Tema 4. Integración de Funciones de Variable Compleja

Save this PDF as:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 4. Integración de Funciones de Variable Compleja"

Transcripción

1 Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22

2 Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores complejos definid como F (t) = U(t) + iv (t), donde U(t) y V (t) son funciones reles de t continus trzos definids en el intervlo cotdo y cerrdo t b. Bjo ests condiciones, l función F es continu trozos y l integrl definid de F (t) en el intervlo t b se define como: b F (t)dt = y se dice que F (t) es integrble en [, b]. b U(t)dt + i b V (t)dt, (4.) Propieddes de l integrl definid Sen F (t) = U(t) + iv (t), F (t) = U (t) + iv (t) y F 2 (t) = U 2 (t) + iv 2 (t), integrbles en [, b]. A prtir de l ecución (4.) se deducen fácilmente ls siguientes propieddes de l integrl definid. { } b i) Re F (t)dt = b Re {F (t)} dt. { } b ii) Im F (t)dt = b Im {F (t)} dt. iii) b cf (t)dt = c b F (t)dt, pr tod constnte complej c. iv) b [F (t) + F 2 (t)] dt = b F (t)dt + b F 2(t)dt. v) b F (t)dt b F (t) dt. Ejemplo 4. lculr l integrl /4 e it dt.

3 INTEGRAIÓN DE FUNIONES DE VARIABLE OMPLEJA 2 Solución. Se tiene que e it = cos t + isen t, hor, utilizndo l ecución (4.) /4 e it dt = /4 cos t dt + i /4 = [sen t] /4 + i [ cos t] /4 2 = 2 + i sen t dt 4.2 Integrción de líne 4.2. ontornos Se presentn hor vris clses de curvs decuds pr el estudio de ls integrles de un función de vrible complej. Definición 4. (urv) Un curv es un conjunto de puntos z = x+iy en el plno complejo tles que x = x(t), y = y(t), ( t b), donde x(t) y y(t) son funciones continus en el intervlo [, b]. describir medinte l ecución Los puntos de se pueden z(t) = x(t) + iy(t) ( t b) y se dice que z(t) es continu, y que x(t) y y(t) son continus. Definición 4.2 (urv suve) Un curv se llm curv suve, si z (t) = x (t) + iy (t) existe y es continu en el intervlo t b y si z (t) nunc se hce cero en el intervlo. Definición 4.3 (ontorno) Un contorno o curv suve trmos, es un curv que const de un número finito de curvs suves unids por sus extremos. Definición 4.4 (ontorno cerrdo simple) Se un contorno. Se dice que es un contorno cerrdo simple si solmente los vlores inicil y finl de z(t) son igules (z(b) = z()) Integrles de líne Se f(z) un función de vrible complej. Se un contorno representdo por l ecución z(t) = x(t) + iy(t) ( t b) que se extiende del punto α = z() l punto β = z(b). Supongmos que f(z) = u(x, y) + iv(x, y) es continu trozos en, es decir, ls prtes rel e imginri, u(x(t), y(t)) y v(x(t), y(t)),

4 INTEGRAIÓN DE FUNIONES DE VARIABLE OMPLEJA 3 de f(z(t)) son funciones de t continus por trmos. Bjo ests condiciones, se define l integrl de líne de f lo lrgo de como: b f(z) = f(z(t))z (t) dt, (4.2) donde z (t) = x (t) + iy (t). Asocido l contorno de l ecución (4.2), está el contorno, el cul se describe por l ecución z = z( t) donde b t. Por tnto, b f(z) = f(z( t))z ( t) dt, (4.3) donde z ( t) denot l derivd de z(t) con respecto t evlud en t. Propieddes de ls integrles de líne Sen f(z) y g(z) funciones de vrible complej continus trozos sobre un contorno descrito por l ecución z = z(t) ( t b). A prtir de l ecución (4.2) se deducen fácilmente ls siguientes propieddes de ls integrles de líne. i) f(z) = f(z), pr tod constnte complej. ii) [f(z) + g(z)] = f(z) + g(z). iii) Si const de un curv desde α hst β y de l curv 2 desde α 2 hst β 2, donde β = α 2, se cumple: f(z) = f(z) + f(z). 2 iv) f(z) b f(z(t))z (t) dt. Ejemplo 4.2 lculr z = z, donde z = es l circunferenci de centro en y rdio, recorrid en sentido positivo. Solución. Un prmetrizción de l circunferenci z = es: z(t) = e it, ( t 2). Así, z = 2 z = i = i 2 = 2i. e it [ ie it] dt dt

5 INTEGRAIÓN DE FUNIONES DE VARIABLE OMPLEJA Teorem de uchy-gourst El siguiente resultdo se conoce como Teorem de uchy-gourst. Teorem 4. (Teorem de uchy-gourst) Se un contorno cerrdo simple. Se f un función nlític sobre y en el interior de. Entonces f(z) =. (4.4) El Teorem de uchy-gourst es uno de los más importntes en l teorí de vrible complej. Un de ls rzones es que puede horrrnos un grn contidd de trbjo l relizr cierto tipo de integrciones. Por ejemplo, integrles como sen, cosh y ez deben nulrse si es un contorno cerrdo simple culquier. En todos estos csos, el integrndo es un función enter. Obsérvese que l dirección de integrción en l ecución (4.4) no fect el resultdo pues f(z) = f(z). El siguiente ejemplo verific l vlidez del Teorem de uchy-gourst. Ejemplo 4.3 Verifique que z n = donde n es un entero positivo y es l circunferenci z = r, con r >. Solución. Se observ que f(z) = z n es enter, luego por el Teorem de uchy-gourst z n =. Vemos que esto es efectivmente cierto. Un prmetrizción de z = r es: z(t) = re it, ( t 2), luego 2 z n ( = i e it ) n ( ire it ) dt 2 = ir n+ e i(n+)t dt 2 = ir n+ [cos ((n + )t) + isen ((n + )t)] dt = irn+ [sen ((n + )t) i cos ((n + )t)] n + =. 2 De est form se h verificdo el Teorem de uchy-gourst pr un cso prticulr. Definición 4.5 (Dominio simplemente conexo) Un dominio D se dice simplemente conexo si todo contorno cerrdo simple dentro del mismo encierr sólo puntos de D.

