Gradiente conjugado. MSc. Miguel Vargas-Félix 07/09/11 1/23

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Gradiente conjugado. MSc. Miguel Vargas-Félix miguelvargas@cimat.mx http://www.cimat.mx/~miguelvargas 07/09/11 1/23"

Transcripción

1 Gradiente conjugado MSc. Miguel Vargas-Félix 07/09/11 1/23

2 Contenido Contenido Estructura de una matriz rala a partir de conectividades Compressed Row/Column Storage Algoritmo de gradiente conjugado Gradiente conjugado precondicionado Gradiente conjugado + precondicionador Jacobi Algunos resultados de paralelización Preguntas? Bibliografía 07/09/11 2/23

3 Compressed Row Storage Compressed Row Storage El método Compressed Row Storage [Saad03 p362] en el cual se accesarán las entradas de cada renglón de la matriz A en secuencia V 3 ={2,1,7} J 3 ={1,3,5} Con este método, por cada renglón de la matriz se guardan dos arreglos. Uno conteniendo los índices y otro los valores de los elementos de ese renglón cuyo valor sea diferente a cero. Buscar en un renglón una entrada con cierto índice de columna, se tendrá un costo de búsqueda del elemento de orden O n en el peor caso. 07/09/11 3/23

4 Compressed Row Storage Multiplicación matriz-vector Pra el caso de multiplicación matriz-vector c= Ab el órden de búsqueda es O 1, esto es porque no se hace una búsqueda de las entradas del rengón, se toman las entradas una tras otra. Sea J i el conjunto de entradas no cero del renglón i de A c 6 = 8 9 c1 c 2 c 3 c 4 c 5 n c i = i=1 a i j b j c 1 c 2 c 3 c 4 c 5 c r i c i = k= V k i b J k i La ventaja de utilizar Compressed Row Storage es que los datos de cada renglón de la matriz de rigidez son accesados en secuencia uno tras otro, esto producirá una ventaja de acceso al entrar el bloque de memoria de cada renglón en el cache del CPU. El cálculo de cada c i se hace de forma independiente, lo que permite la paralelización. 07/09/11 4/23

5 Algoritmo de gradiente conjugado Algoritmo de gradiente conjugado Es un método iterativo para minimizar funciones cuadráticas convexas de la forma f x = 1 2 xt A x x T b, donde x, b R n y A R n n es una matriz simétrica positiva definida. Descenso de gradiente (verde), gradiente conjugado (rojo) 07/09/11 5/23

6 Algoritmo de gradiente conjugado Para minimizar f x calculamos primero su gradiente, f x =A x b. Buscando igualar a cero el gradiente, podemos ver el gradiente conjugado como un método iterativo para resolver systemas de ecuaciones lineales A x=b. A partir de una matriz A simétrica positiva definida, podemos definir un producto interno como x T A y= x, y A. Ahora, decimos que un vector x es conjugado a otro vector y con respecto a una matriz A si x, y A =0, con x y. La idea del algoritmo es utilizar direcciones conjugadas para el descenso en la búsqueda del punto óptimo x * [Noce06 p103], es decir x * = 1 p 1 2 p 2 n p n, los coeficientes están dados a partir de la combinación lineal 07/09/11 6/23

7 Algoritmo de gradiente conjugado con A x * = 1 A p 1 2 A p 2 n A p n =b, k = p T k b = p k, b. p T k A p k p k, p k A A partir de una matriz A de rango n sólo se pueden definir n vectores A-conjugados, por lo tanto el algoritmo de gradiente conjugado garantiza la obtención de una solución en un máximo de n iteraciones. De la fórmula de actualización tomando p como una dirección de descenso. x k + 1 = x k + α p k, 07/09/11 7/23

8 Algoritmo de gradiente conjugado Definamos g k = f x k, el tamaño de paso que minimiza la función f x a lo largo de la dirección x k p k es k = g T k p k. p T k A p k Si definimos p k 1 como la dirección más cercana al gradiente g k bajo la restricción de ser conjugado. Esta dirección está dada por la proyección de g k en el espacio ortogonal a p k con respecto al producto interno inducido por A, así p k 1 = g k p T k A g k p p T k. k A p k 07/09/11 8/23

9 Algoritmo de gradiente conjugado El algoritmo es el siguiente: x 0, coordenada inicial g 0 A x 0 b, gradiente inicial p 0 g 0, dirección inicial de descenso, tolerancia k 0 mientras g k 0, es decir k rank A g k k g T k p k p T k A p k x k 1 g k 1 x k k p k A x k 1 b k g T k 1 A p k p k T A p k p k 1 g k 1 k 1 p k k k 1 Algoritmo de gradiente conjugado Generalmente no es necesario realizar las n iteraciones, se puede definir la precisión deseada limitando la convergencia con una tolerancia. 07/09/11 9/23

10 Algoritmo de gradiente conjugado El algoritmo de gradiente conjugado mejorado es el siguiente [Noce06 p112]: x 0, coordenada inicial g 0 A x 0 b, gradiente inicial p 0 g 0, dirección inicial de descenso, tolerancia k 0 mientras g k 0, es decir k rank A g k w A p k α k g T k g k p T k w x k 1 x k k p k g k + αw g k + 1 k g T k 1 g k 1 g T k g k p k 1 g k 1 k 1 p k k k 1 Es fácilmente paralelizable utilizando memoria compartida, dado que el proceso más lento del algoritmo es una multiplicación matriz vector. 07/09/11 10/23

11 Algoritmo de gradiente conjugado Paralelización del algoritmo x 0, coordenada inicial g 0 A x 0 b, gradiente inicial p 0 g 0, dirección inicial de descenso, tolerancia n dim ( x ) k 0 mientras g k 0, es decir k rank A g k q 0, guardará p T k w g 0, guardará g k T g k paralelizar para i 1 n w i 0 para j 1 n (w) i (w) i + ( A) i j ( p k ) j fin_para q q+ ( p k ) i (w ) i g g+ ( g k ) i ( g k ) i fin_para α k g q T h 0, guardará g k 1 g k 1 paralelizar para i 1 n x k 1 i g k 1 i x k i k p k i g k i k w i h h g k 1 i g k 1 i fin_para k h g paralelizar para i 1 n p k 1 i fin_para k k 1 fin_mientras g k 1 i k 1 p k i 07/09/11 11/23

12 Algoritmo de gradiente conjugado Se han agrupado las operaciones algebraicas de cada iteración en tres ciclos, quedando sólo dos puntos de sincronización, uno para calcular k y otro para k. Esto es importante, dado que crear y destruír threads es costoso. Es posible reordenar el algoritmo para disminuir aún más los puntos de sincronización [DAze93] manteniendo la estabilidad numérica. 07/09/11 12/23

