INTEGRAL LAPSO / 6

Tamaño: px
Comenzar la demostración a partir de la página:

Download "INTEGRAL LAPSO 2 008-2 751-1/ 6"

Transcripción

1 INTEGRAL LAPSO / 6 Universidad Nacional Abierta CÁLCULO III ( 751 ) Vicerrectorado Académico Integral Área de Matemática Fecha 1/1/8 Lapso 8 MOELO E RESPUESTAS OBJ 1 PTA 1 a. etermine el dominio de la función f(x 1, x, x 3,, x n ) = n x1 x x 3...x n b. Calcule el siguiente límite 5 x lim (x y ) (x,y) (,) + NOTA: Para el logro del objetivo debe responder correctamente las dos partes. Recuerde: Si f es el producto de dos funciones una acotada y la otra con límite cero en x r, entonces f tiene límite cero en x r. SOLUCIÓN a.- Si n es impar el dominio de la función f es IR n, ya que la raíz de índice impar siempre se puede calcular independientemente de la cantidad subradical. Si n es par el dominio de la función f es om f = {(x 1, x, x 3,, x n ) IR n / x1 x x 3...xn > } b.- Tenemos 5 x x x (x + y ) x + y x ya que x x + y, y como lím x =, entonces (x,y) (,) 5 x lim (x y ) (x,y) (,) + = OBJ PTA Sea F: IR IR la función definida por f(x, y) = xy Es la función f diferenciable para todo punto (x, y) (, )? Razone su respuesta

2 INTEGRAL LAPSO / 6 SOLUCION Se tiene que om(f) = {(x, y) IR / xy } = = {(x, y) IR / x y y } {(x, y) IR / x y y } luego para estudiar la diferencibilidad de f en los puntos (x, y) (, ) tenemos que estudiar los tres casos siguientes i) cuando x y y ii) cuando x y y = iii) cuando x = y y i) si x y y la función f es diferenciable por ser la composición de funciones diferenciables. ii) estudiemos ahora la diferenciabilidad de f para los puntos de la forma (x, ) con x, para esto veamos si existen la derivada parcial con respecto a x y la derivada parcial con respecto a y en esos puntos f f(x,) f(x,) (x,) = lím = lím =, x x x x x x x x x f f(x,y) f(x x,) y (x,) = lím = lím no existe, por qué? y y y y y En consecuencia f no es diferenciable para los puntos de la forma (x, ) con x. iii) de manera similar se prueba que f no es diferenciable para los puntos de la forma (,y ) con y. En conclusión f es diferenciable solo para los puntos (x, y) con x y y. OBJ 3 PTA 3 Sea f: IR 3 IR la función definida por f (x, y, z) = 3x y + y 3 3x 3y + Encuentre los extremos de la función f. SOLUCIÓN efinamos las funciones γ 1 : IR 3 IR y γ : IR 3 IR por: γ 1 (x, y, z) = x + 3y z γ (x, y, z) = x y + z 4 y hallemos los extremos de la función f sujeta a las restricciones γ 1 (x, y, z) = y γ (x, y, z) = Como γ 1 (x, y, z) = (1, 3, 1), γ (x, y, z) = (, 1, 1),

3 INTEGRAL LAPSO / 6 y las funciones f, γ 1 y γ son de clases C en IR 3, entonces tenemos que resolver el siguiente sistema de ecuaciones, para obtener los extremos de la función f: f(x, y, z) = λ 1 γ 1 (x, y, z) + λ γ (x, y, z) esto es x = λ 1 + λ 4y = 3λ 1 λ z = λ 1 + λ x + 3y z = x y + z = 4 El cual tiene por solución γ 1 =, γ =, x =, y =, z = Por lo tanto la función f sujeta a las condiciones γ 1 y γ alcanza un valor extremo en el punto (,, ) OBJ 4 PTA 4 Halle la derivada direccional del campo escalar f definida por f(x, y) = x 3 x y + x a lo largo de la curva C de ecuación y = x + x + 1, en el punto (,7). SOLUCIÓN i) ibujemos, ahora, la curva de nivel (g(x,y) = ), la recta tangente en el punto P r r (3x +y 7 = ) y el vector gradiente en el punto P ( 3i + j ). OBJ 5 PTA 5 Verifique si existe una función potencial para el campo vectorial F r ( x, y, z ) = ( x z + seny, xcosy,x ), y en caso afirmativo calcúlela. Verifiquemos primero la existencia de una función potencial, para esto será suficiente con calcular el rotor de F r y ver que éste es el vector nulo.

4 INTEGRAL LAPSO / 6 Rot (F r ) = i j k x y z xz+seny xcosy x = (,, ). Puesto que Rot ( F r ) = (,, ), existe un campo escalar f definido en A R 3 abierto simplemente conexo, tal que: F r = f, ahora si tiene sentido calcular una función potencial f. Luego, en virtud del resultado del ejemplo Nº 1 de la página 113, sección, tenemos: Para u = (,, ) R 3, podemos hallar un disco abierto R 3, con u. En este caso una función potencial para F v en, se define así: x y f( x, y, z ) = dt + z dt + ( ) xt+y dt = x + xz + yz + const OBJ 6 PTA 6 ada el campo de fuerza (x, y, z) = (x + y, x, 3z ), encontrar el trabajo que realizará al mover una particular a través de los segmentos que une los puntos (,, ) y (1,, ) y los puntos (1,, ) y (1,, 5). La parametrización de los segmentos viene dada, respectivamente, por x = t x = 1 C: 1 y= t C: y= z = z= t t 1 t 5 Resolvamos la integral de línea de acuerdo a la definición r r r r r r Fdr= Fdr+ Fdr C C1 C 1 5 Luego = = r F(t, t, ) (1,,)dt t dt + 3t dt = 5t + t r F(1,, t) (,,1)dt F r r dr = 13 OBJ 7 PTA 7 etermine mediante integración triple el volumen del sólido acotado por el cilindro x = y y los planos z = y x + z = 1. C

