Prof. Virginia Mazzone - Prof. Mariana Suarez
|
|
- José Antonio Domínguez Carrasco
- hace 2 años
- Vistas:
Transcripción
1 SISTEMAS NO LINEALES SISTEMAS PLANARES - CICLOS LÍMITES Prof. Virginia Mazzone - Prof. Mariana Suarez 1 Teorema de Hartman-Grobman 2
2 Teorema de Hartman-Grobman Teorema Sea ẋ = f (x), con f suficientemente suave. Supongamos que x es un equilibrio aislado y que A = f x x no tiene autovalores sobre el eje imaginario. Entonces existe un homeomorfismo h definido en U, entorno de x, h : R 2 que lleva las trayectorias del sistema no lineal sobre las del sistema linealizado. En particular h(x ) = 0. H-G afirma que es posible deformar de manera continua (alrededor del equilibrio) las trayectorias del sistema no lineal en las trayectorias del sistema linealizado (via el homeomorfismo)
3 Teorema de Hartman-Grobman - Cont. En general es muy dificultoso hallar h. Sin embargo el teorema afirma que el comportamiento cualitativo del SNL alrededor de un equilibrio es similar al sistema linealizado (por ejemplo, estabilidad del equilibrio). Qué ocurre cuando la linealización tiene un autovalor en el origen? Si A(x ) es la matriz del sistema linealizado alrededor del equilibrio x, que el 0 sea autovalor de A(x ) significa que A(x ) no tiene inversa y luego el sistema linealizado tiene un continuo de puntos de equilibrio (subespacio de equilibrio)
4 A partir de H-G no podemos concluir nada sobre el comportamiento del sistema no lineal alrededor de x. Su comportamiento depende fuertemente, en este caso, de los términos no lineales de mayor orden: Teoría de la variedad central. Qué ocurre cuando la linealización tiene un autovalor en el eje imaginario? En el sistema linealizado hay un centro. En cambio, el sistema no lineal puede tener trayectorias que convergen en espiral al equilibrio o fuera de él, dependiendo de los términos de orden superior.
5 Ejemplo 1: ẋ 1 = x 2 ẋ 2 = x 1 εx 2 1x 2 (0,0) PE f x x=0 = donde λ 1,2 = ± j [ 0 ] (1) El sistema linealizado tiene un centro (independientemente de ε).
6 Ejemplo 2: Ecuación de Duffing ẍ+δẋ x+x 3 = 0 ẋ 1 = x 2 ẋ 2 = x 1 x 3 1 δx 2 (0,0) PE: (1,0) ( 1, 0) [ f x x=x = x1 2 δ [ 0 1 ] (0,0) 1 δ [ ] 0 1 (±1, 0) 2 ] λ 1,2 = δ ± δ λ 1,2 = δ ± δ 2 8 2
7 Por H-G el comportamiento local alrededor de cada PE coincide con el comportamiento del sistema linealizado. Cuáles son los posibles retratos de fase del sistema? Pueden existir órbitas cerradas?
8 Teorema de Hartman-Grobman Oscilación: un sistema oscila cuando tiene al menos una solución periódica no trivial. x(t + T ) = x(t) t 0 para algún T > 0 En el plano de fase, la sol. periódica resulta en una órbita o trayectoria cerrada.
9 Ejemplo: Sistema lineal Sea el sistema ẋ 1 = x 2 ẋ 2 = x 1 [ ] 0 1 λ 1 0 1,2 = ± j En coordenadas polares, ṙ = 0 θ = 1
10 Ejemplo: Sistema lineal (cont.) Dada la condición inicial (r 0,θ 0 ) se tiene { r(t) = r0 θ(t) = t + θ 0 Las trayectorias en el plano de fases x 1 x 2 son ẋ 1 (t) = r 0 cos(t + θ 0 ) ẋ 2 (t) = r 0 sen(t + θ 0 ) El sistema es un oscilador armónico lineal
11 Problemas del oscilador lineal Pequeñas perturbaciones destruyen la oscilación. El oscilador lineal no es estructuralmente estable. La amplitud de la oscilación depende de la condición inicial. Por el contrario, es posible construir osciladores no lineales tales que Sean estructuralmente estables. La amplitud de la oscilación sea independiente de la condición inicial.
12 Ejemplo: Oscilador de Van der Pol Sea el sistema ÿ µ(1 y 2 )ẏ + y = 0 con µ > 0 f x x=0 = [ 0 ] 1 1 µ { ẋ 1 = x 2 ẋ 2 = µ(1 x 2 1 )x 2 x 1 λ 1,2 = µ ± µ Si µ > 0 y µ 2 4 < 0 (0,0) es un foco inestable del sistema no lineal por H-G.