13 Algoritmo de gradiente conjugado Vector<T> G(rows); // Gradient Vector<T> P(rows); // Descent direcction Vector<T> W(rows); // A*P omp_set_num_threads(threads); T gg = 0.0; #pragma omp parallel for default(shared) \ reduction(+:gg) schedule(guided) for (int i = 1; i <= rows; ++i) { T sum = 0.0; int km = A.RowSize(i); for (register int k = 0; k < km; ++k) { sum += A.Entry(i, k)*x(a.index(i, k)); } G(i) = sum - Y(i); // G = AX - Y P(i) = -G(i); // P = -G gg += G(i)*G(i); // gg = G'*G } T epsilon = tolerance*tolerance; int step = 0; while (step < max_steps) { // Test termination condition if (gg <= epsilon) // Norm(Gn) <= tolerance { break; } T pw = 0.0; #pragma omp parallel for default(shared) \ reduction(+:pw) schedule(guided) for (int i = 1; i <= rows; ++i) { T sum = 0.0; int km = A.RowSize(i); for (register int k = 0; k < km; ++k) { sum += A.Entry(i, k)*p(a.index(i, k)); } W(i) = sum; // W = AP pw += P(i)*W(i); // pw = P'*W } T alpha = gg/pw; // alpha = (G'*G)/(P'*W) T gngn = 0.0; #pragma omp parallel for default(shared) \ reduction(+:gngn) for (int i = 1; i <= rows; ++i) { X(i) += alpha*p(i); // Xn = X + alpha*p G(i) += alpha*w(i); // Gn = G + alpha*w gngn += G(i)*G(i); // gngn = Gn'*Gn } T beta = gngn/gg; // beta = (Gn'*Gn)/(G'*G) #pragma omp parallel for default(shared) for (int i = 1; i <= rows; ++i) { P(i) = beta*p(i) - G(i); // Pn = -G + beta*p } gg = gngn; ++step; } Sección de código en C++ del algoritmo de gradiente conjugado en paralelo 07/09/11 13/23

14 Gradiente conjugado precondicionado Gradiente conjugado precondicionado El número de condición de una matriz A R n n no singular, para una norma está dado por A = A A 1. Para la norma 2, 2 A = A 2 A 1 2 = max A min A, donde son los valores singulares de la matriz. Para una matriz A simétrica positiva definida, donde son los eigenvalores de A. A = max A min A, 07/09/11 14/23

15 Gradiente conjugado precondicionado Un sistema de ecuaciones A x=b es considerado bien condicionado si un pequeño cambio en los valores de A o un pequeño cambio en b resulta en un pequeño cambio en x. Un sistema de ecuaciones A x=b es considerado mal condicionado si un pequeño cambio en los valores de A o un pequeño cambio en b resulta en un cambio grande en x. Así, matrices con un número de condición cercano a 1 se dicen que están bien condicionadas. Al reducir el número de condición el precondicionador acelera la velocidad de convergencia del método de gradiente conjugado. 07/09/11 15/23

16 Gradiente conjugado precondicionado Entonces, en vez de resolver el problema A x b=0, se resuelve el problema M 1 A x b =0. Al igual que la matriz A, el precondicionador M tiene que ser simétrico positivo definido. Parece entonces que es costoso calcular M 1, en general se utilizan precondicionadores con inversas fáciles de calcular o precondicionadores que se puedan factorizar con Cholesky. Al usar Cholesky, se factoriza el precondicionador una vez y en cada iteración del gradiente conjugado se resuelve el sistema de ecuaciones por sustitución hacia adelante y hacia atrás sin tener que calcular la inversa. 07/09/11 16/23

17 Gradiente conjugado precondicionado El algoritmo es el siguiente: x 0, coordenada inicial g 0 A x 0 b, gradiente inicial q 0 M 1 g 0 p 0 q 0, dirección inicial de descenso, tolerancia k 0 mientras g k 0, es decir k rank A g k w A p k T q k α k g k p T k w x k 1 x k k p k g k 1 g k w M 1 g q k 1 T q k 1 k g k 1 g T k q k p k 1 q k 1 k 1 p k k k 1 Algoritmo de gradiente conjugado precondicionado 07/09/11 17/23

18 Gradiente conjugado + precondicionador Jacobi Gradiente conjugado + precondicionador Jacobi El precondicionador Jacobi es el más sencillo, consiste en hacer M =diag A, de esta forma el precondicionador es una matriz ={ diagonal, cuya inversa es fácil de calcular 1 M 1 si i= j i j A i i. 0 si i j No se almacena todo M 1, sólo la diagonal. Al ser tan sencillo el precondicionador sigue siendo fácil de paralelizar el gradiente conjugado. 07/09/11 18/23

19 Gradiente conjugado + precondicionador Jacobi El algoritmo es el siguiente: x 0, coordenada inicial g 0 A x 0 b, gradiente inicial q 0 diag A 1 g 0 p 0 q 0, dirección inicial de descenso, tolerancia k 0 mientras g k 0, es decir k rank A g k w A p k T q k α k g k p T k w x k 1 x k k p k g k w g k 1 q k 1 diag A 1 g T q k 1 k g k 1 g T k q k p k 1 q k 1 k 1 p k k k 1 07/09/11 19/23

20 Algunos resultados de paralelización Algunos resultados de paralelización El siguiente ejemplo muestra la resolución de un sistema de 1'145,022 ecuaciones. Se utilizó una computadora MacPro 4 con ocho procesadores Intel Xeon a 2.26GHz, con hyperthreading habilitado (es decir 16 CPUs). La gráfica 3.1 muestra los el tiempo que el programa tardó en resolver el problema paralelizando con una cantidad diferente de CPUs en cada una de las 16 pruebas. La primer prueba fue con un CPU, la segunda con dos, y así sucesivamente Tiempo real [m] Tiempo ideal [m] Tiempo [m] Procesadores 07/09/11 20/23

21 Algunos resultados de paralelización Sea t 1 el tiempo que tardó el resolverse el problema con un CPU, entonces, en la gráfica anterior el tiempo ideal es t 1 /n, done n es el número de procesadores utilizado. Podemos dar una medida de eficiencia E del algoritmo E n = t 1 nt n Eficiencia Procesadores La eficiencia de la paralelización disminuye conforme se aumenta el número de CPUs. Esto es debido a que se crea un cuello de botella cuando más de un CPU trata de accesar a la memoría RAM de forma simultánea, lo cual es inevitable para este tipo de arquitecturas. 07/09/11 21/23

22 Preguntas? Preguntas? 07/09/11 22/23

23 Bibliografía Bibliografía [DAze93] E. F. D'Azevedo, V. L. Eijkhout, C. H. Romine. Conjugate Gradient Algorithms with Reduced Synchronization Overhead on Distributed Memory Multiprocessors. Lapack Working Note [Noce06] J. Nocedal, S. J. Wright. Numerical Optimization, Springer, [Piss84] S. Pissanetzky. Sparse Matrix Technology. Academic Press, [Saad03] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, /09/11 23/23

Cómputo en paralelo con OpenMP 1

Cómputo en paralelo con OpenMP 1 Cómputo en paralelo con OpenMP 1 Miguel Vargas-Félix miguelvargas@cimat.mx http://www.cimat.mx/~miguelvargas CIMAT, September 2, 2015 1/34 Velocidad de los procesadores de escritorio Recientemente, la

Más detalles

Descomposición de dominios

Descomposición de dominios Descomposición de dominios Miguel Vargas 27/10/10 1/29 Contenido Contenido Solución de ecuaciones diferenciales con descomposición de dominios Dominios sin traslape, complemento de Schur Método alternante

Más detalles

Análisis aplicado. Ax = b. Gradiente conjugado.

