OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 2 Programación Lineal

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 2 Programación Lineal"

Transcripción

1 OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA Tema 2 Programación Lineal

2 ORGANIZACIÓN DEL TEMA Sesiones: Introducción, definición y ejemplos Propiedades y procedimientos de solución Interpretación económica

3 ORÍGENES DE LA PL George Dantzig fue el fundador de la Programación Lineal (PL) Desarrolló el método Simplex en 1947 Algoritmo inteligente que busca la solución óptima entre un conjunto muy reducido de alternativas Coincide con el inicio de la informática Durante mucho tiempo constituyó el núcleo de la computación científica

4 ORÍGENES DE LA PL El primer problema de PL que se resolvió fue el problema de la dieta (9 restricciones y 77 variables) Se necesitaron 9 personas trabajando durante 15 días para completar los cálculos del método Simplex La primera implementación en ordenador del Simplex se realizó en 1952 Se pudo resolver un problema de PL de 48 restricciones y 71 variables en 18 horas Actualmente se pueden resolver PLs de millones de variables y restricciones en horas o incluso minutos

5 MODELOS LINEALES: PROPIEDADES En un modelo lineal, tanto la función objetivo como las restricciones son funciones lineales de las variables x, a + b T x El modelo básico de PL es: donde c es un vector de n componentes, x es el vector de variables de decisión, A es una matriz m x n y b es un vector de m componentes Un vector x que satisface las restricciones se conoce como una solución factible (aunque quizás no sea la solución) o un punto factible El conjunto de todas las soluciones factibles es la región factible

6 MODELOS LINEALES: PROPIEDADES Los PLs se pueden analizar algebraicamente o geométricamente Ambos enfoques son equivalentes Enfoque algebraico: escribir la representación matemática del PL, por ejemplo, Analizar las propiedades matriciales de sus componentes, en nuestro caso

7 MODELOS LINEALES: PROPIEDADES Enfoque geométrico: Analizar la geometría de la región factible x 1 +2x x x x x 1 +5x 2 =360 3x 1 +5x 2 = x 1

8 EJEMPLO 1: DIETA NUTRICIONAL Problema clásico Descripción: Preparar una dieta diaria para un grupo de personas asegurando una ingesta mínima de varios componentes nutricionales (vitaminas, proteínas, calcio, grasas, carbohidratos, etc.) Se dispone de n alimentos básicos (huevos, leche, pan, pollo) de donde se obtienen los nutrientes Objetivo: Diseñar una dieta que garantice una alimentación saludable (mínimo de nutrientes) Con coste mínimo

9 EJEMPLO 1: DIETA NUTRICIONAL Datos del problema: Alimentos básicos: Con costes unitarios c 1,, c n Componentes nutricionales: Se necesitan al menos b 1,, b m unidades de cada nutriente Relación entre alimentos y nutrientes: Cada unidad de alimento j contiene a ij unidades del nutriente i

10 EJEMPLO 1: DIETA NUTRICIONAL Modelo: Variables: encontrar un vector dieta x = (x 1,, x n ) que especifique las cantidades de cada alimento a comprar cada día Función objetivo: minimizar el coste de la compra de alimentos Restricciones: satisfacer requerimientos nutricionales

11 EJEMPLO 1: DIETA NUTRICIONAL Datos: Alimento Carne Patatas Req. diarios Hidratos de c Proteínas Grasas Coste por ración 5 2 Solución: x 1 = , x 2 = , coste = Multiplicadores: (Hidratos de c.), 0 (Proteínas), (Grasas)

12 EJEMPLO 1: DIETA NUTRICIONAL Formulación del problema: Variables: Cantidades de alimentos básicos en la dieta x 1 : carne, x 2 : patatas. Función objetivo: Coste total min 5x 1 +2x 2 Restricciones: Cumplir con los requisitos mínimos de la dieta 5x x 2 50, 20x 1 +5x 2 40, 15x 1 +2x 2 60 Variables no negativas

13 MODELOS LINEALES: PROPIEDADES Problema de dieta: x 1 +2x 2 =50 x x 1 +2x x 1 +2x 2 =40 Región factible 4 3 Función objetivo x 1 +5x x 1 +15x x 1

14 EJEMPLO 2: CAMPAÑA DE MARKETING Descripción: Para vender un nuevo producto, una empresa dispone de euros/semana El producto se puede publicitar en cuatro medios: TV, Periódicos, Radio e Internet Los clientes potenciales captados por cada anuncio y semana, y en cada medio, son: 5000, 8500, 2400 y 2800, respectivamente El coste semanal de un anuncio en cada medio es: 600, 925, 290 y 380, respectivamente Cada medio impone unos límites semanales sobre los anuncios a contratar: 30, 60, 60 y 80, respectivamente Cómo repartir el presupuesto semanal en publicidad para conseguir la mayor audiencia (potenciales clientes)?

15 EJEMPLO 2: CAMPAÑA DE MARKETING Modelo: Variables: Encontrar, para cada medio, el número de anuncios a contratar por semana, x = (x 1, x 2, x 3, x 4 ) Función objetivo: conseguir la máxima audiencia posible Restricciones: Límites presupuestarios Número máximo de anuncios permitido en cada medio No negatividad

16 EJEMPLO 2: CAMPAÑA DE MARKETING Modelo: Solución: Contratar cada semana 30 anuncios en TV, 60 en Periódicos, 60 en Radio, y 24 en Internet

17 MODELOS LINEALES: SOLUCIÓN Posibles soluciones de un PL: Existe una única solución óptima (en un vértice) Existen infinitas soluciones óptimas (en aristas, caras o incluso la región factible completa) La solución óptima es no acotada La región factible es vacía (problema infactible)

18 MODELOS LINEALES: SOLUCIÓN Si un PL es factible y acotado, entonces tiene al menos una solución óptima que estará en un vértice de la región factible Como el número de vértices de la región es finito, basta con buscar la solución en ese reducido número de puntos Esta es la base del algoritmo Simplex: Algoritmo computacional basado en un procedimiento iterativo para calcular una solución de los PLs Desarrollado por G.B. Dantzig en 1947, marca el origen de la optimización moderna

19 MODELOS LINEALES: SOLUCIÓN Cómo funciona el método Simplex? 1. Encontrar una solución inicial factible (vértice) Se puede obtener resolviendo un problema auxiliar más sencillo 2. Comprobar si la solución (vértice) es óptima Analizando el cambio en la función objetivo a lo largo de las aristas que se alejan del vértice 3. Si no es óptima, seleccionar la arista con mayor mejora en la función objetivo 4. Moverse, a lo largo de esa arista, al vértice adyacente 5. Repetir 2-4 hasta encontrar una solución óptima (en un número finito de pasos) Cómo representar estos pasos en términos algebraicos (programables)?