5 INTEGRAL LAPSO / 6 La grafica del sólido al cual le queremos calcular su volumen y su proyección sobre el plano xy, son mostradas en la figura de la derecha. La expresión para hallar el volumen mediante integración triple viene dada por V = dx dy dz, T vale la pena mencionar que la función que se toma para calcular volumen mediante integración triple es f(x, y, z) = 1, por lo tanto, tenemos V = T x dx dy dz = -1 y = 3 5 y y y OBJ 8 PTA 8 etermine el área de la parte del paraboloide dzdx dy = ( ) 1-1 = 8 15 y 1- x dxdy = La grafica de la superficie a la que queremos calcular su área junto con su proyección sobre el plano xy, son mostradas en la figura de la derecha. La expresión para hallar el área a es: a( S ) = Fx xfy dxdy = fx ( x,y ) f ( x,y ) y + 1dx dy y -y + dy z=16-x -y que está sobre el plano xy. +, ver ejemplo N 1 de la página 35, sección 6 tomo II del texto de Cálculo IV (79), con S la superficie determinada por la ecuación z = f(x, y) = 16 - x - y, donde f es una función de clase C 1 definida en: = { ( x, y ) R / - 4 x 4, x y 16 - x }. Sea F: R R 3, definida por F( x, y ) = ( x, y, f( x, y ) ), entonces F es una representación vectorial de S y además: F x ( x, y ) = ( 1,, - x ), F y ( x, y ) = (, 1, -y), Luego, el producto vectorial fundamental es i j k F x ( x, y ) x F y ( x, y ) = 1 -x = ( x, y, 1 ) = ( f x, 1 -y f y, 1 ). Por lo tanto: a( S ) = ( ) ( ) x + y + 1 dy dx = 4x + y + 1 dy dx

6 INTEGRAL LAPSO / x = x 4x + y + 1dy dx, luego, en virtud de la forma que tiene la proyección de la superficie z sobre el plano xy, pasamos a coordenadas polares, así: a( S ) = 4 π π = ( ) 6 4 4r + 1r dθdr = π 4r + 1rdr = π a( s ) = ( ) 6 65 π u du = π 3 65 u FIN EL MOELO

1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva:

1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: 1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: a) x = senθ, y = cosθ, 0 θ π t b), t x = e y = e + 1 c) x = senθ, y =

Más detalles

(a) El triángulo dado se descompone en tres segmentos de recta que parametrizamos de la siguiente forma: (0 t 1); y = 0. { x = 1 t y = t. (0 t 1).

(a) El triángulo dado se descompone en tres segmentos de recta que parametrizamos de la siguiente forma: (0 t 1); y = 0. { x = 1 t y = t. (0 t 1). INTEGRALES DE LÍNEA. 15. alcular las siguientes integrales: (a) (x + y) ds donde es el borde del triángulo con vértices (, ), (1, ), (, 1). (b) x + y ds donde es la circunferencia x + y ax (a > ). (a)

Más detalles

Análisis II - Primer Parcial Coloquio- Tema 1

Análisis II - Primer Parcial Coloquio- Tema 1 .5. Coloquio 1/08/03. Análisis II - Primer Parcial Coloquio- Tema 1 1. Hallar a de manera que sea máximo el flujo de campo F (x,y,z)= (x,y,z) a través del borde ( con tapas!) del cilindro elíptico descripto

Más detalles

4 Integrales de línea y de superficie

4 Integrales de línea y de superficie a t e a PROBLEMA DE ÁLULO II t i c a s 1 o Ings. Industrial y de Telecomunicación URO 2009 2010 4 Integrales de línea y de superficie 4.1 Integrales sobre curvas y campos conservativos. Problema 4.1 Integra

Más detalles

4. FUNCIONES DE VARIAS VARIABLES

4. FUNCIONES DE VARIAS VARIABLES 4. FUNCIONES DE VARIAS VARIABLES INDICE 4 4.1. Definición de una función de dos variables...2 4.2. Gráfica de una función de dos variables..2 4.3. Curvas y superficies de nivel....3 4.4. Límites y continuidad....6

Más detalles

Lectura 3 Ampliación de Matemáticas. Grado en Ingeniería Civil

Lectura 3 Ampliación de Matemáticas. Grado en Ingeniería Civil 1 / 32 Lectura 3 Ampliación de Matemáticas. Grado en Ingeniería Civil Curso Académico 2011-2012 2 / 32 Motivación: muchas ecuaciones y propiedades fundamentales de la Física (y, en consecuencia, de aplicación

Más detalles

1. Dar la definición de la integral de línea y de la integral de superficie de un campo vectorial y de un campo escalar.

1. Dar la definición de la integral de línea y de la integral de superficie de un campo vectorial y de un campo escalar. NOTAS DE LASE ÁLULO III Unidad 4: INTEGRALES DE LINEA, DE SUPERFIIE, TEOREMAS FUNDAMENTALES Guía de Estudio Doris Hinestroza 1 Índice 1. INTEGRALES DE LINEA, DE SUPERFIIE, TEO- REMAS FUNDAMENTALES DEL

Más detalles

Universidad de Sevilla. GIOI y GIERM. Matemáticas III. Departamento de Matemática Aplicada II. Guión del Tema 5: Integrales de Línea.