Análisis aplicado. Ax = b. Gradiente conjugado. José Luis Morales http://allman.rhon.itam.mx/ jmorales Departamento de Matemáticas. ITAM. 2009. Cuadráticas estrictamente convexas. φ(x) = 1 2 xt Ax b T x, A R n n minimizar φ(x) Ax = b. Cuadráticas estrictamente

Más detalles

Descomposición de dominios con el método alternante de Schwarz

Descomposición de dominios con el método alternante de Schwarz Descomposición de dominios con el método alternante de Schwarz MSc Miguel Vargas-Félix miguelvargas@cimat.mx http://www.cimat.mx/~miguelvargas 14/10/ 1/44 Contenido Contenido Solución de ecuaciones diferenciales

Más detalles

1. Examen 21/Junio/1994. Para la inversión de una matriz cuadrada A de orden n n, cuya inversa existe, se ha definido la siguiente iteración

1. Examen 21/Junio/1994. Para la inversión de una matriz cuadrada A de orden n n, cuya inversa existe, se ha definido la siguiente iteración CAPÍTULO 5 EJERCICIOS RESUELTOS: MÉTODOS ITERATIVOS PARA ECUACIONES LINEALES Ejercicios resueltos 1 1. Examen 21/Junio/1994. Para la inversión de una matriz cuadrada A de orden n n cuya inversa existe

Más detalles

Técnicas SuperEscalares en la Paralelización de Bibliotecas de Computación Matricial sobre Procesadores Multinúcleo y GPUs

Técnicas SuperEscalares en la Paralelización de Bibliotecas de Computación Matricial sobre Procesadores Multinúcleo y GPUs Técnicas SuperEscalares en la Paralelización de Bibliotecas de Computación Matricial sobre Procesadores Multinúcleo y GPUs Enrique S. Quintana-Ortí quintana@icc.uji.es High Performance Computing & Architectures

Más detalles

Computación 1-2011 - Matrices dispersas

Computación 1-2011 - Matrices dispersas Computación 1-2011 - Matrices dispersas Situación: Matrices muy grandes Previsible gran porcentaje de valores = 0 Se busca una forma de representar esas matrices que cueste menos memoria y permita acelerar

Más detalles

Universidad Politécnica de Madrid

Universidad Politécnica de Madrid Universidad Politécnica de Madrid Escuela Técnica Superior de Ingenieros de Minas Departamento de Matemática Aplicada y Métodos Informáticos x r 1 x 1 x 2 = x * d 1 * d 1 f(x)=cte. r Resolución de sistemas

Más detalles

Modelo de aplicaciones CUDA

Modelo de aplicaciones CUDA Modelo de aplicaciones CUDA Utilización de GPGPUs: las placas gráficas se utilizan en el contexto de una CPU: host (CPU) + uno o varios device o GPUs Procesadores masivamente paralelos equipados con muchas

Más detalles

TEMA 6. EIGENVALORES Y EIGENVECTORES

TEMA 6. EIGENVALORES Y EIGENVECTORES TEMA 6. EIGENVALORES Y EIGENVECTORES M. C. Roberto Rosales Flores INSTITUTO TECNOLÓGICO SUPERIOR DE TLAXCO Ingeniería en Logística M. C. Roberto Rosales Flores (ITST TEMA 6. EIGENVALORES Y EIGENVECTORES

Más detalles

Paralelización de la factorización LDL T usando el lenguaje de programación paralela ZPL

Paralelización de la factorización LDL T usando el lenguaje de programación paralela ZPL REVISTA INGENIERÍA UC. Vol. 15, N o 2, 72-80, 2008 Paralelización de la factorización LDL T usando el lenguaje de programación paralela ZPL Edwin Vargas, Enrique Flores, Demetrio Rey Lago Instituto de

Más detalles

Tópicos de implementación en paralelo

Tópicos de implementación en paralelo Apéndice C Esquema PGP. Implementación en un entorno paralelo. Para poder abordar eficazmente la simulación computacional de grandes problemas estructurales, es necesario utilizar estrategias numéricas

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES SISTEMAS DE ECUACIONES LINEALES INTRODUCCIÓN En el presente documento se explican detalladamente dos importantes temas: 1. Descomposición LU. 2. Método de Gauss-Seidel. Se trata de dos importantes herramientas

Más detalles

21.1.2. TEOREMA DE DETERMINACIÓN DE APLICACIONES LINEALES

21.1.2. TEOREMA DE DETERMINACIÓN DE APLICACIONES LINEALES Aplicaciones lineales. Matriz de una aplicación lineal 2 2. APLICACIONES LINEALES. MATRIZ DE UNA APLICACIÓN LINEAL El efecto que produce el cambio de coordenadas sobre una imagen situada en el plano sugiere

Más detalles

TEMA 4: CALCULO NUMERICO DE AUTOVALORES

TEMA 4: CALCULO NUMERICO DE AUTOVALORES Lino Alvarez - Aurea Martinez METODOS NUMERICOS TEMA 4: CALCULO NUMERICO DE AUTOVALORES 1 INTRODUCCION La determinación de autovalores y autovectores de una matriz cuadrada A de orden n es un problema

Más detalles

Tema 3 Resolución de Sistemas de Ecuaciones Lineales

Tema 3 Resolución de Sistemas de Ecuaciones Lineales Tema Resolución de Sistemas de Ecuaciones Lineales Índice Introducción 2 Método de Gauss 2 Resolución de sistemas triangulares 22 Triangulación por el método de Gauss 2 Variante Gauss-Jordan 24 Comentarios

Más detalles

ALGEBRA LINEAL. Héctor Jairo Martínez R. Ana María Sanabria R.

ALGEBRA LINEAL. Héctor Jairo Martínez R. Ana María Sanabria R. ALGEBRA LINEAL Héctor Jairo Martínez R. Ana María Sanabria R. SEGUNDO SEMESTRE 8 Índice general. SISTEMAS DE ECUACIONES LINEALES.. Introducción................................................ Conceptos

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Sistemas de Ecuaciones Lineales y Matrices Oscar G Ibarra-Manzano, DSc Departamento de Area Básica - Tronco Común DES de Ingenierías Facultad de Ingeniería, Mecánica, Eléctrica y Electrónica Trimestre

Más detalles

MÉTODOS DIRECTOS PARA LA RESOLUCIÓN DE ECUACIONES ALGEBRAICAS LINEALES

MÉTODOS DIRECTOS PARA LA RESOLUCIÓN DE ECUACIONES ALGEBRAICAS LINEALES CAPÍTULO 4 EJERCICIOS RESUELTOS: MÉTODOS DIRECTOS PARA LA RESOLUCIÓN DE ECUACIONES ALGEBRAICAS LINEALES Ejercicios resueltos 1 1. Determine el número de operaciones aritméticas necesarias para calcular

Más detalles

Métodos Iterativos para Resolver Sistemas Lineales

Métodos Iterativos para Resolver Sistemas Lineales Métodos Iterativos para Resolver Sistemas Lineales Departamento de Matemáticas, CCIR/ITESM 17 de julio de 2009 Índice 3.1. Introducción............................................... 1 3.2. Objetivos................................................