6 INTEGRAIÓN DE FUNIONES DE VARIABLE OMPLEJA 5 Definición 4.6 (Dominio multiplemente conexo) Un dominio D se dice multiplemente conexo si no es simplemente conexo. El Teorem de uchy-gourst se puede extender pr dominios simplemente conexos. Teorem 4.2 Si un función f es nlític en un dominio simplemente conexo D, entonces pr todo contorno cerrdo simple, dentro de D, se sumple f(z) =. De igul form, el Teorem de uchy-gourst se puede extender pr dominios multiplemente conexos. Teorem 4.3 Se denot como un contorno cerrdo simple y j (j =, 2,..., n) como un número finito de contornos cerrdos simples interiores tles que los conjuntos interiores cd j no tienen puntos en común. R es l región cerrd que const de todos los puntos dentro y sobre excepto los puntos interiores cd j (R es un dominio multiplemente conexo). Se denot por B l fronter complet orientd de R que const de y todos los j, descrit en un dirección tl que los puntos de R se encuentrn l izquierd de B. En este cso, si un función f es nlític en R, entonces = f(z) =. El siguiente ejemplo clr el significdo de este teorem. Ejemplo 4.4 Demostrr que B B z 2 (z 2 ) =, donde B const de l circunferenci z = 2 descrit en l dirección positiv, y de ls circunferencis z + = /2, z = /2 y z = /2, descrits en l dirección negtiv. Solución. Se R l región cerrd que const de todos los puntos dentro y sobre z = 2 excepto los puntos interiores z + = /2, z = /2 y z = /2. El integrndo es nlítico excepto en los puntos z = y z = ±, y estos tres puntos no pertenecen R. Por lo tnto, plicndo el Teorem 5.3 concluimos que z 2 (z 2 ) =. 4.4 Integrl indefinid B El Teorem de uchy-gourst es un herrmient vlios cundo se trt de integrr un función nlític lrededor de un contorno cerrdo. En cso de que el contorno no se cerrdo, existen métodos que se pueden deducir prtir de dicho teorem y que fclitn el cálculo de l integrl considerd. El siguiente teorem se conoce como principio de independenci de l tryectori.

7 INTEGRAIÓN DE FUNIONES DE VARIABLE OMPLEJA 6 Teorem 4.4 (Principio de independenci de l tryectori) Se f(z) un función nlític en todo punto de un dominio simplemente conexo D y sen z y z 2 dos puntos de D. Entonces, si usmos contornos contenidos en D, el vlor de z 2 z f(z) no dependerá del contorno utilizdo pr ir de z z 2. Demostrción. Se D un dominio simplemente conexo y y 2 dos contornos en D sin intersección que vn de z z 2. Se tiene que los contornos y 2 formn un contorno cerrdo simple, que denominremos. Luego, por el Teorem de uchy-gourst f(z) =, pero f(z) = = f(z) + f(z) 2 f(z) f(z), 2 por lo tnto, f(z) = f(z) 2 lo cul indic que l integrl desde z hst z 2 es sí independiente del contorno seguido, en tnto ese contorno se encuentre dentro de D. Del principio de l independenci de l tryectori podemos definir l primitiv de un función de vrible complej. Se f(z) un función nlític en un dominio simplemente conexo D. Se z un punto de D. L función F (z) definid en D por F (z) = z z f(s) ds + c, (4.5) donde c es un constnte complej, se denomin integrl indefinid o primitiv de f. En relidd f(z) posee un número infinito de primitivs. Dichs primitivs difieren en vlores constntes y son nlítics en D, y stisfcen F (z) = f(z). Usmos l integrl indefinid f(z) pr indicr tods ls posibles primitivs de f(z). El vlor de l constnte correspondiente un primitiv específic z z f(s) ds qued determindo por el límite de integrción inferior como se muestr en el siguiente ejemplo. Ejemplo 4.5 ) Encuentre ls primitivs de f(z) = z sen z. b) Emplee el resultdo del prtdo () pr clculr z s sen s ds. Solución. ) A fin de clculr z sen z usremos el método de integrción por prtes. Así, con u = z, dv = sen z, v = cos z, tenemos z sen z = z cos z + cos = z cos z + sen z + c = F (z).

8 INTEGRAIÓN DE FUNIONES DE VARIABLE OMPLEJA 7 b) Usndo el resultdo de () tenemos z w sen w dw = z cos z + sen z + c. Pr determinr el vlor de c observemos que el ldo izquierdo de est ecución es cero cundo z =. El ldo derecho coincide con el ldo izquierdo en z = si tommos c =. Por lo tnto, z w sen w dw = z cos z + sen z. Según l ecución (4.5), un integrl definid se puede evlur como el cmbio en el vlor de l integrl indefinid, como en el cálculo elementl β β f(z) = F (β) F (α) = F (z). (4.6) Ejemplo 4.6 lculr l integrl definid Solución. α z sen z. Tomndo F (z) = z cos z + sen z del ejemplo 5.6 tenemos: z sen z = [ z cos z + sen z ] = cos + sen. 4.5 Fórmul integrl de uchy En est sección veremos que si un función es nlític en un punto, sus derivds de todos los órdenes existen en ese punto y son tmbién nlítics hí. Previo este resultdo veremos un resultdo curioso que se obtiene trvés del Teorem de uchy-gourst. Si considermos un función nlític sobre y en el interior de un contorno cerrdo simple, bst con conocer los vlores que ell tom sobre ese contorno, pr determinr los vlores que tom en el interior del mismo. Este resultdo se conoce como fórmul integrl de uchy. Teorem 4.5 (Fórmul integrl de uchy) Se f(z) un función nlític en un dominio simplemente conexo D. Se un contorno cerrdo simple perteneciente D. Se z un punto interior de. Entonces f(z ) = f(z). (4.7) 2i (z z ) L fórmul (4.7) se denomin fórmul integrl de uchy. El siguiente ejemplo clr el uso de est fórmul en l evlución de integrles. Ejemplo 4.7 Hllr el vlor de l integrl donde es l circunferenci z i = 2. z α