Universidad de Sevilla. GIOI y GIERM. Matemáticas III. Departamento de Matemática Aplicada II. Guión del Tema 5: Integrales de Línea. Universidad de Sevilla. GO y GERM. Matemáticas. Departamento de Matemática Aplicada. Guión del Tema 5: ntegrales de Línea. 1. ntegrales de línea. ntegral de línea de un campo escalar. Sea una curva parametrizada

Más detalles

Funciones de varias variables reales

Funciones de varias variables reales Capítulo 6 Funciones de varias variables reales 6.1. Introducción En muchas situaciones habituales aparecen funciones de dos o más variables, por ejemplo: w = F D (Trabajo realizado por una fuerza) V =

Más detalles

que corresponde al dominio definido por el paralelogramo de vértices (0, 2), (2, 1), (1, 6) y (3, 5).

que corresponde al dominio definido por el paralelogramo de vértices (0, 2), (2, 1), (1, 6) y (3, 5). 74 MÉTOOS NUMÉRICOS Informática de Sistemas - curso 9/1 Hojas de problemas Tema I - Cálculo diferencial e integral en varias variables I.1 Representación de funciones de dos variables 1. ibuja el plano

Más detalles

ANALISIS MATEMATICO II Grupo Ciencias 2015

ANALISIS MATEMATICO II Grupo Ciencias 2015 ANALISIS MATEMATICO II Grupo Ciencias 05 Práctica : Geometría Analítica: Vectores, Rectas y Planos A. Vectores Hasta el 9 de marzo. Sean v = (0,, ) y w = (,, 4) dos vectores de IR 3. (a) Obtener el coseno

Más detalles

MATE1207 Primer parcial - Tema A MATE-1207

MATE1207 Primer parcial - Tema A MATE-1207 MATE7 Primer parcial - Tema A MATE7. Si su respuesta y justificación son correctas obtendrá el máximo puntaje. Si su respuesta es incorrecta podrá obtener créditos parciales de acuerdo a su justificación.

Más detalles

1. Funciones de varias variables

1. Funciones de varias variables Análisis Matemático II. Curso 2008/2009. Diplomatura en Estadística/Ing. Téc. en Inf. de Gestión. Universidad de Jaén TEMA 2: CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES 1. Funciones de varias variables

Más detalles

Tarea 1 - Vectorial 201420

Tarea 1 - Vectorial 201420 Tarea - Vectorial 040. Part :. - 3... Hacer parametrización de la curva de intersección del cilindro x + y = 6 y el plano x + z = 5. Encontrar las coordenadas de los puntos de la curva donde la curvatura

Más detalles

Problemas resueltos. La integral de línea. 1. Halle la longitud de la curva dada por la parametrización. Solución:

Problemas resueltos. La integral de línea. 1. Halle la longitud de la curva dada por la parametrización. Solución: Problemas resueltos 1. Halle la longitud de la curva dada por la parametrización α(t) t ı + 4 3 t3/ j + 1 t k, t [, ]. α (t) (1, t 1/, 1 ), t [, ]. La curva α es de clase C 1 y, por tanto, es rectificable.

Más detalles

CÁLCULO PARA LA INGENIERÍA 1

CÁLCULO PARA LA INGENIERÍA 1 CÁLCULO PARA LA INGENIERÍA 1 PROBLEMAS RESUELTOS Tema 3 Derivación de funciones de varias variables 3.1 Derivadas y diferenciales de funciones de varias variables! 1. Derivadas parciales de primer orden.!

Más detalles

1. Derivadas parciales

1. Derivadas parciales Análisis Matemático II. Curso 2009/2010. Diplomatura en Estadística/Ing. Téc. en Inf. de Gestión. Universidad de Jaén TEMA 3. ABLES DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARI- 1. Derivadas parciales Para

Más detalles

Funciones de varias variables

Funciones de varias variables Funciones de varias variables Derivadas parciales. El concepto de función derivable no se puede extender de una forma sencilla para funciones de varias variables. Aquí se emplea el concepto de diferencial

Más detalles

1 Función real de dos variables reales

1 Función real de dos variables reales Cálculo Matemático. Tema 10 Hoja 1 Escuela Universitaria de Arquitectura Técnica Cálculo Matemático. Tema 10: Funciones de dos variables. Curso 008-09 1 Función real de dos variables reales Hasta el momento

Más detalles

ECUACIONES DIFERENCIALES PARCIALES CUASILINEALES PRIMER ORDEN, NOCIONES BÁSICAS

ECUACIONES DIFERENCIALES PARCIALES CUASILINEALES PRIMER ORDEN, NOCIONES BÁSICAS ECUACIONES DIFERENCIALES PARCIALES CUASILINEALES PRIMER ORDEN, NOCIONES BÁSICAS E. SÁEZ Una Ecuación Diferencial Partial (E.D.P.) de Primer Orden, en dos variables, es simplemente una expresión de la forma

Más detalles

EJERCICIOS DE CÁLCULO DIFERENCIAL EN VARIAS VARIABLES

EJERCICIOS DE CÁLCULO DIFERENCIAL EN VARIAS VARIABLES UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS EJERCICIOS DE CÁLCULO DIFERENCIAL EN VARIAS VARIABLES Ramón Bruzual Marisela Domínguez Caracas,

Más detalles

UAM CSIC Grupo 911 Febrero 2013. Ejercicios Resueltos del Tema 2.2.5. Asignatura de Matemáticas Grado en Química

UAM CSIC Grupo 911 Febrero 2013. Ejercicios Resueltos del Tema 2.2.5. Asignatura de Matemáticas Grado en Química UAM CSIC Grupo 9 Febrero Ejercicios Resueltos del Tema..5 Asignatura de Matemáticas Grado en Química Lista de ejercicios en estas páginas: y. Consejo: En todos los ejercicios es esencial dibujar el dominio

Más detalles

EJERCICIOS RESUELTOS

EJERCICIOS RESUELTOS FUNDAMENTOS MATEMÁTICOS DE LA INGENIERÍA Ingeriería Técnica Industrial. Especialidad en Mecánica. Boletin 6. Funciones de Varias Variables EJERCICIOS RESUELTOS Curso 003-004 1. En cada apartado, calcular

Más detalles

El teorema de Green. 1 x (t) 2 + y (t) 2 ( N(t) = y (t), x (t) ).