13 Observación: De la simulación en el plano de fase se observa que existe una órbita cerrada que atrae a las trayectorias que comienzan fuera de ella. En este caso se trata de una órbita cerrada aislada
14 de Ciclo Límite Un ciclo límite es una órbita cerrada y aislada Un ciclo límite es necesariamente una órbita cerrada, pero no vale la recíproca (ej. oscilador lineal) Los sistemas lineales no pueden tener ciclos límites
15 Otro ejemplo: Teorema de Hartman-Grobman { ẋ 1 = x 2 + αx 1 (β 2 x 2 1 x2 2 ) ẋ 2 = x 1 + αx 2 (β 2 x 2 1 x2 2 ) en polares { ṙ = αr(β 2 r 2 ) θ = 1 (2) Considerando (r(0),θ(0)) = (r 0,θ 0 ) la solución viene dada por r(t) = β (1 +C 0 e 2βαt ) 1/2 ;donde C 0 = β 2 r0 2 1 θ(t) = t + θ 0 El sistema tiene una sol. periódica (órbita cerrada) en r = β, es decir existe una órbita cerrada aislada en r = β } {{ } ṙ=0
16 Teorema de Bendixson Dado el sistema de segundo orden { ẋ 1 = f 1 (x 1,x 2 ) ẋ 2 = f 2 (x 1,x 2 ) Supongamos que D R 2 es un dominio abierto simplemente conexo ( es decir que se puede contraer a un punto en forma continua); tal que f = f 1(x 1,x 2 ) x 1 + f 2(x 1,x 2 ) x 2 no es idénticamente nula en ninguna subregión de D y no cambia de signo en D. Entonces D no contiene órbitas cerradas del sistema planar
17 Por qué se pide en el teorema que el dominio D sea simplemente conexo? { ẋ 1 = x 2 + αx 1 (β 2 x 2 1 x2 2 ) ẋ 2 = x 1 + αx 2 (β 2 x 2 1 x2 2 ) y f = 2αβ 2 4α(x x 2 2) y sea D = {(x 1,x 2 )/ 2 3 β 2 x x2 2 2β 2 } que no es simplemente conexa y contiene el ciclo límite calculado anteriormente (x x2 2 = β 2 ). Se tiene que f < 0 en D 1. Esto NO contradice el T.B. pues D no es simplemente conexo. 1 6αβ 2 f 2 3 αβ 2
18 1 R es un conjunto compacto en el plano R 2. (cerrado y acotado) 2 ẋ = f (x) es un campo vectorial continuamente diferenciable en un conjunto abierto que contiene a R. 3 R no contiene puntos de equilibrio del sistema. 4 Existe una trayectoria C que está toda contenida en R (es decir comienza en R y permanece en R para todo tiempo finito. Entonces, o bien C es una órbita cerrada o bien tiende a una órbita cerrada en R cuando t. En cualquier caso R contiene una órbita cerrada. C R PE
19 Observación Teorema de Hartman-Grobman Para aplicar P-B es sencillo verificar las hipótesis 1,2 y 3. Cómo podemos asegurar que existe una trayectoria C contenida en R? La idea es construir R tal que el campo vectorial del sistema apunte hacia R sobre la frontera. R
20 : Teorema de Hartman-Grobman Consideremos el sistema en coordenadas polares { ṙ = r(1 r 2 ) + µr cosθ µ > 0 θ = 1 Veamos que si µ es suficientemente chico, el sistema tiene una órbita cerrada. Busquemos dos círculos concentricos con radios r min y r max tal que ṙ < 0 fuera del círculo de radio r max y ṙ > 0 dentro del círculo de radio r min. La región R dada por 0 < r min r r max será la región buscada para aplicar P-B.
21 Para hallar r min se debe cumplir que ṙ > 0 θ, es decir que r(1 r 2 ) + µ cosθ > 0. Alcanza con pedir que r(1 r 2 ) µ > 0, lo que implica que r min < 1 µ con µ < 1. Por ejemplo r min = 0,999 1 µ. Lo mismo para r max > 1 + µ, por ejemplo r max = 1, µ. Luego por P-B, existe una órbita cerrada para µ < 1 y está dentro del anillo 0,999 1 µ < r < 1, µ
22 Por qué se pide en P-B que R no contenga PE? Consideremos el siguiente sistema { [ ] ẋ 1 x 1 + x A = ẋ 2 = x 1 x { ṙ = r en coord. polares θ = 1 λ 1,2 = 1 ± j { r(t) = r 0 e t θ(t) = t + θ 0 Consideremos R = {(x 1,x 2 ) : x1 2 + x2 2 1}. Sobre su frontera el campo vectorial da hacia adentro. Sin embargo R contiene al equilibrio. Si tomamos el anillo 0 < α 2 x1 2 + x2 2 1 las trayectorias interiores a la circunferencia de radio α NO apuntarán hacia el interior del anillo.
