Tema 2 CIRCUITOS DE CORRIENTE CONTINUA

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 2 CIRCUITOS DE CORRIENTE CONTINUA"

Transcripción

1 Tem CCUTOS DE COENTE CONTNU Lección : esistenci eléctric..- esistenci. Definición, representción y modelo mtemático..- Fuentes de corriente continu: tensión e intensidd...- Fuentes reles..- Conversión de fuentes...- socición de resistencis: divisor de intensidd y de tensión. Lección : nálisis de circuitos de corriente continu..- nálisis por nudos...- nálisis por mlls Lección : Teorems generles..- Linelidd..- Superposición..- Ecución del dipolo..- Teorems de Thevenin y Norton..- Trnsformciones estrell/ tringulo y vicevers. FTE-Tem pg.: /

2 Lección : esistenci eléctric..- esistenci. Definición, representción y modelo mtemático ESSTENC: L resistenci es un medid de l oposición que un mteril present nte el pso de corriente eléctric. Cunto myor es l resistenci más difícil es el pso de corriente. Todos los mteriles tienen un ciert resistenci. Esto signific que en culquier circuito eléctrico hbrá resistencis presentes. L unidd de resistenci es el Ohmio y se represent por Ω. Se define Conductnci con l mgnitud invers l resistenci, se represent por l letr y se mide en mho (o en siemens) G =/ L LEY DE OHM. Es l Ley básic de l corriente de flujo. Con l ley de Ohm se clcul corrientes prtir de voltjes y resistencis o vicevers. L ley de Ohm estblece l relción existente entre l diferenci de potencil en los extremos de un elemento que present un resistenci, y l corriente que lo trvies L intensidd de corriente que trvies un resistenci de vlor desde el punto l punto es igul l diferenci de potencil entre el punto y, ( = ) dividid por el vlor de l resistenci: Obsérvese que si l diferenci de potencil es positiv, tmbién lo es l corriente cumpliéndose el convenio explicdo nteriormentel cntidd de corriente que fluye por un circuito formdo por resistencis purs es directmente proporcionl l fuerz electromotriz plicd l circuito, e inversmente proporcionl l resistenci totl del circuito. Est ley se expresr por l fórmul = U/, donde = intensidd de corriente en mperios; U l fuerz electromotriz en voltios y l resistenci en ohmios. Es de plicción todos los circuitos eléctricos, tnto los de corriente continu (CC) como de ltern (C), unque pr el nálisis de circuitos complejos y circuitos de C deben emplerse principios dicionles de los que formn prte l inductnci y l cpcitnci. Los mteriles que cumplen con l relción linel de Ohm reciben el nombre de mteriles ohmicos, mientrs que los mteriles que no cumplen con l ley de Ohm se les llm mteriles no ohmicos L unidd de resistenci eléctric es el OHMO, simbolizdo por l letr grieg (Ω) = lores e identificción de ls resistencis Uno de los sistems de codificción de ls resistencis es por medio de bnds con código de colores, continución se indic este código Código de colores Colores ª Cifr ª Cifr Multiplicdor Tolernci Negro Mrrón x % ojo x % Nrnj x mrillo x erde x.% zul 6 6 x 6 iolet 7 7 x 7 Gris 8 8 x 8 lnco 9 9 x 9 Oro x - % Plt x - % Sin color % Ejemplo: Si los colores son: ( Mrrón -Negro -ojo- Oro ) su vlor en ohmios es x, % = K Tolernci de % bnds de colores Tmbién hy resistencis con bnds de colores, l únic diferenci respecto l tbl nterior, es qué l tercer bnd es l ª Cifr, el resto sigue igul FTE-Tem pg.: /

3 ..- Fuentes de corriente continu: tensión e intensidd. Fuentes independientes de intensidd Esquemáticmente se represent por: i(t) L flech interior es l que represent l referenci del sentido de l corriente cundo i>. L ecución crcterístic de l fuente es i(t), que es independiente de l tensión entre sus terminles, unque est tensión si dependerá del circuito exterior. U Ω U 8Ω En los ejemplos de l figur, l tensión en los extremos de l fuente de intensidd coincide con el vlor de l tensión en l resistenci: U = x =, U = x 8 = Prticulridd: Un fuente cuy intensidd es constntemente nul, es un circuito bierto. Fuente independiente de tensión L figur represent el esquem de un fuente idel de tensión. El signo es l referenci de polridd medinte el que convenimos, que es > cundo e(t) > O. Es, pues, U = e(t) con independenci de tod otr conexión que pudier hber entre y. L ley de vrición de l tensión e(t) es l crcterístic de l fuente e independiente de l corriente que suministr, dependiendo ést del resto del circuito. De tomr un referenci de tensiones entre y (Fig..6), se verific que: u = e(t) Ejemplo. Determinr ls intensiddes il e i que suministr l fuente de tensión de, en los circuitos que se representn en ls figurs En mbs figurs, l tensión en l resistenci coincide con l crcterístic de l fuente, es decir, u. sí, pues: figur ): figur b): i / = i / = FTE-Tem pg.: /