9 INTEGRAIÓN DE FUNIONES DE VARIABLE OMPLEJA 8 Solución. No podemos decidir de inmedito si debemos plicr l fórmul integrl de uchy o el teorem de uchy-gourst. Fctorizndo el denomindor tenemos. (z 2i)(z + 2i). Observmos que el fctor z 2i se nul dentro del contorno de integrción y que z + 2i no se nul ni sobre el contorno ni en su interior. Escribiendo l integrl considerd en l form [ ] z + 2i, z 2i vemos que, como /(z + 2i) es nlític tnto en l circunferenci z i = 2 como en su interior, podemos usr l fórmul integrl de uchy. En l ecución (4.7) tommos f(z) = /(z + 2i) y z = 2i, obteniendo luego [ 4i = z + 2i 2i z 2i Así, el vlor de l integrl considerd es ] = 2i z = 2. z Vemos que si un función es nlític en un punto, sus derivds de todos los órdenes existen en ese punto y son tmbién nlítics. Teorem 4.6 (Extensión de l fórmul integrl de uchy) Se f(z) un función nlític en un dominio simplemente conexo D. Se un contorno cerrdo simple perteneciente D. Se z un punto interior de. Entonces f es infinitmente diferencible en cd punto de D y l derivd n-ésim de f en z es: f (n) (z ) = n! 2i Además, f (n) (z) es nlític en D pr cd n. f(z). (4.8) (z z ) n+ El siguiente ejemplo clr el uso de l ecución (4.8) en l evlución de integrles. Ejemplo 4.8 Hllr el vlor de l integrl donde es l circunferenci z i = 2. (z 2 + 4) 2,

10 INTEGRAIÓN DE FUNIONES DE VARIABLE OMPLEJA 9 Solución. No podemos decidir de inmedito si debemos plicr l fórmul integrl de uchy o el teorem de uchy-gourst. Fctorizndo el denomindor tenemos. (z 2i) 2 (z + 2i) 2. Tomndo f(z) = /(z + 2i) 2 y z = 2i obtenemos, según l ecución (4.8), f (2i) = 2i (z 2 + 4) 2, ddo que f(z) es nlític sobre y en el interior de. omo f 2 (z) =, el vlor de l (z + 2i) 3 integrl es: (z 2 + 4) 2 = Alguns plicciones de l fórmul integrl de uchy En est sección estudiremos lguns de ls consecuencis de l fórmul integrl de uchy y de su extensión. Teorem 4.7 (Teorem de Morer) Si un función f(z) es continu en todo un dominio simplemente conexo D y si pr cd contorno cerrdo simple que se encuentr en D, f(z) =, entonces f es nlític en todo D. El Teorem de Morer sirve como recíproco del Teorem de uchy-gourst. Teorem 4.8 (Teorem del vlor medio de Guss) Se f(z) un función nlític en un dominio simplemente conexo D. Se z = z + re iθ, donde r r y θ 2, un círculo de centro en z y rdio r > perteneciente D. Entonces, f(z ) = 2 2 f(z + re iθ ) dθ. (4.9) L expresión de l derech de l ecución (4.9) es l medi ritmétic o vlor medio de f(z) lo lrgo de l circunferenci del círculo. El teorem del vlor medio de Guss puede usrse pr demostrr importntes propieddes de ls funciones nlítics: Teorem 4.9 (Principio del módulo máximo) Si f(z) es nlític y no constnte en el interior de un región, entonces f(z) no tiene máximo en es región. Teorem 4. (Principio del módulo mínimo) Si f(z) es nlític no nul y no constnte en el interior de un región, entonces f(z) no tiene mínimo en es región. Ahor, l extensión de l fórmul integrl de uchy nos permite obtener un sorprendente resultdo: Teorem 4. (Teorem de Liouville) Si f(z) es enter y cotd pr todos los vlores de z en el plno complejo, entonces f(z) es constnte.

Resumen Segundo Parcial, MM-502

Resumen Segundo Parcial, MM-502 Resumen Segundo Prcil, MM-502 Jose Alvreng 18 de febrero de 2015 1. Integrles de líne ) Definición Se r(t) = f(t)i + g(t)j un función vectoril con dominio D, y L un vector. Decimos que r tiene limite L

Más detalles

Universidad Antonio Nariño Matemáticas Especiales

Universidad Antonio Nariño Matemáticas Especiales Universidd Antonio Nriño Mtemátics Especiles Guí N 4: Integrción omplej Grupo de Mtemátics Especiles Resumen Se estudi el concepto de integrción tnto pr funciones de vrible rel y vlor complejo, como pr

Más detalles

Funciones de Variable Compleja - Clase 27-28/08/2012 ( ) 4) Acotación del módulo de la integral. Demostrar

Funciones de Variable Compleja - Clase 27-28/08/2012 ( ) 4) Acotación del módulo de la integral. Demostrar Funciones de Vrile omplej - lse 7-8/08/01 [ ] ω : I =, R t I ω Donde : ω = u + iv( y) L derivd de ω se define como: [ ] ω : I =, R t I ω Donde : ω = u + iv L integrl definid de funciones ω sore t, se define

Más detalles

3.- Derivada e integral de funciones de variable compleja.

3.- Derivada e integral de funciones de variable compleja. 3.- Derivd e integrl de funciones de vrile complej. ) Derivds, funciones nlítics e interpretción geométric. ) Regls de diferencición. c) Ecuciones de uch-riemnn. d) Funciones rmónics. e) Integrción complej.