23 El teorema de P-B es uno de los resultados centrales en dinámica no lineal. Dice esencialmente que si una trayectoria está contenida en una región compacta sin puntos de equilibrio, entonces la trayectoria debe aproximarse a una órbita cerrada. Este resultado depende de la dimensión 2 en el plano. En dimensión n 3 P-B no vale
Teoría cualitativa de ecuaciones diferenciales
775 Análisis matemático para Ingeniería. M. MOLERO; A. SALVADOR; T. MENARGUEZ; L. GARMENDIA CAPÍTULO 1 Teoría cualitativa de ecuaciones diferenciales En este capítulo se inicia el estudio de lo que se
Aplicaciones Lineales y Multilineales Continuas
Capítulo 4 Aplicaciones Lineales y Multilineales Continuas La conexión entre las estructuras vectorial y topológica de los espacios normados, se pone claramente de manifiesto en el estudio de las aplicaciones
CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES
CAPÍTULO II. CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES SECCIONES 1. Dominios y curvas de nivel. 2. Cálculo de ites. 3. Continuidad. 55 1. DOMINIOS Y CURVAS DE NIVEL. Muchos problemas geométricos y físicos
ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 9. La aplicación de Poincaré
ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 9. SISTEMAS PLANOS. TEOREMA DE POINCARÉ-BENDIXSON. La aplicación de Poincaré Recordemos que un subconjunto H de R n es una subvariedad de codimensión uno (o una
Polinomios de Taylor.
Tema 7 Polinomios de Taylor. 7.1 Polinomios de Taylor. Definición 7.1 Recibe el nombre de polinomio de Taylor de grado n para la función f en el punto a, denotado por P n,a, el polinomio: P n,a (x) = f(a)
1. Producto escalar, métrica y norma asociada
1. asociada Consideramos el espacio vectorial R n sobre el cuerpo R; escribimos los vectores o puntos de R n, indistintamente, como x = (x 1,..., x n ) = n x i e i i=1 donde e i son los vectores de la
Singularidades de campos de vectores reales: perfil topológico (I)
Singularidades de campos de vectores reales: perfil topológico (I) VI Escuela Doctoral de Matemáticas PUCP-UVA 2013 Conceptos básicos Sea U un abierto del espacio euclídeo R n. Un campo de vectores en
Introducción al Análisis Complejo
Introducción al Análisis Complejo Aplicado al cálculo de integrales impropias Complementos de Análisis, I.P.A Prof.: Federico De Olivera Leandro Villar 13 de diciembre de 2010 Introducción Este trabajo
Teorema de Green. 6.1. Curvas de Jordan
Lección 6 Teorema de Green En la lección anterior, previa caracterización de los campos conservativos, hemos visto que un campo irrotacional puede no ser conservativo. Tenemos por tanto una condición fácil
(x + y) + z = x + (y + z), x, y, z R N.
TEMA 1: EL ESPACIO R N ÍNDICE 1. El espacio vectorial R N 1 2. El producto escalar euclídeo 2 3. Norma y distancia en R N 4 4. Ángulo y ortogonalidad en R N 6 5. Topología en R N 7 6. Nociones topológicas
Ejemplo 1.2 En el capitulo anterior se demostró que el conjunto. V = IR 2 = {(x, y) : x, y IR}
Subespacios Capítulo 1 Definición 1.1 Subespacio Sea H un subconjunto no vacio de un espacio vectorial V K. Si H es un espacio vectorial sobre K bajo las operaciones de suma y multiplicación por escalar
Aplicaciones Lineales
Tema 3 Aplicaciones Lineales 3.1 Introducción Se presentan en este tema las aplicaciones entre espacios vectoriales, particularmente las aplicaciones lineales, que de una manera informal pueden definirse
Ejemplos y problemas resueltos de análisis complejo (2014-15)
Variable Compleja I (3 o de Matemáticas y 4 o de Doble Titulación) Ejemplos y problemas resueltos de análisis complejo (04-5) Teoremas de Cauchy En estos apuntes, la palabra dominio significa, como es
Comenzaremos recordando algunas definiciones y propiedades estudiadas en el capítulo anterior.
Capítulo 2 Matrices En el capítulo anterior hemos utilizado matrices para la resolución de sistemas de ecuaciones lineales y hemos visto que, para n, m N, el conjunto de las matrices de n filas y m columnas
CALCULO AVANZADO. Campos escalares. Límite y continuidad UCA FACULTAD DE CIENCIAS FISICOMATEMATICAS E INGENIERIA
UCA FACULTAD DE CIENCIAS FISICOMATEMATICAS E INGENIERIA CALCULO AVANZADO SEGUNDO CUATRIMESTRE 8 TRABAJO PRÁCTICO 4 Campos escalares Límite continuidad Página de Cálculo Avanzado http://www.uca.edu.ar Ingeniería
UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES )
UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA : Límites continuidad de funciones en R n. -. Dibuja cada uno de los subconjuntos de R siguientes. Dibuja su
Notas del curso de Ecuaciones Diferenciales
Notas del curso de Ecuaciones Diferenciales 1 Introducción 2 2 Existencia y unicidad de las soluciones 4 3 Dependencia de las condiciones iniciales 8 4 Ecuaciones diferenciales autónomas 9 4.1 Orbitas
4.1 EL SISTEMA POLAR 4.2 ECUACIONES EN COORDENADAS POLARES 4.3 GRÁFICAS DE ECUACIONES EN COORDENADAS
4 4.1 EL SISTEMA POLAR 4. ECUACIONES EN COORDENADAS POLARES 4.3 GRÁFICAS DE ECUACIONES EN COORDENADAS POLARES: RECTAS, CIRCUNFERENCIAS, PARÁBOLAS, ELIPSES, HIPÉRBOLAS, LIMACONS, ROSAS, LEMNISCATAS, ESPIRALES.
