Departamento de Matemática Facultad de Ingeniería Universidad Nacional de Mar del Plata

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Departamento de Matemática Facultad de Ingeniería Universidad Nacional de Mar del Plata"

Transcripción

1 Dprmo d Mmáic Fculd d Igirí Uivridd Nciol d Mr dl Pl Mmáic Avzd hp:://www3..ffii..mdp.du.r/mvzd 4

2 Coido INRODUCCIÓN.3 EMAS DE VARIABLE COMPLEJA 8 ANÁLISIS EN EL DOMINIO EMPORAL /REAL 3 ANÁLISIS EN EL DOMINIO RANSFORMADO 8 APÉNDICE 63 ABLAS 7

3 Iroducció INRODUCCIÓN Eo pu d cádr i l filidd d guir l lumo l udio d lo difr m d l igur. No db coidrr úico mril pr l udio d lo coido imprido, io qu db r complmdo co l bibliogrfí dlld l pági igui. Pr comprdr i dificuld l módulo, rquir r coocimio y hbilidd l rolució d jrcicio d lo igui m: Álgbr d úmro compljo. opologí dl plo compljo. Fucio d vribl complj. Codicio cri y ufici d Cuchy-Rim. Fucio líic. Fucio rmóic. Fmili d curv orogol. Igrl curvilí d u fució complj. Lo lumo dbrá lr, iguido l croogrm, lo m rlciodo co l cl igui. Dur l orí, lo profor clrrá l dud prd igrrá lo coocimio. Lo rpobl d l prácic xplicrá diio ipo d jrcicio igrdor y drá coul d lo lumo. S rcomid iir l cl óric y prácic y qu rlizrá xpliccio cocpul cri, pr l comprió d lo diio m. 3

4 Iroducció Igr d l cádr: - Dr. Glori Froii - Ig. Crlo Chiuro - Ig. Gbril Mio - Dr. Frdo Oro - Sr. Frcico Prz - Sr. Aguí Sldrii Agrdcimio A l Prof. r Codgo, qui orgizó l igur Mmáic Avzd l ño 3, por hbr ido u jmplo por u compromio co l docci y u bu dipoició co lumo y colg. Objivo grl d l igur Fmilirizr l lumo co l vocbulrio dcudo pr prmiirl u myor comprió d lo coido imprido l igur uuri d é. Cpcir l lumo pr profudizr lo m d curdo co l cidd d cd pcilidd. Rlcior lo difr cocpo, fi d logrr u mjo igrl d lo mimo y plr iucio uv. Régim d promoció: L vlució d l igur lo lrgo dl curdo rlizrá l igui ici: xám prcil órico prácico qu rá clificdo l cl d puo y u probció corrpodrá u o d 5 o má puo. L uci u prcil igific cro como o. Smirio co Mlb, qu dbrá rlizr d cd prcil. Srá d ici obligori, ido é l codició idipbl pr podr rdir l prcil corrpodi. Rcuprorio qu pud uilizr pr rmplzr l o d u prcil dprobdo. Cumplid p l lumo podrá r: PROMOCIONADO: Si l um d lo do prcil probdo d 4 puo como míimo, i hbr hcho uo dl rcuprorio. HABILIADO: Si l um d lo do prcil d puo como míimo. E co podrá probr l igur ridido u xm OALIZADOR pr l cul i r poibilidd. L o dl olizdor má l promdio d lo prcil dfi l o fil. DESAPROBADO: Si o cumpl co l codicio rior. E co dbrá rcurr l mri l curimr igui l curdo. 4

5 Iroducció Progrm líico I Vribl Complj I- rformció Igrció. rformció Coform. Igrl l cmpo compljo. orm d Cuchy- Gour. Cocuci. Fórmul d l igrl d Cuchy y d l drivd d l igrl d Cuchy. orm d Morr. orm dl módulo máximo. I- Sri d poci. Polo y riduo. Sri d ylor. Sri d Lur. Méodo prácico. Drrollo ri. Covrgci. Dfiició d riduo. Sigulridd ild: dfiició y clificció. Fórmul pr l cálculo d riduo. orm d lo riduo. Cálculo d igrl impropi rl. Covrgci. Lm d Jord. Cálculo d igrl dfiid co o y coo l igrdo. II Aálii d ñl y im l domiio mporl /rl. II- Clificció y propidd d Sñl Aálii d ñl l domiio dl impo. Sñl priódic y o priódic. Sñl d rgí y d poci. ipo d ñl. Fució impulo. Fució impulo como lími d or fució. Fució impulo dplzd. Propidd. II- Sim lil ivri l impo. Aálii d im lil. Dfiició d im lil. Fució oprciol dl im. Solució d cucio difrcil l domiio dl impo. Solució riori y prm d u im bl. Apliccio im lil. II-3 Covolució. Cálculo y propidd d l igrl d covolució. Cálculo d l rpu l impulo. Rpu fucio xpocil. Ebilidd d u im. Rlció r l rpu l cló y l rpu l impulo. II-4 Vribl d do. Modldo d im lil mdi vribl d do. Cocpo d do. Obció dl modlo d vribl d do pr im d u rd, u lid d impo coiuo. Modlo d l gud form cóic. Dfiició d mriz d rició. Solució d cucio d do l domiio mporl. Cálculo d l mriz d rició. Ebilidd. III Aálii d ñl y im l domiio rformdo. III- Sri d Fourir Sim orogol d fucio. Fucio cciolm coiu. Vcor y ñl. Sri d Fourir d u fució rliv u im oroorml. Aproximció cudráic. Cofici d Fourir. Ididd d Prvl. Sri rigooméric y xpocil d Fourir. Simrí d l form d od. Igrció y difrcició d l ri d Fourir. Epcro d frcuci dicr. Dfiició. Epcro d mpliud y d f. Propidd. Epcro d poci. Rpu d u im lil u fució priódic. 5

6 Iroducció III- rformd igrl d Fourir Form rigooméric d l igrl d Fourir. Covrgci d l igrl d Fourir. rformd d Fourir. Lilidd d l rformd. Propidd. Form o y coo d l igrl d Fourir. rformd o y coo. rformd ivr d Fourir. Propidd. Covolució. III-3 rformd d Lplc Dfiició uilrl d l rformd d Lplc. orm d xici. Covrgci. Propidd. rformd ivr. Propidd. Méodo pr clculrl. Apliccio. Fució d rfrci. Aálii d l bilidd d u im. Digrm d bloqu l impo y l frcuci complj. Aálii y olució dl modlo vribl d do mdi l rformd d Lplc. Propidd d l mriz d rició d lo do. Rlció co l fució d rfrci. Ebilidd. rformcio d mjz. rformció por lo uovcor. Bibliogrfí E.KREYSZING: Mmáic vzd pr Igirí. Ed. Limu. R.V.CHURCHILL; J.W.BROWN: Vribl complj y pliccio. Ed. Mc Grw Hill. M.R.SPIEGEL: Vribl complj. Sri Schum. Ed. Mc Grw Hill. R.A.GABEL, R.A. ROBERS: Sñl y Sim lil. Ed. Limu S.A. C.D.MC GILLEN, H.R.COOPER: Coiuo d Dicr Sigl d Sym Alyi. Ed.Hol-Rihr d Wio. R.V.CHURCHILL: Sri d Fourir y problm d cooro. Ed. Mc Grw Hill. H.R.HSU: Aálii d Fourir. Fodo ducivo irmrico S.A. M.R.SPIEGEL: rformd d Lplc. Sri Schum. Mc Grw Hill. A.PAPOULIS: h Fourir Igrl d i Aplicio. Mc Grw Hill. M.R.SPIEGEL: Aálii d Fourir. Sri Schum. Ed. Mc Grw Hill. OPPENHEIN WILLSKY: Sñl y Sim. Pric Hll. C.L.PHILLIPS - J.M.PARR,: Sigl, Sym, d rform. Pric Hll. hp://www.jhu.du/~ igl 6

7 Iroducció Croogrm Curd Sm Sm Sm 3 Sm 4 Sm 5 Sm 6 Sm 7 Vribl Complj Aálii d Sñl l domiio mporl Aálii d Sim l domiio mporl Sm 8 Sm 9 Sm Sri d Fourir Sm Sm Sm 3 Sm 4 Sm 5 rformd d Fourir rformd d Lplc y Vribl d Edo Sm 6 Primr Prcil: 3 d Ocubr 4 Sgudo Prcil: d Dicimbr 4 Flo: 9 d Dicimbr 4 7

8 m d Vribl Complj EMAS DE VARIABLE COMPLEJA Gráfico d l fució fz=z -z--j /z ++j. L colorció rpr l rgumo d l fució, mi qu l brillo rpr l módulo. 8

9 m d Vribl Complj INRODUCCIÓN FUNCIONES ANALÍICAS S z=x+jy u úmro compljo. L fució w = fz líic u puo ddo z D i l mim drivbl o l propio puo z como u ciro oro dl mimo. L codicio d Cuchy-Rim o cri pro o ufici. Rcordmo qu pr fz =ux,y+jvx,y, é o:. ux v y ; v x u y L Codicio d C-G o do cucio difrcil prcil qu o báic l álii d fucio complj d vribl complj, dbido qu u vrificció coiuy u codició cri uqu o ufici pr l drivbilidd d ipo d fucio. E codició cri y ufici pr qu u fució fz uiform y coiu drivbl u puo x,y, qu vrifiqu l codicio d C-R y qu l drivd prcil d u y v coiu puo. Sigulridd : z u igulridd d fz, i fz líic lgú puo d ciro oro d z, pro o lo l propio puo z Dcimo qu u fució r, i líic odo l plo z fiio. Por jmplo, u poliomio u fució r. U fució rciol, coci r poliomio, r lvo lo vlor d z l qu l poliomio dl domidor cro; o vlor rá puo igulr d fz z f z b z m m b z m mz b Sigulridd ild: Si xi ciro oro d u puo igulr l cul f líic, xcpo l propio puo, oc z z d u fució f, odo u puo igulr ildo d f. Or form d dfiirl l igui: f z i u igulridd ild z = líic u oro rducido d z. ipo d igulridd ild: clificmo l igulridd como polo, igulridd cil o igulr vibl. Como drmir l urlz d u igulridd I Si lim fz oc dcimo qu fz i u polo z = zz Pr qu u puo z u polo d ord m d fz, crio y ufici qu fz pud xprr d l form: II Si lim fz zz III Si lim fz L zz φz fz z z m co φz y φz z. líic z. A o xi oc z = z u igulridd cil d l fució. oc z = z u igulridd vibl. z i 9

10 m d Vribl Complj Ejrcicio: Alizr lo ipo d igulridd lo puo idicdo 3 4 z f z z z z f z z z 3 3 z f z z z z f z z R. Sigulridd vibl R. Polo d gudo ord. R. Sigulridd vibl R. Sigulridd cil co z 5 f z z R. Polo d quio ord 7 z CEROS DE UNA FUNCIÓN Supogmo qu l fz líic l puo. El puo fz d ord i cumpl l igui codicio: z z llm cro d l fució Si = l puo f z ; f z ;...;f z ; f z z u cro impl. U puo u cro d ord d l fz, qu líic l puo ciro oro d puo vrific l iguldd: z z z z, dod z líic z y z f z Ejrcicio Drmir lo cro d l igui fucio y corr l ord d lo mimo. f z f z z 3 z Rpu: Rpu: z = u cro d rcr ord z = kj u cro impl z, i y ólo i, RANSFORMACIÓNO MAPEO CONFORME Dfiició: U fució w = fz líic y o co rform u domiio D dl plo z oro domiio fd dl plo w. E lo puo lo qu f z u plicció d ipo po u impor propidd d r coform, lo qu igific qu i do curv culquir cor u puo d D, u imág fd cor formdo l mimo águlo qu qull. E cd puo z d u domiio dod f líic y f z l rformció w = fz coform. z w C C C * C * C * Fig.: Curv C y C Fig.: Imág d l curv C *, C *, rpcivm bjo u mpo coform.