20 INTERPRETACIÓN ECONÓMICA DE LA SOLUCIÓN Para obtener información útil extra de la solución del problema, necesitamos obtener no solo los valores de la solución, sino también los valores de parámetros asociados Multiplicadores de Lagrange Nos permiten asignar precios a los recursos y límites de la solución Y además entender por qué un conjunto de valores es óptimo También podemos realizar un análisis de sensitividad: Qué le pasa a la solución si cambiamos algún parámetro (dato) del problema?

21 INTERPRETACIÓN ECONÓMICA DE LA SOLUCIÓN Los precios sombra proporcionan información relevante para el análisis económico de la solución de un PL Cada restricción tiene asociado un precio sombra Representa el cambio en la función objetivo debido a un cambio unitario en el lado derecho de la restricción Se puede entender cómo el valor de una unidad adicional de recurso: Si pagamos el precio sombra por esta unidad, nuestro beneficio no cambia El método Simplex calcula los precios sombra a la vez que calcula la solución del PL

22 INTERPRETACIÓN ECONÓMICA DE LA SOLUCIÓN Para entender el significado de los precios sombra, consideramos de nuevo el problema de la dieta: Cuya solución óptima es: x 1 = , x 2 = , coste = Con multiplicadores: (Hidratos de c.), 0 (Proteínas), (Grasas)

23 INTERPRETACIÓN ECONÓMICA DE LA SOLUCIÓN Imaginemos que necesitamos proporcionar 51 gramos de hidratos de c., en lugar de 50 El problema a resolver es: La nueva solución óptima es: x 1 = , x 2 = , coste = El coste se ha incrementado en euros, el precio sombra asociado con la primera restricción

24 INTERPRETACIÓN ECONÓMICA DE LA SOLUCIÓN También disponemos de los precios sombra correspondientes a los requerimientos de proteínas y grasas: La dieta óptima recomienda gramos de proteínas, más del doble de la cantidad mínima requerida (40) La solución no cambia si incrementamos dicho límite, y su precio sombra es 0 Si el mínimo requerido de grasas se incrementa hasta 61 gramos, el coste sube a euros El incremento del coste es euros (que es su precio sombra)

25 INTERPRETACIÓN ECONÓMICA DE LA SOLUCIÓN Para obtener estos valores en Excel, necesitamos llamar a la herramienta Solver Una vez obtenemos la solución, seleccionamos Sensitividad en la ventana de diálogo Obtenemos una nueva hoja con la información que se muestra:

26 INTERPRETACIÓN ECONÓMICA DE LA SOLUCIÓN Otros valores relevantes en la solución de un PL son los costes reducidos Un coste reducido se asocia a una variable con valor óptimo 0, o en su cota inferior Representa el cambio en la función objetivo cuando la variable pasa a valer 1 (o una unidad superior que su cota inferior) Interpretación del coste reducido: Coste de empezar una nueva actividad (no llevada a cabo previamente) Si las variables tienen cotas superiores u b, los costes reducidos se asocian a las mismas: Representan el cambio en el objetivo si la variable toma el valor u b + 1, Representan el beneficio asociado a un incremento unitario en esa variable, que ya estaba en su nivel máximo

27 INTERPRETACIÓN ECONÓMICA DE LA SOLUCIÓN Para el problema de la campaña de marketing: Maximizar audiencia, elegir número de anuncios en cada medio Informe obtenido a través de la opción Sensitividad :

28 INTERPRETACIÓN ECONÓMICA DE LA SOLUCIÓN De los anteriores valores, se deduce que: El precio sombra asociado al presupuesto es Cada euro adicional de presupuesto incrementaría la audiencia en clientes El número óptimo de anuncios de Internet es 0 < 23,9474 < 80 Su coste reducido es 0 El óptimo de anuncios en TV está en su cota superior (=30) y su coste reducido es Cada anuncio adicional incrementaría la audiencia en clientes El óptimo de anuncios en Periódicos está en su cota superior (=60) y su coste reducido es Cada anuncio adicional incrementaría la audiencia en clientes El óptimo de anuncios en Radio está en su cota superior (=60) y su coste reducido es Cada anuncio adicional incrementaría la audiencia en clientes

29 INTERPRETACIÓN ECONÓMICA DE LA SOLUCIÓN Finalmente, también podemos obtener información extra sobre los máximos cambios permitidos en los parámetros que no afectarían a la solución En problema dieta, seleccionamos Sensitividad y obtenemos:

30 INTERPRETACIÓN ECONÓMICA DE LA SOLUCIÓN Observemos los valores de las columnas Allowable increase y Allowable decrease Para cambios en los parámetros de la función objetivo se tiene: El valor del coste de la carne podría subir hasta y la solución no cambiaría, sí el coste de la dieta (más cara) Se podría reducir hasta y la solución no cambiaría La solución también se mantendría para precios de patatas en el intervalo [0.67,15]

31 INTERPRETACIÓN ECONÓMICA DE LA SOLUCIÓN Para el lado derecho de las restricciones se tiene: Los límites de grasa se podrían incrementar hasta y disminuir hasta sin afectar la solución Consideremos el caso para el que el límite de grasa se fija en 61. La nueva solución es: En este caso, la solución ha cambiado. Por qué? Qué restricciones están activas en la solución Qué valores valores toman los multiplicadores de Lagrange

Unidad 2 Método gráfico de solución

Unidad 2 Método gráfico de solución Unidad 2 Método gráfico de solución Los problemas de programación lineal (pl) que sólo tengan dos variables de decisión pueden resolverse gráficamente, ya que, como se ha visto en los Antecedentes, una