Más detalles

Fortran application to solve systems from NLA using compact storage

Fortran application to solve systems from NLA using compact storage Fortran application to solve systems from NLA using compact storage Wilson Rodríguez-Calderón a & Myriam Rocío Pallares-Muñoz b a Programa de Ingeniería Civil, Universidad Cooperativa de Colombia, Neiva,

Más detalles

TEMA 3: RESOLUCION DE SISTEMAS DE ECUACIONES LINEALES Y NO LINEALES

TEMA 3: RESOLUCION DE SISTEMAS DE ECUACIONES LINEALES Y NO LINEALES Lino Alvarez - Aurea Martinez METODOS NUMERICOS TEMA 3: RESOLUCION DE SISTEMAS DE ECUACIONES LINEALES Y NO LINEALES Abordaremos en este tema la resolución de Sistemas de Ecuaciones Lineales (por diferentes

Más detalles

Álgebra lineal y matricial

Álgebra lineal y matricial Capítulo Álgebra lineal y matricial.. Vectores y álgebra lineal Unconjuntodennúmerosreales(a,,a n )sepuederepresentar: como un punto en el espacio n-dimensional; como un vector con punto inicial el origen

Más detalles

Factorizaciones de Cholesky, matrices definidas. semidefinidas positivas.

Factorizaciones de Cholesky, matrices definidas. semidefinidas positivas. Factorizaciones de Cholesky, matrices definidas y semidefinidas positivas Héctor Manuel Mora Escobar Universidad Central, Bogotá hectormora@yahoo.com Junio de 2011 1 Introducción Este documento presenta,

Más detalles

TEMA 8: MÉTODOS NUMÉRICOS DE OPTIMIZACIÓN: PROBLEMAS DE OPTIMIZACIÓN SIN RESTRICCIONES. 2.1.- Búsqueda Unidireccional. Conceptos Generales.

TEMA 8: MÉTODOS NUMÉRICOS DE OPTIMIZACIÓN: PROBLEMAS DE OPTIMIZACIÓN SIN RESTRICCIONES. 2.1.- Búsqueda Unidireccional. Conceptos Generales. EMA 8: MÉODOS NUMÉRICOS DE OPIMIZACIÓN: PROBLEMAS DE OPIMIZACIÓN SIN RESRICCIONES 1.- INRODUCCIÓN: PROGRAMACIÓN MAEMÁICA.- OPIMIZACIÓN DE FUNCIONES SIN RESRICCIONES.1.- Búsqueda Unidireccional. Conceptos

Más detalles

Ejercicios 2.2 Usando aritmética de cuatro dígitos de precisión, sume la siguiente expresión

Ejercicios 2.2 Usando aritmética de cuatro dígitos de precisión, sume la siguiente expresión CAPÍTULO EJERCICIOS RESUELTOS: ARITMÉTICA DE ORDENADORES Y ANÁLISIS DE ERRORES Ejercicios resueltos Ejercicios.1 Calcula la suma y la resta de los números a = 0.453 10 4, y b = 0.115 10 3, con una aritmética

Más detalles

DESARROLLO DE SOFTWARE MODULAR, ABIERTO Y COLABORATIVO PARA SIMULACIÓN DE MÁQUINAS Y MECANISMOS

DESARROLLO DE SOFTWARE MODULAR, ABIERTO Y COLABORATIVO PARA SIMULACIÓN DE MÁQUINAS Y MECANISMOS UNIVERSIDADE DA CORUÑA Escola Politécnica Superior. Ferrol. INGENIERÍA INDUSTRIAL DESARROLLO DE SOFTWARE MODULAR, ABIERTO Y COLABORATIVO PARA SIMULACIÓN DE MÁQUINAS Y MECANISMOS Autor: Tutor: Miguel Álvarez

Más detalles

Producto Interno y Ortogonalidad

Producto Interno y Ortogonalidad Producto Interno y Ortogonalidad Departamento de Matemáticas, CSI/ITESM 15 de octubre de 2009 Índice 8.1. Contexto................................................ 1 8.2. Introducción...............................................

Más detalles

Anexo 1: Demostraciones

Anexo 1: Demostraciones 75 Matemáticas I : Álgebra Lineal Anexo 1: Demostraciones Espacios vectoriales Demostración de: Propiedades 89 de la página 41 Propiedades 89- Algunas propiedades que se deducen de las anteriores son:

Más detalles

Universidad de Costa Rica Escuela de Matemática ALGEBRA LINEAL. x x1 n. θ y. 1 n x1 n ȳ1 n. Carlos Arce S. William Castillo E. Jorge González V.

Universidad de Costa Rica Escuela de Matemática ALGEBRA LINEAL. x x1 n. θ y. 1 n x1 n ȳ1 n. Carlos Arce S. William Castillo E. Jorge González V. Universidad de Costa Rica Escuela de Matemática ALGEBRA LINEAL x x x1 n θ y y ȳ1 n 1 n x1 n ȳ1 n Carlos Arce S. William Castillo E. Jorge González V. 2003 Algebra Lineal Carlos Arce S., William Castillo

Más detalles

MÉTODOS MATEMÁTICOS (Curso 2012-2013) Cuarto Curso de Ingeniero Industrial Departamento de Matemática Aplicada II. Universidad de Sevilla

MÉTODOS MATEMÁTICOS (Curso 2012-2013) Cuarto Curso de Ingeniero Industrial Departamento de Matemática Aplicada II. Universidad de Sevilla MÉTODOS MATEMÁTICOS (Curso 2012-2013) Cuarto Curso de Ingeniero Industrial Departamento de Matemática Aplicada II. Universidad de Sevilla Lección 3: Problemas de Mínimos Cuadrados. Optimización No Lineal

Más detalles

CLUSTER FING: PARALELISMO de MEMORIA DISTRIBUIDA

CLUSTER FING: PARALELISMO de MEMORIA DISTRIBUIDA CLUSTER FING: PARALELISMO de MEMORIA DISTRIBUIDA SERGIO NESMACHNOW Centro de Cálculo, Instituto de Computación FACULTAD DE INGENIERÍA, UNIVERSIDAD DE LA REPÚBLICA, URUGUAY CONTENIDO Introducción: arquitecturas

Más detalles

Matrices. Definiciones básicas de matrices. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx

Matrices. Definiciones básicas de matrices. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx Matrices Definiciones básicas de matrices wwwmathcommx José de Jesús Angel Angel jjaa@mathcommx MathCon c 2007-2008 Contenido 1 Matrices 2 11 Matrices cuadradas 3 12 Matriz transpuesta 4 13 Matriz identidad

Más detalles

OPTIMIZACIÓN CON SOLVER

OPTIMIZACIÓN CON SOLVER OPTIMIZACIÓN CON SOLVER SÁNCHEZ ALVAREZ, ISIDRO (isanchez@econo.uniovi.es) LÓPEZ ARES, SUSANA (slopez@econo.uniovi.es) Departamento de Economía Cuantitativa - Universidad de Oviedo La relevancia de los