11 m d Vribl Complj S dcrib coiució lguo jmplo d rformcio coform. rformció lil Form grl: w = Az + B; A y B co complj. Si w = z + B pr A= u x B u jv x jy B jb o l coordd d rformció v y B Rpr u rlció, i l modificció d l form, i orició, i mño d l figur. b Si w = Az, rbjdo coordd polr, obmo: w Az R. r R r. j j j Rpr u roció gú rgumo d A y u mgificció corcció o dilció d l figur gú: A RSi A hy dilció ; i A hy corcció. c w = Az + B pr B= Rpr u combició d roció co mgificció y rlció. Ejmplo : Si quiir corr l img d l igui rgió: w = +jz + -j rribrí l igui cocluio: Roció gú rg+j = Mgificció gú: rlció gú -j 4 j ; dilció x ; y, mdi rformció ivr Form grl: w z o z w. Excpo pr z =, w = lo qu o i img blc u corrpodci uo uo E polr: j j r r Exi u imrí rpco l j rl y dmá u ivrió rpco d l circufrci d rdio r =, o : Si r > < ; i r < >.

12 m d Vribl Complj E cri: z w y x y v y x x u jy x jy x. jy x jv u, o bi, pr w z pud cribir: v u v y ; v u u x Eudimo l rformció ivr d u fmili d circufrci y rc Si,b,c,d R, l cució d u fmili d circufrci o rc dpdido d o = : x +y + bx + cy + d = l plo z, oc l plo w : d v u v c v u bu v u v u D dod: + bu cv + d u +v = d u +v + bu cv + =, lugo, l rgió rformd rul mbié u fmili d circufrci o rc. Ejmplo: rformr x +y - 4x + y = mdi l rformció ivr. Rpu: v = -u +. 3 Hllr líic y gráficm mdi l rformció ivr, l img d l rgió ryd: z j j/ Rpu: v u v u u

13 m d Vribl Complj El puo dl ifiio U plicció d l rformd ivr qu prmi corr l img dl puo dl ifiio Noció: z = Idic qu l img d w = bjo l rformció w = Alíicm coidr z z pu i z, oc z. Uilizdo uiució implific l r l cálculo d lími. El puo dl ifiio rcib l ombr d puo impropio llmdo. El plo compljo má l puo ifiio, rcib l ombr d plo compljo xdido, i puo llm plo compljo fiio. z Ejmplo 4: rformr l puo z = mdi: w 4z z. Rpu: w = 4 rformció bilil o lil frcciori u homográfic Form grl: z b w, d - bc,, b, c,d : co complj cz d L rformcio d ipo rform circufrci y rc circufrci y rc. Obrvr qu cudo c, l form grl pud cribir, rlizdo l diviió d lo d b bc d poliomio, como: c w.. c cz d c c cz d Hcido: z = cz+d y z z A, rul: w bc d.z c c B L cucio A y B rpr r rformcio uciv qu dcompo l rformció bilil. L primr y l rcr o d ipo lil y l gud ivr. Pro, cudo c = w z b d.z d b d, rul dl ipo lil. L form grl d rformció pud xprr: czw +dw =z+b ó Azw + Bw + Cz +D = cució lil z y w, d llí qu bilil. Hy ólo u rformció bilil qu rform r puo diio ddo: z, z, z3, r puo diio ddo w, w, w3, rpcivm. Dich rformció vi dd por l fórmul: w ww w 3 w w w w 3 z zz z3 z z z z 3 l qu pud cribir: 3

14 m d Vribl Complj w w w w 3 z z 3 z z = w w w 3 w z z z z3 * Si z = z oc l gudo mimbro y w = w * Si z = z3 oc l primr mimbro y w = w3 * Si z = z oc =, d dod: w w-w3 = w w-w3, por lo o: w = w w w w w 3 w w w 3 w mbié pud rbjr co l puo dl ifiio mdi uiucio dcud co l po l lími. U puo dobl o fijo qul cuy img w rpr l mimo úmro. L rformció i como máximo do puo dobl rprdo por l ríc z, obid l cució: z b w cz d hcido z = w Ejmplo: 5 Ecorr l rformció qu mp: z =, z =, z3 = - lo puo w = j, w =, w 3 =. Rpu: 6 Mdi z j w, rformr x>, y>. Rpu: z j 7 Hllr l rformció bilil dl círculo z <5 l círculo w u zj w z v v <, d l modo qu lo puo z = -5, z = 4+3j, z3 = 5 rform lo puo w = -, w = j, w3 =. Rpu: z 5 w z 4

15 m d Vribl Complj INEGRACIÓN EN EL PLANO COMPLEJO U igrl d lí o curvilí qull igrl cuy fució vlud obr u curv, por jmplo, l curv C qu v d A B. E igrl u grlizció d l dfiició d l igrl dfiid rl. y Si mbrgo u irprció o cill como l d l B igrl dfiid dl cálculo lml ár bjo l curv dcrip por l igrdo. L curv C llm rycori d igrció. C Ejmplo prácico d u uilizció pud r: A - l cálculo d l logiud d u curv l pcio, - l cálculo dl volum d u objo dcrio por u curv, objo dl qu po u fució cmpo clr qu dcrib u volum lo lrgo d l curv, 3- l cálculo dl rbjo qu rliz pr movr lgú objo lo lrgo d u rycori ido cu cmpo d furz dcrio por cmpo vcoril qu cú obr l mimo. x Rcordmo l orm d Gr l plo igrl curvilí rl, qu d l rlció r u igrl d lí lrddor d u curv crrd impl C y u igrl dobl obr l rgió pl R limid por C: S fucio Px,y y Qx,y y u primr drivd prcil fucio coiu od u rgió crrd R, coiuid por odo lo puo irior u cooro crrdo C, juo co l cooro mimo, oc: C Pdx Qdy R Q P dxdy x y C rcorr ido poiivo ihorrio. E l co d u curv crrd do dimio, l igrl curvilí llm mbié igrl d cooro. Igrl d lí complj. jy R C x Coidrmo u fució fz = ux,y +j vx,y l cul líic odo lo puo irior y obr u cooro crrdo C, y l qu igrl curvilí: fzdz C f z coiu llí. S quir vlur l E fácil vr qu l igrl d lí complj pud xprr érmio d igrl d lí rl, fució d u compo. Si uiuy fz = ux,y +j vx,y y dz = dx +j dy l igrl y opr, rul: C f zdz C ux, ydx C vx, ydy j C vx, ydx C ux, ydy 5

16 m d Vribl Complj EOREMA DE CAUCHY-GOURSA S fz u fució líic u domiio implm coxo D. Eoc, ddo u cooro crrdo impl C coido D, mo: =. C fzdz Dmorció Como: C f zdz C ux, ydx C vx, ydy j C vx, ydx C ux, ydy. Eoc como fz líic, u y v y u drivd prcil d primr ord o coiu l mim rgió. Dd l propidd d u y v, poibl plicr l orm d Gr*. Eoc, l gudo mimbro modific como, C f zdz R v u dxdy j x y Como cumpl l codicio d Cuchy-Rim, gudo mimbro ul y rul: C fzdz. R u v dxdy x y u v v u, x y x y. oc l E dmorció, bd l orm d Gr, xig qu coiu R y qu d lo corrio o podrímo plicr dicho orm. Cuchy obuvo 84 por primr vz ruldo, vliédo d u fórmul quivl y qu Gr o hbí ú xplicido u orm. Or dmorció, mo rriciv, fu formuld fi dl iglo XIX por Gour, qu o rquir qu coiu. E dduccio cooc como orm d Cuchy-Gour, o vc úicm como orm igrl d Cuchy. f z f z Ejmplo: Probr qu C z dz pr od rycori crrd. Cocuci dl orm d Cuchy-Gour Cocuci Supogmo fz líic u rgió comprdid r do curv C y C, dcir, u domiio doblm coxo, oc d pud probr qu: C fzdz C fzdz Dmorció: U domiio doblm coxo rform implm coxo co u cor AB, y oc pud plicr l orm d Cuchy-Gour: A B A B C C B C A C 6

17 m d Vribl Complj Pro como: oc: B A A C B B A, C B A, d quí qu: C C. Ddo qu C y C b rcorrido ido corrio, cmbido l ido d igrció, rul:. C C Si grlizmo pr u domiio muliplm coxo, Cj j =,,3,... : C... C C C3 C Cocuci : Pricipio d l idpdci d l rycori Si fz líic u domio implm coxo D, i ommo do puo A y B culquir coido D, y do curv C y C, mbié coid dicho domiio, pud dducir qu: f zdz ABC ABC f zdz Lugo, l igrl o dpd dl cmio r A y B. E or cocuci dl orm d Cuchy-Gour, y qu i primo d A por C y volvmo A por C y l curv crrd l llmmo C *, ido C * = C+-C bido qu l igrl obr C *, rul: * C C C, gú l codicio dd : y * C, oc: ABC BAC BAC ABC ABC ABC Obrvmo qu l igrl o dpd dl cmio io d lo xrmo. C A C B Ejrcicio: Pr z= -j y z= +j, clcul z z f z dz jy, pr fz = z - x Igrl dfiid: U igrl dfiid pud clculr por l icrmo qu ufr l igrl idfiid, como l co d igrl rl: f zdz F F, dod lo cmio d igrció á coido u domiio implm coxo, l qu fz líic. 7

18 m d Vribl Complj FÓRMULA DE LA INEGRAL DE CAUCHY S g líic y uívoc u domio implm coxo odo lo puo irior y obr u cooro crrdo C; i z culquir puo irior C i gz gz j z z C dz dod l igrl om ido poiivo lrddor d C. L fórmul mur qu l vlor d l fució, qu líic u rgió, á drmid od l rgió por u vlor obr l cooro. Dmorció: S C u circufrci co cro pquño pr qu C irior C. L fució g z z z z l qu z z r y r lo uficim líic odo lo puo irior y obr D, xcpo l puo Por lo o l igrl lrddor dl cooro d l rgió ulr r C y C cro, y gú l primr cocuci dl orm d Cuchy-Gour: C g z dz z z g z dz z z C, dod mb igrl om ido poiivo. z. Uilizdo u rificio l gudo mimbro: C g z dz z z Eoc: C g z g z g z dz z z C g z dz g z g z dz g z dz z z z z C C z z Alizmo cd u d l igrl I y II. I II A C C r z z S z z r j y dz r jθ jd θ j dz r j, oc I: d j j z z r C j. Pr II: S om l vlor boluo y i cu qu g coiu, / g z g z pr z z. E priculr, irior C z z z, oc: g z g z z z dz g z g z z z C C dz C dz 8

19 m d Vribl Complj Puo qu l úmro pud r pquño como d, l vlor boluo d l igrl mbié pud hcr rbirrim pquño. Rducir quivl implm rducir l rdio d C. Rmplzdo A, rul: Ejrcicio: 8 Clculr : C z z dz g z dz g z.j z z C gz gz j z z lo lrgo dl círculo d rdio co cro, pr: = R. j c = - R. -j b = 9 Clcul C R. j d = j R. co z dz z rigulr mordo l figur. b Clcul C co z dz z, dod C l cooro, dod C l mimo cooro qu l prdo. Rcoidr l fució dl Ej 8 y Clcul l igrl lo lrgo dl círculo d rdio co cro. b Coidr hor l curv C como - pro pr igrr l fució c Clcul C z 4 z dz z z z 3 - R. jy C dz x z z z. Fórmul d l drivd d l igrl d Cuchy Si l fució gz líic u rcio D y u fror C, oc pr culquir úmro url vrific l fórmul: g z! gz dod z D, j z z dz C z C S pud dmorr prido d l fórmul d l igrl d Cuchy y drivdo rpco d ; cudo llg g' z rir l proco y por iducció llg lo qu qurí dmorr y cocluir: Si u fució g líic u puo oc u drivd d odo lo órd g, g,...; o mbié líic qul puo. z Ejrcicio: Clculr z dz 3 z C z ; R. 4 j ; b Clculr C z ch z j dz ; 3 R.. z z 9