Más detalles

Ejercicios de Programación Lineal

Ejercicios de Programación Lineal Ejercicios de Programación Lineal Investigación Operativa Ingeniería Informática, UCM Curso 8/9 Una compañía de transporte dispone de camiones con capacidad de 4 libras y de 5 camiones con capacidad de

Más detalles

Unidad 5 Utilización de Excel para la solución de problemas de programación lineal

Unidad 5 Utilización de Excel para la solución de problemas de programación lineal Unidad 5 Utilización de Excel para la solución de problemas de programación lineal La solución del modelo de programación lineal (pl) es una adaptación de los métodos matriciales ya que el modelo tiene

Más detalles

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Fundamentos de Investigación de Operaciones Investigación de Operaciones de agosto de 200. Estandarización Cuando se plantea un modelo de LP pueden existir igualdades y desigualdades. De la misma forma

Más detalles

Programación Lineal Continua/ Investigación Operativa. EJERCICIOS DE INVESTIGACIÓN OPERATIVA. Hoja 1

Programación Lineal Continua/ Investigación Operativa. EJERCICIOS DE INVESTIGACIÓN OPERATIVA. Hoja 1 EJERCICIOS DE INVESTIGACIÓN OPERATIVA. Hoja 1 1. Una empresa que fabrica vehículos quiere determinar un plan de producción semanal. Esta empresa dispone de 5 fábricas que producen distintos elementos del

Más detalles

Tipo de máquina Tiempo disponible. (h/maq. Por semana) Fresadora 500 Torno 350 Rectificadora 150

Tipo de máquina Tiempo disponible. (h/maq. Por semana) Fresadora 500 Torno 350 Rectificadora 150 Ejercicios Tema 1. 1.- Utilizar el procedimiento gráfico para resolver los siguientes P.L. a) Max z = 10x 1 + 20x 2 s.a x 1 + 2x 2 15 x 1 + x 2 12 5x 1 + 3x 2 45 x 1,x 2 0 b) Max z = 2x 1 + x 2 s.a. x

Más detalles

Ejercicios Propuestos Tema 2

Ejercicios Propuestos Tema 2 Ejercicios Propuestos Tema 2 1 Programar la función: fx, A, X = a 0 + a 1 x x 1 + a 2 x x 1 x x 2 + + a n x x 1 x x 2 x x n, donde A = [a 0, a 1,, a n ], X = [x 1, x 2,, x n ], con x R Calcular todas las

Más detalles

PRÁCTICA 1: Optimización con Excel 2010

PRÁCTICA 1: Optimización con Excel 2010 Grado en Administración de Empresas Departamento de Estadística Asignatura: Optimización y Simulación para la Empresa Curso: 2011/2012 PRÁCTICA 1: Optimización con Excel 2010 1. Modelización mediante hojas

Más detalles

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Formulación de Modelos de Programacón Lineal 25 de julio de 2003 La (LP es una herramienta para resolver problemas de optimización

Más detalles

L A P R O G R A M A C I O N

L A P R O G R A M A C I O N L A P R O G R A M A C I O N L I N E A L 1. INTRODUCCIÓN: la programación lineal como método de optimación La complejidad de nuestra sociedad en cuanto a organización general y económica exige disponer

Más detalles

INTRODUCCION..2 ANALISIS POSOPTIMO O DE SENSIBILIDAD.3. CAMBIOS EN LA VARIABLE DE COEFICIENTE.3 SOLUCIOON DE EJMPLO 2.14

INTRODUCCION..2 ANALISIS POSOPTIMO O DE SENSIBILIDAD.3. CAMBIOS EN LA VARIABLE DE COEFICIENTE.3 SOLUCIOON DE EJMPLO 2.14 INDICE: 1 INTRODUCCION.. ANALISIS POSOPTIMO O DE SENSIBILIDAD.3. CAMBIOS EN LA VARIABLE DE COEFICIENTE.3 CAMBIOS QUE AFECTAN LA FACTIBILIDAD..5 SOLUICON DE JEJMPLO 1..7 SOLUCIOON DE EJMPLO.14 CONCLUCIONES

Más detalles

Programación Lineal. Ficha para enseñar a utilizar el Solver de EXCEL en la resolución de problemas de Programación Lineal

Programación Lineal. Ficha para enseñar a utilizar el Solver de EXCEL en la resolución de problemas de Programación Lineal Programación Lineal Ficha para enseñar a utilizar el Solver de EXCEL en la resolución de problemas de Programación Lineal Ejemplo: Plan de producción de PROTRAC En esta ficha vamos a comentar cómo se construyó

Más detalles

Programación Lineal 1. Prof. Jorge Amaya A. 2

Programación Lineal 1. Prof. Jorge Amaya A. 2 Programación Lineal 1 Prof. Jorge Amaya A. 2. Abril de 2007 1 Este es un teto destinado eclusivamente a los alumnos del curso MA37A-OPTIMIZACION, de la Escuela de Ingeniería de la Universidad de Chile.

Más detalles

PROGRAMACIÓN LINEAL. Ejemplo a) Dibuja el recinto formado por los puntos que cumplen las siguientes condiciones:

PROGRAMACIÓN LINEAL. Ejemplo a) Dibuja el recinto formado por los puntos que cumplen las siguientes condiciones: PROGRAMACIÓN LINEAL CONTENIDOS: Desigualdades e inecuaciones. Sistemas lineales de inecuaciones. Recintos convexos. Problemas de programación lineal. Terminología básica. Resolución analítica. Resolución

Más detalles

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 1 de agosto de 2003 1. Introducción Cualquier modelo de una situación es una simplificación de la situación real. Por lo tanto,

Más detalles

4.3 INTERPRETACIÓN ECONÓMICA DE LA DUALIDAD

4.3 INTERPRETACIÓN ECONÓMICA DE LA DUALIDAD 4.3 INTERPRETACIÓN ECONÓMICA DE LA DUALIDAD El problema de programación lineal se puede considerar como modelo de asignación de recursos, en el que el objetivo es maximizar los ingresos o las utilidades,

