 Inducción electromagnética Ejercicio 1 Una varilla conductora, de 20 cm de longitud y 10 Ω de resistencia eléctrica, se desplaza paralelamente a sí misma y sin rozamiento,

Más detalles

Ejemplo 2. Velocidad de arrastre en un alambre de cobre

Ejemplo 2. Velocidad de arrastre en un alambre de cobre Ejemplo 1 Cual es la velocidad de desplazamiento de los electrones en un alambre de cobre típico de radio 0,815mm que transporta una corriente de 1 A? Si admitimos que existe un electrón libre por átomo

Más detalles

Si la intensidad de corriente y su dirección no cambian con el tiempo, entonces esa corriente se llama corriente continua.

Si la intensidad de corriente y su dirección no cambian con el tiempo, entonces esa corriente se llama corriente continua. 1.8. Corriente eléctrica. Ley de Ohm Clases de Electromagnetismo. Ariel Becerra Si un conductor aislado es introducido en un campo eléctrico entonces sobre las cargas libres q en el conductor va a actuar

Más detalles

XX Olimpiada Española de Física 13 de marzo de 2009 Fase Local, Universidad de Salamanca

XX Olimpiada Española de Física 13 de marzo de 2009 Fase Local, Universidad de Salamanca Cuestión (a) Un grifo gotea sobre una superficie de agua. El goteo tiene lugar a razón de 80 gotas por minuto y genera en el agua ondas circulares separadas 45 cm. Cuál es la velocidad de propagación de

Más detalles

ORIENTACIONES PARA LA MATERIA DE FÍSICA Convocatoria 2010

ORIENTACIONES PARA LA MATERIA DE FÍSICA Convocatoria 2010 ORIENTACIONES PARA LA MATERIA DE FÍSICA Convocatoria 2010 Prueba de Acceso para Mayores de 25 años Para que un adulto mayor de 25 años pueda incorporarse plenamente en los estudios superiores de la Física

Más detalles

FÍSICA II : CORRIENTE Y CIRCUITOS ELÉCTRICOS GUÍA DE PROBLEMAS

FÍSICA II : CORRIENTE Y CIRCUITOS ELÉCTRICOS GUÍA DE PROBLEMAS UNSL ENJPP FÍSICA II : CORRIENTE Y CIRCUITOS ELÉCTRICOS GUÍA DE PROBLEMAS 1. Una plancha eléctrica, con una resistencia de 30,25 Ω, está conectada a una línea eléctrica de 220 V de voltaje. Cuál es la

Más detalles

Segunda parte. Laboratorio de Física Universitaria II (FISI 3014)

Segunda parte. Laboratorio de Física Universitaria II (FISI 3014) Segunda parte Laboratorio de Física Universitaria II (FISI 3014) 172 Experimento 1 ELECTROSTÁTICA Introducción El concepto básico del curso de Física Universitaria II, y su laboratorio, es la carga eléctrica.

Más detalles

FÍSICA DE 2º DE BACHILLERATO EL CAMPO MAGNÉTICO 2.1 INTRODUCCIÓN

FÍSICA DE 2º DE BACHILLERATO EL CAMPO MAGNÉTICO 2.1 INTRODUCCIÓN TEMA : EL CAMPO MAGNÉTICO 2.1 INTRODUCCIÓN Desde siglos antes de Cristo se conocía que algunos minerales de hierro, como la magnetita (Fe 3 O 4 ), atraían pequeños trozos de hierro. Esta propiedad se llamó

Más detalles

CASTILLA LA MANCHA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO

CASTILLA LA MANCHA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO OPCIÓN A CASTILLA LA MANCHA / JUNIO 03. LOGSE / FÍSICA / EXAMEN PROBLEMAS: El alumno deberá contestar a una de las dos opciones propuestas A o B. Los problemas puntúan 3 puntos cada uno y las cuestiones

Más detalles

POTENCIAL ELECTRICO. W q. B o

POTENCIAL ELECTRICO. W q. B o POTENCIAL ELECTRICO Un campo eléctrico que rodea a una barra cargada puede describirse no solo por una intensidad de campo eléctrico E (Cantidad Vectorial) si no también como una cantidad escalar llamada

Más detalles

UD 4.-ELECTRICIDAD 1. EL CIRCUITO ELÉCTRICO

UD 4.-ELECTRICIDAD 1. EL CIRCUITO ELÉCTRICO DPTO. TECNOLOGÍA (ES SEFAAD) UD 4.-ELECTCDAD UD 4.- ELECTCDAD. EL CCUTO ELÉCTCO. ELEMENTOS DE UN CCUTO 3. MAGNTUDES ELÉCTCAS 4. LEY DE OHM 5. ASOCACÓN DE ELEMENTOS 6. TPOS DE COENTE 7. ENEGÍA ELÉCTCA.