Límite y continuidad de funciones de varias variables
Límite y continuidad de funciones de varias variables 20 de marzo de 2009 1 Subconjuntos de R n y sus propiedades De nición 1. Dado x 2 R n y r > 0; la bola de centro x y radio r es B(x; r) = fy 2 R n
C 4 C 3 C 1. V n dσ = C i. i=1
apítulo 2 Divergencia y flujo Sea V = V 1 i + V 2 j + V 3 k = (V 1, V 2, V 3 ) un campo vectorial en el espacio, por ejemplo el campo de velocidades de un fluido en un cierto instante de tiempo, en un
Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada
FUNCIONES CONTINUAS. La mayor parte de las funciones que manejamos, a nivel elemental, presentan en sus gráficas una propiedad característica que es la continuidad. La continuidad de una función definida
Sistemas Dinámicos Planos. Jorge Alberto Torres Henao
Sistemas Dinámicos Planos Jorge Alberto Torres Henao Universidad Nacional de Colombia Facultad de Ciencias, Escuela de Matemáticas Medellín, Colombia 2013 Sistemas Dinámicos Planos Jorge Alberto Torres
4.1 El espacio dual de un espacio vectorial
Capítulo 4 Espacio dual Una de las situaciones en donde se aplica la teoría de espacios vectoriales es cuando se trabaja con espacios de funciones, como vimos al final del capítulo anterior. En este capítulo
Parte I. Iniciación a los Espacios Normados
Parte I Iniciación a los Espacios Normados Capítulo 1 Espacios Normados Conceptos básicos Sea E un espacio vectorial sobre un cuerpo K = R ó C indistintamente. Una norma sobre E es una aplicación de E
Tema 3. Problemas de valores iniciales. 3.1. Teoremas de existencia y unicidad
Tema 3 Problemas de valores iniciales 3.1. Teoremas de existencia y unicidad Estudiaremos las soluciones aproximadas y su error para funciones escalares, sin que ésto no pueda extenderse para funciones
Espacios vectoriales. Bases. Coordenadas
Capítulo 5 Espacios vectoriales. Bases. Coordenadas OPERACIONES ENR n Recordemos que el producto cartesiano de dos conjuntos A y B consiste en los pares ordenados (a,b) tales que a A y b B. Cuando consideramos
4. Mapas de fases sistemas autónomos en el plano 0 = 0 = órbitas mapa de fases propiedades básicas ecuación diferencial de las órbitas
4 Mapas de fases Los sistemas de ecuaciones no lineales casi nunca se pueden resolver Pero para los sistemas autónomos en el plano, es decir, para los sistemas de la forma = ƒ (, y) [S] y = g(, y) es posible
TEMA 3: CONTINUIDAD DE FUNCIONES
TEMA 3: CONTINUIDAD DE FUNCIONES. Valor Absoluto Trabajaremos en el campo de los números reales, R. Para el estudio de las propiedades de las funciones necesitamos el concepto de valor absoluto de un número
Espacios vectoriales con producto interno
Capítulo 8 Espacios vectoriales con producto interno En este capítulo, se generalizarán las nociones geométricas de distancia y perpendicularidad, conocidas en R y en R 3, a otros espacios vectoriales.
Campos conservativos. f(x) = f (x) = ( f x 1
Capítulo 1 Campos conservativos En este capítulo continuaremos estudiando las integrales de linea, concentrándonos en la siguiente pregunta: bajo qué circunstancias la integral de linea de un campo vectorial
Estabilidad Según Lyapunov. Sistemas Estacionarios
Capítulo 3 Estabilidad Según Lyapunov. Sistemas Estacionarios La teoría de estabilidad juega un rol central en teoría de sistemas e ingeniería. En sistemas dinámicos existen distintos tipos de problemas
Variable Compleja. José Darío Sánchez Hernández Bogotá -Colombia - abril 2005 danojuanos@hotmail.com danojuanos@tutopia.com
Variable Compleja José Darío Sánchez Hernández Bogotá -Colombia - abril 2005 danojuanos@hotmail.com danojuanos@tutopia.com El objeto de estas notas es brindar al lector un modelo de aprendizaje. A continuación
Diferenciabilidad de funciones de R n en R m
Diferenciabilidad de funciones de R n en R m Cálculo II (2003) En este capítulo generalizamos la noción de diferenciabilidad para funciones vectoriales de variable vectorial, que también llamamos aplicaciones.