Más detalles

Integrales impropias

Integrales impropias Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección

Más detalles

7.1. Definición de integral impropia y primeras propiedades

7.1. Definición de integral impropia y primeras propiedades Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,

Más detalles

Tema 4: Integrales Impropias

Tema 4: Integrales Impropias Prof. Susn López 1 Universidd Autónom de Mdrid Tem 4: Integrles Impropis 1 Integrl Impropi En l definición de un integrl definid f (x) se exigió que el intervlo [, b] fuese finito. Por otro ldo el teorem

Más detalles

Tema 4. Integración compleja

Tema 4. Integración compleja Not: Ls siguientes línes son un resuen de ls cuestiones que se hn trtdo en clse sore este te. El desrrollo de todos los tópicos trtdos está recogido en l iliogrfí recoendd en l Progrción de l signtur.

Más detalles

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES 5.1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. LÍMITES LATERALES 5.1.1. Concepto de tendenci Decimos que " tiende " si tom los vlores de un sucesión que se proim. Se

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

Capítulo 4 INTEGRACIÓN

Capítulo 4 INTEGRACIÓN pítulo 4 INTEGRAIÓN En el primer curso de álculo, se prendió el concepto de integrl indefinid y definid de funciones reles de vrible rel, y se dedujeron vris propieddes de ls misms: linelidd, monotoní,

Más detalles

Para demostrar la primera igualdad, se supondrá que la región D puede ser definida de la siguiente manera

Para demostrar la primera igualdad, se supondrá que la región D puede ser definida de la siguiente manera .7. Teorem de Green en el Plno. Se un curv cerrd, simple, suve trozos positivmente orientd en el plno, se l región limitd por l curv, e incluendo. Si F ( ) F ( ),, son continus tiene primers derivds prciles

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales Universidd Centrl de Venezuel Fcultd de Frmci Mtemátic - Físic Prof J R Morles Guí de Vectores (Resumen de l Teorí) 1 En físic distinguiremos dos tipos de cntiddes: vectoriles esclres Ls cntiddes vectoriles

Más detalles

La integral de Riemann

La integral de Riemann L integrl de Riemnn Mrí Muñoz Guillermo mri.mg@upct.es U.P.C.T. Mtemátics I (1 o Ingenierí Electrónic Industril y Automátic) M. Muñoz (U.P.C.T.) L integrl de Riemnn Mtemátics I 1 / 33 Sums superior e inferior

Más detalles

1. Función primitiva. Integral de una función.

1. Función primitiva. Integral de una función. . Función primitiv. Integrl de un función. Considermos l función f() =. Nos preguntmos si eiste otr función F() tl que l derivrl nos de l función f(). F() = verific que F () = f(). Pero tmién nos vldrí

Más detalles

SEGUNDA PARTE. ANALÍTICAS Y TEORÍA DE CAUCHY.

SEGUNDA PARTE. ANALÍTICAS Y TEORÍA DE CAUCHY. 42 Funciones de vrible complej. Eleonor Ctsigers. 25 Abril 2006. FUNCIONES SEGUNDA PARTE. ANALÍTICAS Y TEORÍA DE CAUCHY. Resumen Se prueb que tod función holomorf es nlític, y recíprocmente. Se desrroll

Más detalles

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grdo en Químic Bloque Funciones de un vrible Sección.6: Integrción y plicciones. L integrl sirve pr clculr áres de figurs plns limitds por curvs. Pr definir l integrl de un función f : [, b] R se utilizn

Más detalles

O(0, 0) verifican que. Por tanto,

O(0, 0) verifican que. Por tanto, Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O

Más detalles

5. Integral y Aplicaciones

5. Integral y Aplicaciones Métodos Mtemáticos (Curso 203 204) Grdo en Óptic y Optometrí 29 5. Integrl y Aplicciones Primitiv de un función Un función F es un primitiv de f, en un intervlo I, si F (x) = f(x) pr todo x en I. Observción

Más detalles

El Teorema Fundamental del Cálculo

El Teorema Fundamental del Cálculo del Cálculo Deprtmento de Análise Mtemátic Fcultde de Mtemátics Universidde de Sntigo de Compostel Sntigo, 2011 L Regl de Brrow: un resultdo sorprendente Recordemos que f es integrble en I = [, b] y su

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

Fundamentos Matemáticos de la Ingeniería. Tema 9: Cálculo integral de funciones de varias variables Curso

Fundamentos Matemáticos de la Ingeniería. Tema 9: Cálculo integral de funciones de varias variables Curso Fundmentos Mtemáticos de l Ingenierí. (Tem 9) Hoj Escuel Técnic Superior de Ingenierí Civil e Industril (Esp. en Hidrologí) Fundmentos Mtemáticos de l Ingenierí. Tem 9: Cálculo integrl de funciones de

Más detalles

7. Integrales Impropias

7. Integrales Impropias Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Dierencil e Integrl 08-2 Bsdo en el punte del curso Cálculo (2d semestre), de Roerto Cominetti, Mrtín Mtml y Jorge

Más detalles

TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL

TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL TEMA INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL. Funciones.. Incrementos rzones de cmbio. 3. Derivds 4. Derivds de orden superior. 5. Primitivs 6. Integrl definid. Este mteril puede descrgrse desde

Más detalles

Tema 9: Cálculo de primitivas. Integrales definidas e impropias.

Tema 9: Cálculo de primitivas. Integrales definidas e impropias. Integrl definid y sus plicciones. Integrles impropis. Tem 9: Cálculo de primitivs. Integrles definids e impropis. José M. Slzr Noviembre de 206 Integrl definid y sus plicciones. Integrles impropis. Tem

Más detalles

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CONCEPTOS CLAVE: FUNCIONES, GRAFICA DE UNA FUNCIÒN, COMPOSICIÒN DE FUNCIONES, INVERSA DE UNA FUNCIÒN, LIMITE DE UNA FUNCIÒN, LIMITES LATERALES, TEOREMAS

Más detalles

Teorema de Green. 6.1 Introducción

Teorema de Green. 6.1 Introducción SESIÓN 6 6.1 Introducción En est sesión se revis el primero de los 3 teorem clves del cálculo vectoril: el. Este teorem estblece que un integrl doble sobre un región del plno es igul un integrl de líne

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 6 Curso preprtorio de l prueb de cceso l universidd pr myores de 5 ños curso 1/11 Nuri Torrdo Robles Deprtmento de Estdístic Universidd Crlos III de Mdrid

Más detalles

Integrales de funciones de una variable.