4 Un fuente de tensión, cuy diferenci de potencil entre terminles es constntemente nul, es un cortocircuito Fuentes Dependientes Son fuentes de tensión o intensidd que dependen de otr vrible (tensión o intensidd) que pertenece l circuito generl...- Fuentes reles Fuente rel de tensión Se observ en un pil, dinmo o lterndor que mnteniendo los restntes prámetros, l tensión en borns disminuye con l intensidd pedid. El comportmiento de un pil rel, por ejemplo, es equivlente l de un circuito constituido por un fuente idel de tensión de vlor igul l f.e.m. de l pil (tensión circuito bierto) en serie con l resistenci intern: plicndo l segund ley de Kirchhoff l circuito de l figur, en el que se h conectdo l fuente rel de tensión, un resistenci que recibe el nombre de resistenci de crg: u = eg g x i quí se ve que l umentr i disminuye u, de cuerdo con l relidd. Tmbién por l ley de Ohm, pr ls referencis de tensión e intensidd tomds: u = x i siendo l resistenci del elemento conectdo l fuente rel epresentndo ests ecuciones se tiene l gráfic de l figur, donde se observ que:. L i está limitd como máximo un vlor: i mx = e g / g lo que se cumple pr = O, es decir, corto circuito.. Si g se hce cd vez menor, l pendiente de l rect irá disminuyendo y cundo g = O, l rect será prlel l eje de bsciss. u = eg, pr culquier i, luego estmos en el cso de fuente idel de tensión.. De ls ecuciones nteriores se deduce que: donde se ve que si» g, u proximdmente es igul eg, Fuente rel de intensidd En este cso se represent por un fuente idel de intensidd en prlelo con un resistenci o, en generl, con un conjunto de elementos psivos. Supongmos el tipo representdo en l figur, donde l fuente rel de intensidd prece como un fuente idel de vlor ig en prlelo con un resistenci de vlor g o en uniddes de conductnci Gg. (ecordr G = /g ). FTE-Tem pg.: /

5 plicndo l primer ley de Kirchhoff l circuito de l figur, en el que se h conectdo los terminles de l fuente rel un resistenci G (resistenci de crg), se tiene: i = ig i' siendo i' = - Gg u pr ls referencis de l figur y, por tnto: i = ig - Gg u epresentndo ests ecuciones, se tiene l gráfic de l figur, donde se observ que:. u está limitd un vlor máximo tl que: Gg Umx= ig lo que se cumple pr G = O, =, es decir, circuito bierto.. Si Gg se hce cd vez menor, l pendiente de l rect irá disminuyendo y cundo Gg = O, o se, cundo g =, l rect será prlel l eje de bsciss i = ig pr culquier u, luego estmos en el cso de fuente idel de intensidd...- Conversión de fuentes. Se puede decir que fuentes son equivlentes cundo ls slids de tensión e intensidd son ls misms, se puede decir que son equivlentes efectos externos. g i i eg u ig g u De l f. de tensión: De l f. de intensidd: Con lo cul : i = eg x (/(g c)) i = ig x ( g/(g c)) eg = ig. g Est será l condición de equivlenci...- socición de resistencis: Divisor de intensidd y de tensión. Sen resistencis como ls de l figur: b b socición Serie Dos elementos, resistencis en este cso, están conectdos en serie cundo l intensidd que trvies cd un de ellos es l mism. Dos resistencis en serie pueden sustituirse por un sol resistenci equivlente cuyo vlor es l sum de mbs. b b b b = b equi = b' / = ( ' 'b' )/ = FTE-Tem pg.: /

6 Completr con Divisor de tensión socición Prlelo =. ( / ( ) ) Dos elementos, resistencis en este cso, están conectdos en prlelo cundo l tensión entre sus terminles es l mism. Dos resistencis en prlelo pueden sustituirse por un sol resistenci equivlente cuyo vlor es el producto dividido por l sum de mbs. = b b b b = b equi = b = b = Completr con divisor de intensidd: NOT: Dos terminles y se considern ETOS cundo se interrumpe l conexión y por lo tnto el pso de corriente entre ellos. Equivle un resistenci de vlor infinito entre y. Existe diferenci de potencil ( - ) que viene mrcd por el resto del circuito. Dos terminles y se considern COTOCCUTDOS cundo se conectn mbos medinte un resistenci =. L diferenci de potencil en ese cso es ( - )= y l corriente que trvies es rm debe ser clculd de cuerdo l resto del circuito..6.- socición de Fuentes: Dos fuentes de tensión conectds en serie equivlen un sol cuy tensión es l sum de mbs. Dos fuentes de tensión no pueden conectrse en prlelo. Dos fuentes de intensidd conectds prlelo equivlen un cuy intensidd es l sum de mbs. Dos fuentes de intensidd no pueden conectrse en serie. FTE-Tem pg.: 6/ 6

7 Lección : nálisis de circuitos de corriente continu Definiciones nálisis de Circuitos: Especificdo el circuito y conocido el vlor de ls fuentes (Entrd), clculr el vlor de ls tensiones de nodo o intensiddes de rms solicitds (slid). Síntesis o diseño de circuitos: Pr un relción entre l slid y l entrd, (por ejemplo mplificción), disponer los dispositivos y componentes necesrios y clculr sus vlores pr ls especificciones deseds. Nodo (Node) Culquier punto de unión de un circuito donde están conectdos dos o más terminles, o culquier terminl isldo de un elemento que no esté conectdo. m (rnch) ecorrido entre dos nodos que no trvies ningún otro = Tryectori en un red compuest por un elemento simple y los nodos situdos en sus extremos. Lzo (Loop) ecorrido cerrdo que empezndo en culquier nodo trvies elementos de dos terminles y termin en el mismo nodo (sin trvesr un mismo nodo dos veces). Mll (Mesh) Lzo interior Pr especificr un circuito se deben especificr los elementos (su modelo circuitl) que lo componen y sus conexiones sí como ls vribles de control pr los elementos dependientes - - v v v v Nodos,,,, ms -, -, -, -, -, -, -, - Lzos ---, ---, ---, , -----, ----,..- nálisis por nudos. Por plicción del primer xiom de Kirchoff (Ley de Corrientes KCL): L sum lgebric de ls corrientes que entrn culquier nodo es cero (Ley de conservción de l crg) L sistemtiz empler es: Se mrcn (se numern) los nodos esenciles de un circuito y se elige uno como referenci Se signn intensiddes cd rm (El sentido se elige rbitrrimente) En cd nodo se plic KCL todos los nodos excepto l de referenci (Sum corrientes que entrn ese nudo = Sum corrientes que slen de ese nudo) = = ecuciones incógnits (Ls intensiddes de rm) Obsérvese que l intensidd en l rm es conocid Y por lo tnto existe un vrible menos que rms FTE-Tem pg.: 7/ 7