Más detalles

Evaluación del rendimiento de procesadores Intel Nehalem. Modelos x7550, x5670 y x5570

Evaluación del rendimiento de procesadores Intel Nehalem. Modelos x7550, x5670 y x5570 Evaluación del rendimiento de procesadores Intel Nehalem. Modelos x7550, x5670 y x5570 Juan Carlos Fernández Rodríguez. Área de HPC. Centro Informático Científico de Andalucía (CICA) Junta de Andalucía

Más detalles

Transformada de Fourier

Transformada de Fourier Transformada de Fourier Transformada Inversa de Fourier Estas ecuaciones existen si f(x) es continua e integrable y si F(u) es integrable (casi siempre se cumplen en la práctica). Espectro de Fourier La

Más detalles

Universidad Politécnica de Madrid Escuela Técnica Superior de Ingenieros Industriales. Matemáticas de Especialidad Ingeniería Eléctrica

Universidad Politécnica de Madrid Escuela Técnica Superior de Ingenieros Industriales. Matemáticas de Especialidad Ingeniería Eléctrica Universidad Politécnica de Madrid Escuela Técnica Superior de Ingenieros Industriales Matemáticas de Especialidad Ingeniería Eléctrica Fundamentos de Álgebra Lineal Numérica Clase_algnu_2014.pdf José Luis

Más detalles

Álgebra Lineal Ma1010

Álgebra Lineal Ma1010 Álgebra Lineal Ma1010 Mínimos Cuadrados Departamento de Matemáticas ITESM Mínimos Cuadrados Álgebra Lineal - p. 1/34 En esta sección veremos cómo se trabaja un sistema inconsistente. Esta situación es

Más detalles

REVISTA INVESTIGACIÓN OPERACIONAL VOL. 35, NO. 3, 201-214, 2014

REVISTA INVESTIGACIÓN OPERACIONAL VOL. 35, NO. 3, 201-214, 2014 REVISTA INVESTIGACIÓN OPERACIONAL VOL. 35, NO. 3, 201-214, 2014 W_ILU_ GMRES: UN DISEÑO EN PARALELO Yisleidy Linares Zaila, Marta L. Baguer Díaz Romañach, Ángela León Mecías y Universidad de La Habana,

Más detalles

Paralelización de métodos iterativos. Parallelization of iterative methods

Paralelización de métodos iterativos. Parallelization of iterative methods Paralelización de métodos iterativos Germán Larrazábal Departamento de Computación Facultad de Ciencias y Tecnología (FACYT), Universidad de Carabobo Avenida Montes de Oca, No. 120-267, Edificio FACYT,

Más detalles

Algoritmo para resolver exactamente sistemas de ecuaciones lineales con coeficientes enteros

Algoritmo para resolver exactamente sistemas de ecuaciones lineales con coeficientes enteros Miscelánea Matemática 43 (2006) 7 132 SMM Algoritmo para resolver exactamente sistemas de ecuaciones lineales con coeficientes enteros Daniel Gómez-García Facultad de Ingeniería Universidad Autónoma de

Más detalles

Nombre de la asignatura: METODOS NUMERICOS. Carrera : Ingeniería Mecánica. Clave de la asignatura: ACB- 9311 Clave local:

Nombre de la asignatura: METODOS NUMERICOS. Carrera : Ingeniería Mecánica. Clave de la asignatura: ACB- 9311 Clave local: Nombre de la asignatura: METODOS NUMERICOS Carrera : Ingeniería Mecánica Clave de la asignatura: ACB- 9 Clave local: Horas teoría horas practicas créditos: -0-8.- UBICACIÓN DE LA ASIGNATURA A) RELACIÓN

Más detalles

Computación Científica en Paralelo

Computación Científica en Paralelo Computación Científica en Paralelo Luis Miguel de la Cruz luiggix@gmail.com www.dci.dgsca.unam.mx/lmcs Unidad de Investigación en Cómputo Aplicado DGSCA-UNAM. Posgrado en Ciencia e Ingeniería de la Computación

Más detalles

GEOMETRÍA ANALÍTICA 2º Curso de Bachillerato 22 de mayo de 2008

GEOMETRÍA ANALÍTICA 2º Curso de Bachillerato 22 de mayo de 2008 1. Sean los puntos A (1, 0,-1) y B (,-1, 3). Calcular la distancia del origen de coordenadas a la recta que pasa por A y B. Calculemos la recta que pasa por A y B. El vector AB es (1,-1,4) y por tanto

Más detalles

EXAMEN DE MATEMÁTICAS 2º BACHILLERATO CCNN BLOQUE : GEOMETRÍA

EXAMEN DE MATEMÁTICAS 2º BACHILLERATO CCNN BLOQUE : GEOMETRÍA EXAMEN DE MATEMÁTICAS 2º BACHILLERATO CCNN BLOQUE : GEOMETRÍA OPCIÓN A EJERCICIO 1 Halle el punto P simétrico del punto P ( 3, 4, 0) respecto del plano Л que contiene a la recta s : x = y 2 = z 1 y al

Más detalles

RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES

RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES 1 La ecuación 2x - 3 = 0 se llama ecuación lineal de una variable. Obviamente sólo tiene una solución. La ecuación -3x + 2y = 7 se llama ecuación lineal de

Más detalles

Capítulo 5: Comparación con ScaLAPACK

Capítulo 5: Comparación con ScaLAPACK Capítulo 5: Comparación con ScaLAPACK En este capítulo se presentan dos aspectos importantes en cuanto a la validez y utilización de los aportes de esta tesis: 1) Aplicación de los principios de paralelización

Más detalles

Ejercicios Propuestos Tema 2

Ejercicios Propuestos Tema 2 Ejercicios Propuestos Tema 2 1 Programar la función: fx, A, X = a 0 + a 1 x x 1 + a 2 x x 1 x x 2 + + a n x x 1 x x 2 x x n, donde A = [a 0, a 1,, a n ], X = [x 1, x 2,, x n ], con x R Calcular todas las

Más detalles

Primeras Nueve Semanas Extienda el dominio de funciones trigonométricas usando la unidad circulo F-TF.3 F-TF.4

Primeras Nueve Semanas Extienda el dominio de funciones trigonométricas usando la unidad circulo F-TF.3 F-TF.4 Primeras Nueve Semanas Extienda el dominio de funciones trigonométricas usando la unidad circulo F-TF.3 (+) Use triángulos especiales para determinar geométricamente los valores de seno, coseno, tangente

Más detalles

PROBLEMA 1. 1. [1.5 puntos] Obtener la ecuación de la recta tangente en el punto ( 2, 1) a la curva dada implícitamente por y 3 +3y 2 = x 4 3x 2.

PROBLEMA 1. 1. [1.5 puntos] Obtener la ecuación de la recta tangente en el punto ( 2, 1) a la curva dada implícitamente por y 3 +3y 2 = x 4 3x 2. PROBLEMA. ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA Ingeniería Técnica en Diseño Industrial Fundamentos Matemáticos de la Ingeniería Soluciones correspondientes a los problemas del Primer Parcial 7/8.