El teorema de Green. 1 x (t) 2 + y (t) 2 ( N(t) = y (t), x (t) ). apítulo 11 El teorema de Green El teorema de Green relaciona la integral de línea de un campo vectorial sobre una curva plana con una integral doble sobre el recinto que encierra la curva. Este tipo de

Más detalles

Álgebra Matricial y Optimización Ma130

Álgebra Matricial y Optimización Ma130 Álgebra Matricial y Optimización Ma130 Elementos de Cálculo en Varias Variables Departamento de Matemáticas ITESM Elementos de Cálculo en Varias Variables Ma130 - p. 1/47 En esta lectura se dará una revisión

Más detalles

1. Definición de campo vectorial

1. Definición de campo vectorial Universidad Nacional de La Plata Facultad de iencias Exactas ANÁLII MATEMÁTIO II (ibex - Física Médica) 214 egundo emestre GUÍA Nro. 6: AMPO VETORIALE 1. Definición de campo vectorial Durante el curso

Más detalles

Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta:

Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta: Todo el mundo sabe que dos puntos definen una recta, pero los matemáticos son un poco diferentes y, aún aceptando la máxima universal, ellos prefieren decir que un punto y un vector nos definen una recta.

Más detalles

Capítulo 3 Soluciones de ejercicios seleccionados

Capítulo 3 Soluciones de ejercicios seleccionados Capítulo 3 Soluciones de ejercicios seleccionados Sección 3.1.4 1. Dom a = [ 1, 1]. Dom b = R. Dom c = (, 4). Dom d = ( 1, ). Dom e = R ( 1, 3] y Dom f = R {, }. 5x 4 x < 1, (x 1)(3x ) x < 1,. (f + g)(x)

Más detalles

Teorema de Green. ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es. 1. Introducción 1

Teorema de Green. ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es. 1. Introducción 1 Teorema de Green ISABEL MAEO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Introducción 1 2. Teorema de Green en regiones simplemente conexas 1 2.1. urvas de Jordan.........................................

Más detalles

TEMA 5: DERIVADAS PARCIALES

TEMA 5: DERIVADAS PARCIALES Matemáticas. Curso 2011/2012 Graos en ADE e Consultoría. Universidade de Vigo. En muchos problemas comunes aparecen funciones de dos o más variables, por ejemplo: w = F D (Trabajo realizado por una fuerza)

Más detalles

1 El plano y el espacio Euclídeos. Operaciones

1 El plano y el espacio Euclídeos. Operaciones Fundamentos Matemáticos de la Ingeniería. (Tema 8 Hoja 1 Escuela Técnica Superior de Ingeniería Civil e Industrial (Esp. en Hidrología Fundamentos Matemáticos de la Ingeniería. Tema 8: Cálculo diferencial

Más detalles

Parcial I Cálculo Vectorial

Parcial I Cálculo Vectorial Parcial I Cálculo Vectorial Febrero 8 de 1 ( Puntos) I. Responda falso o verdadero justificando matematicamente su respuesta. (i) La gráfica de la ecuación cos ϕ = 1, en coordenadas esféricas en R3, es

Más detalles

a y Para aplicar el teorema de Stokes, calculamos en primer lugar el rotacional del campo vectorial: i j k / x / y / z

a y Para aplicar el teorema de Stokes, calculamos en primer lugar el rotacional del campo vectorial: i j k / x / y / z TEOREMA E TOKE. 1. Usar el teorema de tokes para calcular la integral de línea ( ) d + ( ) d + ( ) d, donde es la curva intersección de la superficie del cubo a, a, a el plano + + 3a/, recorrida en sentido

Más detalles

1 FUNCIONES DE R N EN R.

1 FUNCIONES DE R N EN R. 1 FUNCIONES DE R N EN R. 1. Idea de función. Si A R N, una función f : A R es una regla que asigna a cada punto x A un número f( x ) R. Ejemplos: Si x R 2 podemos considerar la función f( x )=(distancia

Más detalles

Guías de Ejercicios de Análisis Matemático III - 2010

Guías de Ejercicios de Análisis Matemático III - 2010 Guías de Ejercicios de Análisis Matemático III - 2010 Docentes Nombre Ubicación contacto Dra. Marta Urciuolo FaMAF, of. 270, int. 270 urciuolo@mate.uncor.edu Dr. Adolfo Banchio FaMAF, of. 216, int 216

Más detalles

CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES

CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES CAPÍTULO II. CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES SECCIONES 1. Dominios y curvas de nivel. 2. Cálculo de ites. 3. Continuidad. 55 1. DOMINIOS Y CURVAS DE NIVEL. Muchos problemas geométricos y físicos

Más detalles

1. El teorema de la función implícita para dos y tres variables.

1. El teorema de la función implícita para dos y tres variables. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lección. Aplicaciones de la derivación parcial.. El teorema de la función implícita para dos tres variables. Una ecuación con dos incógnitas. Sea f :( x, ) U f(

Más detalles

Teoremas de Stokes y Gauss

Teoremas de Stokes y Gauss Lección 9 Teoremas de Stokes y Gauss Presentamos a continuación los dos resultados principales del Cálculo Vectorial. Por una parte, el Teorema de Stokes generaliza la fórmula de Green, estableciendo la

Más detalles

CINEMATICA DE MAQUINAS

CINEMATICA DE MAQUINAS CINEMATICA DE MAQUINAS 4.1.- CAMPO DE VELOCIDADES EN EL MOVIMIENTO GENERAL DE UN SISTEMA INDEFORMABLE 4.2.- ACELERACION DE UN PUNTO EN EL MOVIMIENTO GENERAL DE UN SISTEMA INDEFORMABLE 4.3.- EJE INSTANTANEO

Más detalles

Aplicaciones de la Integral Definida

Aplicaciones de la Integral Definida CAPITULO 7 Aplicaciones de la Integral Definida 1 Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet (www.cidse.itcr.ac.cr)

Más detalles

Integrales dobles y triples

Integrales dobles y triples Tema Integrales dobles y triples Hasta ahora se han calculado el área de figuras geométricas planas elementales: el rectángulo, el círculo, el trapecio, etc. Pero, cómo calcular el área de figuras no regulares?