8 ..- nálisis por mlls Leyes de Kirchoff:. Por plicción del segundo xiom de Kirchoff (Ley de oltjes KL): L sum lgebric de los voltjes en culquier recorrido cerrdo es cero (Ley de conservción de l energí) L sistemtiz empler es: Se identificn ls mlls de un circuito Se signn un recorrido cd mll (El sentido se elige rbitrrimente, generlmente destrogiro) Se plic KL tods ls mlls (los voltjes en cd elemento se considerrán positivos si en el recorrido signdo se los recorre de -. En un resistenci por lo tnto es si el recorrido llev el mismo sentido que l intensidd) ecuciones => ecuciones y incognits Obsérvese que no hemos escrito ningun ecución pr l mll. NO es necesri y demás no conocemos l tensión L resolución del sistem de ecuciones nos permite conocer tods ls intensiddes de rm. Pr determinr ls tensiones en los nodos debe recorrerse el cmino (el más corto) hst l referenci. = = = Not: En generl si un fuente está situd entre dos nodos esenciles, el sistem se reduce en un ecución y que un de ls posibles incógnits es un dto Ejemplo: Se determinn ls mlls del circuito. Se signn intensiddes de mlls cd un de ells. (,, son ls vribles) Se plicn KL cd un de ls mlls (Tnts ecuciones como intensiddes) ( ( ) ) ( ) ( ( ( 6 ) ) ) 6 Si existe un generdor de corriente un de ls ecuciones de mll desprece y que un de ls vrible en relidd es un dto FTE-Tem pg.: 8/ 8

9 ( Nots mportntes: Si existe un generdor de corriente un de ls ecuciones de mll desprece y que un de ls vribles en relidd es un dto. L intensidd en cd rm es l sum lgebric de ls intensiddes de mll que l comprten. (Ejemplo: l intensidd rel que trvies es (dirigid hci el nodo ) - ). = ( ) ) ( ( ) ) Lección : Teorems generles..- Linelidd Se trduce en dos condiciones, que son propis de los circuitos lineles:.- L respuest de un circuito linel vris fuentes de excitción que ctún simultánemente es igul l sum de ls respuests que tendrín cundo ctusen cd un de ells por seprdo (T. De superposición).- Si ls excitciones de un circuito se multiplicn por un constnte, ls respuests quedrn multiplicds por es constnte...- Superposición En culquier red linel que conteng vris fuentes, el voltje entre terminles o l corriente trvés de culquier elemento se puede clculr sumndo lgebricmente todos los voltjes o corrientes individules cusdos por ls fuentes independientes ctundo individulmente. (Tods ls fuentes menos un, desctivds) Debe emplerse este método siempre que existn fuentes trbjndo distint frecuenci. (por ejemplo fuentes de continu y ltern) = L = = b b FTE-Tem pg.: 9/ 9

10 Se pgn tods ls fuentes independientes menos un, y se resuelve el circuito: se clculn intensiddes en ls rms y tensiones en los nudos. sí con cd un de ls fuentes, el resultdo finl es l sum lgebric de ls intensiddes y tensiones clculds. NOT: Pr pgr o desctivr un fuente de tensión se cortocircuitn sus terminles, de mner que l tensión entre esos dos puntos es cero. Si es un fuente de intensidd, se bren los dos terminles de mner que l intensidd que circul en es rm es cero...- Ecución del dipolo Se puede identificr en lgunos textos como regl de sustitución. Consiste en sustituir el elemento por su ecución crcterístic (ecución del dipolo) En el cso de un resistenci: u = x i..- Teorems de Thevenin y Norton Permiten reemplzr un prte de un circuito complejo visto entre dos terminles por un subcircuito muy simple Thevenin Se bre el circuito en dos terminles Norton Se cortocircuitn los dos terminles Circuito Circuito linel C C linel C N C th Se clcul th y th C N Se clcul Nh y th C Sustituyendo C por su Equivlente Thevenin ls corrientes y tensiones en el subcircuito C no vrín Sustituyendo C por su Equivlente Norton ls corrientes y tensiones en el subcircuito C no vrín th th C N th C th corresponde l tensión clculd en el subcircuito C con y biertos th corresponde l resistenci vist desde en el subcircuito C con ls fuentes independientes de C desctivds N corresponde l intensidd de -> clculd en el subcircuito C con y cortocircuitdos th mism que en el equivlente Thevenin Dd l equivlenci de mbos circuitos se puede psr de uno otro teniendo en cuent: th = th / N FTE-Tem pg.: /

11 ..- Trnsformciones estrell/ tringulo y vicevers. Se trt de un montjes específicos utilizdos en montjes especiles y en corriente polifásic; en generl puede ser interesnte l trnsformción de un tipo de montje en el otro l objeto de fcilitr el nálisis. Est trsformción puede resumirse en el siguiente esquem: FTE-Tem pg.: /

Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff.

Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff. Resolución de circuitos complejos de corriente continu: Leyes de Kirchhoff. Jun P. Cmpillo Nicolás 4 de diciemre de 2013 1. Leyes de Kirchhoff. Algunos circuitos de corriente continu están formdos por

Más detalles

Tema 3. Circuitos Resistivos

Tema 3. Circuitos Resistivos Tem 3. Circuitos esistivos Sistems y Circuitos 1 3.1 Elementos en Circuitos Elementos de circuitos Dos terminles Dispositivo (, L,C) (Generdor) Tnto l tensión como l corriente son vriles que tienen signo.

Más detalles

Corriente Eléctrica. Área Física. Resultados de aprendizaje Aplicar las leyes de Kirchhoff y Ohm en diferentes circuitos de resistencias.