Integrales de funciones de una variable. Tem Integrles de funciones de un vrible... L integrl definid como áre. L integrl definid de un función cotd y positiv corresponde l áre encerrd entre l curv y f (x) y el eje OX desde un punto y fx fx hst

Más detalles

Integración en el plano complejo

Integración en el plano complejo Integrción en el plno complejo 4.1. Funciones complejs de vrible rel Un función complej de vrible rel es un función w : [, b] C, donde b. L prte rel y l prte imginri de w son dos funciones reles de vrible

Más detalles

Tema 11: Integrales denidas

Tema 11: Integrales denidas Tem : Integrles denids My 9, 7 Denición y propieddes Denición. Si f ) es un función continu en un intervlo [, b] y denid positiv, f ), l integrl denid en ese intervlo l denimos como: f ). Si f ) > l integrl

Más detalles

Teorema fundamental del Cálculo.

Teorema fundamental del Cálculo. Sesión Teorem fundmentl del Cálculo (TFC) Tems Teorem fundmentl del Cálculo. Cpciddes Conocer y comprender el TFC. Aplicr el TFC en el cálculo de derivds e integrles definids.. Introducción I. Brrow Inglés.

Más detalles

INTEGRACIÓN DE FUNCIONES COMPLEJAS SOBRE CURVAS

INTEGRACIÓN DE FUNCIONES COMPLEJAS SOBRE CURVAS INTEGRCIÓN DE FUNCIONES COMPLEJS SOBRE CURVS. Curvs de clse C trozos en R n Recordemos que un curv prmetrizd de clse C en R n es un plicción : [, b] R n de clse C, donde, b R, < b, tl que (t) 0 pr todo

Más detalles

5.2 Integral Definida

5.2 Integral Definida 80 CÁLCULO / CIENCIAS AMBIENTALES / TEMA 5 5.2 Integrl Definid Definición de Integrl Definid El concepto de integrl definid se construye prtir de l ide de psr l límite un sum cundo el número de sumndos

Más detalles

Integrales de funciones de una variable.

Integrales de funciones de una variable. Tem Integrles de funciones de un vrible... L integrl definid como áre. L integrl definid de un función cotd y positiv corresponde l áre encerrd entre l curv y fx) y el eje OX desde y f x f x un punto hst

Más detalles

Primitivas e Integrales

Primitivas e Integrales Cpítulo 25 Primitivs e Integrles En este cpítulo vmos trbjr con funciones de un vrible. En él estbleceremos un cso prticulr del Teorem Fundmentl del Cálculo Integrl (ver [3] pr el cso generl), con el que

Más detalles

Héctor Palma Valenzuela. Dpto. de Matemática UdeC Definición e interpretación geométrica

Héctor Palma Valenzuela. Dpto. de Matemática UdeC Definición e interpretación geométrica Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC. L Integrl.-. Definición e interpretción geométric Dd un función continu f :[, b] R ynonegtiv (f (), [, b]), vmos considerr l región del plno bjo l gráfic de

Más detalles

Integración. 1. El cálculo de áreas, longitudes de arco y volúmenes.

Integración. 1. El cálculo de áreas, longitudes de arco y volúmenes. Integrción El cálculo integrl es de grn importnci en muchs áres de estudio, como l economí, l biologí, l químic, l físic y l mtemátic en generl. Ls plicciones más conocids del cálculo integrl son en: 1.

Más detalles

CURSO DE MATEMÁTICA 1. Facultad de Ciencias

CURSO DE MATEMÁTICA 1. Facultad de Ciencias CURSO DE MATEMÁTICA 1. Fcultd de Ciencis Reprtido Teórico 1 Mrzo de 2008 1. Conceptos Básicos de Funciones Definiciones 1. Si A y B son conjuntos no vcíos, un función de A en B es un correspondenci tl

Más detalles

Integrales de ĺınea complejas

Integrales de ĺınea complejas Tem Integrles de ĺıne complejs. Integrles de líne.. Funciones complejs de vrible rel Un función complej de vrible rel llev socid un función vectoril de vrible rel, por lo que ls definiciones y resultdos

Más detalles

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA GUIA DE INTEGRALES DEFINIDAS INTEGRAL DEFINIDA. APLICACIONES DE LA INTEGRAL DEFINIDA Teorem Fundmentl del Cálculo Áre jo l curv de un región Áre entre dos regiones COMPETENCIA: Resolver integrles plicndo

Más detalles

Matemáticas Empresariales I. Integral Definida

Matemáticas Empresariales I. Integral Definida Mtemátics Empresriles I Lección 8 Integrl Definid Mnuel León Nvrro Colegio Universitrio Crdenl Cisneros M. León Mtemátics Empresriles I 1 / 31 Construcción de l integrl definid Se f un función definid

Más detalles

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx Integrles Clculr l integrl: +e + -+ + sen(+) 6-7 - 8 9 - + ln - 9- + (-)cos 6 ln 7 e 8 sen 9 e - + + + +- +- -6 - ++ () Describir el método de integrción por cmbio de vrible () Usndo el cmbio de vrible

Más detalles

0.1 Sustituciones trigonométricas.-

0.1 Sustituciones trigonométricas.- Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC.. Sustituciones trigonométrics.- Cso.- El integrndo contiene un epresión de l form +. Se sugiere l sustitución = tn u d = sec udu de donde Z + = sec u d ( +)