Más detalles

Liceo Los Andes Cuestionario de Física. Profesor: Johnny Reyes Cedillo Periodo Lectivo: 2015-2016 Temas a evaluarse en el Examen

Liceo Los Andes Cuestionario de Física. Profesor: Johnny Reyes Cedillo Periodo Lectivo: 2015-2016 Temas a evaluarse en el Examen Liceo Los Andes Cuestionario de Física Curso: Segundo Bachillerato Quimestre: Primero Profesor: Johnny Reyes Cedillo Periodo Lectivo: 2015-2016 Temas a evaluarse en el Examen Electrización: Formas de cargar

Más detalles

Guía de Repaso 12: Diferencia de potencial eléctrico. Tensión o voltaje

Guía de Repaso 12: Diferencia de potencial eléctrico. Tensión o voltaje Guía de Repaso 12: Diferencia de potencial eléctrico. Tensión o voltaje 1- Recordando los comentarios relacionados con la Figura 20-2 (pág. 874) que hicimos en esta sección, diga que significa expresar

Más detalles

CONSEJERÍA DE EDUCACIÓN

CONSEJERÍA DE EDUCACIÓN ANEXO VII (continuación) CONTENIDOS DE LA PARTE ESPECÍFICA DE LA PRUEBA DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR PARTE ESPECÍFICA OPCIÓN B EJERCICIO DE TECNOLOGÍA INDUSTRIAL 1. RECURSOS ENERGÉTICOS.

Más detalles

3.2 Potencial debido a un sistema de cargas puntuales. 3.4 Cálculo del potencial para distribuciones continuas de carga.

3.2 Potencial debido a un sistema de cargas puntuales. 3.4 Cálculo del potencial para distribuciones continuas de carga. CAPÍTULO 3 El potencial eléctrico Índice del capítulo 3 31 3.1 Diferencia de potencial eléctrico. 3.2 Potencial debido a un sistema de cargas puntuales. 3.33 Determinación del potencial eléctrico a partir

Más detalles

TEMA 4 ELECTROMAGNETISMO

TEMA 4 ELECTROMAGNETISMO TEMA 4 ELECTROMAGNETISMO IV.1 Magnetismo e imanes IV.2 Electroimanes IV.3 Flujo magnético IV.4 Fuerza magnética IV.5 Inducción electromagnética IV.6 Autoinducción Cuestiones 1 IV.1 MAGNETISMO E IMANES

Más detalles

FASE ESPECÍFICA RESPUESTAS FÍSICA

FASE ESPECÍFICA RESPUESTAS FÍSICA UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD DE LOS MAYORES DE 25 AÑOS Convocatoria 2013 FASE ESPECÍFICA RESPUESTAS FÍSICA En cada Bloque elija una Opción: Bloque 1.- Teoría

Más detalles

Bases Físicas del Medio Ambiente. Corriente Eléctrica y Circuitos de Corriente Continua

Bases Físicas del Medio Ambiente. Corriente Eléctrica y Circuitos de Corriente Continua Bases Físicas del Medio Ambiente Corriente Eléctrica y Circuitos de Corriente Continua Programa XII. COIENTE ELÉCTICA. CICUITOS DE COIENTE CONTINUA.(2h) Corriente. Ley de Ohm. esistencia. Conductores,

Más detalles

TEMA 1: LA ELECTRICIDAD

TEMA 1: LA ELECTRICIDAD TEMA 1: LA ELECTRICIDAD 1.- Producción y consumo de la electricidad Existen muchas formas de producir electricidad. Las podemos separar en energías no renovables y energías renovables. Las energías no

Más detalles

Entonces el trabajo de la fuerza eléctrica es : =F d (positivo porque la carga se desplaza en el sentido en que actúa la fuerza (de A a B)

Entonces el trabajo de la fuerza eléctrica es : =F d (positivo porque la carga se desplaza en el sentido en que actúa la fuerza (de A a B) Consideremos la siguiente situación. Una carga Q que genera un campo eléctrico uniforme, y sobre este campo eléctrico se ubica una carga puntual q.de tal manara que si las cargas son de igual signo la

Más detalles

EXAMEN DE FÍSICA SELECTIVIDAD 2014-2015 JUNIO OPCIÓN A. a) La velocidad orbital de la luna exterior y el radio de la órbita de la luna interior.