Más detalles

Caracterización de los campos conservativos

Caracterización de los campos conservativos Lección 5 Caracterización de los campos conservativos 5.1. Motivación y enunciado del teorema Recordemos el cálculo de la integral de línea de un gradiente, hecho en la lección anterior. Si f : Ω R es

Más detalles

Tema 9. Campos escalares y campos vectoriales. Integrales de línea e integrales de supercie

Tema 9. Campos escalares y campos vectoriales. Integrales de línea e integrales de supercie Tema 9. ampos escalares y campos vectoriales. Integrales de línea e integrales de supercie Índice de contenidos del tema 9 1. ampos escalares y campos vectoriales 2. Gradiente, laplaciano, divergencia

Más detalles

(A) Primer parcial. si 1 x 1; x 3 si x>1. (B) Segundo parcial

(A) Primer parcial. si 1 x 1; x 3 si x>1. (B) Segundo parcial CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E700 1) x 5 > 1. A) Primer parcial ) Sean las funciones ft) t +,gy) y 4&hw) w. Encontrar f/h, g f, f g y sus dominios. ) Graficar la función x + six

Más detalles

Los teoremas de Stokes y Gauss

Los teoremas de Stokes y Gauss Capítulo 13 Los teoremas de tokes y Gauss En este último capítulo estudiaremos el teorema de tokes, que es una generalización del teorema de Green en cuanto que relaciona la integral de un campo vectorial

Más detalles

Introducción a la geometría. del plano y del espacio. Curvas.

Introducción a la geometría. del plano y del espacio. Curvas. UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS Introducción a la geometría del plano y del espacio. Curvas. Ramón Bruzual Marisela Domínguez

Más detalles

Javier Junquera. Vectores

Javier Junquera. Vectores Javier Junquera Vectores Cómo describir la posición de un punto en el espacio: Sistemas de coordenadas Un sistema de coordenadas que permita especificar posiciones consta de: Un punto de referencia fijo,

Más detalles

4. Integrales de Línea. Áreas de Superficies e Integrales de Superficie

4. Integrales de Línea. Áreas de Superficies e Integrales de Superficie NOTAS DE CLASE CÁLCULO III Doris Hinestroza Diego L. Hoyos 1 Índice general 1. Funciones Vectoriales 5 1.1. El Espacio R n............................ 5 1.2. Funciones Vectoriales........................

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN

INSTRUCCIONES GENERALES Y VALORACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2014-2015 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN Después

Más detalles

Unidad V: Integración

Unidad V: Integración Unidad V: Integración 5.1 Introducción La integración es un concepto fundamental de las matemáticas avanzadas, especialmente en los campos del cálculo y del análisis matemático. Básicamente, una integral

Más detalles

INTEGRAL DE SUPERFICIE

INTEGRAL DE SUPERFICIE INTEGRAL E UPERFICIE 1. Geometría de las superficies. Entendemos por superficie el lugar geométrico de un punto que se mueve en el espacio R 3 con dos grados de libertad. También podemos pensar una superficie

Más detalles

S n = 3n + 2 n + 4. ln(1 + a n ) (3) Decidir, para cada una de las siguientes series, si es convergente o divergente.

S n = 3n + 2 n + 4. ln(1 + a n ) (3) Decidir, para cada una de las siguientes series, si es convergente o divergente. CÁLCULO HOJA 1 INGENIERO TÉCNICO EN INFORMÁTICA DE SISTEMAS GRUPO DE MAÑANA, MÓSTOLES, 2008-09 (1) De la serie a n se sabe que la sucesión de sumas parciales viene dada por: S n = 3n + 2 n + 4. Encontrar

Más detalles

Primer Parcial MATE1207 Cálculo Vectorial (Tema B) 1

Primer Parcial MATE1207 Cálculo Vectorial (Tema B) 1 Universidad de los Andes Departamento de Matemáticas Primer Parcial MATE1207 Cálculo Vectorial (Tema B) 1 Instrucciones: Lea cuidadosamente y conteste cada pregunta en la hoja asignada. Escriba con bolígrafo

Más detalles

Cuatro maneras de representar una función

Cuatro maneras de representar una función Cuatro maneras de representar una función Una función f es una regla que asigna a cada elemento x de un conjunto A exactamente un elemento, llamado f(x), de un conjunto B. Una función f es una regla que

Más detalles

CALCULO AVANZADO. Campos escalares. Límite y continuidad UCA FACULTAD DE CIENCIAS FISICOMATEMATICAS E INGENIERIA

CALCULO AVANZADO. Campos escalares. Límite y continuidad UCA FACULTAD DE CIENCIAS FISICOMATEMATICAS E INGENIERIA UCA FACULTAD DE CIENCIAS FISICOMATEMATICAS E INGENIERIA CALCULO AVANZADO SEGUNDO CUATRIMESTRE 8 TRABAJO PRÁCTICO 4 Campos escalares Límite continuidad Página de Cálculo Avanzado http://www.uca.edu.ar Ingeniería

Más detalles

MATE-1207 Cálculo Vectorial Taller 2 - Preparación Segundo Parcial P2. (a) Si f(x,y), g(x,y) son dos funciones continuas en D, entonces

MATE-1207 Cálculo Vectorial Taller 2 - Preparación Segundo Parcial P2. (a) Si f(x,y), g(x,y) son dos funciones continuas en D, entonces Universidad de los Andes epartamento de Matemáticas MATE-27 Cálculo Vectorial Taller 2 - Preparación Segundo Parcial P2. Conteste Falso o Verdadero. Justifique matemáticamente. (a) Si f(x,y), g(x,y) son

Más detalles

1. Producto escalar, métrica y norma asociada

1. Producto escalar, métrica y norma asociada 1. asociada Consideramos el espacio vectorial R n sobre el cuerpo R; escribimos los vectores o puntos de R n, indistintamente, como x = (x 1,..., x n ) = n x i e i i=1 donde e i son los vectores de la

Más detalles

Tema 9. Funciones de varias variables.