20 m d Vribl Complj RESIDUOS Dfiició: S fz u fució líic u cooro crrdo C, implm coxo y odo puo dl irior d C, lvo. S domi riduo d l fució fz u igulridd ild z = z z l úmro dfiido por: z R f z f z dz z j C od fució i u riduo cd uo d u puo igulr ildo. Si mbrgo, l vlor dl riduo pud r cro. Obrvr qu i z u polo impl, oc R zz f z lim zz y i z u polo múlipl fz Má dl dmorrá qu i f z Pz, Qz Pz y Qz oc l riduo mbié z fz z z z fz z líic z, y z z m R zz z, Por l. d l Igrl d Cuchy. m m z! m R f z lim z z fz zz zz z u polo impl d fz, y Si z y Pz fz Q z Pz ; Qz y Q z.,. Ejrcicio : Drmir l riduo d l igui fució igulridd. R: R fz 3 z. f z z z 3 z u EOREMA DE LOS RESIDUOS El orm d lo riduo cocuci dirc dl orm d l igrl d Cuchy y form pr fudml d l orí mmáic d Aálii Compljo. S C u curv crrd l plo compljo l qu l fució fz líic l irior d C y obr C, xcpo u úmro fiio d puo igulr ildo irior C. Si k,k,......k m rpr lo riduo f qullo puo i qu: z,z,...z m C fzdz j m i R fz Dmorció: Ecrrmo cd uo d lo puo igulr zi u círculo Ci co rdio pquño pr qu qud prdo odo o m círculo y C. Eoc fz líic l domiio muliplm coxo limido por C, C,...,Cm y obr l fror. zzi C3 C z z3 C Cm z zm C

21 m d Vribl Complj D curdo co l igrl d Cuchy u d l Cocuci cocluy qu: Como: oc: C C f z dz j. k C f z dz f z dz f z dz... f z dz ; C C C f z dz j.k C m ;... m k... km j. R f z zz j i f z dz j. k. Cm f z dz j.k Ejrcicio 3: Rolvr l igui igrl plicdo l orm d lo riduo. C z 3 3z dz z z 9 R. j ; b C z dz 3 z z 4, R. j 3 m, c C z 4 dz h z,r. - j

22 m d Vribl Complj SERIES. POLOS Y RESIDUOS Rvimo prvim lo igui m: Sri d poci U ri d poci z = u ri ifii d l form: c z c c z c z... c z.... dod z l vribl; c, c,...,c o lo cofici y u co qu rcib l ombr d cro d l ri. E priculr i =, obi u ri d poci z : c z L rgió d covrgci drmi co u círculo d cro y rdio R, l qu z R l ri covrg y i z R divrg. El círculo z R llm círculo d covrgci y u rdio rcib l ombr d rdio d covrgci. El rdio clcul, por mdio d lo cofici d l ri, d Cuchy-Hdmrd: R L. Si L = R = l ri covrg pr odo z. Si L = R = l ri covrg z = L lim c c y gú l fórmul Ejrcicio 4: z Rpu: R = y z ; b z Rpu: R = y z Sri d ylor S fz líic odo lo puo irior u circufrci C co cro z y rdio R. E cd puo z irior C: f z f fz fz f z z z z z... z z R.!! Lugo, l ri ifii covrg fz i R cudo. L covrgci á grizd i f líic l irior d C. L RC dfiid impr u rgió bir. El rdio R l dici dd l puo z h l puo igulr d f qu é má próximo z, y qu l fució líic odo lo puo irior C.

23 m d Vribl Complj Ejrcicio 5 Drmir l rdio d covrgci d l ri d ylor pr b Drrollr f z Solució pr l icio b : z 3 poci d z- Si rbj lgbricm co fz pud cribir qu: fz Ahor, rcoddo l ri goméric pr q= covrgci d l ri fz f z z Rpu: z z z z Aí, pudo corr l ri d ylor bucd: fz z z z pr., válid pr R l form I l vlor d z. ido z = j I. Drrollo ri má uilizdo: Sri biomil: z z, z Co priculr: ; dod,! 3 z z, z, z ó z ó z z z z z z 3 z z m z co z z mm z mz! z,! z,! z z 4, z! z z z mm m z 3! , z 3

24 m d Vribl Complj Si u fució f o líic z, o podmo plicr l orm d ylor puo. No ob, much vc poibl hllr u rprció d fz form d u ri qu coi o poci poiiv como giv d z-z. E l domid SERIE DE LAUREN orm S fz u fució líic l illo r z z r crdo z. S C culquir cmio crrdo impl, orido poiivm, qu rod z y á coido domiio ulr. Eoc, cd puo z d rgió, fz á rprd por u ri covrg d poci poiiv y giv d, llmd SERIE DE LAUREN: z - z fz dod: z z j b z z r z z r fz dz,,,... z z C jy C C r C z z r x b fz j z z C dz,,... 3 E grl, obdrmo lo cofici d l ri d Lur por méodo prácico y o por l fórmul y 3. Ejmplo: Drroll ri d Lur poci d z- y drmi l domiio l qu l ri covrg fz. f z / z 3 Obrvcio: I El drrollo crib co frcuci como fz f z A z z, dod : A dz,,,... j z z C. Llmmo zo irmdi lo puo d l rgió r z z r, lo qu l ri coi o poci poiiv como giv. 4

25 m d Vribl Complj II E l co qu f líic odo puo obr C irior ll, xcpo z, l rdio r pud omr rbirrim pquño. Aí l drrollo válido cudo z z r. L llmrmo zo crc. III Si f líic odo lo puo irior y obr C, l igrl obr C dfiid l c3 igul cro por. d C-G y l ri rduc u ri d ylor. y l igrdo fució líic z. IV E priculr b f z z z válido z z r. L llmrmo zo lj. Obrvmo qu fur d l coro circulr, fz podrá rprr por u ri qu i olo u d l umori d. L ri d Lur d u fució líic dd fz u illo d covrgci úic. Si mbrgo fz pud r difr ri d Lur do illo dl mimo cro. U ri pocil rpr u fució líic odo puo irior u círculo d covrgci. Ejrcicio: 6 Hllr od l ri d Lur d Rpu: b c f z f z f z z z z z válid z f z z z válid z vlid z z co cro 7 Ecorr od l ri d Lur d f z co cro z =. z Rpu: b f z z f z z z válid. válid z z z z =. 5

26 m d Vribl Complj SINGULARIDADES y RESIDUOS DE UNA FUNCIÓN y LA SERIE DE LAUREN Cudo z u puo igulr ildo d f, xi u úmro poiivo fució líic cd puo z pr l cul z z r fució á rprd por l ri d Lur: b fz z z z z A l úlim ri l llm pr pricipl d fz l oro d ipo d igulridd ild. Rlció co l ri d Lur. Dcimo qu u fució i u polo d ord m l puo d u drrollo d Lur lrddor dl puo igulr m d érmio. Eoc, lo cofici drrollo : fz z z Si m = l polo impl. b z z b z z z bm,bm,... b... z r l qu l y domiio l z. z, i l pr pricipl coi h u úmro fiio m- m- z, o odo ulo y l b z z m m, b m b Dcimo qu l puo u puo igulr cil d l fució, i l pr pricipl coi u úmro ifiio d érmio. z c Si l Sri d Lur crc d pr pricipl, y l fució o líic pud hcr líic uilizdo u dcud dfiició d l mim, oc l puo u puo igulr vibl. z pro z S hbí vio qu l urlz d u igulridd podí drmir lizdo l lími: I Si fz líic y i u polo z = z oc. mbié pud II Si firmr qu pr qu u puo ufici qu fz pud xprr d l form: lim fz zz z lim fz zz u polo d ord m d fz, crio y φz fz z z φz y φz líic z. A o xi oc z = z u igulridd cil d l fució. III Si lim fz L oc z = zz z u igulridd vibl. Ahor mo codicio d probr l propidd I l qu rul dl igui m orm: z u polo d ord m d fz i y ólo i: limz z.fz k, k, xi, fiio y o ulo. zz m co 6

27 m d Vribl Complj Dmorció: S, φz z z m.fz z z r dfiid u oro rducido d y líic. Suiuydo fz por u drrollo d Lur, coidrdo l xici d u polo, rulrá qu: Si z B z z z oc z z z z b m m b m b m z z... b z z. Eoc B válid odo oro d puo. Por r B u ri d poci covrg, l fució cocuci pud cribir: puo qu xi y dduc qu: z limz z.fz m b m zz b m m,b m z y l propio z líic zz z. E lim f z RESIDUOS. Rlció co l Sri d Lur Rcordmo l dfiició: S fz u fució líic u cooro crrdo C, implm coxo y odo puo dl irior d C, lvo. Eoc l riduo d fz, á dfiido por: z R zz f z Obrvr qu d curdo l dfiicio d lo cofici l drrollo d Lur, pg. 4, gú 3 dirmo qu. R zz j f z C f b z dz Eoc l riduo d u fució fz l puo igulr ildo l poci z z l drrollo d Lur. z, z, l cofici d od fució i u riduo cd uo d u puo igulr ildo. L ri d Lur lrddor dl puo rpr l fució odo u oro dl puo, xcpo l propio puo. Ejrcicio 8 Drmir l riduo d cd u d l igui fucio u rpciv igulridd. z z 3 f z R. 3 z 3 z f z R. z f z z R. - 7

28 m d Vribl Complj FÓRMULAS PARA EL CÁLCULO DE RESIDUOS Cudo o dipo d l Sri d Lur, poibl drmir l vlor d u riduo, prir d difr fórmul, l myorí d l cul y h prdo cpíulo. S pr u brv rum y lgu dduccio ir lo qu igu. A Pr polo impl A- Como limz z zz m.fz b m, i m = oc b limz z zz.fz Dmorció: Al r z = form: z u polo impl, l ri d Lur corrpodi d l b fz z z co z z r, b z z Si muliplicmo mbo mimbro por z- z, rul: Aplicdo lími obmo qu: zz. fz z z b R fz b limz z fz zz zz. A- Si f z Pz, Qz Pz y Qz oc l riduo d l form: líic b Pz Q z z. y Pz ; Qz y Q z, Dmorció : Si Qz líic z = oc plicdo l rgl A- rul: Pz R f z lim z z. zz zz Qz z z Qz Q z z z! y, por lo o : Qz Qz z pud drrollr ri d ylor, Sbmo qu... R f z lim z z. zz zz z z Q z Qz Pz z z! R fz b Pz Q z zz... y pdo l lími : B Pr polo d ord uprior S fz u fució qu i u polo d ord m oc b m y l drrollo d l ri d Lur d l form: b m b m- b fz... z z... m m- z z z z z z 8

29 m d Vribl Complj Si muliplic mbo mimbro por z qu domimo z z z.f z b z b obi: z z z z m y coruy u fució uxilir líic... b z z z z m m m m m Pro I l drrollo d ylor d z z z... I dod lo cofici vi ddo por l m z m fórmul: z z z z z... z z... II m! I y II rpr l mimo drrollo, qu úico; cocuci, comprdo cofici, rul: m z m b ; co z z z.fz m! C Pr igulridd cil No hy fórmul pr l cálculo d lo riduo d l fució puo igulr cil. S vlú impr cordo l Sri d Lur. Ejrcicio 9 Drmir l riduo d cd u d l igui fucio u rpciv igulridd. 3 f z z f z f z 4 4 3z z z 3 z. z R. R. R f z zz R f z zz3 9 j j 4 4 R f z 4 z R. R f z z,,, R f z zz R f z zz4 R f z z 9 j 4 4, 3 j 4 4 9

30 Aálii l domiio mporl ANÁLISIS DE SEÑALES y SISEMAS EN EL DOMINO EMPORAL 3

31 Aálii l domiio mporl ANÁLISIS DE SEÑALES EN EL DOMINIO EMPORAL Iroducció U ñl l brcció d u cidd mdibl, y rá í rprd por u fució d u o má vribl idpdi. Pud mbié irprr u ñl como u prurbció cmbio u do qu xprim u mdio. Lo rlv d u ñl qu cmbio pud dplzr. Sgú l urlz dl cmbio poibl diiguir difr domiio d propgció. U ñl pud xprr difr domiio; cudo xpr l domiio dl impo hbl d propgció y plic, l mo proximdm, lo cocpo d l cimáic. Admá d domiio pud hbr oro, como l domiio dl pcio, l d l frcuci c. E vid qu u ñl i como u d u propidd rlv l cpcidd d comuicr y /o rmiir iformció. L iformció qu o rfrimo podrí r mbié l rpu d u im u olicició. L prurbcio pud r d difr ídol, por jmplo, l ñl d rdio o prurbcio lcromgéic qu propg l pcio. E co r d u do d ió lécric dl mdio qu propg. L ñl cúic o prurbcio d prió qu propg u mdio mril. L ñl lgráfic o prurbcio lécric qu propg rvé d u coducor c. S podrí firmr qu l mudo modro á rplo d ñl, l myor pr d ll o poibl prcibirl co lo rcpor d qu á dodo l Hombr form url y much, ú cpd co yud crd por l iviv dl r humo, ci r lizd pr obr iformció úil d ll. D o r l álii d ñl. E dicipli u cojuo d id y rcuro qu prmi l irprció d l ñl url o rificil qu iud uro uivro. Lo rcuro o d do ipo, uo qu modific l ñl pr u irprció y oro qu l om y l po d form qu rul vid u pricipl crcríic. E curo drmo u iroducció l primr pr d écic, dcir, prdrmo lizr ñl pr obr d ll l iformció qu o ir. Dd impo muy iguo lo r humo h mpldo ñl d difr ipo pr comuicr cocimio impor o dr voc d lrm. Como jmplo podmo cir: Hc lumioo qu mplb lo grigo y romo pr fi milir Sñl d humo rdiciolm mpld por idio pr vir mj. Sñl cúic d mbor pr comuicr iio d difícil cco Sñl producid por fro pr guí d brco y comuicció d oici. A fi dl iglo diciéi, Iglrr mpló u im d fro pr lrr obr l proximidd d l rmd Epñol, époc cuñó l érmio d ñl pr dor u igo o oici prcpibl por l oído o l vi, did dvrir, rmiir u iformció o comuicr lgu oici. E l ño 86, l im d máforo dl grigo: pordor d ñl b Iglrr prfcciodo, qu r poibl rmiir u ñl dd Plymouh Lodr obido u cofirmció olo r miuo. E l ño 85, 3