Corriente Eléctrica. Área Física. Resultados de aprendizaje Aplicar las leyes de Kirchhoff y Ohm en diferentes circuitos de resistencias. Corriente Eléctric Áre Físic esultdos de prendizje Aplicr ls leyes de Kirchhoff y Ohm en diferentes circuitos de resistencis. Contenidos 1. ntroducción teóric. 2. Ejercicios. Deo ser Ley de Ohm Est ley

Más detalles

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles

FUNDAMENTOS FÍSICOS DE LA INGENIERIA QUINTA SESIÓN DE PRÁCTICAS

FUNDAMENTOS FÍSICOS DE LA INGENIERIA QUINTA SESIÓN DE PRÁCTICAS DEPARTAMENTO DE FÍSICA APLICADA ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AGRÓNOMOS Y DE MONTES UNIERSIDAD DE CÓRDOBA FUNDAMENTOS FÍSICOS DE LA INGENIERIA QUINTA SESIÓN DE PRÁCTICAS 7.- Utilizción del Polímetro

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES Digrms en Bloques Un sistem de control puede constr de ciert cntidd de componentes. Pr mostrr ls funciones que reliz cd componente se costumr usr representciones esquemátics denominds Digrm en Bloques.

Más detalles

Circuitos de Corriente Continua

Circuitos de Corriente Continua Fundmentos Físicos y Tecnológicos de l nformátic Circuitos de Corriente Continu -Corriente eléctric, densidd e intensidd de corriente. - Conductnci y resistenci eléctric. - Ley de Ohm. Asocición de resistencis.

Más detalles

Circuitos Eléctricos II 2º Cuatrimestre / 2014 TRABAJO PRÁCTICO N 6. TEMA: Circuitos Magnéticos y Transformadores Fecha de entrega:

Circuitos Eléctricos II 2º Cuatrimestre / 2014 TRABAJO PRÁCTICO N 6. TEMA: Circuitos Magnéticos y Transformadores Fecha de entrega: PEDES IN TERRA AD SIDERAS VISUS TRABAJO PRÁCTICO N 6 Fech de entreg: PROBLEMA 1: En el circuito mgnético de l figur, l bobin tiene N = 276 espirs y ls dimensiones son = 13 cm, b = 21 cm y S = 16 cm 2.

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a:

Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a: odelo. Proble B.- (Clificción ái puntos) Se consider el siste linel de ecuciones dependiente del práetro rel ) Discútse en función de los vlores del práetro R. b) Resuélvse pr.. l siste se clsific en función

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

INFORME DE LA PRÁCTICA nº 2: LA RUEDA DE MAXWELL. Fernando Hueso González. Carlos Huertas Barra. (1º Fís.), L1, 21-XI-07 - 0 -

INFORME DE LA PRÁCTICA nº 2: LA RUEDA DE MAXWELL. Fernando Hueso González. Carlos Huertas Barra. (1º Fís.), L1, 21-XI-07 - 0 - INFORME DE LA PRÁCTICA nº : LA RUEDA DE MAXWELL Fernndo Hueso González. Crlos Huerts Brr. (1º Fís.), L1, 1-XI-7 - - RESUMEN L práctic de l rued de Mxwell consiste en medir el tiempo que trd en descender

Más detalles

2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR

2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR 1. INTRODUCCIÓN CÁLCULO VECTORIAL Mgnitud: Es todo quello que se puede medir eperimentlmente. Ls mgnitudes físics se clsificn en esclres ectoriles. Mgnitud esclr: Es quell que iene perfectmente definid

Más detalles

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,

Más detalles

TRABAJO PRACTICO No 7. MEDICION de DISTORSION EN AMPLIFICADORES DE AUDIO

TRABAJO PRACTICO No 7. MEDICION de DISTORSION EN AMPLIFICADORES DE AUDIO TRBJO PRCTICO No 7 MEDICION de DISTORSION EN MPLIFICDORES DE UDIO INTRODUCCION TEORIC: L distorsión es un efecto por el cul un señl pur (de un únic frecuenci) se modific preciendo componentes de frecuencis

Más detalles

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES. I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,

Más detalles

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica Artículo de sección Revist digitl Mtemátic, Educción e Internet (www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel

Más detalles

PRÁCTICA 5. Corrección del factor de potencia

PRÁCTICA 5. Corrección del factor de potencia PRÁTIA 5 orrección del fctor de potenci Objetivo: Determinr el fctor de potenci de un crg monofásic y de un crg trifásic Efectur l corrección del fctor de potenci de un crg monofásic y de un crg trifásic.

Más detalles

MATRICES DE NÚMEROS REALES

MATRICES DE NÚMEROS REALES MTRICES. MTURITS Luis Gil Guerr.- DEFINICIÓN MTRICES DE NÚMEROS RELES Llmmos mtriz de números reles de orden m x n un conjunto ordendo de m. n números reles dispuestos en m fils y en n columns i m i m

Más detalles

O(0, 0) verifican que. Por tanto,

O(0, 0) verifican que. Por tanto, Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O

Más detalles

CAMPOS ELECTROMAGNÉTICOS ESTÁTICOS

CAMPOS ELECTROMAGNÉTICOS ESTÁTICOS CAMPOS ELECTROMAGNÉTICOS ESTÁTICOS PROBLEMAS PROPUESTOS 1: Se hce girr un superficie pln con un áre de 3,2 cm 2 en un cmpo eléctrico uniforme cuy mgnitud es de 6,2 10 5 N/C. ( ) Determine el flujo eléctrico

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CONCEPTOS CLAVE: FUNCIONES, GRAFICA DE UNA FUNCIÒN, COMPOSICIÒN DE FUNCIONES, INVERSA DE UNA FUNCIÒN, LIMITE DE UNA FUNCIÒN, LIMITES LATERALES, TEOREMAS

Más detalles

Electricidad y Medidas Eléctricas I 2011

Electricidad y Medidas Eléctricas I 2011 Electricidd y Medids Eléctrics I 2011 Crrers: Técnico Universitrio en Microprocesdores Profesordo en Tecnologí Electrónic. Bolill 7. Voltje de Nodos. Teorem de Norton y Thevenin. Máxim Trnsferen- ci de

Más detalles

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3 Máximo común divisor El máximo común divisor de dos números nturles y es el número más grnde que divide tnto como. se denot mcd,. Lists: (tl vez, el más intuitivo, pero el menos eficiente) Encontrr mcd

Más detalles

UNIDAD 1: Principios De La Corriente Alterna.