Más detalles

Tema 3: Aplicaciones de la diagonalización

Tema 3: Aplicaciones de la diagonalización TEORÍA DE ÁLGEBRA II: Tema 3. DIPLOMATURA DE ESTADÍSTICA 1 Tema 3: Aplicaciones de la diagonalización 1 Ecuaciones en diferencias Estudiando la cría de conejos, Fibonacci llegó a las siguientes conclusiones:

Más detalles

Tema 6: Problemas Especiales de Programación Lineal

Tema 6: Problemas Especiales de Programación Lineal Tema 6: Problemas Especiales de Programación Lineal Transporte Asignación Transbordo Tienen una estructura especial que permite modelizar situaciones en las que es necesario: Determinar la manera óptima

Más detalles

PRÁ CTICÁS DE IO CON POM-QM

PRÁ CTICÁS DE IO CON POM-QM Contenido INVESTIGACIÓN DE OPERACIONES Modelos y aplicaciones de programación lineal(página 3) Modelos de Transporte y transbordo(página 40) Modelos de Asignación(página 60) Modelos de gestión de proyectos

Más detalles

MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013

MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013 MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013 Relación de Ejercicios N o 3 1. Resolver los siguientes programas lineales primero gráficamente y después por el método del simplex. (a) Z = x +

Más detalles

euresti@itesm.mx Matemáticas

euresti@itesm.mx Matemáticas al Método al Método Matemáticas al Método En esta lectura daremos una introducción al método desarrollado por George Bernard Dantzig (8 de noviembre de 1914-13 de mayo de 2005) en 1947. Este método se

Más detalles

UNIDAD 6. Programación no lineal

UNIDAD 6. Programación no lineal UNIDAD 6 Programación no lineal En matemática Programación no lineal (PNL) es el proceso de resolución de un sistema de igualdades y desigualdades sujetas a un conjunto de restricciones sobre un conjunto

Más detalles

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente.

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente. ÁLGEBRA DE MATRICES Página 49 REFLEXIONA Y RESUELVE Elección de presidente Ayudándote de la tabla, estudia detalladamente los resultados de la votación, analiza algunas características de los participantes

Más detalles

Apuntes de Grafos. 1. Definiciones

Apuntes de Grafos. 1. Definiciones Apuntes de Grafos Un grafo es una entidad matemática introducida por Euler en 736 para representar entidades (vértices) que pueden relacionarse libremente entre sí, mediante el concepto de arista Se puede

Más detalles

Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8

Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8 Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8 gramos del primer elemento y 1 gramo del segundo; un kilo

Más detalles

I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL

I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL x + y 1 Dada la región del plano definida por las inecuaciones 0 x 3 0 y 2 a) Para qué valores (x, y) de dicha región es máxima

Más detalles

El etiquetado nutricional en marca propia

El etiquetado nutricional en marca propia El etiquetado nutricional en marca propia Los consumidores se interesan cada vez más por su alimentación. Conocer los alimentos es una herramienta esencial para poder seguir una dieta saludable. Podemos

Más detalles

Ejercicios resueltos de Programación Lineal

Ejercicios resueltos de Programación Lineal Investigación Operativa I 009 Ejercicios resueltos de Programación Lineal Mauricio estrella Erika Beatriz Palacin Palacios Pajuelo Daniel PREGUNTA Ingeniería de Sistemas y Computación UNDAC 3..6 la empresa

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables Capítulo 8 PROGRAMACIÓN LINEAL 8.1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver

Más detalles

LÍMITES Y CONTINUIDAD

LÍMITES Y CONTINUIDAD UNIDAD 5 LÍMITES Y CONTINUIDAD Páginas 0 y Describe las siguientes ramas: a) f () b) f () no eiste c) f () d) f () + e) f () f) f () + g) f () h) f () no eiste; f () 0 i) f () + f () + j) f () 5 4 f ()

Más detalles

1. INVERSA DE UNA MATRIZ REGULAR

1. INVERSA DE UNA MATRIZ REGULAR . INVERSA DE UNA MATRIZ REGULAR Calcular la inversa de una matriz regular es un trabajo bastante tedioso. A través de ejemplos se expondrán diferentes técnicas para calcular la matriz inversa de una matriz

Más detalles

Experimentación con Descartes na Aula. Galicia 2008

Experimentación con Descartes na Aula. Galicia 2008 Experimentación con Descartes na Aula. Galicia 2008 Follas de traballo Se traballará coas páxinas web da unidade á vez que se completan as follas de traballo, e se realizarán as actividades propostas que

Más detalles

Examen Final 28 de Enero de 2009 Permutación 1

Examen Final 28 de Enero de 2009 Permutación 1 Universitat Autònoma de Barcelona Introducció a l Economia, Curs 2008-2009 Codi: 25026 Examen Final 28 de Enero de 2009 Permutación 1 Primera Parte Preguntas de opción múltiple (20 puntos). Marca claramente

Más detalles

EJEMPLOS DE MODELADO Y FORMULACION DE PROGRAMAS DE OPTIMIZACION LINEAL

EJEMPLOS DE MODELADO Y FORMULACION DE PROGRAMAS DE OPTIMIZACION LINEAL EJEMPLOS DE MODELADO Y FORMULACION DE PROGRAMAS DE OPTIMIZACION LINEAL El Modelado es un arte, y requiere entrenamiento y práctica. Los 6 ejemplos siguientes muestran una variedad de problemas que pueden

Más detalles

FUNDAMENTOS DE ADMINISTRACIÓN Y GESTIÓN Teoría y ejercicios

FUNDAMENTOS DE ADMINISTRACIÓN Y GESTIÓN Teoría y ejercicios FUNDAMENTOS DE ADMINISTRACIÓN Y GESTIÓN Teoría y ejercicios 2ª edición JUAN PALOMERO con la colaboración de CONCEPCIÓN DELGADO Economistas Catedráticos de Secundaria ---------------------------------------------------

Más detalles

EJERCICIO 1. Sean las variables de decisión: x= n: de impresos diarios tipo A repartidos. y= n: de impresos diarios tipo B repartidos.