32 Aálii l domiio mporl Mor ivó u código l qu juo l ivció dl légrfo produjo u gr vc l comuiccio o dd l puo d vi d u rpidz como l d u cofibilidd. L ñl d rdr comiz r plicd dur l gud gurr mudil pr dcr vio y lrr obr l poibilidd d bombrdo. El or, ivdo por Lgvi 97 prmiió plicr ñl cúic lo im d dcció d ubmrio. E ñl, rvi u porció dl pcio, cuy codicio cmbi d form zro prurbádol impidido, vc, qu cumpl co lo objivo pr lo qu furo grd. E circuci hizo qu drrollr l orí d ñl dd l puo d vi d u grció, mjordo l lcróic ocid pr hcr l ñl má robu y dd l puo d vi d l dcció, drrolló l hrrmi díic pr bucr l crcríic rlv d l iformció qu llgb lrd lo im d dcció. E l ár d l comuiccio, l miió d l orí d ñl cumpl múlipl propóio: db mjorr u grció pr hcrl imu l prurbcio dl mdio, fcilir u rcuprció icluo hcr qu l rmiió d é má coómic. Pr fíico igiro l ñl i dmá u propóio o mo impor qu lo rior. E much oporuidd plicmo ñl pr udir u fómo d l urlz. E co lo rlv qu l ñl modificd por l fómo qu udi y quí l éfi o hc vir qu l ñl diorio io qu l diorió d é origid por l fómo rlv qu o ir udir. Eoc, rul d gr imporci r iformció crc dl mcimo d diorió d l ñl grd. E úlimo co i u igificdo coidrblm má grl qu lo rior y u ñl pud r u proycil cuy rycori lr por l prci d u obáculo, o u modificció l mpliud y l coido d frcuci d u od qu hc icidir obr u zo fcd por u fómo drmido, como u urbulci, por jmplo. Pr fi d ivigció l ñl l grmo mdi dipoiivo qu rform l fómo d iré io lécric. U im qu rform ñl d u ipo or llm u rducor.hy o rducor como l irccio qu gobir u cpcidd d rformció, í mo rducor lécro-diámico u bu jmplo d o o lo prl d l rdio, mgéico, lcro mgéico, pizolécrico, rmo-lécrico, c. L ñl, dd l puo d vi mporl pud dividir coiu y dicr, y mb pud r priódic o o priódic. E curo o ocuprmo d ñl coiu. E l próxim cció dcribimo l ñl priódic y u pricipl crcríic, l myorí d l cul o o fmilir: príodo, mpliud, form d od. mbié coidrrmo ñl o-priódic, má ligd vo o rpiivo; o o fácil d dcribir, i mbrgo, bádo l form qu é dplig l impo, poibl dr lgu d u má impor crcríic. 3

33 Aálii l domiio mporl Dcripció d ñl Sñl priódic: U ñl priódic, qull qu rpi í mim, cd ciro irvlo d impo príodo. Aí, l Príodo d l ñl l impo qu rd l ñl y u drivd dquirir l mimo vlor. Nur cpcidd d lizr ñl v coidrblm forlcid i l xprmo como rlcio mmáic, í podmo bficiro d l poci d dicipli pr l álii d u propidd. Cudo o poibl, fcili igificivm l obció d l iformció qu l ñl coi. Como u primr jmplo coidrmo lgu d l propidd lml d l ñl priódic. Si u ñl pud xprr como u fució priódic dl impo y u príodo, cumpl lo igui orm: Si fx priódic co príodo ; fx=fx+, dmá m mbié u príodo d l mim fució fx=fx+m, co m=,,3... Dmorció: S: f x + m = f x+ = fx co m =, oc, i m=:, i m= fx+=f{x+[-] }+=fx+[-] =f{x+[-] }++...c. f x f x f x f x b Si fx priódic y i príodo ; oc fx i priodo Dmorció: S: gx = fx E vid qu gx priódic, oc, upogmo qu l priodo d gx, lugo, gx=g x+ y fx= f x+,lugo fx=fx+, oc l príodo d fx por o: = m = m. c Si gx priódic d príodo y fx priódic d príodo, oc i xi u vlor = =b, co /b u úmro rciol, u uv fució yx dfiid como l um d l rior, yx= fx+gx, rá priódic, d príodo. Sñl o priódic: U ñl o priódic o priódic, qull pr l cul o xi u qu ifg l codició f=f+,. Hy ñl o priódic dfiid pr irvlo fiio d, y or o-priódic dfiid. S lizrá má dl qu l primr pud rprr érmio d ñl priódic. 33

34 Aálii l domiio mporl Vlor mdio E cir oporuidd rul muy úil dcribir l ñl, priódic o o, mdi u úmro limido d prámro qu rflj mgiud má fácil d irprr dd l puo d vi fíico, lo qu á rlciodo má bi co l propidd qu l fucio i promdio. Ejmplo d o li coiució: Vlor mdio o vlor promdio, mgiud qu muy fmilir u form dicr: N f, dod l vlor d cd mur d l ñl, y N l úmro d mur d l N i x i f xi ñl. Cudo r d u ñl coiu xprió rform l bi coocid xprió pr l vlor mdio d u ñl coiu fx dfiid x b, f b l qu cocpulm idéic l rior,. b f xd x, Cudo quir hcr u udio d l vricio d u ñl l impo, poibl qu u vlor mdio ul por cu d l flucucio, co má covi mplr l llmdo vlor RMS d l ñl, igl qu igific vlor cudráico mdio roo m qur. El vlor RMS d u ñl f i por xprió: mbié pud irr l vlor boluo promdio d l mgiud d u ñl, idéico cocpulm l rior, qu á ddo por: f d f d Sñl d rgí v. Sñl d poci Rcordmo qu i f u ñl dfiid,, u rgí dfi: E Pr l ñl f dfiid,, dcimo qu u rgí : f d.. L E lim L L f d.b Eoc, u ñl i rgí fii i u ñl d rgí. E Ejrcicio: Clculr l rgí d l ñl:. E co, crcrizrmo f como, f ; R: E i b b, b 34

35 Aálii l domiio mporl Rcordmo qu i f u ñl l irvlo,, o i priódic d príodo, oc l poci mdi d f dfi, rpcivm, como : Pm f d Pm f d. Por oro ldo, ir mbié crcrizr cir ñl como ñl d poci., u ñl d poci i: Dirmo qu l ñl f, dfiid, lim L L L L f d U ñl d rgí o d poci,, pro o mb l mimo impo. Pud probr mbié qu od ñl priódic impr u ñl d poci, y qu od ñl cod, d l llmd pulo, impr d rgí. Hy ñl qu o prc igu d l fmili rior, qu o l d poci ifii Cudo =. Ejrcicio: Probr qu l ñl f poci. co, o u ñl d rgí i d Cul v. Aicul v. Nocul L ñl cul o ñl qu i vlor ulo l impo givo, y l ñl icul i vlor cro l impo poiivo. L ñl o-cul o ñl co vlor diio d cro pr impo poiivo y givo Figur. U ñl cul U ñl o-cul U ñl icul 35 Figur

36 Aálii l domiio mporl Pr v. Impr U ñl pr culquir ñl f qu ifc f =f. L ñl pr pud dcr fácilm por qu o iméric l j vricl. U ñl impr, u ñl qu ifc l rlció f = f Figur. U ñl pr b U ñl impr Figur E ir obrvr qu culquir ñl i u dcompoició pr-impr. S pud dmorr qu culquir ñl pud cribir como l um d u ñl pr y u impr. Pr dmorr o, o mo má qu xmir l igui cució: f= ½[ f +f ] + ½[ f f ]. Al muliplicr y umr xprió, dmormo qu lo xplicdo riorm ciro. mbié pud obrvr qu = ½[ f +f ] ifc u fució pr, y qu o= ½[ f f ] ifc u fució impr Figur 3. Ejmplo : E ñl rá dcompu udo l dcompoició Pr-Impr 36

LA TRANSFORMADA DE LAPLACE

LA TRANSFORMADA DE LAPLACE LA RANSFORMADA DE LAPLACE (pun crio por Dr. Mnul Prgd). INRODUCCIÓN Enr l rnformcion má uul qu oprn con funcion f(x) cumplindo condicion dcud n I[,b, pr obnr or funcion n I, án por jmplo : L oprción D

Más detalles

Departamento de Matemática Facultad de Ingeniería Universidad Nacional de Mar del Plata

Departamento de Matemática Facultad de Ingeniería Universidad Nacional de Mar del Plata Dprmo d Mmáic Fculd d Igirí Uivridd Nciol d Mr dl Pl Mmáic Avzd hp:://www3..ffii..mdp.du.r/mvzd mvzd@ffii..mdp.du.r 6 Coido INRODUCCIÓN...3 EMAS DE VARIABLE COMPLEJA...9 ANÁLISIS EN EL DOMINIO EMPORAL

Más detalles

Hola, chicas y chicos! Os presentamos a. Él y sus amigos son los ganadores del concurso de ciencias de este año. . En Brasil, la selva está en

Hola, chicas y chicos! Os presentamos a. Él y sus amigos son los ganadores del concurso de ciencias de este año. . En Brasil, la selva está en E ryc d Pdr Hj d cividd 1 Nmbr: Fch: L rícu y cmé. NOTICIAS DEL COLE PEDRO Y SUS AMIGOS GANAN EL CONCURSO DE CIENCIAS H, chic y chic! O rm Bqu. É y u mig gdr d ccur d cici d ñ. Pdr d. E Bri, v á rqu á

Más detalles

x a es una serie de la forma que el radio de convergencia de la serie geométrica es el intervalo abierto

x a es una serie de la forma que el radio de convergencia de la serie geométrica es el intervalo abierto ERIE DE POTENCIA ERIE DE POTENCIA. Diició. U sri d pocis c s u sri d l orm c c c c... c... Por jmplo. i c y l sri d pocis om l orm....... Por jmplo. i c y l sri d pocis om l orm....... TEOREMA. El cojuo

Más detalles

61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS

61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS Cp. 6 Sris 6. 6.. SERIES NUMÉRICAS INFINITAS 6.. SERIES DE TÉRMINOS POSITIVOS 6.. SERIES ATERNANTES 6.. SERIES DE POTENCIAS Objtivo: S prtd qu l studit: Dtrmi covrgci o divrgci d sris. Empl sris pr rsolvr

Más detalles

n o ó i Mi nombre: Mi numero de orden: Cuadernillo 1 periodo II MOMENTO DE LA MOVILIZACIÓN NACIONAL POR LA MEJORA DE LOS APRENDIZAJES

n o ó i Mi nombre: Mi numero de orden: Cuadernillo 1 periodo II MOMENTO DE LA MOVILIZACIÓN NACIONAL POR LA MEJORA DE LOS APRENDIZAJES l bim cm CACIÓN EDU bim cm DOS TO C u m ó i c c i d r t m m i trá d D qu d r p d i, r u q rd p l rd m p d T d 2 d u g S g prid Mi mbr: Cudrill 1 Mi umr d rd: II MOMENTO DE LA MOVILIZACIÓN NACIONAL POR

Más detalles

SISTEMAS DE ECUACIONES DIFERENCIALES DE PRIMER ORDEN

SISTEMAS DE ECUACIONES DIFERENCIALES DE PRIMER ORDEN TEMA Nº SISTEMAS DE ECUACIONES DIFERENCIALES DE PRIMER ORDEN. TEOREMA PRELIMINAR INTRODUCCIÓN.- Sism d cucios dircils lils co icógis d l orm P D P D P D P D P P D D... P... P... P D D D b b b dod ls P

Más detalles

CAPITULO 6.- LA TRANSFORMADA DE LAPLACE.