Tema 9. Funciones de varias variables. Tema 9. Funciones de varias variables. 9.1 Introducción 9.2 Límite continuidad. 9.3 Derivadas parciales. Derivadas de orden superior. Teorema Schwart. 9.4 Diferencial. 9.5 Regla de la cadena. Derivación

Más detalles

Tema 1.- Cónicas y Cuádricas.

Tema 1.- Cónicas y Cuádricas. Ingenierías: Aeroespacial, Civil y Química. Matemáticas I. 2010-2011. Departamento de Matemática Aplicada II. Escuela Superior de Ingenieros. Universidad de Sevilla. Tema 1.- Cónicas y Cuádricas. 1.1.-

Más detalles

C 4 C 3 C 1. V n dσ = C i. i=1

C 4 C 3 C 1. V n dσ = C i. i=1 apítulo 2 Divergencia y flujo Sea V = V 1 i + V 2 j + V 3 k = (V 1, V 2, V 3 ) un campo vectorial en el espacio, por ejemplo el campo de velocidades de un fluido en un cierto instante de tiempo, en un

Más detalles

Tema 10: Límites y continuidad de funciones de varias variables

Tema 10: Límites y continuidad de funciones de varias variables Tema 10: Límites y continuidad de funciones de varias variables 1 Funciones de varias variables Definición 1.1 Llamaremos función real de varias variables atodafunciónf : R n R. Y llamaremos función vectorial

Más detalles

Usamos que f( p) = q y que, por tanto, g( q) = g(f( p)) = h( p) para simplificar esta expresión:

Usamos que f( p) = q y que, por tanto, g( q) = g(f( p)) = h( p) para simplificar esta expresión: Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Propiedades de las funciones diferenciables. 1. Regla de la cadena Después de la generalización que hemos

Más detalles

Ecuaciones Diferenciales Ordinarias de Primer Orden

Ecuaciones Diferenciales Ordinarias de Primer Orden Tema 2 Ecuaciones Diferenciales Ordinarias de Primer Orden Introducción Estudiaremos en este tema varios tipos de E.D.O. de primer orden que es posible resolver de forma exacta. 2.1 Ecuaciones en variables

Más detalles

Segunda Parcial Lapso 2013-1 175-176-177 1/8

Segunda Parcial Lapso 2013-1 175-176-177 1/8 Segunda Parcial Lapso 2013-1 175-176-177 1/8 Universidad Nacional Abierta Matemática I (175-176-177) Vicerrectorado Académico Cód. Carrera: 126 236 280 508 521 542 610 611 612 613 Área De Matemática Fecha:

Más detalles

Un Orbital Atómico 2px - Forma 1. Un Orbital Atómico 2px - Forma 2. Un Orbital Atómico 2px - Nodos 1. Un Orbital Atómico 2p x consta de:

Un Orbital Atómico 2px - Forma 1. Un Orbital Atómico 2px - Forma 2. Un Orbital Atómico 2px - Nodos 1. Un Orbital Atómico 2p x consta de: Un Orbital Atómico 2px - Forma 1 Un Orbital Atómico 2p x consta de: Un lóbulo con signo positivo y otro con signo negativo Cuatro lóbulos sobre el plano XY Dos lóbulos con signo positivo y otros dos con

Más detalles

SUPERFICIES. También construiremos el plano tangente, usando una parametrización o una

SUPERFICIES. También construiremos el plano tangente, usando una parametrización o una SUPERFICIES El objetivo de este tema es el estudio de superficies regulares en el espacio. Definiremos de forma rigurosa lo que es una superficie, veremos formas de expresar una superficie, esencialmente

Más detalles

Integrales de línea. Teorema de Green

Integrales de línea. Teorema de Green Integrales de línea. Teorema de Green José Antonio Vallejo Departamento de Matemáticas Facultad de iencias Universidad Autónoma de San Luis Potosí email: jvallejo@fciencias.uaslp.mx 16 Noviembre 2007 1.

Más detalles

1. Extremos de funciones 2. 2. Parametrización, Triedro de Frenet 21. 3. Coordenadas curvilíneas 34. 4. Integrales de trayectoria y de línea 41

1. Extremos de funciones 2. 2. Parametrización, Triedro de Frenet 21. 3. Coordenadas curvilíneas 34. 4. Integrales de trayectoria y de línea 41 Índice general 1. Extremos de funciones. Parametrización, Triedro de Frenet 1 3. Coordenadas curvilíneas 34 4. Integrales de trayectoria y de línea 41 5. Integrales Iteradas 5 6. Teoremas Integrales 57

Más detalles

Cuaderno de ejercicios de AVEC

Cuaderno de ejercicios de AVEC Cuaderno de ejercicios de AVEC Rodrigo Blázquez y Ángela Castillo 11 Agradecimientos Este cuaderno de ejercicios, correspondiente a la asignatura de Análisis Vectorial (AVEC) del Grado en Ingeniería de

Más detalles

1. Definición y representaciones gráficas

1. Definición y representaciones gráficas Universidad Nacional de La Plata Facultad de Ciencias Exactas ANÁLISIS MATEMÁTICO II (CiBEx - Física Médica) 2014 Segundo Semestre GUÍA Nro. 3: FUNCIONES ESCALARES DE VARIAS VARIABLES 1. Definición y representaciones

Más detalles

MATEMÁTICA III (Semestre 2-2013)

MATEMÁTICA III (Semestre 2-2013) MATEMÁTICA III (Semestre 2-2013) CONTENIDO PROGRAMÁTICO Tema 1: Ecuaciones Diferenciales Ecuaciones lineales de segundo orden. Ecuaciones lineales no homogéneas. Tema 2: Álgebra Lineal Sistemas lineales.