EJERCICIO 1. Sean las variables de decisión: x= n: de impresos diarios tipo A repartidos. y= n: de impresos diarios tipo B repartidos. EJERCICIO 1 Un estudiante dedica parte de su tiempo al reparto de propaganda publicitaria. La empresa A le paga 5 Bs.. por cada impreso repartido y la empresa B, con folletos más grandes, le paga 7 Bs.

Más detalles

UNA DIETA EQUILIBRADA

UNA DIETA EQUILIBRADA UNA DIETA EQUILIBRADA Los medios de comunicación nos incitan frecuentemente a consumir alimentos que no son convenientes ni necesarios. Conociendo nuestras necesidades y los alimentos desde el punto de

Más detalles

ESTIMACIÓN DE LINEAS DE POBREZA Y DE INDIGENCIA A PARTIR DE LA ENCUESTA NACIONAL DE INGRESOS Y GASTOS 1994-1995 1

ESTIMACIÓN DE LINEAS DE POBREZA Y DE INDIGENCIA A PARTIR DE LA ENCUESTA NACIONAL DE INGRESOS Y GASTOS 1994-1995 1 155 ESTIMACIÓN DE LINEAS DE POBREZA Y DE INDIGENCIA A PARTIR DE LA ENCUESTA NACIONAL DE INGRESOS Y GASTOS 1994-1995 1 DEPARTAMENTO ADMINISTRATIVO NACIONAL DE ESTADÍSTICA (DANE) COLOMBIA 1 Documento elaborado

Más detalles

Anexo a la guía 4 Geometría: ejemplos y comentarios

Anexo a la guía 4 Geometría: ejemplos y comentarios Anexo a la guía 4 Geometría: ejemplos y comentarios Sergio Dain 26 de mayo de 2014 En las guías 1 y 2 discutimos vectores, covectores y tensores de manera puramente algebraica, sin hacer referencia a la

Más detalles

11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones:

11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones: 11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones: 0 0 (1) 2x + 5y 50 (3) 3x + 5y 55 (5) x (2) 5x + 2y 60 (4) x + y

Más detalles

MADRID / JUNIO 06 LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / OPCIÓN A/ EXAMEN COMPLETO

MADRID / JUNIO 06 LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / OPCIÓN A/ EXAMEN COMPLETO EXAMEN COMPLETO INSTRUCCIONES GENERALES Y VALORACIÓN INSTRUCCIONES: El examen presenta dos opciones: A y B. El alumno deberá elegir una de ellas y contestar razonadamente a los cuatro ejercicios de que

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES )

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS SOLUCIONES HOJA 5: Optimización 5-1. Hallar los puntos críticos de las siguiente funciones y clasificarlos: a fx, y = x y + xy.

Más detalles

ÁLGEBRA 2º Ciencias Sociales PAU- LOGSE

ÁLGEBRA 2º Ciencias Sociales PAU- LOGSE . (Jun. 205 Opción A) Dadas las matrices A = ( a 2 + 2 2 ), B = ( ) y C = (c 0 0 b 0 c ) Calcula las matrices A B y B C. Calcula los valores de a, b y c que cumplen A B B C. Sol.- 2. (Jun. 205 Opción B)

Más detalles

UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. ESCUELA DE INGENIERIA INDUSTRIAL.

UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. ESCUELA DE INGENIERIA INDUSTRIAL. UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. ESCUELA DE INGENIERIA INDUSTRIAL. Optimización, Pauta Solemne 2. Semestre Primavera 2011 Profesores: Paul Bosch, Fernando Paredes, Pablo Rey Tiempo:

Más detalles

Tema 5: Dualidad y sensibilidad de los modelos lineales.

Tema 5: Dualidad y sensibilidad de los modelos lineales. ema 5: Dualidad y sensibilidad de los modelos lineales. Objetivos del tema: Introducir el concepto de Sensibilidad en la Programación Lineal Introducir el concepto de Dualidad en la Programación Lineal

Más detalles

Dualidad y Análisis de Sensibilidad

Dualidad y Análisis de Sensibilidad Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Industrial IN34A: Clase Auxiliar Dualidad y Análisis de Sensibilidad Marcel Goic F. 1 1 Esta es una versión bastante

Más detalles

Programación Lineal Entera

Programación Lineal Entera Programación Lineal Entera P.M. Mateo y David Lahoz 2 de julio de 2009 En este tema se presenta un tipo de problemas formalmente similares a los problemas de programación lineal, ya que en su descripción

Más detalles

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Programación Lineal Entera

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Programación Lineal Entera Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 11 de septiembre de 2003 1. Introducción Un LP donde se requiere que todas las variables sean enteras se denomina un problema

Más detalles

EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION. M. En C. Eduardo Bustos Farías

EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION. M. En C. Eduardo Bustos Farías EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION M. En C. Eduardo Bustos Farías 1 Minimización El método simplex puede aplicarse a un problema de minimización si se modifican los pasos del algoritmo: 1. Se cambia

Más detalles

LÍMITES DE FUNCIONES. CONTINUIDAD

LÍMITES DE FUNCIONES. CONTINUIDAD LÍMITES DE FUNCIONES. CONTINUIDAD Página 7 REFLEXIONA Y RESUELVE Visión gráfica de los ites Describe análogamente las siguientes ramas: a) f() b) f() no eiste c) f() d) f() +@ e) f() @ f) f() +@ g) f()

Más detalles

Optimización, Solemne 2. Semestre Otoño 2012 Profesores: Paul Bosch, Rodrigo López, Fernando Paredes, Pablo Rey Tiempo: 110 min.

Optimización, Solemne 2. Semestre Otoño 2012 Profesores: Paul Bosch, Rodrigo López, Fernando Paredes, Pablo Rey Tiempo: 110 min. UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. ESCUELA DE INGENIERIA INDUSTRIAL. Optimización, Solemne. Semestre Otoño Profesores: Paul Bosch, Rodrigo López, Fernando Paredes, Pablo Rey Tiempo: min.

Más detalles

El modelo EOQ básico (Economic Order Quantity) es el más simple y fundamental de todos los modelos de inventarios.