Más detalles

MATEMÁTICA TICA SUPERIOR APLICADA. para Ecuaciones Diferenciales Ordinarias. Universidad Tecnológica Nacional Facultad Regional Rosario

MATEMÁTICA TICA SUPERIOR APLICADA. para Ecuaciones Diferenciales Ordinarias. Universidad Tecnológica Nacional Facultad Regional Rosario MATEMÁTICA TICA SUPERIOR APLICADA Utilización n de Resolvedores de MATLAB para Ecuaciones Diferenciales Ordinarias Universidad Tecnológica Nacional Facultad Regional Rosario Dr. Alejandro S. M. Santa Cruz

Más detalles

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales Matemáticas 2º BTO Aplicadas a las Ciencias Sociales CONVOCATORIA EXTRAORDINARIA DE JUNIO 2014 MÍNIMOS: No son contenidos mínimos los señalados como de ampliación. I. PROBABILIDAD Y ESTADÍSTICA UNIDAD

Más detalles

APLICACIONES CON SOLVER OPCIONES DE SOLVER

APLICACIONES CON SOLVER OPCIONES DE SOLVER APLICACIONES CON SOLVER Una de las herramientas con que cuenta el Excel es el solver, que sirve para crear modelos al poderse, diseñar, construir y resolver problemas de optimización. Es una poderosa herramienta

Más detalles

Si el comando Solver no aparece en el menú Herramientas, deberá instalar la macro automática Solver como sigue:

Si el comando Solver no aparece en el menú Herramientas, deberá instalar la macro automática Solver como sigue: El Solver de Excel El Solver se utiliza para determinar el valor máximo o mínimo de una celda modificando otras celdas; por ejemplo, el beneficio máximo que puede generarse modificando los gastos de publicidad.

Más detalles

Germán Villanueva Baschwitz Departamento de Matemáticas Universidad Carlos III de Madrid 28911-Leganés, España. 30 de junio de 2009

Germán Villanueva Baschwitz Departamento de Matemáticas Universidad Carlos III de Madrid 28911-Leganés, España. 30 de junio de 2009 Programación, depuración del algoritmo SSVD en FORTRAN para el cálculo de valores y vectores propios de una matriz simétrica con alta precisión relativa Germán Villanueva Baschwitz Departamento de Matemáticas

Más detalles

Computación de Propósito General en Unidades de Procesamiento Gráfico GPGPU

Computación de Propósito General en Unidades de Procesamiento Gráfico GPGPU Computación de Propósito General en Unidades de Procesamiento Gráfico () E. Dufrechou, P. Ezzatti, M. Pedemonte y J.P.Silva Clase 8 ALN en GPUs Contenido Motivación Conceptos básicos de ALN Problemas Tipo

Más detalles

Computación Científica en Paralelo

Computación Científica en Paralelo Computación Científica en Paralelo Métodos de Descomposición de Dominio Luis Miguel de la Cruz luiggix@gmail.com www.dci.dgsca.unam.mx/lmcs Unidad de Investigación en Cómputo Aplicado DGSCA-UNAM. Posgrado

Más detalles

Métodos Numéricos para Acelerar la Convergencia de Ecuaciones Lineales provenientes de la Mecánica de Fluidos

Métodos Numéricos para Acelerar la Convergencia de Ecuaciones Lineales provenientes de la Mecánica de Fluidos Métodos Numéricos para Acelerar la Convergencia de Ecuaciones Lineales provenientes de la Mecánica de Fluidos Lencina, Luis Javier Director Dr. Enzo Dari CoDirector Dr. Gustavo Buscaglia Instituto Balseiro

Más detalles

METODOLOGIA DE SUPERFICIES DE RESPUESTA. Esto se logra al determinar las condiciones óptimas de operación del sistema.

METODOLOGIA DE SUPERFICIES DE RESPUESTA. Esto se logra al determinar las condiciones óptimas de operación del sistema. 37 CAPITULO METODOLOGIA DE SUPERFICIES DE RESPUESTA En este capítulo hablaremos de qué es la Metodología de Superficies de Respuesta, su representación gráfica, el procedimiento a seguir hasta encontrar

Más detalles

Matrices Invertibles y Elementos de Álgebra Matricial

Matrices Invertibles y Elementos de Álgebra Matricial Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CCIR/ITESM 12 de enero de 2011 Índice 91 Introducción 1 92 Transpuesta 1 93 Propiedades de la transpuesta 2 94 Matrices

Más detalles

Desarrollar y aplicar estrategias para resolver problemas Determinar si un gráfico es lineal dibujando puntos en una situación dada

Desarrollar y aplicar estrategias para resolver problemas Determinar si un gráfico es lineal dibujando puntos en una situación dada MANEJO DE DATOS Analizar gráficos o diagramas de situaciones dadas para identificar información específica Recoger datos, dibujar los datos usando escalas apropiadas y demostrar una comprensión de las

Más detalles

Ejercicios y Problemas del Curso de Métodos Numéricos para ingenieros? Pedro Fortuny Ayuso

Ejercicios y Problemas del Curso de Métodos Numéricos para ingenieros? Pedro Fortuny Ayuso Ejercicios y Problemas del Curso de Métodos Numéricos para ingenieros? Pedro Fortuny Ayuso Curso 2011/12, EPIG, Gijón. Universidad de Oviedo E-mail address: fortunypedro@uniovi.es CC BY: Copyright c 2011

Más detalles

Soluciones para entornos HPC

Soluciones para entornos HPC Dr.. IT Manager / Project Leader @ CETA-Ciemat abelfrancisco.paz@ciemat.es V Jornadas de Supercomputación y Avances en Tecnología INDICE 1 2 3 4 HPC Qué? Cómo?..................... Computación (GPGPU,

Más detalles

Introducción. Por último se presentarán las conclusiones y recomendaciones pertinentes.

Introducción. Por último se presentarán las conclusiones y recomendaciones pertinentes. Introducción En el presente documento se explicarán las consideraciones realizadas para implementar la convolución bidimensional en la arquitectura CUDA. En general se discutirá la metodología seguida

Más detalles

4.- Para los siguientes conjuntos de vectores, probar si son o no subespacios vectoriales de R 4 : 2d + 1 : b, d reales. d

4.- Para los siguientes conjuntos de vectores, probar si son o no subespacios vectoriales de R 4 : 2d + 1 : b, d reales. d GRADO EN I. TELEMÁTICA. HOJA : ESPACIOS VECTORIALES. ESPACIOS NULO Y COLUMNA.- Sea W el conjunto de todos los vectores de R de la forma subespacio de R. s + t s t s t t, con s, t R. Probar que W es un.-

Más detalles

Introducción a los Algoritmos Genéticos. Tomás Arredondo Vidal 17/4/09

Introducción a los Algoritmos Genéticos. Tomás Arredondo Vidal 17/4/09 Introducción a los Algoritmos Genéticos Tomás Arredondo Vidal 17/4/09 Esta charla trata de lo siguiente: Introducción a algunos aspectos de los algoritmos genéticos. Introducción a algunas aplicaciones