EXAMEN DE FÍSICA SELECTIVIDAD 2014-2015 JUNIO OPCIÓN A. a) La velocidad orbital de la luna exterior y el radio de la órbita de la luna interior. EXAMEN DE FÍSICA SELECTIVIDAD 04-05 JUNIO OPCIÓN A Problema. Dos lunas que orbitan alrededor de un planeta desconocido, describen órbitas circulares concéntricas con el planeta y tienen periodos orbitales

Más detalles

El generador de Van de Graaff

El generador de Van de Graaff Cuando se introduce un conductor cargado dentro de otro hueco y se ponen en contacto, toda la carga del primero pasa al segundo, cualquiera que sea la carga inicial del conductor hueco Teóricamente, el

Más detalles

FÍSICA Y QUÍMICA 4º ESO Ejercicios: Fuerzas

FÍSICA Y QUÍMICA 4º ESO Ejercicios: Fuerzas 1(10) Ejercicio nº 1 Durante cuánto tiempo ha actuado una fuerza de 20 N sobre un cuerpo de masa 25 Kg si le ha comunicado una velocidad de 90 Km/h? Ejercicio nº 2 Un coche de 1000 Kg aumenta su velocidad

Más detalles

TEMA 2 CIRCUITOS DE CORRIENTE CONTINUA

TEMA 2 CIRCUITOS DE CORRIENTE CONTINUA TEMA 2 CIRCUITOS DE CORRIENTE CONTINUA II.1 Ley de ohm II.2 Resistencia II.3 Potencia II.4 Energía II.5 Instrumentos de medida II.6 Acoplamiento serie II.7 Acoplamiento paralelo II.8 Acoplamiento mixto

Más detalles

DALCAME Grupo de Investigación Biomédica

DALCAME Grupo de Investigación Biomédica LABORATORIO DE CIRCUITOS ELECTRÓNICOS 1. Conducta de Entrada 2. Laboratorio Funcionamiento de un condensador Observar el efecto de almacenamiento de energía de un condensador: Condensador de 1000µF Medida

Más detalles

F 5 1. r 2. 1 5 8.988 3 10 9 N # m 2 /C 2 E S 5 FS 0. E S 5 1 q

F 5 1. r 2. 1 5 8.988 3 10 9 N # m 2 /C 2 E S 5 FS 0. E S 5 1 q CAPÍTULO 21 REUMEN Carga eléctrica, conductores y aislantes: La cantidad fundamental en electrostática es la carga eléctrica. Hay dos clases de carga: positiva y negativa. Las cargas del mismo signo se

Más detalles

Caída de un imán por un tubo conductor y análisis de los pulsos inducidos en una espira exploradora

Caída de un imán por un tubo conductor y análisis de los pulsos inducidos en una espira exploradora Caída de un imán por un tubo conductor y análisis de los pulsos inducidos en una espira exploradora Martin, Laura Leibovich, Débora laura_martin1@hotmail.com debbie@megabras.com Laboratorio de física -

Más detalles

Solución: a) En un periodo de revolución, el satélite barre el área correspondiente al círculo encerrado por la órbita, r 2. R T r

Solución: a) En un periodo de revolución, el satélite barre el área correspondiente al círculo encerrado por la órbita, r 2. R T r 1 PAU Física, junio 2011 OPCIÓN A Cuestión 1.- Un satélite que gira con la misma velocidad angular que la Tierra (geoestacionario) de masa m = 5 10 3 kg, describe una órbita circular de radio r = 3,6 10

Más detalles

MARCOS OMAR CRUZ ORTEGA 08/12/2009

MARCOS OMAR CRUZ ORTEGA 08/12/2009 Física II (Inductancia Magnética) Presentado por: MARCOS OMAR CRUZ ORTEGA (Actual alumno de Ing. en Sistemas Computacionales) 08/12/2009 Tabla de contenido 1 Introducción... 3 2 El campo magnético... 4

Más detalles

Tema 1: Circuitos eléctricos de corriente continua

Tema 1: Circuitos eléctricos de corriente continua Tema 1: Circuitos eléctricos de corriente continua Índice Magnitudes fundamentales Ley de Ohm Energía y Potencia Construcción y aplicación de las resistencias Generadores Análisis de circuitos Redes y

Más detalles

A.1 Por qué crees que puede resultar interesante estudiar la corriente eléctrica y circuitos eléctricos en un curso de Física?