Más detalles

Trabajo y energ ia/j. Hdez. T p. 1/10. Trabajo y energía. Prof. Jesús Hernández Trujillo Facultad de Química, UNAM

Trabajo y energ ia/j. Hdez. T p. 1/10. Trabajo y energía. Prof. Jesús Hernández Trujillo Facultad de Química, UNAM Trabajo y energ ia/j. Hdez. T p. 1/10 Trabajo y energía Prof. Jesús Hernández Trujillo Facultad de Química, UNAM Definición de trabajo Trabajo y energ ia/j. Hdez. T p. 2/10 En mecánica clásica, se define

Más detalles

c) ( 1 punto ). Hallar el dominio de definición de la función ( ). Hallar el conjunto de puntos en los que la función tiene derivada.

c) ( 1 punto ). Hallar el dominio de definición de la función ( ). Hallar el conjunto de puntos en los que la función tiene derivada. Materiales producidos en el curso: Curso realizado por Escuelas Católicas del 7 de noviembre al 19 de diciembre de 2011 Título: Wiris para Matemáticas de ESO y Bachilleratos. Uso de Pizarra Digital y Proyector

Más detalles

Problemario de Cálculo Diferencial de Varias Variables

Problemario de Cálculo Diferencial de Varias Variables Problemario de Cálculo Diferencial de Varias Variables 1 María José Arroyo Shirley Bromberg Patricia Saavedra Departamento de Matemáticas Universidad Autónoma Metropolitana-Iztapalapa ÍNDICE 1 Geometría

Más detalles

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula:

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula: 1. Dada la función f(x) = : a) Encontrar el dominio, las AH y las AV. b) Intervalos de crecimiento, decrecimiento, máximos y mínimos relativos. c) Primitiva que cumpla que F(0) = 0. a) Para encontrar el

Más detalles

Tema 14: Cálculo diferencial de funciones de varias variables II

Tema 14: Cálculo diferencial de funciones de varias variables II Tema 14: Cálculo diferencial de funciones de varias variables II 1 Desarrollos de Taylor en varias variables Vamos ahora a generalizar los desarrollos de Taylor que vimos para funciones de una variable.

Más detalles

DOMINIO Y RANGO DE UNA FUNCIÓN I N D I C E. martilloatomico@gmail.com. Página. Titulo:

DOMINIO Y RANGO DE UNA FUNCIÓN I N D I C E. martilloatomico@gmail.com. Página. Titulo: Titulo: DOMINIO Y RANGO I N D I C E Página DE UNA FUNCIÓN Año escolar: 4to. Año de Bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela

Más detalles

VECTORES COORDENADOS (R n )

VECTORES COORDENADOS (R n ) VECTORES COORDENADOS (R n ) Cómo puede ser representado un número Real? Un número real puede ser representado como: Un punto de una línea recta. Una pareja de números reales puede ser representado por

Más detalles

CAPÍTULO III. CÁLCULO DIFERENCIAL DE FUNCIONES DE VARIAS VARIABLES

CAPÍTULO III. CÁLCULO DIFERENCIAL DE FUNCIONES DE VARIAS VARIABLES CAPÍTULO III. CÁLCULO DIFERENCIAL DE FUNCIONES DE VARIAS VARIABLES SECCIONES 1. Derivadas parciales. Derivadas direccionales. 2. Diferenciabilidad. 3. Plano tangente. 4. Derivación de funciones compuestas.

Más detalles

Variedades Diferenciables. Extremos Condicionados

Variedades Diferenciables. Extremos Condicionados Capítulo 16 Variedades Diferenciables. Extremos Condicionados Vamos a completar lo visto en los capítulos anteriores sobre el teorema de las Funciones Implícitas y Funciones Inversas con un tema de iniciación

Más detalles

x R, y R Según estas coordenadas dividiremos al plano en cuatro cuadrantes a saber:

x R, y R Según estas coordenadas dividiremos al plano en cuatro cuadrantes a saber: Apéndice A Coordenadas A.1 Coordenadas en el Plano R A.1.1 Cartesianas (x, y) Dotar al plano bidimensional R de coordenadas cartesianas D es establecer una biyección entre el conjunto de puntos del plano

Más detalles

Tema 10: Funciones de varias variables. Funciones vectoriales. Límites y continuidad

Tema 10: Funciones de varias variables. Funciones vectoriales. Límites y continuidad Tema 10: Funciones de varias variables. Funciones vectoriales. Límites y continuidad 1 Funciones de varias variables Observación 1.1 Conviene repasar,enestepunto,lodadoeneltema8paratopología en R n : bolas,

Más detalles

CALCULO 11-M-1 Primera Parte

CALCULO 11-M-1 Primera Parte CALCULO 11-M-1 Primera Parte Duración 1h 4m Ejercicio 1 (1. puntos) Una isla A se encuentra a 3 kilómetros del punto más próximo B de una costa rectilínea. En la misma costa, a 1 kilómetros de B se encuentra