Más detalles

TEMA 9: INTEGRALES. CÁLCULO DE ÁREAS

TEMA 9: INTEGRALES. CÁLCULO DE ÁREAS TEMA 9: INTEGRALES. CÁLCULO DE ÁREAS. ÁREA BAJO UNA CURVA. El prolem que pretendemos resolver es el cálculo del áre limitd por l gráfic de un función f() continu y positiv, el eje X y ls sciss = y =. Si

Más detalles

1.6. Integral de línea de un Campo Vectorial Gradiente.

1.6. Integral de línea de un Campo Vectorial Gradiente. 1.6. Integrl de líne de un mpo Vectoril Grdiente. n Definición. Se l función esclr f definid por f : D R R, un función continumente diferencible, y se l curv, un curv prcilmente suve definid prmétricmente

Más detalles

Integración de funciones de una variable real

Integración de funciones de una variable real Cpítulo 5 Integrción de funciones de un vrible rel 5.1. Introducción Los inicios del Cálculo Integrl se remontn Arquímedes, mtemático, físico e ingeniero griego del S.III A.C., quién clculó el áre de numeross

Más detalles

CAPÍTULO XII. INTEGRALES IMPROPIAS

CAPÍTULO XII. INTEGRALES IMPROPIAS CAPÍTULO XII. INTEGRALES IMPROPIAS SECCIONES A. Integrles impropis de primer especie. B. Integrles impropis de segund especie. C. Aplicciones l cálculo de áres y volúmenes. D. Ejercicios propuestos. 9

Más detalles

INTEGRACIÓN. CÁLCULO DE

INTEGRACIÓN. CÁLCULO DE Cpítulo INTEGRACIÓN. CÁLCULO DE ÁREAS.. Introducción Si el problem del cálculo de l rect tngente llevó los mtemáticos del siglo XVII l desrrollo de ls técnics de l derivción, otro problem, el del cálculo

Más detalles

CÁLCULO INTEGRAL. Definición: Sean a y b dos números reales a < b. Una partición del intervalo [a,b] es un conjunto finito de puntos de,

CÁLCULO INTEGRAL. Definición: Sean a y b dos números reales a < b. Una partición del intervalo [a,b] es un conjunto finito de puntos de, Deprtmento de Mtemátics I.E.S. Vlle del Jerte (Plsenci) CÁLCULO INTEGRAL 2.- INTEGRAL DEFINIDA. Definición: Sen y dos números reles

Más detalles

f(x) dx = F (x) + C, siendo F (x) una antiderivada de f(x), es decir, siendo F (x) tal que F (x) = f(x)

f(x) dx = F (x) + C, siendo F (x) una antiderivada de f(x), es decir, siendo F (x) tal que F (x) = f(x) Cálculo de primitivs: f(x) dx = F (x) + C, siendo F (x) un ntiderivd de f(x), es decir, siendo F (x) tl que F (x) = f(x) L constnte C se denomin constnte de integrción; es un constnte rbitrri porque se

Más detalles

1 Integrales impropias

1 Integrales impropias Integrles impropis Eliseo Mrtínez Herrer 3 de mrzo del 4 Abstrct Se estudin ls integrles impropis sobre l bse del cálculo de integrles definids y el límite de funciones Integrles impropis b Un integrl

Más detalles

Primitiva de una función.

Primitiva de una función. Primitiv de un función. 1 / 29 Definición. Un función derivble F es primitiv de l función f en el intervlo I si F (x) = f(x), pr todo x I. Ejemplos 2 / 29 Ejemplo. Se f : R R tl que f(x) = 4x 3. i) F(x)

Más detalles

Integrales Impropias. Capítulo Introducción Integrales de Funciones No Acotadas

Integrales Impropias. Capítulo Introducción Integrales de Funciones No Acotadas Cpítulo 8 Integrles Impropis 8.. Introducción L integrl de Riemnn tl como l hemos estudido, está definid únicmente pr funciones cotds y definids sobre intervlos cerrdos y cotdos. En este cpítulo estudiremos

Más detalles

6.1 Sumas de Riemann e integral definida

6.1 Sumas de Riemann e integral definida Tem 6 Integrción Definid 6.1 Sums de Riemnn e integrl definid Supongmos que estmos interesdos en clculr el áre que se encuentr bjo un curv y = f(x) en un intervlo [, b] (pr simplificr, consideremos el

Más detalles

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles

Funciones continuas. Mariano Suárez-Alvarez. 4 de junio, Índice

Funciones continuas. Mariano Suárez-Alvarez. 4 de junio, Índice Funciones continus Mrino Suárez-Alvrez 4 de junio, 2013 Índice 1. Funciones continus................... 1 2. Alguns propieddes básics............ 3 3. Los teorems de Weierstrss y Bolzno... 6 4. Funciones

Más detalles

CÁLCULO INTEGRAL SESIÓN 5: INTEGRAL DEFINIDA Y APLICACIONES DE LA INTEGRAL. INTEGRAL DEFINIDA

CÁLCULO INTEGRAL SESIÓN 5: INTEGRAL DEFINIDA Y APLICACIONES DE LA INTEGRAL. INTEGRAL DEFINIDA CÁLCULO INTEGRAL SESIÓN 5: INTEGRAL DEFINIDA Y APLICACIONES DE LA INTEGRAL. COMPETENCIA: resolver y plnter integrles que le yuden clculr el áre de un región cotd por dos o más funciones plicndo el teorem

Más detalles

La Integral de Riemann

La Integral de Riemann Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función potencil Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función

Más detalles

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b.