A.1 Por qué crees que puede resultar interesante estudiar la corriente eléctrica y circuitos eléctricos en un curso de Física? CORRIENTE ELÉCTRICA 1. Introducción Las cargas se mueven bajo la influencia de los campos eléctricos, constituyendo lo que se denomina, corriente eléctrica. Pone de relieve su importancia, el hecho de

Más detalles

EL PARACAIDISTA. Webs.uvigo.es/cudav/paracaidismo.htm

EL PARACAIDISTA. Webs.uvigo.es/cudav/paracaidismo.htm EL PARACAIDISTA Webs.uvigo.es/cudav/paracaidismo.htm 1. Un avión vuela con velocidad constante en una trayectoria horizontal OP. Cuando el avión se encuentra en el punto O un paracaidista se deja caer.

Más detalles

PRINCIPIOS DE MÁQUINAS Y MOTORES DE C.C. Y C.A.

PRINCIPIOS DE MÁQUINAS Y MOTORES DE C.C. Y C.A. PRINCIPIOS DE MÁQUINAS Y MOTORES DE C.C. Y C.A. En la industria se utilizan diversidad de máquinas con la finalidad de transformar o adaptar una energía, no obstante, todas ellas cumplen los siguientes

Más detalles

Tema 1.- Análisis de circuitos de corriente continua

Tema 1.- Análisis de circuitos de corriente continua Tema 1.- nálisis de circuitos de corriente continua 1.1 Conceptos y leyes básicas de la conducción eléctrica Denominamos corriente eléctrica al fenómeno físico del movimiento de la carga eléctrica: cuando

Más detalles

FÍSICA 2º DE BACHILLERATO Problemas: CAMPO ELÉCTRICO NOVIEMBRE.2011

FÍSICA 2º DE BACHILLERATO Problemas: CAMPO ELÉCTRICO NOVIEMBRE.2011 FÍSIC º DE BCHILLER Problemas: CMP ELÉCRIC NVIEMBRE.0. Dos cargas puntuales iguales, de, 0 6 C cada una, están situadas en los puntos (0,8) m y B (6,0) m. Una tercera carga, de, 0 6 C, se sitúa en el punto

Más detalles

BLOQUE II CONCEPTOS Y FENÓMENOS ELECTROMAGNÉTICOS

BLOQUE II CONCEPTOS Y FENÓMENOS ELECTROMAGNÉTICOS PARTAMENTO 1.- Un núcleo toroidal tiene arrolladas 500 espiras por las que circulan 2 Amperios. Su circunferencia media tiene una longitud de 50 cm. En estas condiciones la inducción magnética B total

Más detalles

Tema: Electricidad y Magnetismo. Eje temático: Física.

Tema: Electricidad y Magnetismo. Eje temático: Física. Tema: Electricidad y Magnetismo. Eje temático: Física. Fuerza entre cargas Circuitos de Corriente Variable Ondas Electromagnéticas Contenido: Caracterización del fenómeno eléctrico; Ley de Coulomb; Campo

Más detalles

Departamento de Física y Química

Departamento de Física y Química 1 PAU Física, junio 2010. Fase general OPCION A Cuestión 1.- Enuncie la 2 a ley de Kepler. Explique en qué posiciones de la órbita elíptica la velocidad del planeta es máxima y dónde es mínima. Enuncie

Más detalles

TEMA 1 FUERZAS Y ESTRUCTURAS

TEMA 1 FUERZAS Y ESTRUCTURAS 1 TEMA 1 FUERZAS Y ESTRUCTURAS FUERZA es aquella causa capaz de producir cambios en el movimiento de un cuerpo o de cambiar su forma. (Por lo tanto, los cuerpos no tienen fuerza, tienen energía. La fuerza

Más detalles

CONTENIDOS MÍNIMOS FÍSICA 4º ESO. - Fórmulas del movimiento rectilíneo uniformemente acelerado y de la caída libre.