CAPITULO 6.- LA TRANSFORMADA DE LAPLACE. PITUO 6.- TRSFORD DE PE. 6. Irocció. 6. rform plc. 6.3 rform plc ilrl. 6.4 Ivrió l rform plc. 6.5 Solció ccio ifrcil co coicio iicil. 6.6 rform plc ilrl. 6.7 álii im mi l rform plc. 6. Irocció. Grlizmo

Más detalles

6 - Líneas de Transmisión (cont.)

6 - Líneas de Transmisión (cont.) Elcromgmo 4 6-33 6 - í d Trmó co. Adpcó d mpdc E comú qu d cocr u crg u lí d mpdc crcríc dfr. E l co xrá u od rfljd qu dmuy l poc rgd l crg y pud r fco dro l grdor, crr oro y orcorr or l lí cpc d cur dño,

Más detalles

2 Revisión de los fundamentos

2 Revisión de los fundamentos Rvó d lo udmo mmáco S cb d cr l ror cpíulo qu lo modlo d l pl o proco, rr curo, rá ddo por l cuco drcl ll y d coc co, brvádo co l crómo LI (Lr m Ivr). L drmcó dl compormo dámco dl m upo qu coocd u ucó

Más detalles

SISTEMAS LINEALES TABLAS. Dpto. Teoría de la Señal y Comunicaciones

SISTEMAS LINEALES TABLAS. Dpto. Teoría de la Señal y Comunicaciones SISEMAS LIEALES ABLAS Dpo. orí d l Sñl y Comuiccios POPIEDADES DE LA ASFOMADA DE LAPLACE Propidd Sñl rsformd OC ( ) ( ) ( ) s ( s) ( s) Lilidd + b ( ) ( s) b ( s) Dsplmio l impo ( ) Dsplmio l domiio s

Más detalles

La mujer y el tiempo: canon estético y desvíos en tres artistas del Renacimiento Garcilaso, Fray Luis y Giorgione. Dietris Aguilar

La mujer y el tiempo: canon estético y desvíos en tres artistas del Renacimiento Garcilaso, Fray Luis y Giorgione. Dietris Aguilar L mj y m: é y ví Rm G, Fy L y Gg D Ag Uv N Lm Zm @.m. Rm: Evó ó b m y bz vé í G y Fy L y b ó Gg. Pb v: é, ó, í ñ, bz fm. 1- Pm E í qé Rm ( y fóm í), g m b b m b mj mvm. E í g, m q é f mvm [1] q v m í má

Más detalles

FACULTAD DE INGENIERÍA

FACULTAD DE INGENIERÍA FCULD DE INGENIERÍ Uivrdd Nciol uóo d Méico Fculd d Igirí ális d Siss y Sñls Profsor: M.I. Elizh Fosc Chávz SERIE DE FOURIER LUMN: Sáchz Cdillo Vicori GRUPO: 6 SERIE DE FOURIER od sñl priódic s pud prsr

Más detalles

Ruta Alimentadora Sur

Ruta Alimentadora Sur Ad Ru Ador Ad Lo Horzo Ad B A-02 ALAEDA UR Ad Lo Cd P PUENTE VILLA E o P Hy J rí E o Ovo L Cv Grd Cv ERVICIO EPECIAL CIRCUITO DE PLAYA L Gvo Hy Tr A-04 VILLA EL ALVADOR Rvou Ro A-07 AÉRICA L Uó Grd A-08

Más detalles

! Magalie Latorre Rodríguez Clausula Legal WEB-LSSI

! Magalie Latorre Rodríguez Clausula Legal WEB-LSSI Mgli L Rdíguz Cluul Lgl WEB-LSSI L pági Wb www.mgupi.cm iulidd d Mgli L Rdíguz y cumpl c l quii divd d l Ly 34/2002, d 11 d juli, d Svici d l Scidd d l Ifmció y d Cmci Elcóic, dl Rl Dc-ly 13/2012, d 30

Más detalles

ERROR EN ESTADO ESTACIONARIO

ERROR EN ESTADO ESTACIONARIO UNIVESIDAD AUÓNOMA DE NUEVO EÓN FACUAD DE INGENIEÍA MECÁNICA Y EÉCICA EO EN ESADO ESACIONAIO INGENIEÍA DE CONO M.C. EIZABEH GPE. AA HDZ. M.C. OSÉ MANUE OCHA NÚÑEZ UNIVESIDAD AUÓNOMA DE NUEVO EÓN FACUAD

Más detalles

La transformada de Laplace en economía

La transformada de Laplace en economía c d Ecoomí Año 8 Núm 5 rformd d plc coomí écor omlí y Briz Rmbo * Smrio E cd vz má frc q coomí ilic écic y méodo mmáico q oriilm riro como rp problm fíico U modoloí q d comúm pr problm d iirí l d l rformd

Más detalles

Respuesta al escalón unitario

Respuesta al escalón unitario Rpua al caló uiario Epcificacio l domiio dl impo La ampliud duració d la rpua raioria db mar dro d lími olrabl dfiido E ima d corol lial la caracrizació dl raiorio comúm raliza uilizado u caló uiario a

Más detalles

ERROR EN ESTADO ESTACIONARIO

ERROR EN ESTADO ESTACIONARIO UNIVESIDAD AUÓNOMA DE NUEVO LEÓN FACULAD DE INGENIEÍA MECÁNICA Y ELÉCICA EO EN ESADO ESACIONAIO INGENIEÍA DE CONOL M.C. ELIZABEH GPE. LAA HDZ. M.C. OSÉ MANUEL OCHA NÚÑEZ UNIVESIDAD AUÓNOMA DE NUEVO LEÓN

Más detalles

ó. 7 ó. 8 f gé bó. 9 ú 0. 1 f 1. 1 íg é g, 2. 1 b á D 3. 1 b 4. 1 é 5. 1 ORORD.. Vé, í, ó á b: b b, x f ó,." éx,, f, bá á O, b fó f ó g á. g O g, j b

ó. 7 ó. 8 f gé bó. 9 ú 0. 1 f 1. 1 íg é g, 2. 1 b á D 3. 1 b 4. 1 é 5. 1 ORORD.. Vé, í, ó á b: b b, x f ó,. éx,, f, bá á O, b fó f ó g á. g O g, j b M I MIO MIO D UB B O HO M, b B í Og: M W. W f W Ó 1978, O I F. ó: V ú D gz: @ (U, g. ) - 03 22/08/03 IDI I ó 1. b b 2. 3. fz x? 4. z f 5. b 6. ú g? ó. 7 ó. 8 f gé bó. 9 ú 0. 1 f 1. 1 íg é g, 2. 1 b á D

Más detalles

Exportación e Importación en formato XML

Exportación e Importación en formato XML Exportcó Importcó formto XML Tléfoo (506) 2276-3380 Fx (506) 2276-3778 d@c.co.cr www.d.com 1 Exportcó d Iformcó formto XML Pr xportr dto dd lpho formto XML, l mú Admtrcó, cutr l opcó Exportr S motrrá l

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR DJOZ nguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE NVRR JUNIO (GENERL) (RESUELTOS por nonio nguino) TEÁTICS II Timpo máimo: hors minuos Rlir un d ls dos opcions propuss ( o ) OPCIÓN º) Esudi l

Más detalles

LA TRANSFORMADA DE LAPLACE

LA TRANSFORMADA DE LAPLACE Circuio y Siema Diámico (3º IIND) Tema 2 A TRANSFORMADA DE APACE Curo 23/24 Tema 2: a Traformada de aplace 2. Iroducció: de dóde veimo y a dóde vamo 2.2 Defiició de la raformada de aplace 2.3 Traformada

Más detalles

cra cla bla bra cre cle bre ble cri bli bli bri cro clo bro blo cru clu bru blu

cra cla bla bra cre cle bre ble cri bli bli bri cro clo bro blo cru clu bru blu ba be bi bo bu bra bre bri bro bru bla ble bli blo blu ca ce ci co cu cra cre cri cro cru qui cla cle bli clo clu que da dra dla fa fra fla de dre dle fe fre fle di dri dli fi fri fli do dro dlo fo fro

Más detalles

gu g v C u. mró rm r mbr fum mé í írm Pró uh. m gué r - r rx L. r m r rm r mr r - m - rr, mr m gu fá v b má ér u u r b u m, fru r uó v rr m h uv C. r

gu g v C u. mró rm r mbr fum mé í írm Pró uh. m gué r - r rx L. r m r rm r mr r - m - rr, mr m gu fá v b má ér u u r b u m, fru r uó v rr m h uv C. r Mur ó Crv V Eér rr N r P Brá Ag V fí, ur j h ué m, vgur L g u, hum, r rr r, év E v rr mm u q R Luz Ág L. P Exr U - r M E mbé f r grr r rzr uv íqu xr r. r m m r ué ur jó f g ñr U Qu rá. mu rvur í u mur,

Más detalles

(esta notación fue elegida por el matemático Leonhar Euler) De hecho la función f ( x)

(esta notación fue elegida por el matemático Leonhar Euler) De hecho la función f ( x) INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: HUGO HERNAN BEDOYA TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA DURACION 9 OCTUBRE

Más detalles

PLAZAS LIMITADAS WWW.MAKEATUVIDA.NET WWW.JARDIBOTANIC.ORG INSCRÍBETE! FREEDOM MAJA FI DISTINT ISTINTO MÁS INFO: INSCRIPCIONES: / Asturia.

PLAZAS LIMITADAS WWW.MAKEATUVIDA.NET WWW.JARDIBOTANIC.ORG INSCRÍBETE! FREEDOM MAJA FI DISTINT ISTINTO MÁS INFO: INSCRIPCIONES: / Asturia. Ñ D D Z Ó U Y B B M V Ó M G G jy j P K ó b xm y : W ñ y é xvz fm / g y fó bj y V km / f 1 3 5 7 8 10 10 12 14 15 17 17 22 24 ó y m mím b! F -, m Dm m ó y m bá b gé m fz m / V q vó FDM f m mé j í bj g g

Más detalles

FAM 2004 FAM 2006 FAM 2007 FAM 2008 LICITACIÓN PUBLICA CONVOCATORIA 010_2009

FAM 2004 FAM 2006 FAM 2007 FAM 2008 LICITACIÓN PUBLICA CONVOCATORIA 010_2009 RCURO: RCCÓ PROYCO Y OBR FOO PORCO ÚP (F) 2004-2009 F 2004 FCH U CUZCÓ: 9 JUO 2010 PG 1 5 O GR OBR COR VC (%) OBR o. OBR (COVO) UBCCÓ O. CORO PZO JCUCO OO OBR FCO FCRO CRO VGCO / PCHUC OO, PyO/17/04 12/OC/2004

Más detalles

Efectos del color en la aceptabilidad, artificialidad, dulzor e intensidad del sabor de bebidas lácteas

Efectos del color en la aceptabilidad, artificialidad, dulzor e intensidad del sabor de bebidas lácteas Picohm SSN 0214-9915 CODEN PSOTEG 2000. Vol. 12, Sl. º 2,. 140-144 Coyrigh 2000 Picohm Efco dl color l cbilidd, rificilidd, dlzor iidd dl bor d bbid lác Mª T. Collo Grcí, C. Díz Brcio* y N. Gómz Pñ Uivridd

Más detalles

Supertriangular Subtriangular Diagonal Unidad

Supertriangular Subtriangular Diagonal Unidad MT. EMPRESRILES TE RESOLVEMOS LS PRIMERS DUDS L eorí de mrices es l que v porr l form operiv de resolver u iumerle cidd de ejercicios de Álger. Por odo lo que supoe eso, os vmos proporcior los coocimieos