El modelo EOQ básico (Economic Order Quantity) es el más simple y fundamental de todos los modelos de inventarios. Tema 7 Sistemas de Inventarios 7.1. Modelo EOQ básico El modelo EOQ básico (Economic Order Quantity) es el más simple y fundamental de todos los modelos de inventarios. 7.1.1. Hipótesis del modelo 1. Todos

Más detalles

PRODUCTOS LIGHT ALIMENTOS LIGHT. Confederación de consumidores y Usuarios CECU-

PRODUCTOS LIGHT ALIMENTOS LIGHT. Confederación de consumidores y Usuarios CECU- Confederación de consumidores y Usuarios CECU- PRODUCTOS LIGHT ALIMENTOS LIGHT Los alimentos Light han invadido nuestra vida: mayonesas, refrescos, patatas, pan, quesos, yogurt, zumos etc., una breve visita

Más detalles

TEMA 3. PROGRAMACIÓN LINEAL

TEMA 3. PROGRAMACIÓN LINEAL Colegio Ntra. Sra. de Monte-Sión Departamento de Ciencias Asignatura: Matemáticas Aplicadas a las CCSS II Profesor: José Mª Almudéver Alemany TEMA 3. PROGRAMACIÓN LINEAL. Inecuaciones lineales con dos

Más detalles

Matemáticas aplicadas a las Ciencias Sociales II. Examen final. 18 de mayo de 2012. Nombre y apellidos:... Propuesta A

Matemáticas aplicadas a las Ciencias Sociales II. Examen final. 18 de mayo de 2012. Nombre y apellidos:... Propuesta A Matemáticas aplicadas a las Ciencias Sociales II. Examen final. 18 de mayo de 2012 Nombre y apellidos:... Propuesta A 1. Dada la ecuación matricial. a) Resuelve la ecuación. (0,75 puntos) 1 b) Si 0 1 y

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

Cálculo de las Acciones Motoras en Mecánica Analítica

Cálculo de las Acciones Motoras en Mecánica Analítica Cálculo de las Acciones Motoras en Mecánica Analítica 1. Planteamiento general El diseño típico de la motorización de un sistema mecánico S es el que se muestra en la figura 1. Su posición viene definida

Más detalles

2.1. El modelo de Programación Lineal

2.1. El modelo de Programación Lineal C APÍTULO 2 PROGRAMACIÓN LINEAL 2.. El modelo de Programación Lineal En los siglos XVII y XVIII, grandes matemáticos, como Newton, Leibnitz, Bernoulli y, sobre todo, Lagrange, que tanto habían contribuido

Más detalles

Análisis de los datos

Análisis de los datos Universidad Complutense de Madrid CURSOS DE FORMACIÓN EN INFORMÁTICA Análisis de los datos Hojas de cálculo Tema 6 Análisis de los datos Una de las capacidades más interesantes de Excel es la actualización

Más detalles

SOLUCION DE MODELOS DE PROGRAMACION LINEAL EN UNA HOJA DE CALCULO. PROBLEMAS DE TRANSPORTE Y ASIGNACION.

SOLUCION DE MODELOS DE PROGRAMACION LINEAL EN UNA HOJA DE CALCULO. PROBLEMAS DE TRANSPORTE Y ASIGNACION. UNIVERSIDAD NACIONAL DE LA PLATA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA DE LA PRODUCCIÓN INGENIERÍA INDUSTRIAL SOLUCION DE MODELOS DE PROGRAMACION LINEAL EN UNA HOJA DE CALCULO. PROBLEMAS DE

Más detalles

Unidad III: Programación no lineal

Unidad III: Programación no lineal Unidad III: Programación no lineal 3.1 Conceptos básicos de problemas de programación no lineal Programación no lineal (PNL) es el proceso de resolución de un sistema de igualdades y desigualdades sujetas

Más detalles

EJERCICIOS DE PROGRAMACIÓN LINEAL

EJERCICIOS DE PROGRAMACIÓN LINEAL EJERCICIOS DE PROGRAMACIÓN LINEAL 1. Disponemos de 210.000 euros para invertir en bolsa. Nos recomiendan dos tipos de acciones. Las del tipo A, que rinden el 10% y las del tipo B, que rinden el 8%. Decidimos

Más detalles

Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema #8

Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema #8 IO04001 Investigación de Operaciones I Tema #8 Uso de software de PL Objetivos de aprendizaje Al finalizar el tema serás capaz de: Manejar una hoja de cálculo como Excel para la Manejar una hoja de cálculo

Más detalles

1.3 Números racionales

1.3 Números racionales 1.3 1.3.1 El concepto de número racional Figura 1.2: Un reparto no equitativo: 12 5 =?. Figura 1.3: Un quinto de la unidad. Con los números naturales y enteros es imposible resolver cuestiones tan simples

Más detalles

-.PROGRAMACION LINEAL.- Problemas resueltos

-.PROGRAMACION LINEAL.- Problemas resueltos -.PROGRAMACION LINEAL.- Problemas resueltos EJEMPLO 1. Un expendio de carnes de la ciudad acostumbra preparar la carne para albondigón con una combinación de carne molida de res y carne molida de cerdo.

Más detalles

Problema de Programación Lineal

Problema de Programación Lineal Problema de Programación Lineal Introducción La optimización es un enfoque que busca la mejor solución a un problema. Propósito: Maximizar o minimizar una función objetivo que mide la calidad de la solución,

Más detalles

MATEMÁTICAS III. RESTRICCIONES DE IGUALDAD

MATEMÁTICAS III. RESTRICCIONES DE IGUALDAD MATEMÁTICAS III. PROBLEMAS Y CUESTIONES TEMA 4: RESTRICCIONES DE IGUALDAD OPTIMIZACIÓN CON Problema 1: Una empresa calcula que puede alcanzar unos beneficios anuales (en miles de euros) dados por la función:

Más detalles

Selectividad Septiembre 2013 OPCIÓN B

Selectividad Septiembre 2013 OPCIÓN B Pruebas de Acceso a las Universidades de Castilla y León ATEÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EJERCICIO Nº páginas Tablas OPTATIVIDAD: EL ALUNO DEBERÁ ESCOGER UNA DE LAS DOS OPCIONES Y DESARROLLAR

Más detalles

Centro de Capacitación en Informática

Centro de Capacitación en Informática Fórmulas y Funciones Las fórmulas constituyen el núcleo de cualquier hoja de cálculo, y por tanto de Excel. Mediante fórmulas, se llevan a cabo todos los cálculos que se necesitan en una hoja de cálculo.