UNIDAD 1: Principios De La Corriente Alterna. REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD NACIONAL EXPERIMENTAL DE LA FUERZA ARMADA NACIONAL NÚCLEO MIRANDA SEDE LOS TEQUES ASIGNATURA : COORDINACIÓN DE INGENIERÍA Electrotecni SEMESTRE: 6 to CÓDIGO:

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00

Más detalles

TEMA 7 ANÁLISIS DE CIRCUITOS POR EL MÉTODO DE MALLAS.

TEMA 7 ANÁLISIS DE CIRCUITOS POR EL MÉTODO DE MALLAS. TEMA 7 ANÁLISIS DE CIRCUITOS POR EL MÉTODO DE MALLAS. 7..-Introducción. 7.2.-Análisis de circuitos por el método de mlls. 7.3.-Expresión mtricil de ls ecuciones de mlls. 7.4.-Análisis por mlls en circuitos

Más detalles

TEMA 2. DETERMINANTES

TEMA 2. DETERMINANTES TEMA. DETERMINANTES A cd mtriz cudrd de orden n se le puede signr un número rel que se obtiene operndo de ciert mner con los elementos de l mtriz. A dicho número se le llm determinnte de l mtriz A, y se

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales Universidd Centrl de Venezuel Fcultd de Frmci Mtemátic - Físic Prof J R Morles Guí de Vectores (Resumen de l Teorí) 1 En físic distinguiremos dos tipos de cntiddes: vectoriles esclres Ls cntiddes vectoriles

Más detalles

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr

Más detalles

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de

Más detalles

Definición Un sistema de m ecuaciones con n incógnitas es un conjunto de ecuaciones como:

Definición Un sistema de m ecuaciones con n incógnitas es un conjunto de ecuaciones como: Definición Un sistem de m ecuciones con n incógnits es un conjunto de ecuciones como: m ecuciones b b n n n n b m m m mn n m n incógnits términos independientes incógnits Coeficientes del sistem Epresión

Más detalles

Corriente eléctrica. 1. Corriente eléctrica: Intensidad y densidad de corriente. 2. Ley de Ohm. Resistencia. Conductividad eléctrica.

Corriente eléctrica. 1. Corriente eléctrica: Intensidad y densidad de corriente. 2. Ley de Ohm. Resistencia. Conductividad eléctrica. Corriente eléctric 1. Corriente eléctric: ntensidd y densidd de corriente. 2. Ley de Ohm. Resistenci. Conductividd eléctric. 3. Potenci disipd en un conductor. Ley de Joule. Fuerz electromotriz. BBLOGRAFÍA:.

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de

Más detalles

Integrales impropias

Integrales impropias Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección

Más detalles

UNIVERSIDAD DE CANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA NÚMEROS COMPLEJOS. Miguel Angel Rodríguez Pozueta

UNIVERSIDAD DE CANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA NÚMEROS COMPLEJOS. Miguel Angel Rodríguez Pozueta DEPARTAMENTO DE INGENIERÍA ELÉCTRICA ENERGÉTICA NÚMEROS COMPLEJOS Miguel Angel Rodríguez Pozuet Doctor Ingeniero Industril OBSERVACIONES SOBRE LA NOMENCLATURA En este teto, siguiendo l nomencltur hitul

Más detalles

El Dipolo Plegado. Laboratorio de Electrónica de Comunicaciones Dpto. de Señales y Comunicaciones, U.L.P.G.C

El Dipolo Plegado. Laboratorio de Electrónica de Comunicaciones Dpto. de Señales y Comunicaciones, U.L.P.G.C El Dipolo Plegdo Lbortorio de Electrónic de Comunicciones Dpto. de Señles y Comunicciones, U.L.P.G.C 1 Introducción Un nten muy utilizd en l práctic como receptor es el dipolo plegdo. Este tipo de dipolo

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

GUÍA V : MÁQUINAS DE CORRIENTE CONTINUA

GUÍA V : MÁQUINAS DE CORRIENTE CONTINUA Sistems Electromecánicos, Guí : Máquins de Corriente Continu GUÍA : MÁQUNAS DE COENTE CONTNUA. L crcterístic de mgnetizción de un generdor de corriente continu operndo un velocidd de 500 [rpm] es: [A]

Más detalles

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES 5.1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. LÍMITES LATERALES 5.1.1. Concepto de tendenci Decimos que " tiende " si tom los vlores de un sucesión que se proim. Se

Más detalles

ACTIVIDADES DE APRENDIZAJE Nº 5... 112

ACTIVIDADES DE APRENDIZAJE Nº 5... 112 FACULTAD DE INGENIERÍA - UNJ Unidd : olinomios UNIDAD olinomios Introducción - Epresiones lgebrics - Clsificción de ls epresiones lgebrics - Epresiones lgebrics enters 7 - Monomios 7 - Grdo de un monomio

Más detalles

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}.

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}. UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 28/9 PRÁCTICA Nº Espcios vectoriles y Aplicciones Lineles II: Núcleo e imgen. Digonlizción. NÚCLEO E IMAGEN

Más detalles

La máquina de corriente continua

La máquina de corriente continua Cpítulo I L máquin de corriente continu L máquin de corriente continu.. Introducción. Ls máquins de corriente continu (cc) se crcterizn por su verstilidd. Medinte diverss combinciones de devndos en derivción

Más detalles

Determinantes y la Regla de Cramer

Determinantes y la Regla de Cramer Determinntes y l Regl de Crmer Mtriz Invers Not: un mtriz cudrd que no tiene invers se llm mtriz singulr. Ejemplo: Hllr l invers de A. A 4 Si l plicr el método de Guss se obtiene ceros en los elementos

Más detalles

(Ésta es una versión preliminar de la teoría del tema.)