Más detalles

OPERACIONES CON LÍMITES DE FUNCIONES Ls oprcios co límits, tto u puto como l ifiito, ti us propidds álogs qu dbmos coocr: PROPIEDADES El límit d l sum o difrci d dos fucios s l sum o difrci d los límits

Más detalles

SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso 03-04

SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso 03-04 SOLUCIONES DE SISTEMS, MTRICES Y DETERMINNTES Curso - SOLUCIONES DE SISTEMS, MTRICES Y DETERMINNTES Curso - - Comprobr que culquier mriz cudrd M se puede expresr de form úic como sum de dos mrices, u siméric

Más detalles

Viernes 51 de Octubre DE DA PROVINCIA DE MADRID. Seadraiteu suscripciones en Madrid, en l a Administración del BOLETÍN,

Viernes 51 de Octubre DE DA PROVINCIA DE MADRID. Seadraiteu suscripciones en Madrid, en l a Administración del BOLETÍN, f DK 92 V 5 O BOLETÍN KÚH 26 OFICIAL DE DA PROVINCIA DE MADRID ADV FJ I ' E N O A OFIOIAL L AH h f * B^L5TfK8ALK» h Jf jí»» ó (R 8 A 839) S í x P Of P Cj M S M R E Y (Q D G) A R F ú C Q C N CIRCULAR P

Más detalles

CH1 Mi Plan 150 CH2 Mi Plan 250 CH3 Mi Plan 350 CH4 Mi Plan 500 CH6 Mi Plan 800 CH9 Mi Plan Plus 165 CI1 Mi Plan Plus 385 CI5 Mi Plan Plus 1100 CI6

CH1 Mi Plan 150 CH2 Mi Plan 250 CH3 Mi Plan 350 CH4 Mi Plan 500 CH6 Mi Plan 800 CH9 Mi Plan Plus 165 CI1 Mi Plan Plus 385 CI5 Mi Plan Plus 1100 CI6 ID_PLAN PLAN CH1 Mi Plan 150 CH2 Mi Plan 250 CH3 Mi Plan 350 CH4 Mi Plan 500 CH6 Mi Plan 800 CH9 Mi Plan Plus 165 CI1 Mi Plan Plus 385 CI5 Mi Plan Plus 1100 CI6 Mi Plan Plus 1430 CI9 Pool Optimo 167 CJ0

Más detalles

Lo representaremos gráficamente con un sistema de coordenadas cartesianas. Que en principio nos servirá con uno bidimensional.

Lo representaremos gráficamente con un sistema de coordenadas cartesianas. Que en principio nos servirá con uno bidimensional. mbl S Cruz, 94-38004 S Cruz de Teerife 34 9 76 056 - Fx: 34 9 78 477 buz@clegi-hisp-igles.es Ciemáic: Es l pre de l mecáic clásic que esudi ls leyes del mimie de ls cuerps si eer e cue ls cuss que l prduce,

Más detalles

TEMA 1. VECTORES Y MATRICES 1.2. MATRICES. OPERACIONES ELEMENTALES

TEMA 1. VECTORES Y MATRICES 1.2. MATRICES. OPERACIONES ELEMENTALES TEM VECTORES Y MTRICES MTRICES OPERCIONES ELEMENTLES VECTORES Y MTRICES MTRICES: OPERCIONES ELEMENTLES Cocepo de riz Eleeos Tipos de rices Su y difereci de rices Produco de u úero por u riz Trsposició

Más detalles

CÁLCULO DE LÍMITES. Por otro lado es importante distinguir en el cálculo de límites, los casos indeterminados de los determinados: = ; = ; =

CÁLCULO DE LÍMITES. Por otro lado es importante distinguir en el cálculo de límites, los casos indeterminados de los determinados: = ; = ; = CÁLCULO DE LÍMITES Propidds d los límits.- ( b ) b.- ( b ) b.- ( b ) b.- ( b ) b b.- ( ) ( ) 6.- k k b Por otro ldo s importt distiguir l cálculo d límits, los csos idtrmidos d los dtrmidos: Csos dtrmidos:

Más detalles

NOASDTODODESFLO DSQUECACIÓNDFFPARECERAD

NOASDTODODESFLO DSQUECACIÓNDFFPARECERAD NOASDTODODESFLO DSQUECACIÓNDFFPARECERAD NOASDTODODESFLO DSQUECACIÓNDFFPARECERAD ASELDPODERDDEFLA NEDUCACIÓNDFFINANCIERAD ASELDPODERDDEFLA NEDUCACIÓNDFFINANCIERAD É U Q DE A S O M A V Y O H R A L HAB N

Más detalles

Muestreo y Cuantificación

Muestreo y Cuantificación 8 Musro y Cuiiió 8. Iroduió E s píulo s sudi los opos y l ormlismo mmáio rlivo l musro y l rosruió d sñls. Dspués d sudir los lmos d u d d mdid y d diir los opos d mrg diámio y rlió sñl-ruido, s r ls sruurs

Más detalles

TA LO GO R E T E N E S H O R Q U I L L A

TA LO GO R E T E N E S H O R Q U I L L A 1 3C G 2014 1 3etenes orquilla Marca Modelo CC پ0ٹ9o po ef. Medidas P P CC 50 50 1992-1998 retenes horquillas 455017 MG-D2 31,7x42x7/9 P P 50 50 1990-1992 retenes horquillas 455017 MG-D2 31,7x42x7/9 P

Más detalles

1.- Estudie el carácter de la serie numérica. 1 es divergente, la serie n propuesta será divergente. Solución.- Puesto que, n = 1, 2, 3,...

1.- Estudie el carácter de la serie numérica. 1 es divergente, la serie n propuesta será divergente. Solución.- Puesto que, n = 1, 2, 3,... TUTORÍA DE MATEMÁTICAS III (º A.D.E.) -mil: imozs@lx.ud.s http://tlfoic.t/wb/imm EJERCICIOS DE SERIES NUMÉRICAS PROPUESTOS EN EXÁMENES.- Estudi l cráctr d l sri uméric. (Fbrro 00, x. or.) Solució.- Pusto

Más detalles

Activitats Esportives Municipals Sol licituds rebudes

Activitats Esportives Municipals Sol licituds rebudes PROGRAMA MAJORS DE 60 ANYS Aiguagim A- Piscina coberta - dilluns 11:00 a 12:00 Activitats Esportives Municipals 35 28432906 AE2-2016-130-XX 25 004514758L AE2-2016-93-PX 10 009995973N AE2-2016-55-JA 16

Más detalles

( ) ( ) ( ) ( ) ( ) 2. ( ) t ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) OPCIÓN A. lim. =. Calcular. du I = + ln u = + + + e ln. e ln.

( ) ( ) ( ) ( ) ( ) 2. ( ) t ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) OPCIÓN A. lim. =. Calcular. du I = + ln u = + + + e ln. e ln. ES diáo d álg Solció Jio J Clo loo Gioi OPCÓN E.- S ) Clcl d ( po) ) S d g. Clcl g ( po) d g ) d d K d d d d B B B B B B d d d d d d d d d ) g Hopil L' plicdo ES diáo d álg Solció Jio J Clo loo Gioi E.-

Más detalles

UNIDAD 3: SISTEMAS DE ECUACIONES LINEALES. 1. DEFINICIONES. Un sistema de m ecuaciones lineales con n incógnitas es una expresión de la forma:

UNIDAD 3: SISTEMAS DE ECUACIONES LINEALES. 1. DEFINICIONES. Un sistema de m ecuaciones lineales con n incógnitas es una expresión de la forma: IE Pdr Povd (Gudi) Mtátics plicds ls CC II Dprtto d Mtátics Bloqu I: Álgr il Profsor: Ró ort Nvrro Uidd : ists d Ecucios ils UNIDD : ITEM DE ECUCIONE INEE DEFINICIONE U sist d cucios lils co icógits s

Más detalles

26 EJERCICIOS de LOGARITMOS

26 EJERCICIOS de LOGARITMOS 6 EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.

Más detalles

BE FREE. energía creativa. Te presentamos la herramienta de comunicación online más innovadora!

BE FREE. energía creativa. Te presentamos la herramienta de comunicación online más innovadora! Gnt con nrgí crtiv. BE FREE. EL FREEBIE ONLINE: LA HERRAMIENTA DE INBOUND MARKETING MÁS CREATIVA. EL REGALO INFINITO. El frbi un hrrint d prooción y counicción onlin originl, intrctiv, virl, útil y grtuit.

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS FUNDAMENTOS MATEMÁTICOS (Grdo n Ingnirí Informátic) Práctic 7. INTEGRALES DEFINIDAS E IMPROPIAS.- L intgrl dfinid d Rimnn. L intgrl dfinid d Rimnn surg prtir dl prolm dl cálculo d árs d suprficis dlimitds

Más detalles

c i I a a C " a l 2 C C N I M amico t e s a r b o S c i e d d 7

c i I a a C  a l 2 C C N I M amico t e s a r b o S c i e d d 7 www.. ó P M L " 5 1 0 2 M O A H N A M B y u S.. www j b P 2015 b p S 7 PREMO DEL OM MANHAOM 2015 P. Obj. v P Só ó L M MANHAÓM 2015 Sgu. Su, pz y ug pó. 1. L u pá gú qu ju Ax y qu á pb wb www.. E é uy pb

Más detalles

LAS ESTADÍSTICAS DE ORDEN COMO UNA APLICACIÓN DE TRANSFORMACIÓN DE FUNCIONES VARIABLES. OLGA ARDILA SANCHEZ oardilas@gmail.com

LAS ESTADÍSTICAS DE ORDEN COMO UNA APLICACIÓN DE TRANSFORMACIÓN DE FUNCIONES VARIABLES. OLGA ARDILA SANCHEZ oardilas@gmail.com LAS ESTADÍSTICAS DE ORDEN COMO UNA APLICACIÓN DE TRANSORMACIÓN DE UNCIONES VARIABLES OLGA ARDILA SANCHEZ odils@mil.com Tbjo d Gdo p Op l Tiulo d Mmáico Dico Bio Lozo Rojs UNDACION UNIVERSITARIA KONRAD

Más detalles

CRITERIO DE ESTABILIDAD EN EL DOMINIO DE LA FRECUENCIA PARA CONTROLADORES CONMUTADOS

CRITERIO DE ESTABILIDAD EN EL DOMINIO DE LA FRECUENCIA PARA CONTROLADORES CONMUTADOS CRIERIO E ESBII E E OMIIO E FRECUECI PR COROORES COMUOS Jorg Elo Mro Grcí-Sz Crlo Mol prmo d uomác y compucó Uvrdd púlc d vrr 36 Pmplo. mgz@uvrr. Rum E rículo pr u formulcó gráfc d u crro d ldd pr m ll

Más detalles

Integral Definida. Aplicaciones

Integral Definida. Aplicaciones Itegrl Defiid. Apliccioes. Itegrl defiid. Defiició Se f(x u fució cotiu e u itervlo cerrdo [, b] y cosideremos el itervlo dividido e prtes igules x < x < x s < < x b. Pr cd subitervlo [x i, x i ], l fució

Más detalles

Cátdr Mtátic II Espcilidds Mcáic - Quíic Ejrcicios d Aplicció d l drivd co rcts tgts orls ϕ Dds ls ucios ϕ S Hllr ϕ cos ϕ ϕ cos ϕ cos ϕ Qué águlo or co l j o ls tgts l curv puto cu scis s? θ θ. pr θ θ

Más detalles

Trabajo de Diploma. : El amor y respeto por los oficios y. profesiones de mi comunidad. Curso: 2012-2013. Año 55 de la Revolución

Trabajo de Diploma. : El amor y respeto por los oficios y. profesiones de mi comunidad. Curso: 2012-2013. Año 55 de la Revolución . Tbj Dpm : E m y p p f y pf m mu. Au: Y A Péz. Tu: M. M Du V. Pf ux. Cu: 2012-2013. Añ 55 Rvuó Pm P ñ bjm, pqu qu b qu, pqu pz mu. Jé Mí. (1) Agm A p qu h hh pb u fm u qu z bj, p : M pf Dp. Euó P. M u

Más detalles

Departamento Informática. Diputación Provincial de Soria

Departamento Informática. Diputación Provincial de Soria 3/6/ www.po. Mo éo y ogzvo Dpo Ifoá Dpu Povl So Ju Clo G www.po. Mo éo y ogzvo SORI Supf:.36 K Hb: 95. D: 9 hb/k PONTEVEDR Supf: 4.495 K Hb: 959.764 D: 4 hb/k Ju Clo G 3/6/ www.po. Mo éo y ogzvo Dbu poblol