GEOMETRÍA DEL ESPACIO EUCLÍDEO
CAPÍTULO I. GEOMETRÍA DEL ESPACIO EUCLÍDEO SECCIONES 1. Vectores. Operaciones con vectores. 2. Rectas y planos en R 3. 3. Curvas y superficies en R 3. 4. Nociones de topología métrica. 1 1. VECTORES. OPERACIONES
Espacios Vectoriales
Espacios Vectoriales Departamento de Matemáticas, CCIR/ITESM 4 de enero de 2 Índice 3.. Objetivos................................................ 3.2. Motivación...............................................
1. Ecuaciones no lineales
1. Ecuaciones no lineales 1.1 Ejercicios resueltos Ejercicio 1.1 Dada la ecuación xe x 1 = 0, se pide: a) Estudiar gráficamente sus raíces reales y acotarlas. b) Aplicar el método de la bisección y acotar
BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.
BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades
Tema 10: Límites y continuidad de funciones de varias variables
Tema 10: Límites y continuidad de funciones de varias variables 1 Funciones de varias variables Definición 1.1 Llamaremos función real de varias variables atodafunciónf : R n R. Y llamaremos función vectorial
Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales
Práctica 4 - Parte Límite de funciones En lo que sigue, veremos cómo la noción de límite introducida para sucesiones se etiende al caso de funciones reales. Esto nos permitirá estudiar el comportamiento
CÁLCULO PARA LA INGENIERÍA 1
CÁLCULO PARA LA INGENIERÍA 1 PROBLEMAS RESUELTOS Tema 3 Derivación de funciones de varias variables 3.1 Derivadas y diferenciales de funciones de varias variables! 1. Derivadas parciales de primer orden.!
Órbitas producidas por fuerzas centrales
Capítulo 10 Órbitas producidas por fuerzas centrales 10.1 Introducción En un capítulo anterior hemos visto una variedad de fuerzas, varias de las cuales, como por ejemplo la elástica, la gravitatoria y
Teoremas de Stokes y Gauss
Lección 9 Teoremas de Stokes y Gauss Presentamos a continuación los dos resultados principales del Cálculo Vectorial. Por una parte, el Teorema de Stokes generaliza la fórmula de Green, estableciendo la
Subconjuntos destacados en la
2 Subconjuntos destacados en la topología métrica En este capítulo, introducimos una serie de conceptos ligados a los puntos y a conjuntos que por el importante papel que juegan en la topología métrica,
COORDENADAS CURVILINEAS
CAPITULO V CALCULO II COORDENADAS CURVILINEAS Un sistema de coordenadas es un conjunto de valores que permiten definir unívocamente la posición de cualquier punto de un espacio geométrico respecto de un
TEMA 2: FUNCIONES CONTINUAS DE VARIAS VARIABLES
TEMA 2: FUNCIONES CONTINUAS DE VARIAS VARIABLES ÍNDICE 1. Funciones de varias variables 1 2. Continuidad 2 3. Continuidad y composición de funciones 4 4. Continuidad y operaciones algebraicas 4 5. Carácter
(3) Regla del cociente: Si g(z 0 ) 0, f/g es derivable en z 0 y. (z 0 ) = f (z 0 )g(z 0 ) f(z 0 )g (z 0 ) . g
Funciones holomorfas 2.1. Funciones variable compleja En este capítulo vamos a tratar con funciones f : Ω C C, donde Ω C es el dominio de definición. La forma habitual de expresar estas funciones es como
OSCILACIONES ARMÓNICAS
Tema 5 OSCILACIONES ARMÓNICAS 5.1. Introducción. 5.. Movimiento armónico simple (MAS). 5.3. Cinemática y dinámica del MAS. 5.4. Fuerza y energía en el MAS. 5.5. Péndulo simple. MAS y movimiento circular
Formas bilineales y cuadráticas.
Tema 4 Formas bilineales y cuadráticas. 4.1. Introducción. Conocidas las nociones de espacio vectorial, aplicación lineal, matriz de una aplicación lineal y diagonalización, estudiaremos en este tema dos
1. Dominio, simetría, puntos de corte y periodicidad
Estudio y representación de funciones 1. Dominio, simetría, puntos de corte y periodicidad 1.1. Dominio Al conjunto de valores de x para los cuales está definida la función se le denomina dominio. Se suele
PRUEBA ELEMENTAL DEL TEOREMA DE INVARIANCIA DE LA DIMENSION. 1. Introducción
PRUEBA ELEMENTAL DEL TEOREMA DE INVARIANCIA DE LA DIMENSION RAFAEL POTRIE Resumen. La idea es dar una prueba elemental del Teorema de invariancia de la dimension que afirma que si U R n es un abierto homeomorfo
Variedades Diferenciables. Extremos Condicionados
Capítulo 16 Variedades Diferenciables. Extremos Condicionados Vamos a completar lo visto en los capítulos anteriores sobre el teorema de las Funciones Implícitas y Funciones Inversas con un tema de iniciación