(Ésta es una versión preliminar de la teoría del tema.) Estudio de funciones periódics Ést es un versión preliminr de l teorí del tem. Un función fx se dice que es periódic de periodo cundo fx = fx +, x. Si se conoce fx en el intervlo [, ] su ciclo, se l conoce

Más detalles

INTEGRACIÓN. CÁLCULO DE

INTEGRACIÓN. CÁLCULO DE Cpítulo INTEGRACIÓN. CÁLCULO DE ÁREAS.. Introducción Si el problem del cálculo de l rect tngente llevó los mtemáticos del siglo XVII l desrrollo de ls técnics de l derivción, otro problem, el del cálculo

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES el blog de mte de id.: ECUACIONES º ESO pág. ECUACIONES ECUACIONES DE SEGUNDO GRADO Un ecución de segundo grdo tiene l form generl: +b+c=0. (El primer sumndo del primer miembro no puede ser nunc nulo,

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES FUNCIONES

UNIDAD: ÁLGEBRA Y FUNCIONES FUNCIONES C u r s o : Mtemátic Mteril N GUÍA TEÓRICO PRÁCTICA Nº 8 UNIDAD: ÁLGEBRA Y FUNCIONES FUNCIONES DEFINICIÓN Sen A B conjuntos no vcíos. Un función de A en B es un relción que sign cd elemento del conjunto

Más detalles

LÍMITES DE FUNCIONES

LÍMITES DE FUNCIONES LÍMITES DE FUNCIONES IDEA INTUITIVA DE LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Ejemplo : Consideremos l gráic de l unción: si < si > Si tom vlores próimos, distintos de y menores que ej.: 9, 99, 999,, se not

Más detalles

E - 1 En el circuito de la figura la tensión sobre el resistor de 20 ohms es :

E - 1 En el circuito de la figura la tensión sobre el resistor de 20 ohms es : E Régimen Senoidl Permnente ) Sistems monofásicos E En el circuito de l figur l tensión sore el resistor de 0 es : ) ) ( 00 j 00) c) ( 50 j 50 ) d) + j 75 L potenci disipd en el resistor y l potenci medi

Más detalles

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA GUIA DE INTEGRALES DEFINIDAS INTEGRAL DEFINIDA. APLICACIONES DE LA INTEGRAL DEFINIDA Teorem Fundmentl del Cálculo Áre jo l curv de un región Áre entre dos regiones COMPETENCIA: Resolver integrles plicndo

Más detalles

AUTOMATAS FINITOS Traductores

AUTOMATAS FINITOS Traductores Universidd de Morón Lengujes Formles y Autómts AUTOMATAS FINITOS Trductores AUTOMATAS FINITOS Un utómt finito es un modelo mtemático que posee entrds y slids. Un utomát finito recie los elementos tester

Más detalles

A modo de repaso. Preliminares

A modo de repaso. Preliminares UNIDAD I A modo de repso. Preliminres Conjuntos numéricos. Operciones. Intervlos. Conjuntos numéricos Los números se clsificn de cuerdo con los siguientes conjuntos: Números nturles.- Son los elementos

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

1. Cuales son los números naturales?

1. Cuales son los números naturales? Guí de mtemátics. Héctor. de bril de 015 1. Cules son los números nturles? Los números nturles son usdos pr contr (por ejemplo, hy cinco moneds en l mes ) o pr imponer un orden (por ejemplo,. Es t es l

Más detalles

MATRICES. Una matriz como la anterior con m filas y n columnas, diremos que es de orden mxn o de dimensión mxn

MATRICES. Una matriz como la anterior con m filas y n columnas, diremos que es de orden mxn o de dimensión mxn Mtrices MATRICES. DEFINICIÓN. Un mtriz A de m fils y n columns es un serie ordend de m n números ij, i,,m; j,,...n, dispuestos en fils y columns, tl como se indic continución:... n... n A........... m

Más detalles

Tema 3: Sistemas de ecuaciones lineales

Tema 3: Sistemas de ecuaciones lineales Tem 3: Sistems de ecuciones lineles 1. Introducción Los sistems de ecuciones resuelven problems relciondos con situciones de l vid cotidin, que tiene que ver con ls Ciencis Sociles. Nos centrremos, por

Más detalles

Ecuaciones de 1 er y 2º grado

Ecuaciones de 1 er y 2º grado Ecuciones de 1 er y º grdo Antes de empezr resolver estos tipos de ecuciones hemos de hcer un serie de definiciones previs, que irán compñds por lgunos ejemplos. Un iguldd lgebric está formd por dos epresiones

Más detalles

Unidad 10. Sistemas de ecuaciones lineales

Unidad 10. Sistemas de ecuaciones lineales Tem. istems de Ecuciones Unidd. istems de ecuciones lineles. Definiciones, tipos de sistems distints forms de epresrls.. Definición, sistems equivlentes.. Clses de sistems de ecuciones... Epresión de sistems

Más detalles

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g).

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g). 64 Tercer Año Medio Mtemátic Ministerio de Educción Actividd 3 Resuelven inecuciones y sistems de inecuciones con un incógnit; expresn ls soluciones en form gráfic y en notción de desigulddes; nlizn ls

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS EXPRESIONES ALGEBRAICAS. POLINOMIOS A. EXPRESIONES ALGEBRAICAS. Cundo se quiere indicr un número no conocido, un cntidd o un expresión generl de l medid de un mgnitud (distnci, superficie, volumen, etc

Más detalles

7.1. Definición de integral impropia y primeras propiedades

7.1. Definición de integral impropia y primeras propiedades Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,

Más detalles

FUNCIONAMIENTO FÍSICO DE UN AEROGENERADOR

FUNCIONAMIENTO FÍSICO DE UN AEROGENERADOR FUCIOIEO FÍSICO DE U EOGEEDO 1.- Introducción El funcionmiento físico de un erogenerdor de imnes permnentes responde, como muchos sistems físicos, un ecución diferencil, cuy solución prticulr es l solución

Más detalles

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante.

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante. LA ELIPSE DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6., los focos están representdos por los puntos y f.