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b. Tem 4 Integrción 4.. Primitivs LA INTEGRAL DEFINIDA Si f(x) es un función continu y no negtiv definid en el intervlo x [, b], entonces l integrl definid f(x) represent el áre bjo l gráfic de l función

Más detalles

int(s) o int(s, var) S puede ser una expresión simbólica o el nombre de una expresión simbólica.

int(s) o int(s, var) S puede ser una expresión simbólica o el nombre de una expresión simbólica. Práctic 3: Cálculo Integrl con MtLb Curso 2010-2011 1 1 Introducción Un de los pquetes más útiles pr el cálculo con MtLb lo constituye Symbolic Mth Toolbox, que permite relizr cálculo simbólico vnzdo,

Más detalles

Funciones de una variable real II Integrales impropias

Funciones de una variable real II Integrales impropias Universidd de Murci Deprtmento Mtemátics Funciones de un vrible rel II Integrles impropis B. Cscles, J. M. Mir y L. Oncin Deprtmento de Mtemátics Universidd de Murci Grdo en Mtemátics 202-203 (22/04/203??/05/203)

Más detalles

CONCEPTOS CLAVE DE LA UNIDAD 2., entonces se dice que F es antiderivada de f. Siempre que f(x) esté definida.

CONCEPTOS CLAVE DE LA UNIDAD 2., entonces se dice que F es antiderivada de f. Siempre que f(x) esté definida. CONCEPTOS CLAVE DE LA UNIDAD. Si f y F son funciones de, tles que F '( ) f ( ), entonces se dice que F es ntiderivd de f. Siempre que f() esté definid. Alguns veces l ntiderivd, se le llm función primitiv..

Más detalles

TEORÍA DE CÁLCULO II PARA GRADOS DE INGENIERÍA Elaborada por Domingo Pestana y José Manuel Rodríguez 4. INTEGRALES DE LÍNEA Y DE SUPERFICIE

TEORÍA DE CÁLCULO II PARA GRADOS DE INGENIERÍA Elaborada por Domingo Pestana y José Manuel Rodríguez 4. INTEGRALES DE LÍNEA Y DE SUPERFICIE TEORÍA E CÁLCULO II PARA GRAOS E INGENIERÍA Elbord por omingo Pestn y José Mnuel Rodríguez 4.1. INTEGRALES E LÍNEA 4. INTEGRALES E LÍNEA Y E SUPERFICIE Hbitulmente suele identificrse un tryectori : [,

Más detalles

2. Cálculo de primitivas

2. Cálculo de primitivas 5. Cálculo de primitivs Definición. Se dice que un función F () es un primitiv de otr función f() sobre un intervlo (, b) si pr todo de (, b) se tiene que F () f(). Por ejemplo, l función F () es un primitiv

Más detalles

Descomposición elemental (ajustes por constantes)

Descomposición elemental (ajustes por constantes) Descomposición elementl (justes por constntes) OBSERVACIONES. Ls primers integrles que precen se hn obtenido del libro de Mtemátics I (º de Bchillerto) McGrw-Hill, Mdrid 007.. Otros problems se hn obtenido

Más detalles

8 - Ecuación de Dirichlet.

8 - Ecuación de Dirichlet. Ecuciones Diferenciles de Orden Superior Prte V III Integrl de Dirichle t Ing. Rmón scl Prof esor Titulr de nálisi s de Señles Sistems Teorí de los Circuit os I I en l UTN, Fcultd Regionl vellned uenos

Más detalles

1.4. Sucesión de funciones continuas ( )

1.4. Sucesión de funciones continuas ( ) 1.4. Sucesión de funciones continus (18.04.2017) Se {f n } un sucesión de funciones f n, definids en I. Si {f n } converge uniformemente f en I y ls f n son continus en I, entonces f es continu en I. D:

Más detalles

Integral de Riemann. Introducción a la integración numérica.

Integral de Riemann. Introducción a la integración numérica. Cálculo Mtemático (Práctics) M. I. Berenguer Mldondo mribel@ugr.es. 1 Integrl de Riemnn. Introducción l integrción numéric. En est práctic usremos l clculdor ClssPd pr trtr el problem de integrción. Se

Más detalles

APUNTES DE VARIABLE COMPLEJA PARA INGENIEROS DE TELECOMUNICACION Elaborados por José Manuel Rodríguez Versión abreviada de Dmitry Yakubovich (2011)

APUNTES DE VARIABLE COMPLEJA PARA INGENIEROS DE TELECOMUNICACION Elaborados por José Manuel Rodríguez Versión abreviada de Dmitry Yakubovich (2011) APUNTES DE VARIABLE COMPLEJA PARA INGENIEROS DE TELECOMUNICACION Elbordos por José Mnuel Rodríguez Versión brevid de Dmitry Ykubovich (20). INTRODUCCIÓN A LOS NÚMEROS COMPLEJOS Se define el conjunto de

Más detalles

Funciones Vectoriales

Funciones Vectoriales Pntoj Crhuvilc Cálculo Agend Algebr de Función Algebr de Función Consideremos un prtícul en movimiento sobre un plno. Su posición en un determindo instnte t viene determindo por dos coordends x(t) e y(t)

Más detalles

4.6. Teorema Fundamental del Cálculo

4.6. Teorema Fundamental del Cálculo Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Dierencil e Integrl 07-2 SEMANA 8: INTEGRAL DE RIEMANN 4.6. Teorem Fundmentl del Cálculo Proposición 4.5. Se un

Más detalles

TEMA 4. Cálculo integral

TEMA 4. Cálculo integral TEMA 4. Cálculo integrl En este tem considerremos el cálculo integrl, que es un complemento nturl del cálculo diferencil y tiene múltiples plicciones en otrs ciencis. 4.. Introducción l cálculo integrl

Más detalles

Integración de funciones reales de una variable real. 24 de octubre de 2014

Integración de funciones reales de una variable real. 24 de octubre de 2014 Cálculo Integrción de funciones reles de un vrible rel 24 de octubre de 2014 c Dpto. de Mtemátics UDC Integrción de funciones reles de un vrible rel L integrl indefinid. Cálculo de primitivs L integrl

Más detalles

Pequeña síntesis de conceptos sobre sucesiones y series para la cátedra de Matemática II.