1. Funciones de varias variables: representaciones gráficas, límites y continuidad.
GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0.. Funciones de varias variables: representaciones gráficas, límites y continuidad. En el análisis de los problemas de la ciencia y de la técnica, las cantidades
Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES. ÁLGEBRA PARA INGENIEROS (Solucionario)
Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS (Solucionario) 2 Í N D I C E CAPÍTULO : MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES CAPÍTULO 2: ESPACIOS VECTORIALES
PROBLEMA 1. 1. [1.5 puntos] Obtener la ecuación de la recta tangente en el punto ( 2, 1) a la curva dada implícitamente por y 3 +3y 2 = x 4 3x 2.
PROBLEMA. ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA Ingeniería Técnica en Diseño Industrial Fundamentos Matemáticos de la Ingeniería Soluciones correspondientes a los problemas del Primer Parcial 7/8.
March 25, 2010 CAPÍTULO 2: LÍMITES Y CONTINUIDAD DE FUNCIONES EN EL ESPACIO EUCLÍDEO
March 25, 2010 CAPÍTULO 2: LÍMITE Y CONTINUIDAD DE FUNCIONE EN EL EPACIO EUCLÍDEO 1. Producto Escalar en R n Definición 1.1. Dado x = (x 1,..., x n ), y = (y 1,..., y n ) R n, su producto escalar está
Análisis III. Joaquín M. Ortega Aramburu
Análisis III Joaquín M. Ortega Aramburu Septiembre de 1999 Actualizado en julio de 2001 2 Índice General 1 Continuidad en el espacio euclídeo 5 1.1 El espacio euclídeo R n...............................
CAPITULO INTERMEDIO ENTRE II Y III SISTEMAS DINAMICOS
TEORIA CUALITATIVA DE LAS ECUACIONES DIFERENCIALES Octubre de 1998. Eleonora Catsigeras. CAPITULO INTERMEDIO ENTRE II Y III SISTEMAS DINAMICOS En este capítulo consideraremos propiedades topológicas generales
Espacios vectoriales y aplicaciones lineales
Capítulo 3 Espacios vectoriales y aplicaciones lineales 3.1 Espacios vectoriales. Aplicaciones lineales Definición 3.1 Sea V un conjunto dotado de una operación interna + que llamaremos suma, y sea K un
Apuntes de Mecánica Newtoniana Cinemática de la Partícula
Apuntes de Mecánica Newtoniana Cinemática de la Partícula Ariel Fernández Daniel Marta Introducción. En este capítulo se introducirán los elementos necesarios para la descripción del movimiento de una
Aplicaciones Lineales
Aplicaciones Lineales Concepto de aplicación lineal T : V W Definición: Si V y W son espacios vectoriales con los mismos escalares (por ejemplo, ambos espacios vectoriales reales o ambos espacios vectoriales
Tipo A Tipo B Min. y Máx. Gambas 2 1 50 Langostinos 3 5 180 Contenedores 1 1 50 Coste 350 550 350x + 550y
IES Fco Ayala de Granada Sobrantes 010 (Modelo 6) Soluciones Germán-Jesús Rubio Luna MATEMÁTICAS CCSS II Sobrantes 010 (Modelo 6) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1 (.5 puntos) Un supermercado
Funciones analíticas CAPÍTULO 2 2.1 INTRODUCCIÓN
CAPÍTULO 2 Funciones analíticas 2.1 INTRODUCCIÓN Para definir las series de potencias y la noción de analiticidad a que conducen, sólo se necesitan las operaciones de suma y multiplicación y el concepto
Clase 15 Espacios vectoriales Álgebra Lineal
Espacios vectoriales Clase 5 Espacios vectoriales Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia En esta sección estudiaremos uno de los conceptos
y λu = Idea. Podemos sumar vectores y multiplicar por un escalar. El resultado vuelve a ser un vector Definición de espacio vectorial.
Espacios vectoriales Espacios y subespacios R n es el conjunto de todos los vectores columna con n componentes. Además R n es un espacio vectorial. Ejemplo Dados dos vectores de R por ejemplo u = 5 v =
1. El teorema de la función implícita para dos y tres variables.
GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lección. Aplicaciones de la derivación parcial.. El teorema de la función implícita para dos tres variables. Una ecuación con dos incógnitas. Sea f :( x, ) U f(
CONVERGENCIA DE LAS SERIES DE FOURIER
CONVERGENCIA DE LAS SERIES DE FOURIER Sea f(x) una función definida para todo x, con periodo. Entonces, bajo condiciones muy generales, la serie de Fourier de f converge a f(x) para todo x. Describiremos
Tema 2 Resolución de Ecuaciones No Lineales
Tema 2 Resolución de Ecuaciones No Lineales Índice 1. Introducción 2. Método de Bisección 2.1 Algoritmo del Método de Bisección 2.2 Análisis de Método de Bisección 3. Método de Regula-Falsi 3.1 Algoritmo
30 = 2 3 5 = ( 2) 3 ( 5) = 2 ( 3) ( 5) = ( 2) ( 3) 5.