Más detalles

ACLARACIONES SOBRE EL EXAMEN

ACLARACIONES SOBRE EL EXAMEN 1 (1 punto) Desarrolle el siguiente tema de teoría: Teorema de Taylor y aplicación. 2 (1.2 puntos) Considere los números complejos z = 1 + i y w = 3(cos( π) + i sen( π )). Calcule 3 3 a) z + w b) z 4 c)

Más detalles

Oleksandr Karelin Carlos Rondero Guerrero Anna Tarasenko DESIGUALDADES Métodos de cálculo no tradicionales

Oleksandr Karelin Carlos Rondero Guerrero Anna Tarasenko DESIGUALDADES Métodos de cálculo no tradicionales Oleksandr Karelin Carlos Rondero Guerrero Anna Tarasenko DESIGUALDADES Métodos de cálculo no tradicionales Patrocinado por: Universidad Autónoma del Estado de Hidalgo Madrid - Buenos Aires - México Oleksandr

Más detalles

IES Fco Ayala de Granada Sobrantes de 2011 ( Modelo 3) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2011 ( Modelo 3) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Granada Sobrantes de 11 ( Modelo 3) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 3 del 11 [ 5 puntos] Dada la función f : R R definida por f(x) ax 3 + bx +cx, determina

Más detalles

Aproximación local. Plano tangente. Derivadas parciales.

Aproximación local. Plano tangente. Derivadas parciales. Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 004-005 Aproximación local. Plano tangente. Derivadas parciales. 1. Plano tangente 1.1. El problema de la aproximación

Más detalles

Las Funciones Analíticas. f (z 0 + h) f (z 0 ) lim. h=z z 0. = lim

Las Funciones Analíticas. f (z 0 + h) f (z 0 ) lim. h=z z 0. = lim Las Funciones Analíticas 1 Las Funciones Analíticas Definición 12.1 (Derivada de una función compleja). Sea D C un conjunto abierto. Sea z 0 un punto fijo en D y sea f una función compleja, f : D C C.

Más detalles

RELACIÓN DE EXÁMENES DE GEOMETRÍA III

RELACIÓN DE EXÁMENES DE GEOMETRÍA III RELACIÓN DE EXÁMENES DE GEOMETRÍA III Prof. Rafael López Camino Departamento de Geometría y Topología Universidad de Granada Material docente para el alumno Asignatura: Geometría III Licenciatura: Matemáticas

Más detalles

1. Teorema del Valor Medio

1. Teorema del Valor Medio 1. l Valor Medio Uno de los teoremas más importantes del cálculo diferencial de funciones reales de una variable real es el l Valor Medio, del que se obtienen consecuencias como el Taylor y el estudio

Más detalles

Polinomios de Taylor.

Polinomios de Taylor. Tema 7 Polinomios de Taylor. 7.1 Polinomios de Taylor. Definición 7.1 Recibe el nombre de polinomio de Taylor de grado n para la función f en el punto a, denotado por P n,a, el polinomio: P n,a (x) = f(a)

Más detalles

ELIJA CUATRO DE LOS SEIS BLOQUES PROPUESTOS.

ELIJA CUATRO DE LOS SEIS BLOQUES PROPUESTOS. PRUEBAS DE ACCESO A LA UNIVERSIDAD Curso 008-009 MATEMÁTICAS II ELIJA CUATRO DE LOS SEIS BLOQUES PROPUESTOS. Bloque 1. Dado el número real a, se considera el sistema a) Discuta el sistema según los valores

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores

Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Universidad Politécnica de Madrid 5 de marzo de 2010 2 4.1. Planificación

Más detalles

Escuela Técnica Superior de Ingeniería Universidad de Sevilla. GradoenIngenieríadelas Tecnologías de Telecomunicación EJERCICIOS DE MATEMÁTICAS II

Escuela Técnica Superior de Ingeniería Universidad de Sevilla. GradoenIngenieríadelas Tecnologías de Telecomunicación EJERCICIOS DE MATEMÁTICAS II Escuela Técnica Superior de Ingeniería Universidad de Sevilla GradoenIngenieríadelas Tecnologías de Telecomunicación EJERCICIOS DE MATEMÁTICAS II CURSO 2015-2016 Índice general 1. Derivación de funciones

Más detalles

Resumen del Tema 3: Cálculo Vectorial

Resumen del Tema 3: Cálculo Vectorial Resumen del Tema 3: Cálculo Vectorial Víctor Domínguez Guillem Huguet Diciembre 2008 I too fell that I have been thinking too much of late, but in a different way, my head running on divergent series,

Más detalles

Parte I. Iniciación a los Espacios Normados

Parte I. Iniciación a los Espacios Normados Parte I Iniciación a los Espacios Normados Capítulo 1 Espacios Normados Conceptos básicos Sea E un espacio vectorial sobre un cuerpo K = R ó C indistintamente. Una norma sobre E es una aplicación de E

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema Representación gráfica de funciones reales de una variable real Elaborado

Más detalles

PROBLEMAS RESUELTOS 1 (continuidad, derivabilidad y diferenciabilidad de funciones de varias variables)

PROBLEMAS RESUELTOS 1 (continuidad, derivabilidad y diferenciabilidad de funciones de varias variables) Funciones de varias variables. PROBLEMAS RESUELTOS 1 (coninuidad, derivabilidad y diferenciabilidad de funciones de varias variables) PROBLEMA 1 Esudiar la coninuidad de la función: xy ( xy, ) (,) x +

Más detalles

En los ejercicios 1-8, dibujar la curva representada por la función vectorial e indicar su orientación.

En los ejercicios 1-8, dibujar la curva representada por la función vectorial e indicar su orientación. Universidad de Costa Rica Práctica Miscelánea para el Primer Parcial Facultad de Ciencias Funciones Vectoriales, Regla de la Cadena y Funciones Implícitas Escuela de Matemática MA 1003 Cálculo 3 Departamento

Más detalles