Más detalles

71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES

71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES 71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES 5. APLICACIONES (EN UNA BASE ORTONORMAL) 6. EJERCICIOS Y PROBLEMAS Vectores

Más detalles

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente: FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De

Más detalles

56 CAPÍTULO 2. CÁLCULO ALGEBRAICO. SECCIÓN 2.4 Resolución de Ecuaciones de Segundo Grado

56 CAPÍTULO 2. CÁLCULO ALGEBRAICO. SECCIÓN 2.4 Resolución de Ecuaciones de Segundo Grado 56 CAPÍTULO. CÁLCULO ALGEBRAICO SECCIÓN.4 Resolución de Ecuciones de Segundo Grdo Introducción Hemos estudido cómo resolver ecuciones lineles, que son quells que podemos escribir de l form x + b = 0. Si

Más detalles

MOVIMIENTO DE RODADURA

MOVIMIENTO DE RODADURA E.T.S.. Agrónomos. U.P.. OVENTO DE ODADUA Cuerpos rodntes. Considermos el moimiento de cuerpos que, debido su geometrí, tienen l cpcidd de rodr: eser, ro, disco, supericie eséric, cilindro poydo sobre

Más detalles

Funciones cuadráticas

Funciones cuadráticas Funciones cudrátics A l función polinómic de segundo grdo f() + b + c siendo, b, c números reles y 0, se l denomin función cudrátic. Los términos de l función reciben los siguientes nombres: y + b + c

Más detalles

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS TRIIGONOMETRÍÍA REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS Recuerd que los ángulos los medímos en grdos o en rdines. Además, los grdos podín dividirse en minutos segundos, de form similr como se distribuen

Más detalles

PROBLEMAS RESUELTOS CIRCUITOS DE CORRIENTE CONTINUA CAPITULO 28 FISICA TOMO 2. Tercera y quinta edición. Raymond A. Serway

PROBLEMAS RESUELTOS CIRCUITOS DE CORRIENTE CONTINUA CAPITULO 28 FISICA TOMO 2. Tercera y quinta edición. Raymond A. Serway PROBLEMAS RESUELTOS CIRCUITOS DE CORRIENTE CONTINUA CAPITULO 8 FISICA TOMO Tercer y qunt edcón Rymond A. Serwy CIRCUITOS DE CORRIENTE CONTINUA 8. Fuerz electromotrz 8. Resstores en sere y en prlelo 8.3

Más detalles

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES www.mtesrond.net José A. Jiméne Nieto POTENCIAS Y LOGARITMOS DE NÚMEROS REALES. POTENCIAS DE NÚMEROS REALES.. Potencis de eponente entero L potenci de se un número rel eponente entero se define sí: n (

Más detalles

FÍSICA APLICADA. EXAMEN A1. ABRIL MODELO A. Nombre:

FÍSICA APLICADA. EXAMEN A1. ABRIL MODELO A. Nombre: Nomre: FÍSICA APLICADA. EXAMEN A. ABRIL 03. MODELO A TEORÍA (.5 p) A) Teorem de Guss. Enuncido y explicción reve. B) Un crg de C se encuentr en el centro de un cuo de m de ldo. Cmirá el flujo eléctrico

Más detalles

CURSO DE MATEMÁTICA 1. Facultad de Ciencias

CURSO DE MATEMÁTICA 1. Facultad de Ciencias CURSO DE MATEMÁTICA 1. Fcultd de Ciencis Reprtido Teórico 1 Mrzo de 2008 1. Conceptos Básicos de Funciones Definiciones 1. Si A y B son conjuntos no vcíos, un función de A en B es un correspondenci tl

Más detalles

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO XI. LA HIPÉRBOLA 11.1. LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO Definición L hipérol es el lugr geométrico descrito por un punto P que se mueve en el plno de tl modo que el vlor soluto de l diferenci de sus

Más detalles

Para 0 z a La densidad de carga y el campo eléctrico están relacionados por medio de la ecuación diferencial del teorema E 1. = ρ ε 0 a z.

Para 0 z a La densidad de carga y el campo eléctrico están relacionados por medio de la ecuación diferencial del teorema E 1. = ρ ε 0 a z. letos Físic pr Ciencis e Ingenierí Contcto: letos@telefonicnet ρ(z) V En el espcio vcío entre dos plcs conductors plns, y, de grn extensión, seprds un distnci, hy un estrto de crg de espesor, con un densidd

Más detalles

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=±

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=± CAPÍTULO X ECUACIÓN DE º GRADO Y FUNCIÓN CUADRÁTICA 9.. ECUACIÓN DE º GRADO Un ecución de segundo grdo con un incógnit es tod quell que puede ser puest en l form x + bx + c = 0 siendo, b y c coeficientes

Más detalles

Matemáticas Empresariales I. Integral Definida

Matemáticas Empresariales I. Integral Definida Mtemátics Empresriles I Lección 8 Integrl Definid Mnuel León Nvrro Colegio Universitrio Crdenl Cisneros M. León Mtemátics Empresriles I 1 / 31 Construcción de l integrl definid Se f un función definid

Más detalles

103.- Cuándo un contrato de arrendamiento puede considerarse de tipo financiero?