11 1.3. Factorización Como ya hemos mencionado, la teoría de ideales surgió en relación con ciertos problemas de factorización en anillos. A título meramente ilustrativo, nótese que por ejemplo hallar
4 Integrales de línea y de superficie
a t e a PROBLEMA DE ÁLULO II t i c a s 1 o Ings. Industrial y de Telecomunicación URO 2009 2010 4 Integrales de línea y de superficie 4.1 Integrales sobre curvas y campos conservativos. Problema 4.1 Integra
CÁLCULO VECTORIAL Notas de clase. Profesor: A. Leonardo Bañuelos Saucedo
CÁLCULO VECTORIAL Notas de clase Profesor: A. Leonardo Bañuelos Saucedo TEMA IV INTEGRALES MÚLTIPLES INTEGRALES ITERADAS Y ÁREA EN EL PLANO Desde el curso de Cálculo II se estudió la forma de derivar parcialmente
Teorema de estructura de los módulos finitamente generados sobre un D.I.P.. Aplicaciones
Tema 13.- Teorema de estructura de los módulos finitamente generados sobre un D.I.P.. Aplicaciones 13.1 Teorema de estructura de los módulos finitamente generados sobre un D.I.P. En lo que sigue A denotará
Sistema de Control de un péndulo Simple
Sistema de Control de un péndulo Simple Profesor: Gerardo Bonilla Mota Materia: Teoría de control Alumno: Hans Alexander Luna Eisermann Id: 00012332 Sistema de Control de un péndulo Simple Introducción:
UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA
UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA AÑO 2014 RECTAS - EJERCICIOS TEÓRICOS 1- Demostrar que la ecuación
Tema 10: Funciones de varias variables. Funciones vectoriales. Límites y continuidad
Tema 10: Funciones de varias variables. Funciones vectoriales. Límites y continuidad 1 Funciones de varias variables Observación 1.1 Conviene repasar,enestepunto,lodadoeneltema8paratopología en R n : bolas,
Tema 3. Espacios vectoriales
Tema 3. Espacios vectoriales Estructura del tema. Definición y propiedades. Ejemplos. Dependencia e independencia lineal. Conceptos de base y dimensión. Coordenadas Subespacios vectoriales. 0.1. Definición
4. Mapas de fases órbitas propiedades básicas puntos críticos nodos puntos silla focos centros aproximación lineal, ecuaciones exactos
4 Mapas de fases Los sistemas de ecuaciones no lineales no se pueden resolver, salvo contadas ecepciones Pero para los sistemas autónomos en el plano, es decir, para los sistemas de la forma [S] '= f(,)
Métodos Matemáticos I
Métodos Matemáticos I Curso 203-4 Hoja de Problemas #2. Dados los siguientes conjuntos: () + 2i (2) 3 + i < 6 (3) + 2i < (4) 0 arg π/3, 0 (5) Re( 2 ) 0 (6) Re( 2 ) < 0 Represéntalos gráficamente. (b) Cuáles
Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor
Tema 5 Aproximación funcional local: Polinomio de Taylor Teoría Los polinomios son las funciones reales más fáciles de evaluar; por esta razón, cuando una función resulta difícil de evaluar con exactitud,
Las Funciones Analíticas. f (z 0 + h) f (z 0 ) lim. h=z z 0. = lim
Las Funciones Analíticas 1 Las Funciones Analíticas Definición 12.1 (Derivada de una función compleja). Sea D C un conjunto abierto. Sea z 0 un punto fijo en D y sea f una función compleja, f : D C C.
Funciones vectoriales de variable vectorial. Son aplicaciones entre espacios eucĺıdeos, IR n, f : X IR n Y IR m
Funciones vectoriales de variable vectorial Son aplicaciones entre espacios eucĺıdeos, IR n, f : X IR n Y IR m x y x = (x 1, x 2,, x n ), y = (y 1, y 2,, y m ) e y j = f j (x 1, x 2,, x n ), 1 j n n =
35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico
q 1 q 2 Prof. Félix Aguirre 35 Energía Electrostática Potencial Eléctrico La interacción electrostática es representada muy bien a través de la ley de Coulomb, esto es: mediante fuerzas. Existen, sin embargo,
Objetivos: Al inalizar la unidad, el alumno:
Unidad 7 transformaciones lineales Objetivos: Al inalizar la unidad, el alumno: Comprenderá los conceptos de dominio e imagen de una transformación. Distinguirá cuándo una transformación es lineal. Encontrará
Tarea 1 - Vectorial 201420
Tarea - Vectorial 040. Part :. - 3... Hacer parametrización de la curva de intersección del cilindro x + y = 6 y el plano x + z = 5. Encontrar las coordenadas de los puntos de la curva donde la curvatura
Análisis de Sistemas No Lineales
Análisis de Sistemas No Lineales Sistemas de Primer y Segundo Orden Dr. Fernando Ornelas Tellez Universidad Michoacana de San Nicolas de Hidalgo Morelia, Michoacán DEP-FIE Dr. Fernando Ornelas Tellez UMSNH-FIE
Clasificación de métricas.