Más detalles

La matriz fundamental y la matriz esencial. David Santo Orcero. irbis@orcero.org. http://www.orcero.org/irbis. Mayo de 2002

La matriz fundamental y la matriz esencial. David Santo Orcero. irbis@orcero.org. http://www.orcero.org/irbis. Mayo de 2002 . p.1/136 Conceptos y aplicaciones. Conceptos y aplicaciones. David Santo Orcero irbis@orcero.org http://www.orcero.org/irbis Mayo de 2002 . p.2/136 Conceptos y aplicaciones. Qué veremos: Base matemática

Más detalles

NUMERO DE CONDICION Y DETERMINANTE DE UNA MATRIZ Jorge Lemagne Pérez, Facultad de Matemática y Computación, Universidad de La Habana

NUMERO DE CONDICION Y DETERMINANTE DE UNA MATRIZ Jorge Lemagne Pérez, Facultad de Matemática y Computación, Universidad de La Habana REVISTA INVESTIGACION OPERACIONAL Vol. 2, No., 2000 NUMERO DE CONDICION Y DETERMINANTE DE UNA MATRIZ Jorge Lemagne Pérez, Facultad de Matemática y Computación, Universidad de La Habana RESUMEN En la resolución

Más detalles

Curso de Procesamiento Digital de Imágenes

Curso de Procesamiento Digital de Imágenes Curso de Procesamiento Digital de Imágenes Impartido por: Elena Martínez Departamento de Ciencias de la Computación IIMAS, UNAM, cubículo 408 http://turing.iimas.unam.mx/~elena/teaching/pdi-lic.html elena.martinez@iimas.unam.mx

Más detalles

En este capitulo se presentan los métodos y algoritmos utilizados para el desarrollo del

En este capitulo se presentan los métodos y algoritmos utilizados para el desarrollo del 33 En este capitulo se presentan los métodos y algoritmos utilizados para el desarrollo del sistema de procesamiento de imágenes para controlar un robot manipulador y se describen en la forma como serán

Más detalles

Valores y vectores propios de una matriz. Juan-Miguel Gracia

Valores y vectores propios de una matriz. Juan-Miguel Gracia Juan-Miguel Gracia Índice 1 Valores propios 2 Polinomio característico 3 Independencia lineal 4 Valores propios simples 5 Diagonalización de matrices 2 / 28 B. Valores y vectores propios Definiciones.-

Más detalles

Problema de Programación Lineal

Problema de Programación Lineal Problema de Programación Lineal Introducción La optimización es un enfoque que busca la mejor solución a un problema. Propósito: Maximizar o minimizar una función objetivo que mide la calidad de la solución,

Más detalles

ÍNDICE 1. Introducción a las computadores 2. Programación y diagramas de flujo 3. Solución numérica de ecuaciones

ÍNDICE 1. Introducción a las computadores 2. Programación y diagramas de flujo 3. Solución numérica de ecuaciones ÍNDICE 1. Introducción a las computadores... 17 1-1 Generalidades... 17 1-2 Clasificación y componentes de una computadora... 17 1-3 Solución de problemas... 19 1-4 Diagrama de bloque y de flujo... 19

Más detalles

Apéndice A. Repaso de Matrices

Apéndice A. Repaso de Matrices Apéndice A. Repaso de Matrices.-Definición: Una matriz es una arreglo rectangular de números reales dispuestos en filas y columnas. Una matriz com m filas y n columnas se dice que es de orden m x n de

Más detalles

ALN - Formatos dispersos

ALN - Formatos dispersos ALN - Formatos dispersos In. Co. Facultad de Ingeniería Universidad de la República Temario Matrices dispersas Motivación e historia Formatos estáticos Formatos dinámicos Otros formatos Versión 1.0 2 Motivación

Más detalles

Ortogonalidad y Series de Fourier

Ortogonalidad y Series de Fourier Capítulo 4 Ortogonalidad y Series de Fourier El adjetivo ortogonal proviene del griego orthos (recto) y gonia (ángulo). Este denota entonces la perpendicularidad entre dos elementos: dos calles que se

Más detalles

Matrices invertibles. La inversa de una matriz

Matrices invertibles. La inversa de una matriz Matrices invertibles. La inversa de una matriz Objetivos. Estudiar la definición y las propiedades básicas de la matriz inversa. Más adelante en este curso vamos a estudiar criterios de invertibilidad

Más detalles

Sincronización de robots móviles en redes complejas deterministas de mundo pequeño

Sincronización de robots móviles en redes complejas deterministas de mundo pequeño Sincronización de robots móviles en redes complejas deterministas de mundo pequeño R. Martínez-Clark, D. Reyes-De la Cruz, C. Cruz-Hernández, R.M. López-Gutiérrez, L.F. Pinedo-Lomeli Departamento de Electrónica

Más detalles

Departamento de Matemática Aplicada FUNDAMENTOS DE MATEMATICAS. Ingeniería Química (Curso 2005-06) Álgebra Lineal Práctica 3

Departamento de Matemática Aplicada FUNDAMENTOS DE MATEMATICAS. Ingeniería Química (Curso 2005-06) Álgebra Lineal Práctica 3 1. Matrices en Matlab Departamento de Matemática Aplicada FUNDAMENTOS DE MATEMATICAS. Ingeniería Química (Curso 2005-06) Álgebra Lineal Práctica 3 Para introducir una matriz en Matlab se procede de la

Más detalles

3. LA DFT Y FFT PARA EL ANÁLISIS FRECUENCIAL. Una de las herramientas más útiles para el análisis y diseño de sistemas LIT (lineales e

3. LA DFT Y FFT PARA EL ANÁLISIS FRECUENCIAL. Una de las herramientas más útiles para el análisis y diseño de sistemas LIT (lineales e 3. LA DFT Y FFT PARA EL AÁLISIS FRECUECIAL Una de las herramientas más útiles para el análisis y diseño de sistemas LIT (lineales e invariantes en el tiempo), es la transformada de Fourier. Esta representación

Más detalles

INSTITUTO UNIVERSITARIO PUEBLA NOMBRE DE LA INSTITUCIÓN PROGRAMA DE ESTUDIOS

INSTITUTO UNIVERSITARIO PUEBLA NOMBRE DE LA INSTITUCIÓN PROGRAMA DE ESTUDIOS FORMATO N 6 INSTITUTO UNIVERSITARIO PUEBLA NOMBRE DE LA INSTITUCIÓN PROGRAMA DE ESTUDIOS PROGRAMA ACADÉMICO: LICENCIATURA EN ENSEÑANZA DE EDUCACIÓN MEDIA SUPERIOR ASIGNATURA: ALGEBRA SUPERIOR NIVEL EDUCATIVO:

Más detalles

Álgebra II, licenciatura. Examen parcial I. Variante α.