CONTENIDOS MÍNIMOS FÍSICA 4º ESO. - Fórmulas del movimiento rectilíneo uniformemente acelerado y de la caída libre. CONTENIDOS MÍNIMOS FÍSICA 4º ESO TEMA 1: EL MOVIMIENTO Y SU DESCRIPCIÓN - Definición de movimiento. 2. Magnitudes para describir un movimiento. - Fórmulas de los movimientos rectilíneo y circular. TEMA

Más detalles

Opción A. Ejercicio 1. Respuesta. E p = 1 2 mv 2. v max = 80 = 8, 9( m s ).

Opción A. Ejercicio 1. Respuesta. E p = 1 2 mv 2. v max = 80 = 8, 9( m s ). Opción A. Ejercicio 1 Una masa m unida a un muelle realiza un movimiento armónico simple. La figura representa su energía potencial en función de la elongación x. (1 punto) [a] Represente la energía cinética

Más detalles

Resistencias en serie I =I 1 +I 2 = V R 1

Resistencias en serie I =I 1 +I 2 = V R 1 Resistencias en serie Circuitos de Corriente Continua: La Dirección de la corriente no cambia con el tiempo. De la ley de Ohm:Entre los extremos de una resistencia R hay una diferencia de potencialv en

Más detalles

1.- Comente las propiedades que conozca acerca de la carga eléctrica..(1.1, 1.2).

1.- Comente las propiedades que conozca acerca de la carga eléctrica..(1.1, 1.2). FÍSICA CUESTIONES Y PROBLEMAS BLOQUE III: INTERACCIÓN ELECTROMAGNÉTICA PAU 2003-2004 1.- Comente las propiedades que conozca acerca de la carga eléctrica..(1.1, 1.2). 2.- Una partícula de masa m y carga

Más detalles

+- +- 1. En las siguientes figuras: A) B) C) D)

+- +- 1. En las siguientes figuras: A) B) C) D) PROBLEMA IDUCCIÓ ELECTROMAGÉTICA 1. En las siguientes figuras: a) eñala que elemento es el inductor y cual el inducido b) Dibuja las líneas de campo magnético del inductor, e indica (dibuja) el sentido

Más detalles

CONCEPTOS BÁSICOS DE ELECTRICIDAD

CONCEPTOS BÁSICOS DE ELECTRICIDAD CONCEPTOS BÁSICOS DE ELECTRICIDAD Ley de Coulomb La ley de Coulomb nos describe la interacción entre dos cargas eléctricas del mismo o de distinto signo. La fuerza que ejerce la carga Q sobre otra carga

Más detalles

Medir el valor de la permeabilidad del vacío μ o

Medir el valor de la permeabilidad del vacío μ o Experimento 9 MAGNETISMO Objetivo Medir el valor de la permeabilidad del vacío μ o Teoría Estamos familiarizados con las fuerzas de atracción y rechazo que sufren los imanes entre sí. La mayoría hemos

Más detalles

2 INTERACCIÓN ELÉCTRICA IDEAS PRINCIPALES

2 INTERACCIÓN ELÉCTRICA IDEAS PRINCIPALES 2 INTRCCIÓN LÉCTRIC IDS PRINCIPLS Ley de Coulomb Permitividad o constante dieléctrica Campo eléctrico Intensidad de campo eléctrico Polarización nergía potencial electrostática Potencial eléctrico La interacción

Más detalles

Magnitudes eléctricas

Magnitudes eléctricas Magnitudes eléctricas En esta unidad estudiaremos las principales magnitudes eléctricas: intensidad de corriente, voltaje, resistencia, potencia y energía, que resumimos en esta tabla: Magnitud eléctrica

Más detalles

Bases Físicas del Medio Ambiente. Campo Magnético

Bases Físicas del Medio Ambiente. Campo Magnético ases Físicas del Medio Ambiente Campo Magnético Programa X. CAMPO MAGNÉTCO.(2h) Campo magnético. Fuerza de Lorentz. Movimiento de partículas cargadas en el seno de un campo magnético. Fuerza magnética

Más detalles

ELECTROMAGNETISMO Profesor: Juan T. Valverde

ELECTROMAGNETISMO Profesor: Juan T. Valverde CAMPO MAGNÉTICO 1.- Considere un átomo de hidrógeno con el electrón girando alrededor del núcleo en una órbita circular de radio igual a 5,29.10-11 m. Despreciamos la interacción gravitatoria. Calcule:

Más detalles

PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR Junio 2012 OPCIÓN B: TECNOLOGÍA INDUSTRIAL

PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR Junio 2012 OPCIÓN B: TECNOLOGÍA INDUSTRIAL PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR Junio 2012 OPCIÓN B: TECNOLOGÍA INDUSTRIAL DATOS DEL ASPIRANTE Apellidos: CALIFICACIÓN PRUEBA Nombre: D.N.I. o Pasaporte: Fecha de nacimiento: / / Instrucciones:

Más detalles

Guía de Ejercicios de Electromagnetismo II Lapso I-2010

Guía de Ejercicios de Electromagnetismo II Lapso I-2010 UNIVERSIDAD PEDAGÓGICA EXPERIMENTAL LIBERTADOR INSTITUTO PEDAGÓGICO DE BARQUISIMETO LUIS BELTRÁN PRIETO FIGUEROA DEPARTAMENTO DE CIENCIAS NATURALES PROGRAMA DE FÍSICA ELECTROMAGNETISMO II Objetivo: Analizar

Más detalles

Examen de Selectividad de Física. Septiembre 2009. Soluciones

Examen de Selectividad de Física. Septiembre 2009. Soluciones Examen de electividad de Física. eptiembre 2009. oluciones Primera parte Cuestión 1.- Razone si son verdaderas o falsas las siguientes afirmaciones: El valor de la velocidad de escape de un objeto lanzado

Más detalles

ALUMNO: AUTOR: Prof. Lic. CLAUDIO NASO

ALUMNO: AUTOR: Prof. Lic. CLAUDIO NASO ALUMNO: AUTOR: Prof. Lic. CLAUDIO NASO 4.1- Electrostática 4.1.1- Conceptos básicos 4.1.1.2- Noción de carga eléctrica Como sabemos, los cuerpos materiales se atraen unos a otros con una fuerza denominada

Más detalles

Los Circuitos Eléctricos

Los Circuitos Eléctricos Los Circuitos Eléctricos 1.- LA CORRIENTE ELÉCTRICA. La electricidad es un movimiento de electrones, partículas con carga eléctrica negativa que giran alrededor del núcleo de los átomos. En los materiales

Más detalles

REPASO EJERCICIOS ELECTRICIDAD DE 3º ESO

REPASO EJERCICIOS ELECTRICIDAD DE 3º ESO REPASO EJERCICIOS ELECTRICIDAD DE 3º ESO 1. Calcula la intensidad de una corriente eléctrica si por un conductor pasaron 180 C en 30 segundos. Solución: 6A 2. Qué intensidad tiene una corriente si por

Más detalles

EFECTOS DE LA CORRIENTE ELÉCTRICA: TÉRMICO, MAGNÉTICO Y QUÍMICO

EFECTOS DE LA CORRIENTE ELÉCTRICA: TÉRMICO, MAGNÉTICO Y QUÍMICO EFECTOS DE LA CORRIENTE ELÉCTRICA: TÉRMICO, MAGNÉTICO Y QUÍMICO Marisol de la Fuente Mendoza IES LA CANAL DE NAVARRÉS Navarrés (Valencia) Introducción: Al hablar de los efectos de la corriente eléctrica,

Más detalles

Integrantes: 2. Introducción

Integrantes: 2. Introducción Facultad de Ciencias Departamento de Física Fundamentos de Electricidad y Magnetismo Laboratorio N 7 Campo Magnético Ovidio Almanza Noviembre 28 de 2011 Integrantes: Diana Milena Ramírez Gutiérrez Cod.

Más detalles

E.U.I.T.I.Z. (1º Electrónicos) Curso 2006-07 Electricidad y Electrometría. P. resueltos Tema 1 1/27

E.U.I.T.I.Z. (1º Electrónicos) Curso 2006-07 Electricidad y Electrometría. P. resueltos Tema 1 1/27 E.U.I.T.I.Z. (1º Electrónicos) Curso 2006-07 Electricidad y Electrometría. P. resueltos Tema 1 1/27 Tema 1. Problemas resueltos 1. Cuáles son las similitudes y diferencias entre la ley de Coulomb y la

Más detalles

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él?