Clasificación de métricas. 1. El problema de clasificación. Como bien sabemos, el par formado por una métrica T 2 (esto es, un tensor 2-covariante simétrico) sobre un espacio vectorial E, (E, T 2 ), constituye
Funciones de varias variables
Funciones de varias variables Derivadas parciales. El concepto de función derivable no se puede extender de una forma sencilla para funciones de varias variables. Aquí se emplea el concepto de diferencial
2.5 Linealización de sistemas dinámicos no lineales
25 Linealización de sistemas dinámicos no lineales En las secciones anteriores hemos visto como representar los sistemas lineales En esta sección se estudia una manera de obtener una aproximación lineal
Usamos que f( p) = q y que, por tanto, g( q) = g(f( p)) = h( p) para simplificar esta expresión:
Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Propiedades de las funciones diferenciables. 1. Regla de la cadena Después de la generalización que hemos
Aplicaciones lineales
aplicaciones_lineales.nb Aplicaciones lineales Práctica de Álgebra Lineal, E.U.A.T, Grupos ºA y ºB, 005 Aplicaciones lineales y matrices Hay una relación muy estrecha entre aplicaciones lineales y matrices:
Inversión en el plano
Inversión en el plano Radio de la circunferencia x 2 + y 2 + Ax + By + D = 0 Circunferencia de centro (a, b) y radio r: (x a) 2 + (y b) 2 = r 2. Comparando: x 2 + y 2 2ax 2by + a 2 + b 2 r 2 = 0 con x
2. Vector tangente y gráficas en coordenadas polares.
GRADO DE INGENIERÍA AEROESPACIAL CURSO 0 Vector tangente y gráficas en coordenadas polares De la misma forma que la ecuación cartesiana y = yx ( ) define una curva en el plano, aquella formada por los
SEMANAS 07 Y 08 CLASES 05 Y 06 VIERNES 25/05/12 Y 01/06/12
CÁLCULO IV (7) SEMANAS 7 Y 8 CLASES 5 Y 6 VIERNES 5/5/1 Y 1/6/1 1 Observación Las propiedades de una función real de una variable real se reflejan en su gráfica Pero para w = f(), con w complejos, no es
Tema 14: Cálculo diferencial de funciones de varias variables II
Tema 14: Cálculo diferencial de funciones de varias variables II 1 Desarrollos de Taylor en varias variables Vamos ahora a generalizar los desarrollos de Taylor que vimos para funciones de una variable.
EJERCICIOS RESUELTOS DE CÓNICAS
EJERCICIOS RESUELTOS DE CÓNICAS 1. Hallar la ecuación de la circunferencia que tiene: a) el centro en el punto (, 5) y el radio es igual a 7. b) un diámetro con extremos los puntos (8, -) y (, 6). a) La
Teorema de Green. ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es. 1. Introducción 1
Teorema de Green ISABEL MAEO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Introducción 1 2. Teorema de Green en regiones simplemente conexas 1 2.1. urvas de Jordan.........................................
Subespacios vectoriales en R n
Subespacios vectoriales en R n Víctor Domínguez Octubre 2011 1. Introducción Con estas notas resumimos los conceptos fundamentales del tema 3 que, en pocas palabras, se puede resumir en técnicas de manejo
Funciones de varias variables
Tema 5 Funciones de varias variables Supongamos que tenemos una placa rectangular R y determinamos la temperatura T en cada uno de sus puntos. Fijado un sistema de referencia, T es una función que depende
Las leyes de Kepler y la ley de la Gravitación Universal
Las leyes de Kepler y la ley de la Gravitación Universal Rosario Paredes y Víctor Romero Rochín Instituto de Física, UNAM 16 de septiembre de 2014 Resumen Estas notas describen con cierto detalle la deducción
Espacios vectoriales y aplicaciones lineales.
Práctica 2 Espacios vectoriales y aplicaciones lineales. Contenido: Localizar bases de espacios vectoriales. Suma directa. Bases y dimensiones. Cambio de base. Aplicaciones lineales. Matriz asociada en
ANALISIS MATEMATICO II Grupo Ciencias 2015
ANALISIS MATEMATICO II Grupo Ciencias 05 Práctica : Geometría Analítica: Vectores, Rectas y Planos A. Vectores Hasta el 9 de marzo. Sean v = (0,, ) y w = (,, 4) dos vectores de IR 3. (a) Obtener el coseno