Más detalles

PLANILLA DE AUTOLIQUIDACIÓN DE APORTES PLANILLA NRO. 8695583033 REFERENCIA DE PAGO (PIN): 8696174803 Fecha Pago Planilla: 2014-08-26

PLANILLA DE AUTOLIQUIDACIÓN DE APORTES PLANILLA NRO. 8695583033 REFERENCIA DE PAGO (PIN): 8696174803 Fecha Pago Planilla: 2014-08-26 NI D UOIQUIDCIÓN D OR NI NRO. 869558333 RFRNCI D GO (IN): 869617483 Fecha ago lanilla: 214-8-26 DO D ORN RZÓN OCI D INGNIRI.. IO D RON Naural IO D DOCUMNO NI Nro. D IDNIFICCIÓN 964662 D.. 6 IO D ORN B

Más detalles

= 9 3 x (fig. 2.9.), se nota que para obligar a (9

= 9 3 x (fig. 2.9.), se nota que para obligar a (9 .. EJERCICIOS RESUELTOS... Sobre límies de ucioes:. Usdo l deiició de límie de u ució, pruébese que: (9 6 Solució: Se u úmero poivo culquier ddo. Se debe llr u δ > l que: 5 δ 9 6 ( ( ( Pr ello codérese

Más detalles

Prueba: Volkswagen Passat

Prueba: Volkswagen Passat Pub: Vkwg P N Vió Oig Pi Vi máxim A. 0 100 km/h Cum pmi 3.2 V6 4Mi Ami $ 159.040.210,0 km/h im. 74 9,7 /100 km m i v qu V m ái ii um i. mi. f 6 DSG f qu i, j gm, y g 3,2 g p w m k V m ió i á z i m gm C

Más detalles

GESTIÓN POR PROCESOS MAPA DE PROCESOS CARACTERIZACIÓN DE PROCESOS

GESTIÓN POR PROCESOS MAPA DE PROCESOS CARACTERIZACIÓN DE PROCESOS GÓ POR PROO MP D PROO RRZÓ D PROO GÓ POR PROO B olombia Business lliance for ecure ommerce PROO Relación insumo ambio Producto RD RFORMO LD Recursos, nsumos información PROO D MBO Resultados, Producto

Más detalles

variables aleatorias discretas, la función de probabilidad conjunta del vector aleatorio ( X,..., se define como: ) A

variables aleatorias discretas, la función de probabilidad conjunta del vector aleatorio ( X,..., se define como: ) A cors loros. só más d dos dmsos Dcó: S... rbls lors dscrs l ucó d robbldd cou dl cor loro... s d como: ddo culqur couo A R...... P... P... A...... A...... s ucó ssc ls sgus rodds:.................. orm

Más detalles

Funciones de Variable Compleja

Funciones de Variable Compleja Funcions d Variabl Complja Modlos d Sistmas II Smstr 2008 Ing. Gabrila Ortiz L 1 Función Concpto Matmático Considrando los conjuntos X Y una función comprnd una rlación o rgla qu asocia a cada lmnto x

Más detalles

E S T A D O A C T U A L PROPUESTA PLAZA FACULTAD DE ARQUITECTURA A VESTÍBULO F A

E S T A D O A C T U A L PROPUESTA PLAZA FACULTAD DE ARQUITECTURA A VESTÍBULO F A D C L LZ FCLD D QIC VÍBL F D C L FCLD D FILFI Y L INVNCIN N M N CN DICCIDD FCLD D FILFI Y L D INVNCIN N M N CN DICCIDD D C L FCLD D FILFI Y L NCI D ÑLMIN D CC NL FCLD D FILFI Y L D ÑLMIN D CC NL D C L

Más detalles

Valora la madurez y destrezas básicas:

Valora la madurez y destrezas básicas: Etct d l PAU FASE GENERAL (Obligtoi) Vlo l mdz y dtz báic: Compió d mj Uo dl lgj p liz, ittiz y xp id Compió báic d l lg xtj Coocimito y técic d mti d modlidd FASE ESPECÍFICA (Volti) Elció d coocimito

Más detalles

HASTA EL TOPE RAÍZ DE LOS 63% INDEPENDIENTES Qué tan independientes son los candidatos que van sin partido a la Constituyente? Cómo SEMANAL MAYO

HASTA EL TOPE RAÍZ DE LOS 63% INDEPENDIENTES Qué tan independientes son los candidatos que van sin partido a la Constituyente? Cómo SEMANAL MAYO H P 3 1 3 41 18 $1423 x $6 H é é q x G q 1-16 Y x @_ wwwx 216 / 22 RÍZ D DPD Qé q? 63% j q? q á x #PP Pí GRU D P á : U j é í ñ q x á á á j G Á j B q Pá á 3 á 7 25 j é ; j ú 8 V? P í í í í q á H q 2 9 ú:

Más detalles

z é P? T g A z? é í,, A. ó ó á á N í. g g, í g g Aí. á z A. í g L. g g é - í é g ; í é xñ zó, í A. í ó E. Ex R é g ó, g g z z ñ, g j, ñ z g A. zó g Ex

z é P? T g A z? é í,, A. ó ó á á N í. g g, í g g Aí. á z A. í g L. g g é - í é g ; í é xñ zó, í A. í ó E. Ex R é g ó, g g z z ñ, g j, ñ z g A. zó g Ex ACIA EL TEMPLO H E ANNIE BESANT D RIMERA CONFERENCIA P URIFICACIÓN P é Sí ó, é, í, g, g í, z V j., g ñ g g. 1 E gí g, í ñ é. z g z í, á T, T E g á é ó, í ú, ó ó T S. í, á S S Sí Lg í é T á R, A, R, A g

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Sucesiones numéricas. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria

Matemáticas 1 1 EJERCICIOS RESUELTOS: Sucesiones numéricas. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria Mtemátics EJERCICIOS RESUELTOS: Sucesioes umérics Ele Álvrez Sáiz Dpto. Mtemátic Aplicd y C. Computció Uiversidd de Ctbri Igeierí de Telecomuicció Fudmetos Mtemáticos I Ejercicios: Sucesioes umérics Sucesioes

Más detalles

Introducción: conceptos básicos 1) Respuesta temporal depende de:

Introducción: conceptos básicos 1) Respuesta temporal depende de: Tm 5. R morl d im CLI. Irodcció. Coco báico. Sñl d yo 3. Cálclo d l r morl rir d l f.d.. Sim d r ord. R morl. Prámro crcríico: gci, co d imo, imo d mio 3. Sim d do ord. R morl. Tio d r fció dl morigmio.

Más detalles

Logaritmos y exponenciales:

Logaritmos y exponenciales: Logrimos ponncils: L rsolución d cucions ponncils s s n l siguin propidd d ls poncis : Dos poncis con un mism s posiiv disin d l unidd son iguls, si sólo si son iguls sus ponns. Es dcir, p. j. Si = noncs

Más detalles

Programación lineal. m a x i mizar o m i n im i z ar f u n c i o n e s q ue s e e nc u e ntran s u j e ta s a d e terminad as

Programación lineal. m a x i mizar o m i n im i z ar f u n c i o n e s q ue s e e nc u e ntran s u j e ta s a d e terminad as Programación lineal L a p r o g r a m ac i ó n l i ne al d a r e s pu e s t a a s i t u aciones e n l as q ue s e e xi g e m a x i mizar o m i n im i z ar f u n c i o n e s q ue s e e nc u e ntran s u

Más detalles

ENTE REGULADOR DE LOS SERVICIOS PÚBLICOS. Resolución Nº: JD-1852 Panamá 15 de Febrero de 2000.

ENTE REGULADOR DE LOS SERVICIOS PÚBLICOS. Resolución Nº: JD-1852 Panamá 15 de Febrero de 2000. ENTE REGULADOR DE LOS SERVICIOS PÚBLICOS Ró Nº: JD-1852 Pá 15 Fb 2000. POR MEDIO DE LA CUAL SE ORDENA A CABLE & WIRELESS PANAMA, S.A., COMO OPERADORA EXCLUSIVA DE LA RED PUBLICA, QUE SUSPENDA DE MANERA

Más detalles

Bosque Ironwood. Monumento Nacional. E n el año 2000, el Presidente Bill Clinton designó esta área de. Visítanos pronto!

Bosque Ironwood. Monumento Nacional. E n el año 2000, el Presidente Bill Clinton designó esta área de. Visítanos pronto! Bq Iw Mm i ñ 2000, Pi Bi Ci igó á 129.000 imi biógi y m Mm i Bq Iw. L gm mñ mm á hábi g vi y im. m áb fi q mb bq. bi ió imi, q v i y. vi i ig á gi; ii mi ih k, y miég hi. bg imó f mñ Mm i Bq Iw. í á úim

Más detalles

JUGAMOS CON LAS LETRAS Y PALABRAS

JUGAMOS CON LAS LETRAS Y PALABRAS JUGAMOS CON LAS LETRAS Y PALABRAS Con este material se pretende reforzar el reconocimiento de las letras trabajadas en el aula a través del método letrilandia ; este es un paso posterior al conocimiento

Más detalles

GUÍA DOCENTE DE ASIGNATURA CURSO 2009/2010

GUÍA DOCENTE DE ASIGNATURA CURSO 2009/2010 ii i u GÍ DON D IGNR RO / í DO BÁIO D IGNR N 3 óig igu 7 u iuió iizió viu ii i éi Ogizió ivi I IVIDD D DIN PRNI /ON IN II IVIDD NO PRNI D DIN ii ifái vi ii 7357 P? óig NO 5u éi º 8i Oigi ui y i 6,5 éi

Más detalles

ABONOS ORGÁNICOS CALDOS MINERALES

ABONOS ORGÁNICOS CALDOS MINERALES MUNICIPIO DE TOLUCA 2000-2003 MUNICIPIO DE TOLUCA P Mup C. Ju C Núñz Am S Mup C. Ju Rf Shz Gómz D G D Ub, Ob, Sv Púb Eí C. G P S D Eí C. Mó Vu Gz 2000-2003 ABONOS ORGÁNICOS CALDOS MINERALES ABONOS C A

Más detalles

Seguridad Sanitaria Internacional

Seguridad Sanitaria Internacional 7 Abri 2007 Sguri Sitri Itrcio Oció pr ibiizr obr pcto cv u mui. E objtivo guri itri itr gobiro/orgizcio/ mpr ivrtir u pr forjr u porvir má guro. Efrm mrgt/pimióg y u brot; propgció VIH/SIDA, mrgci humitri

Más detalles

DECLARACIÓN ANUAL DE SITUACIÓN PATRIMONIAL SE MANIFESTARÁN SOLO LAS MODIFICACIONES AL PATRIMONIO HASTA EL 31 DE DICIEMBRE DE 2012.

DECLARACIÓN ANUAL DE SITUACIÓN PATRIMONIAL SE MANIFESTARÁN SOLO LAS MODIFICACIONES AL PATRIMONIO HASTA EL 31 DE DICIEMBRE DE 2012. LRÓ UL UÓ PRL FRÁ L L F L PR H L BR 0. Y L R RU Y FR nstrucciones specíficas: ÚR X QU LUY L HJ QU L LRÓ. RRL, L PR BR PRÁ PRR L P U QU R.. GRL (L U) FR L L U LZ, ÑL U X LUYÓ L PRR, UR Y BHLLR, L BR L RRR

Más detalles

7ma Guía de Estudio 2do Parcial Estudio de Series de Potencia SOLUCIONARIO Guía Complementaria No.07

7ma Guía de Estudio 2do Parcial Estudio de Series de Potencia SOLUCIONARIO Guía Complementaria No.07 álculo tgrl (MAT, Scc.67 r Trimstr, do Smstr doprcil 7mGuíEstudio Documto lordo : M.Sc. g. Julio ésr Lóz Zró H6 7m Guí d Estudio do Prcil Estudio d Sris d Potci SOLUONAO Guí omlmtri No.7 omtrios Grls Ést

Más detalles

Este documento es de distribución gratuita y llega gracias a www.cienciamatematica.com El mayor portal de recursos educativos a tu servicio!