Más detalles

2) Se ha considerado únicamente la mano de obra, teniéndose en cuenta las horas utilizadas en cada actividad por unidad de página.

2) Se ha considerado únicamente la mano de obra, teniéndose en cuenta las horas utilizadas en cada actividad por unidad de página. APLICACIÓN AL PROCESO PRODUCTIVO DE LA EMPRESA "F. G. / DISEÑO GRÁFICO". AÑO 2004 Rescala, Carmen Según lo explicado en el Informe del presente trabajo, la variación en la producción de páginas web de

Más detalles

Programación lineal. Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad

Programación lineal. Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad 1 Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad 1. Dibuja la región del plano definida por las siguientes inecuaciones: x 0, 0 y 2, y + 2x 4 Representando las

Más detalles

02 Ejercicios de Selectividad Programación Lineal

02 Ejercicios de Selectividad Programación Lineal Ejercicios propuestos en 009 1.- [009-1-B-1] En un examen se propone el siguiente problema: F x, y = 6x+ 3y en la región Indique dónde se alcanza el mínimo de la función determinada por las restricciones

Más detalles

MÓDULO 2: TRATAMIENTO DE DATOS CON HOJA DE CÁLCULO. Tema 4: Herramientas de análisis: buscar objetivo, escenarios, Solver

MÓDULO 2: TRATAMIENTO DE DATOS CON HOJA DE CÁLCULO. Tema 4: Herramientas de análisis: buscar objetivo, escenarios, Solver MÓDULO 2: TRATAMIENTO DE DATOS CON HOJA DE CÁLCULO Tema 4: Herramientas de análisis: buscar objetivo, escenarios, Solver Leire Aldaz, Begoña Eguía y Leire Urcola Índice del tema Introducción Buscar Objetivo

Más detalles

Tema 4: Producción y Costes

Tema 4: Producción y Costes Tema 4: Producción y Costes Introducción 1. Producción en el corto plazo 1. Productividad total, media y marginal 2. ey de rendimientos decrecientes 2. Producción en el largo plazo 1. Rendimientos a escala

Más detalles

SOLUCIONES SESIÓN DE PRÁCTICAS 2

SOLUCIONES SESIÓN DE PRÁCTICAS 2 INVESTIGACIÓN OPERATIVA CURSO 2008/2009 EJERCICIOS PARA ENTREGAR SOLUCIONES SESIÓN DE PRÁCTICAS 2 Ejercicio 1 página 15 del cuadernillo: responder a todos los apartados. a) Determinar el número de unidades

Más detalles

PAU, 2014 (septiembre)

PAU, 2014 (septiembre) PAU, 2015 (modelo) Una empresa comercializa un determinado producto. Compra a su proveedor cada unidad que comercializa, a un precio de 150. La empresa se está planteando la producción del bien que distribuye.

Más detalles

Programación Lineal. Programación Lineal

Programación Lineal. Programación Lineal Programación Lineal Modelo General Max Z = c 1 + C 2 +... c n, s.a. a 11 + a 12 +... + a 1n b 1 a 21 + a 22 +... + a 2n b 2.. a m1 + a m2 +... + a mn b m 0, 0, x 3 0,..., 0 Programación Lineal Interpretación

Más detalles

Colección de Problemas IV

Colección de Problemas IV 1.- Una compañía se dedica a la elaboración de 2 productos, la demanda de estos productos es de 200 unidades para cada uno de ellos. La compañía podrá elaborar los productos o comprarlos a un proveedor.

Más detalles

Objetivos: Al inalizar la unidad, el alumno:

Objetivos: Al inalizar la unidad, el alumno: Unidad 7 transformaciones lineales Objetivos: Al inalizar la unidad, el alumno: Comprenderá los conceptos de dominio e imagen de una transformación. Distinguirá cuándo una transformación es lineal. Encontrará

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

OBJETIVOS ESPECÍFICOS DE FORMACION ACADÉMICA

OBJETIVOS ESPECÍFICOS DE FORMACION ACADÉMICA MATERIA Cálculo Integral CÓDIGO 08301 REQUISITOS Cálculo Diferencial (Código 08300) PROGRAMAS Administración de Empresas, Contaduría y Finanzas Internacionales, Economía y Negocios Internacionales, Economía

Más detalles

HERRAMIENTAS DE EXCEL PARA EL ANALISIS Y VALORACION DE PROYECTOS DE INVERSION (I)

HERRAMIENTAS DE EXCEL PARA EL ANALISIS Y VALORACION DE PROYECTOS DE INVERSION (I) Revista de Dirección y Administración de Empresas. Número 10, diciembre 2002 págs. 59-76 Enpresen Zuzendaritza eta Administraziorako Aldizkaria. 10. zenbakia, 2002 abendua 59-76 orr. HERRAMIENTAS DE EXCEL

Más detalles

Interpolación polinómica

Interpolación polinómica 9 9. 5 9. Interpolación de Lagrange 54 9. Polinomio de Talor 57 9. Dados dos puntos del plano (, ), (, ), sabemos que ha una recta que pasa por ellos. Dicha recta es la gráfica de un polinomio de grado,

Más detalles

Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor

Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor Tema 5 Aproximación funcional local: Polinomio de Taylor Teoría Los polinomios son las funciones reales más fáciles de evaluar; por esta razón, cuando una función resulta difícil de evaluar con exactitud,

Más detalles

GUIA DE MANEJO DE EXCEL PARA LA ASIGNATURA ESTADÍSTICA DESCRIPTIVA

GUIA DE MANEJO DE EXCEL PARA LA ASIGNATURA ESTADÍSTICA DESCRIPTIVA GUIA DE MANEJO DE EXCEL PARA LA ASIGNATURA ESTADÍSTICA DESCRIPTIVA Proyecto Piloto ECTS CURSO 2006/07 1 MANEJO DE LA HOJA DE CALCULO EXCEL PARA ANÁLISIS DESCRIPTIVO Y EXPLORATORIO DE DATOS. INTRODUCCIÓN