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? IES Menéndez Tolosa. La Línea de la Concepción 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? Si. Una consecuencia del principio de la inercia es que puede haber movimiento

Más detalles

EJERCICIO PARTE ESPECÍFICA OPCIÓN B DIBUJO TÉCNICO Duración: 1h 15

EJERCICIO PARTE ESPECÍFICA OPCIÓN B DIBUJO TÉCNICO Duración: 1h 15 Personas Adultas PARTE ESPECÍFICA: DIBUJO TÉCNICO OPCIÓN B DATOS DEL ASPIRANTE CALIFICACIÓN Apellidos:. Nombre:.... EJERCICIO PARTE ESPECÍFICA OPCIÓN B DIBUJO TÉCNICO Duración: 1h 15 EJERCICIO 1. CIRCUNFERENCIAS

Más detalles

LABORATORIOS Y PROBLEMAS DE FÍSICA II

LABORATORIOS Y PROBLEMAS DE FÍSICA II LABORATORIOS Y PROBLEMAS DE FÍSICA II CARRERAS: INGENIERIA EN ALIMENTOS LICENCIATURA EN QUÍMICA PROFESORADO EN QUÍMICA PROFESORES: Mg. CARLOS A. CATTANEO ING. ANGEL MONTENEGRO AUXILIARES: ING. ANGEL ROSSI

Más detalles

UNIVERSIDAD NACIONAL SANTIAGO ANTUNEZ DE MAYOLO FACULTAD DE INGENIERÍA CIVIL CAMPO ELECTRICO CURSO: FISICA III DOCENTE: MAG. OPTACIANO VÁSQUEZ GARCÍA

UNIVERSIDAD NACIONAL SANTIAGO ANTUNEZ DE MAYOLO FACULTAD DE INGENIERÍA CIVIL CAMPO ELECTRICO CURSO: FISICA III DOCENTE: MAG. OPTACIANO VÁSQUEZ GARCÍA UNIVERSIDAD NACIONAL SANTIAGO ANTUNEZ DE MAYOLO FACULTAD DE INGENIERÍA CIVIL CAMPO ELECTRICO CURSO: FISICA III DOCENTE: MAG. OPTACIANO VÁSQUEZ GARCÍA HUARAZ PERÚ 2010 I. INTRODUCCIÓN 2.1 CAMPOS ESCALARES

Más detalles

Trabajo y Energía. W = FO. xo. t t =mvo. vo= ( 1 2 m vo2 )= K, y, F z = U E = K +U. E =K + i. U i

Trabajo y Energía. W = FO. xo. t t =mvo. vo= ( 1 2 m vo2 )= K, y, F z = U E = K +U. E =K + i. U i Trabajo y Energía Trabajo vo xo=m vo xo W = FO. xo FO: Fuerza aplicada, XOes el desplazamiento. Usando la Segunda Ley de Newton: W = m t t =mvo. vo= ( 1 2 m vo2 )= K, Teorema del Trabajo y la Energía K

Más detalles

Capítulo 6. Fluidos reales

Capítulo 6. Fluidos reales Capítulo 6 Fluidos reales 1 Viscosidad El rozamiento en el movimiento de los fluidos se cuantifica a través del concepto de viscosidad, η, que se define como: F A = η v d El coeficiente de viscosidad tiene

Más detalles

Objetivos. Equipo y materiales

Objetivos. Equipo y materiales Laboratorio Circuitos DC Experimento 3: Fuentes de Voltaje Objetivos Conectar fuentes de voltaje fotovoltaicas en serie, paralelo y serie paralelo Medir corriente de carga en circuitos con fuentes de voltaje

Más detalles

Tema 2: Electrostática en medios conductores

Tema 2: Electrostática en medios conductores Tema : Electrostática en medios conductores. onductores y aislantes. arga por inducción.3 ondiciones de borde para el campo y para el potencial.4 ampo, densidad de carga y potencial en el interior de un

Más detalles

EXAMEN TIPO TEST NÚMERO 2 MODELO 1 (Física I curso 2008-09)

EXAMEN TIPO TEST NÚMERO 2 MODELO 1 (Física I curso 2008-09) EXAMEN TIPO TEST NÚMERO MODELO 1 (Física I curso 008-09) 1.- Un río de orillas rectas y paralelas tiene una anchura de 0.76 km. La corriente del río baja a 4 km/h y es paralela a los márgenes. El barquero

Más detalles

Ambas barras se atraen. En cambio, cuando ambas barras se frotan con piel, las barras se repelen. entre si. Las barras de vidrio

Ambas barras se atraen. En cambio, cuando ambas barras se frotan con piel, las barras se repelen. entre si. Las barras de vidrio Antecedentes Semana 1 Qué tanto dependemos de la electricidad? De que tipo son las fuerzas que mantienen unidos a las partes de un átomo? De que tipo son las fuerzas que mantienen unidos entre si a los

Más detalles