Pequeña síntesis de conceptos sobre sucesiones y series para la cátedra de Matemática II. Pequeñ síntesis de conceptos sobre sucesiones y series pr l cátedr de Mtemátic II. Altmirnd Enzo - enzo.lt@gmil.com - V1.0 15 de diciembre de 2010 Este texto fue hecho en L A TEX con los puntes tomdos

Más detalles

TEMA 5: INTEGRACIÓN. f(x) dx.

TEMA 5: INTEGRACIÓN. f(x) dx. TEMA 5: INTEGRACIÓN. L integrl indefinid En muchos spectos, l operción llmd integrción que vmos estudir quí es l operción invers l derivción. Definición.. L función F es un ntiderivd (o primitiv) de l

Más detalles

Tema 11: Integral definida. Aplicaciones al cálculo de áreas

Tema 11: Integral definida. Aplicaciones al cálculo de áreas Tem : Integrl definid. Aplicciones l cálculo de áres. Introducción Ls integrles no vn permitir clculr áres de figurs no geométrics. En nuestro cso, nos limitremos clculr el áre jo un curv y el áre encerrd

Más detalles

C alculo Octubre 2010

C alculo Octubre 2010 Cálculo Octubre 2010 c Dpto. de Mtemátics UDC c Dpto. de Mtemátics UDC L integrl indefinid Sen I R un intervlo bierto y f : I IR Definición Diremos que F es primitiv de f en I si F (x) = f (x), x I Teorem

Más detalles

Anexo 3: Demostraciones

Anexo 3: Demostraciones 170 Mtemátics I : Cálculo integrl en IR Anexo 3: Demostrciones Integrl de Riemnn Demostrción de: Propieddes 264 de l págin 142 Propieddes 264.- Se f: [, b] IR un función cotd. ) Pr tod P P[, b], se verific

Más detalles

Segunda Versión. Integración y Series. Tomo II

Segunda Versión. Integración y Series. Tomo II UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE CIENCIA Deprtmento de Mtemátic y Cienci de l Computción CÁLCULO Segund Versión Integrción y Series Tomo II Gldys Bobdill A. y Rfel Lbrc B. Sntigo de Chile 4

Más detalles

SEMANA 8: INTEGRAL DE RIEMANN

SEMANA 8: INTEGRAL DE RIEMANN Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Dierencil e Integrl 08-2 Ingenierí Mtemátic Universidd de Chile SEMANA 8: INTEGRAL DE RIEMANN 4.6. Teorem Fundmentl

Más detalles

A modo de repaso. Preliminares

A modo de repaso. Preliminares UNIDAD I A modo de repso. Preliminres Conjuntos numéricos. Operciones. Intervlos. Conjuntos numéricos Los números se clsificn de cuerdo con los siguientes conjuntos: Números nturles.- Son los elementos

Más detalles

MATRICES DE NÚMEROS REALES

MATRICES DE NÚMEROS REALES MTRICES. MTURITS Luis Gil Guerr.- DEFINICIÓN MTRICES DE NÚMEROS RELES Llmmos mtriz de números reles de orden m x n un conjunto ordendo de m. n números reles dispuestos en m fils y en n columns i m i m

Más detalles

4. Definición: Convergencia uniforme de una sucesión de funciones

4. Definición: Convergencia uniforme de una sucesión de funciones 1. Teorem de l funcion invers Se A un ierto de R N, f : A R m un funcion de clse n (n 1), se A tl que det(jf()) 0. Entonces existe un entorno U de tl que U A tl que: (1). det(jf (x)) 0 pr todo x U (2).

Más detalles

Parte 7. Derivación e integración numérica

Parte 7. Derivación e integración numérica Prte 7. Derivción e integrción numéric Gustvo Montero Escuel Técnic Superior de Ingenieros Industriles Universidd de Ls Plms de Grn Cnri Curso 006-007 Los problems de derivción e integrción numéric El

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral 5 Mtemátics I : Cálculo integrl en I Tem 4 Aplicciones de l integrl 4. Áres de superficies plns 4.. Funciones dds de form explícit A l vist del estudio de l integrl definid relizdo en el Tem 3, prece rzonle

Más detalles

P 1 P 2 = Figura 1. Distancia entre dos puntos.

P 1 P 2 = Figura 1. Distancia entre dos puntos. ANÁLISIS MATEMÁTICO BÁSICO. LONGITUD DE UNA CURVA PARAMÉTRICA. Ddos dos puntos P 1 = (x 1, x 2,..., x n ), P 2 = (y 1, y 2,..., y n ) R n (pensemos en puntos del espcio, de R 3 ) sbemos clculr l distnci

Más detalles

OBTENCIÓN DEL DOMINIO DE DEFINICIÓN A PARTIR DE LA GRÁFICA

OBTENCIÓN DEL DOMINIO DE DEFINICIÓN A PARTIR DE LA GRÁFICA . DOMINIO inio de o cmpo de eistenci de es el conjunto de vlores pr los que está deinid l unción, es decir, el conjunto de vlores que tom l vrible independiente. Se denot por. { R / y R con y } OBTENCIÓN

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

Ejemplos y problemas resueltos de análisis complejo (2014-15)

Ejemplos y problemas resueltos de análisis complejo (2014-15) Variable Compleja I (3 o de Matemáticas y 4 o de Doble Titulación) Ejemplos y problemas resueltos de análisis complejo (04-5) Teoremas de Cauchy En estos apuntes, la palabra dominio significa, como es

Más detalles

5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN.

5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN. 5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2010-2011 5.4.1. El áre de un círculo medinte proximción por polígonos regulres. 5.4.1. El áre

Más detalles

Integral definida. Áreas MATEMÁTICAS II 1

Integral definida. Áreas MATEMÁTICAS II 1 Integrl definid. Áres MATEMÁTICAS II APROXIMACIÓN AL VALOR DEL ÁREA BAJO UNA CURVA L integrl definid está históricmente relciond con el prolem de definir y clculr el áre de figurs plns. En geometrí se

Más detalles