103.- Cuándo un contrato de arrendamiento puede considerarse de tipo financiero? 103.- Cuándo un contrto pue consirrse tipo finnciero? Autor: Gregorio Lbtut Serer. Universidd Vlenci. Según el PGC Pymes, y el nuevo PGC, un contrto se clificrá como finnciero, cundo ls condiciones económics

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito

Más detalles

Repaso de vectores. Semana 2 2. Empecemos! Qué sabes de...? El reto es... Repaso de vectores

Repaso de vectores. Semana 2 2. Empecemos! Qué sabes de...? El reto es... Repaso de vectores Semn 2 2 Repso de vectores Repso de vectores Empecemos! Estimdo prticipnte, en est sesión tendrás l oportunidd de refrescr tus seres en cunto l tem de vectores, los cules tienen como principl plicción

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de Sistems de ecuciones lineles SISTEMAS DE ECUACIONES LINEALES EJERCICIOS DE SELECTIVIDAD º (junio 994) i) Estudir, pr los diferentes vlores del prámetro, l eistenci de soluciones del sistem resolverlo cundo

Más detalles

FORMULARIO EN DISTINTAS OPERACIONES FINANCIERAS 1. CAPITALIZACIÓN SIMPLE: ( ) ( )

FORMULARIO EN DISTINTAS OPERACIONES FINANCIERAS 1. CAPITALIZACIÓN SIMPLE: ( ) ( ) Isbel Nóvo Arechg FORMULARIO EN DISTINTAS OPERACIONES FINANCIERAS 1. CAPITALIZACIÓN SIMPLE: El tnto i y el tiepo n, tienen que estr correlciondos, es decir, referidos l iso período de tiepo, generlente

Más detalles

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este

Más detalles

UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS

UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS Mtemátic Unidd - UNIDAD N : EXPRESIONES ALGEBRAICAS POLINOMIOS ÍNDICE GENERAL DE LA UNIDAD Epresiones Algebrics Enters...... Polinomios..... Actividdes... 4 Vlor Numérico del polinomio........ 4 Concepto

Más detalles

Ecuación de la circunferencia de centro el origen C(0, 0) y de

Ecuación de la circunferencia de centro el origen C(0, 0) y de CÓNICAS EN EL PLANO. CIRCUNFERENCIA, ELIPSE, HIPÉRBOLA Y PARÁBOLA centrds en el origen CIRCUNFERENCIA Aunque segurmente se sep, recordmos que l circunferenci es el conjunto de puntos que distn un cntidd

Más detalles

Circuitos Eléctricos.

Circuitos Eléctricos. Tem Crcutos Eléctrcos/ Nots Crcutos Eléctrcos. Mgntudes Fundmentles. Defncones. Elementos de un crcuto. soccón de resstencs. Crcutos lneles. Leyes de Krchoff. KCL, KL nálss de mlls. Teorem de superposcón.

Más detalles

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a.

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a. INSTITUTO VALLADOLID PREPARATORIA Págin 11 7 LA HIPÉRBOLA 7.1 DEFINICIONES L hipérol es el lugr geométrico de todos los puntos cuy diferenci de distncis dos puntos fijos, llmdos focos, es constnte e igul.

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistems de ecuciones lineles º) L sum de ls tres cifrs de un número es 8, siendo l cifr de ls decens igul l medi de ls otrs dos. Si se cmbi l cifr de ls uniddes por l de ls centens, el número ument en

Más detalles

Método lineal de resolución para sistemas de tuberías complejos. MC2314. Mecánica de Fluidos III Prof. Geanette Polanco Ene-Mar 2011

Método lineal de resolución para sistemas de tuberías complejos. MC2314. Mecánica de Fluidos III Prof. Geanette Polanco Ene-Mar 2011 Método linel de resolución pr sistems de tuberís complejos MC. Mecánic de Fluidos III Prof. Genette Polnco Ene-Mr Sistems de tuberís Cso tipo: Se requiere resolver l distribución de cudles del sistem de

Más detalles

CURSO: ANÁLISIS DE CIRCUITOS EN CA UNIDAD 4 REDES ACOPLADAS MAGNÉTICAMENTE-TRANSFORMADORES CONTENIDO

CURSO: ANÁLISIS DE CIRCUITOS EN CA UNIDAD 4 REDES ACOPLADAS MAGNÉTICAMENTE-TRANSFORMADORES CONTENIDO CURSO: AÁLSS DE CRCUTOS E CA UDAD 4 REDES ACOPLADAS MAGÉTCAMETETRASFORMADORES COTEDO 4. TRODUCCÓ 4. VOLTAJE DE AUTODUCCÓ E U DUCTOR LEY DE LA AUTODUCCÓ DE JOSEPH HERY DUCTACA PROPA 4.3 DUCTACA MUTUA 4.4

Más detalles

CÁLCULO DE CORRIENTES DE CORTOCIRCUITO MEDIANTE LA APLICACIÓN DEL TEOREMA DE COMPENSACIÓN

CÁLCULO DE CORRIENTES DE CORTOCIRCUITO MEDIANTE LA APLICACIÓN DEL TEOREMA DE COMPENSACIÓN Asocición Espñol pr el Desrrollo de l Ingenierí Eléctric Universidd de Cntbri XVIII REUNIÓN DE GRUPOS DE INVESTIGACIÓN DE INGENIERÍA ELÉCTRICA Sntnder, y 4 de mrzo de 8 CÁLCULO DE CORRIENTES DE CORTOCIRCUITO

Más detalles

LÍMITES DE FUNCIONES

LÍMITES DE FUNCIONES LÍMITES DE FUNCIONES Se dice que un función y f() tiene límite "L" cundo l tiende "" y lo representmos por: f() L cundo pr tod sucesión de números reles que se proime "" tnto como quermos, los vlores correspondientes

Más detalles

Matemáticas Bachillerato

Matemáticas Bachillerato Mtemátics Bchillerto Continuidd CONTINUIDAD DE FUNCIONES. Definición de continuidd en un punto Definición: Un función f se dice continu en un punto de bscis (o se, en = ) si lím f ( ) f ( ). Esto es equivlente

Más detalles

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos UNI DAD 2 TRIGONOMETRÍA ANALÍTICA Objetivos Geometrí nlític Introducción funciones trigonométrics Vribles: dependientes independientes Constnte: numéric bsolut rbitrri, y z., b, c, Funciones: función

Más detalles

Tema 11: Integrales denidas

Tema 11: Integrales denidas Tem : Integrles denids My 9, 7 Denición y propieddes Denición. Si f ) es un función continu en un intervlo [, b] y denid positiv, f ), l integrl denid en ese intervlo l denimos como: f ). Si f ) > l integrl

Más detalles