Álgebra II, licenciatura. Examen parcial I. Variante α. Engrape aqu ı No doble Álgebra II, licenciatura. Examen parcial I. Variante α. Operaciones con matrices. Sistemas de ecuaciones lineales. Nombre: Calificación ( %): examen escrito tarea 1 tarea 2 asist.+

Más detalles

Estructuras algebraicas

Estructuras algebraicas Tema 2 Estructuras algebraicas básicas 2.1. Operación interna Definición 29. Dados tres conjuntos A, B y C, se llama ley de composición en los conjuntos A y B y resultado en el conjunto C, y se denota

Más detalles

Resolución de Sistemas de Ecuaciones Lineales Banda Sobre Procesadores Actuales y Arquitecturas Multihebra. Aplicaciones en Control

Resolución de Sistemas de Ecuaciones Lineales Banda Sobre Procesadores Actuales y Arquitecturas Multihebra. Aplicaciones en Control UNIVERSIDAD JAIME I DE ASTELLÓN E. S. DE TENOLOGÍA Y IENIAS EXPERIMENTALES Resolución de Sistemas de Ecuaciones Lineales anda Sobre Procesadores Actuales y Arquitecturas Multihebra. Aplicaciones en ontrol

Más detalles

Asignatura: Horas: Total (horas): Obligatoria X Teóricas 4.5 Semana 4.5 Optativa Prácticas 0.0 16 Semanas 72.0

Asignatura: Horas: Total (horas): Obligatoria X Teóricas 4.5 Semana 4.5 Optativa Prácticas 0.0 16 Semanas 72.0 UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTADES DE ECONOMÍA E INGENIERÍA LICENCIATURA EN ECONOMÍA Y NEGOCIOS PROGRAMA DE ESTUDIO Álgebra Lineal P82 /P72 /P92 09 Asignatura Clave Semestre Créditos Ciencias

Más detalles

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre CURSO CERO Departamento de Matemáticas Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre Capítulo 1 La demostración matemática Demostración por inducción El razonamiento por inducción es una

Más detalles

SVM: Máquinas de Vectores Soporte. Carlos Alonso González Grupo de Sistemas Inteligentes Departamento de Informática Universidad de Valladolid

SVM: Máquinas de Vectores Soporte. Carlos Alonso González Grupo de Sistemas Inteligentes Departamento de Informática Universidad de Valladolid SVM: Máquinas de Vectores Soporte Carlos Alonso González Grupo de Sistemas Inteligentes Departamento de Informática Universidad de Valladolid Contenido 1. Clasificación lineal con modelos lineales 2. Regresión

Más detalles

Métodos estadísticos y algebraicos

Métodos estadísticos y algebraicos Métodos estadísticos y algebraicos Tratamiento Avanzado de Señal en Comunicaciones Curso 2009-2010 1: Multiplicaciones matriciales Si b = Ax, entonces b es una combinación lineal de las columnas de A.

Más detalles

Cinemática Inversa del Robot. CI-2657 Robótica M.Sc. Kryscia Ramírez Benavides

Cinemática Inversa del Robot. CI-2657 Robótica M.Sc. Kryscia Ramírez Benavides Cinemática Inversa del Robot M.Sc. Kryscia Ramírez Benavides Introducción Resuelve la configuración que debe adoptar el robot para una posición y orientación del extremo conocidas. 2 Introducción (cont.)

Más detalles

Matrices: Conceptos y Operaciones Básicas

Matrices: Conceptos y Operaciones Básicas Matrices: Conceptos y Operaciones Básicas Departamento de Matemáticas, CCIR/ITESM 8 de septiembre de 010 Índice 111 Introducción 1 11 Matriz 1 113 Igualdad entre matrices 11 Matrices especiales 3 115 Suma

Más detalles

Objetivos: Al inalizar la unidad, el alumno:

Objetivos: Al inalizar la unidad, el alumno: Unidad 3 espacios vectoriales Objetivos: Al inalizar la unidad, el alumno: Describirá las características de un espacio vectorial. Identiicará las propiedades de los subespacios vectoriales. Ejempliicará

Más detalles

Programación Lineal Entera

Programación Lineal Entera Programación Lineal Entera P.M. Mateo y David Lahoz 2 de julio de 2009 En este tema se presenta un tipo de problemas formalmente similares a los problemas de programación lineal, ya que en su descripción

Más detalles

Tópicos. en Álgebra Lineal

Tópicos. en Álgebra Lineal Tópicos en Álgebra Lineal Miguel A Marmolejo L Manuel M Villegas L Departamento de Matemáticas Universidad del Valle Índice general Introducción 1 Índice de guras iii Capítulo 1 Prerrequisitos 1 11 Matrices

Más detalles

Concurso Nacional de Matemáticas Pierre Fermat 2012. Examen para Nivel Superior Primera Etapa. Problemas

Concurso Nacional de Matemáticas Pierre Fermat 2012. Examen para Nivel Superior Primera Etapa. Problemas 1 Concurso Nacional de Matemáticas Pierre Fermat 2012 Examen para Nivel Superior Primera Etapa Instrucciones: No utilizar celular (éste deberá de estar apagado), calculadora ó cualquier otro medio en el

Más detalles

Comunicaciones Digitales - Ejercicios Tema 3

Comunicaciones Digitales - Ejercicios Tema 3 Comunicaciones Digitales - Ejercicios Tema 3 007. 1. Considere el diagrama de rejilla para un canal discreto equivalente genérico con 4 coeficientes no nulos (memoria K p = 3) y una constelación -PAM.

Más detalles

Formas bilineales y cuadráticas.

Formas bilineales y cuadráticas. Tema 4 Formas bilineales y cuadráticas. 4.1. Introducción. Conocidas las nociones de espacio vectorial, aplicación lineal, matriz de una aplicación lineal y diagonalización, estudiaremos en este tema dos

Más detalles

Espacios vectoriales y aplicaciones lineales.

Espacios vectoriales y aplicaciones lineales. Práctica 2 Espacios vectoriales y aplicaciones lineales. Contenido: Localizar bases de espacios vectoriales. Suma directa. Bases y dimensiones. Cambio de base. Aplicaciones lineales. Matriz asociada en

Más detalles

Álgebra Lineal. Sesión de Prácticas 6: Ortogonalidad. Método de Gram-Schmidt. Complemento ortogonal y mejor aproximación

Álgebra Lineal. Sesión de Prácticas 6: Ortogonalidad. Método de Gram-Schmidt. Complemento ortogonal y mejor aproximación Álgebra Lineal Sesión de Prácticas 6: Ortogonalidad. Método de Gram-Schmidt. Complemento ortogonal y mejor aproximación Primero Grado Ingeniería Informática Departamento de Matemática Aplicada Facultad

Más detalles

Primer Cuatrimestre 2009. Trabajo Práctico 3 Cuando pase el temblor...

Primer Cuatrimestre 2009. Trabajo Práctico 3 Cuando pase el temblor... Universidad de Buenos Aires Facultad de Ciencias Exactas y Naturales Departamento de Computación Métodos Numéricos Primer Cuatrimestre 2009 Trabajo Práctico 3 Integrante LU Correo electrónico GIMENEZ,

Más detalles

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS 2 Í N D I C E CAPÍTULO MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES MATRICES. MATRIZ. DEFINICIÓN 2. ALGUNOS

Más detalles