Este documento es de distribución gratuita y llega gracias a www.cienciamatematica.com El mayor portal de recursos educativos a tu servicio! Este documeto es de distribució grtuit y lleg grcis Cieci Mtemátic El myor portl de recursos eductivos tu servicio! Los poliomios de Beroulli y sus pliccioes Pblo De Nápoli versió 0.. Los poliomios de

Más detalles

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b.

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b. Tem 4 Integrción 4.. Primitivs LA INTEGRAL DEFINIDA Si f(x) es un función continu y no negtiv definid en el intervlo x [, b], entonces l integrl definid f(x) represent el áre bjo l gráfic de l función

Más detalles

ALGEBRA LINEAL GUÍA No. 4 - VECTORES Profesor: Benjamín Sarmiento

ALGEBRA LINEAL GUÍA No. 4 - VECTORES Profesor: Benjamín Sarmiento ALGEBRA LINEAL GUÍA No. 4 - VECTORES Profesor: Benjamín Sarmiento VECTORES EN R n.. OPERACIONES CON VECTORES VECTORES EN R 2 : Un vector v en el plano R 2 = XY es un par ordenado de números reales .

Más detalles

Problemas Tema 2: Sistemas

Problemas Tema 2: Sistemas SISTEMAS Y CIRCUITOS ~ PROBLEMAS Curso Académico 00900 Problmas Tma Sismas PROBLEMA. Dados los siguis sismas impo coiuo las sñals d rada idicadas, drmi las sñals d salida corrspodis ( ) x sñal d rada x

Más detalles

TESA IP40 Protección contra el polvo

TESA IP40 Protección contra el polvo Vz: 3.. P IV www.g. V E y, IP: P V á, á, E, v xó IP z, E 7. G g P I E í!, á f, 7 IP b 3 f w-c y L, vé b, ó b z 8 7 E IP7 Pó g IP7 íq Cv g LC ( Lk C) vó h ví Cj ñ ó b áx y b f h E IP Pó v Cv g LC ( Lk C)

Más detalles

JUNIO 2013. CIRUGIA PLASTICA 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

JUNIO 2013. CIRUGIA PLASTICA 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 JUIO 2013. JUIO 2013. SSI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 D. DGDO UÑ x x D. ICDO FLOS x D. COLI BDLS x D. IGOBO IH x D. COLI HYLOCK x D. JOS OLDO DIZ x

Más detalles

PROBLEMAS RESUELTOS DE SERIES DE FOURIER

PROBLEMAS RESUELTOS DE SERIES DE FOURIER PROBLEMS RESUELOS DE SERIES DE FOURIER Ejemplo. Hlle l represeció e serie rigooméric de Fourier pr l siguiee f, mosrd e l figur. señl () e, SOLUCION. L señl es f () e,, y pr ese ejemplo: y ω. Primero clculremos

Más detalles

Tema 4. Análisis de la Respuesta Temporal de Sistemas LTI. Automática. 2º Curso del Grado en Ingeniería en Tecnología Industrial

Tema 4. Análisis de la Respuesta Temporal de Sistemas LTI. Automática. 2º Curso del Grado en Ingeniería en Tecnología Industrial Deprtmeto de Igeierí de Sitem y Automátic Tem 4. Aálii de l Repuet Temporl de Sitem LTI Automátic º Curo del Grdo e Igeierí e Tecologí Idutril Deprtmeto de Igeierí de Sitem y Automátic Coteido Tem 4.-

Más detalles

Marta Parra Lubary Ester Rebollo Ferrer Margalida Tortella Mateu AR, ER, IR, OR, UR. ar er ir or ur NOMBRE:... CURSO:...

Marta Parra Lubary Ester Rebollo Ferrer Margalida Tortella Mateu AR, ER, IR, OR, UR. ar er ir or ur NOMBRE:... CURSO:... ar er ir or ur NOMBRE:... CURSO:... Rodea el sonido que tenga el dibujo: ra er ar ro or ar an ir er en ir ar er re ar or ri ir il in or er ur os in er ir ru ar er os or Rodea el sonido que tenga el dibujo:

Más detalles

PRESCINDIBLE CARA, INSEGURA SIN FUTURO. l en acción

PRESCINDIBLE CARA, INSEGURA SIN FUTURO. l en acción ENERG Í N U C CR, L E INSEGU R: L R Y PR ESCIND IBLE R C, í v y í L bf f INSEGUR á, í h, y b í hb z z SIN FUTURO PRESCINDIBLE L í, á, R y ñ í yí í y f y á D N E N E V N E I C N E R HE ó í L L f h, v T

Más detalles

Álgebra para ingenieros de la Universidad Alfonso X

Álgebra para ingenieros de la Universidad Alfonso X Crrer: UAX Asigtur: temátics Fech: Pági de 9 Álger pr igeieros de l Uiversidd Alfoso X -trices y sistems de ecucioes lieles Opercioes co mtrices: A= m m B= m p p q q pq Sum: - s mtrices sumr tiee que teer

Más detalles

FÓRMULA DE TAYLOR 1. Introducción formula de Taylor Brook Taylor 2. Objetivos Aproximación de funciones por polinomios f(x) P(x) f(x)

FÓRMULA DE TAYLOR 1. Introducción formula de Taylor Brook Taylor 2. Objetivos Aproximación de funciones por polinomios f(x) P(x) f(x) FÓRMULA DE TAYLOR. Itroducció Los poliomios igur etre ls ucioes más secills que se estudi e Aálisis. So decuds pr trjr e cálculos uméricos por que sus vlores se puede oteer eectudo u úmero iito de multipliccioes

Más detalles

TRABAJO MECÁNICO (FUERZA VARIABLE. RESORTES)

TRABAJO MECÁNICO (FUERZA VARIABLE. RESORTES) TRABAJO MECÁNICO (FUERZA VARIABLE. RESORTES) En sicions rls l frz no s consn, sino q vri cndo l ojo s mv sor n lín rc. w = fd Δ w = f )( Δ w f )( Si l frz s mid n l. y l disnci n pis noncs Si l frz s mid

Más detalles

- S o b r e los m o d e l o s de ge s t i ó n y pri v a t i z a c i o n e s.

- S o b r e los m o d e l o s de ge s t i ó n y pri v a t i z a c i o n e s. ACTO DE SALUD EN VILADECA N S, 4 DE MARZO DE 2010. B u e n a s tar d e s : E s t a m o s aq u í p a r a h a b l a r de sal u d y d e at e n c i ó n sa n i t a r i a pú b l i c a en el B a i x Ll o b r

Más detalles

Tema 6. Sistemas muestreados y discretos

Tema 6. Sistemas muestreados y discretos m 6. Sm mrdo dcro. Irodccó:. Ercr d m d corol por compdor. Mro rcorccó d ñl. L rformd 3. Dcrpcó xr d m D.L.I Dcro Ll Ivr l mpo 3. Fcó d rfrc pld 3. Fcó d rfrc d m coo mrdo co O 3.3 Dgrm d loq 4. Rp mporl

Más detalles

UNIDAD 7 SISTEMAS DE ECUACIONES LINEALES. 1. DEFINICIONES. Un sistema de m ecuaciones lineales con n incógnitas es una expresión de la forma:

UNIDAD 7 SISTEMAS DE ECUACIONES LINEALES. 1. DEFINICIONES. Un sistema de m ecuaciones lineales con n incógnitas es una expresión de la forma: IES Pdr Povd (Gudi) Mtátics II Dprtto d Mtátics Bloqu II: Álgr il Profsor: Ró ort Nvrro Uidd : Sists d Ecucios ils UNIDD SISTEMS DE ECUCIONES INEES DEFINICIONES U sist d cucios lils co icógits s u prsió

Más detalles

Reglamento de D i v er s i ones y E s p ec tá c u los P ú b li c os Ayuntamiento Constitucional de Zapotlanejo 2007-2009 e n t e M u n i c i Z a t n e j o, J a o, a h a t a n t e m u n i c i o h a g o

Más detalles

"!*#! $! +()! $ & #, -!)-&#! %!#.&%!!/!#)0#1 2 $ %!#%#!!)+% $ #-!)-&#! #$!5!/44()!))!6%

!*#! $! +()! $ & #, -!)-&#! %!#.&%!!/!#)0#1 2 $ %!#%#!!)+% $ #-!)-&#! #$!5!/44()!))!6% !"#$%!&!(!"%) "!*#! $! +()! $ & #, -!)-&#! %!#.&%!!/!#)0#1 2 $ %!#%#!!)+% $ #-!)-&#! $#-$$3$)$!#24 #$!5!/44()!))!6% 7$%&#!! "! # $ % & (!))*+, - -(. /+, % 0 1 2 3! 4! 5 67+, /+, % %7 +, + 0 8 %! % +,!$3+9

Más detalles

Análisis del caso promedio El plan:

Análisis del caso promedio El plan: Aálisis dl caso promdio El pla: Probabilidad Aálisis probabilista Árbols biarios d búsquda costruidos alatoriamt Tris, árbols digitals d búsquda y Patricia Listas sip Árbols alatorizados Técicas Avazadas

Más detalles

Algebra de diagramas en bloque y transformadas de Laplace. Función de transferencia.

Algebra de diagramas en bloque y transformadas de Laplace. Función de transferencia. lgbra d diagrama n bloqu y ranformada d aplac. Función d ranfrncia. Diagrama n bloqu. En o quma l lmno n udio prna a modo d caa ngra n la cual una alida á rlacionada con una nrada a ravé d modificacion

Más detalles

El consentimiento informado y sustituto. sustituto en intervenciones médicas como mecanismo de garantía de los derechos de los niños y las niñas 1

El consentimiento informado y sustituto. sustituto en intervenciones médicas como mecanismo de garantía de los derechos de los niños y las niñas 1 R Ezbh Gu Cmg* E m fm y uu v mé m mm g h ñ y ñ 1 Rum E p gu m p m gmó, y m u g m fm y m uu v v mé m. P zó, u pm mm z fó m m bó g ju, b u m y. Pm z m y v qu p, u b jupu mb, m fm y m uu y, fm, b pp qu jug

Más detalles

,,, z z Y,, é Y E Y é ; Y ; Y á T; x Y ; Y;,, Y, ó,, E, L Y ú Nz, E j Aí, ó,,,, ó z? Y é P Y? é P é, x? zó Y N j í, á Y, á, x, x ú Y E ó zó,, ó, E, Y,

,,, z z Y,, é Y E Y é ; Y ; Y á T; x Y ; Y;,, Y, ó,, E, L Y ú Nz, E j Aí, ó,,,, ó z? Y é P Y? é P é, x? zó Y N j í, á Y, á, x, x ú Y E ó zó,, ó, E, Y, O TRE ENDERO DE PERFECCION L ROLOGO P Tó, I ó Có x C é, N G ó z, ú í x, K, á k, J, G, á A C é, M ñ, ; x ñ já L; á NNIE EANT A O TRE ENDERO L ARMA MARGA K ó, z Ví L, L á,, é, A á x, A ú, Y E - í, M -, K

Más detalles

$%# ! "#$% &' *& & -& **. *+ #$/0$% % &' &)* (*& &*& ()& +&', . & # *+ &(* & //$ % & 1 &*+ % * & & &* & *2&, +& *3& (* & *& &

$%# ! #$% &' *& & -& **. *+ #$/0$% % &' &)* (*& &*& ()& +&', . & # *+ &(* & //$ % & 1 &*+ % * & & &* & *2&, +& *3& (* & *& & !"#! "#$% &' &( )*'*+&,&(*+&& *& & -& **. *+ #$/0$% % &' &)* (*& &*& ()& +&',. *+#$$% '&)*(*&&*& #. & # *+ &(* & * )&(&*&0, %" //$ % & 1 &*+ % * & & &* # % &'&( )*'&)* & *2&, +& *3& (* & *& & -&4 )&(*&&*&

Más detalles

A. DEFINICIÓN DE FUNCIÓN INTEGRABLE. PRIMERAS PROPIEDADES.

A. DEFINICIÓN DE FUNCIÓN INTEGRABLE. PRIMERAS PROPIEDADES. CAPÍTULO X. INTEGRACIÓN DEFINIDA SECCIONES A. Defiició de fució itegrble. Primers propieddes. B. Teorems fudmetles del cálculo itegrl. C. Ejercicios propuestos. A. DEFINICIÓN DE FUNCIÓN INTEGRABLE. PRIMERAS

Más detalles