Más detalles

Herramienta Solver. Activar Excel Solver

Herramienta Solver. Activar Excel Solver Herramienta Solver Introducción: Solver forma parte de una serie de comandos a veces denominados herramientas de análisis Y si. Con Solver, puede encontrar un valor óptimo (mínimo o máximo) para una fórmula

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Ejercicio Dada la matriz A = 0 2 0 a) Escribir explícitamente la aplicación lineal f : 2 cuya matriz asociada con respecto a las bases canónicas es A. En primer lugar definimos las

Más detalles

T-3.- RECOMENDACIONES NUTRICIONALES EN LAS DIFERENTES ETAPAS DE LA VIDA

T-3.- RECOMENDACIONES NUTRICIONALES EN LAS DIFERENTES ETAPAS DE LA VIDA T-3.- RECOMENDACIONES NUTRICIONALES EN LAS DIFERENTES ETAPAS DE LA VIDA Una alimentación equilibrada es aquella que hace posible que el individuo, tanto si es adulto como si está en alguna etapa fisiológica

Más detalles

1 v 1 v 2. = u 1v 1 + u 2 v 2 +... u n v n. v n. y v = u u = u 2 1 + u2 2 + + u2 n.

1 v 1 v 2. = u 1v 1 + u 2 v 2 +... u n v n. v n. y v = u u = u 2 1 + u2 2 + + u2 n. Ortogonalidad Producto interior Longitud y ortogonalidad Definición Sean u y v vectores de R n Se define el producto escalar o producto interior) de u y v como u v = u T v = u, u,, u n ) Ejemplo Calcular

Más detalles

Investigación Operacional I EII 445

Investigación Operacional I EII 445 Investigación Operacional I EII 445 Programación Lineal Método Simple Gabriel Gutiérrez Jarpa. Propiedades Básicas de Programación Lineal Formato Estándar Un problema de programación lineal es un programa

Más detalles

Matrices: Conceptos y Operaciones Básicas

Matrices: Conceptos y Operaciones Básicas Matrices: Conceptos y Operaciones Básicas Departamento de Matemáticas, CCIR/ITESM 8 de septiembre de 010 Índice 111 Introducción 1 11 Matriz 1 113 Igualdad entre matrices 11 Matrices especiales 3 115 Suma

Más detalles

MODELO DE ASIGNACIÓN $A$15:$D$15 < = $A$4:$D$4 $E$11:$E$13 = $E$1:$E$3 METODO DE TRANSPORTE - 129 - ING. José Luís Albornoz Salazar - 130 - - Máxi

MODELO DE ASIGNACIÓN $A$15:$D$15 < = $A$4:$D$4 $E$11:$E$13 = $E$1:$E$3 METODO DE TRANSPORTE - 129 - ING. José Luís Albornoz Salazar - 130 - - Máxi - Máxi En el espacio en blanco, en la parte inferior izquierda, Sujetas a las siguientes Restricciones indique las restricciones o condiciones del problema, para lo cual haga clic en Agregar. METODO DE

Más detalles

Nutrición para el entrenamiento y la competición.

Nutrición para el entrenamiento y la competición. Introducción Nutrición para el entrenamiento y la competición. La dieta normal consiste de un 40% de calorías provenientes de carbohidratos, 40% de grasas y 20% de proteínas. Esta dieta normal no es necesariamente

Más detalles

Matemáticas - ADE/FyCo-2013-2014 Examen-Enero para el dni: 1

Matemáticas - ADE/FyCo-2013-2014 Examen-Enero para el dni: 1 Matemáticas - ADE/FyCo-2013-2014 Examen-Enero para el dni: 1 Ejercicio 1 Calcular la inversa de la matriz 0 1 0 0 0 1 0 1 1 0 0 0 0 0 1 0. 1 0 1 0 1 0 0 0 0 1 1 1 0 2 0 1 0 0 1 0 0 0 1 0 1 0 3 0 1 1 0

Más detalles

Métodos generales de generación de variables aleatorias

Métodos generales de generación de variables aleatorias Tema Métodos generales de generación de variables aleatorias.1. Generación de variables discretas A lo largo de esta sección, consideraremos una variable aleatoria X cuya función puntual es probabilidad

Más detalles

Desarrollar un modelo Lingo. Para desarrollar un modelo de optimización en Lingo hay que especificar:

Desarrollar un modelo Lingo. Para desarrollar un modelo de optimización en Lingo hay que especificar: Desarrollar un modelo Lingo Para desarrollar un modelo de optimización en Lingo hay que especificar: Función Objetivo Max(Min) = COST O1 V ARIABLE1 + COST O2 V ARIABLE2; Variables: Los nombres de las variables

Más detalles

Programación lineal. En esta Unidad didáctica nos proponemos alcanzar los objetivos siguientes:

Programación lineal. En esta Unidad didáctica nos proponemos alcanzar los objetivos siguientes: UNIDAD 3 Programación lineal a programación lineal es parte L de una rama de las matemáticas relativamente joven llamada investigación operativa. La idea básica de la programación lineal es la de optimizar,

Más detalles

El Problema del Transporte

El Problema del Transporte ASIGNATURA PROGRAMACIÓN LINEAL El Problema del Transporte Maestro Ing. Julio Rito Vargas Avilés Octubre 2014 1 Problema de Transporte Es un caso especial de problema de programación lineal (PPL), para

Más detalles

Sistemas de ayuda a la decisión Tema 5. Análisis de Sensibilidad Análisis Cualitivo y Análisis Paramétrico

Sistemas de ayuda a la decisión Tema 5. Análisis de Sensibilidad Análisis Cualitivo y Análisis Paramétrico Tema 5. Análisis de Sensibilidad Análisis Cualitivo y Análisis Paramétrico Indice 1) Motivavión, Identifición y Estructuración del problema 2) Análisis Paramétrico: Medidas basadas en distancias de umbral

Más detalles