REPRESENTACION GRAFICA.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "REPRESENTACION GRAFICA."

Transcripción

1 REPRESENTACION GRAFICA. Calcular puntos notabls así como intrvalos d monotonía y curvatura d: ² - = 0 ; ² = ; = son los valors d qu anulan l dnominador D = R- y () = 0 ; - 4 = 0 ; = 0 posibl ma, min Monotonia: )()()( ,5 0 0,5 2 Crcint (-, -) (-, 0) Dcrcint (0, ) (, ) Intrvalos d curvatura: y () = 0 ; 2 ² + 4 = 0 ; ; no ist P.I Sparamos solo n los intrvalos dl dominio )()(

2 cort j o ; y = 0 ; ² + = 0 ; ² = - no ist cort j oy ; = 0 ; y = - ; P(0, - ) A.V ; = ; = -

3 Calcular puntos notabls, intrvalos d monotonía y curvatura d la función: y =. Calcular asíntotas. Dibujar curva D = R- 0 = = = = 0 ; = 0 ; = 0 ; = posibls má., min. = = = = > 0 min. (,2) = < 0 má. (-,-2) = 0 ; = 0 ; 2 = 0 P.I. Monotonia d f(), -) = -2 ; Crcint (-, 0) = -0,5 ; Dcrcint (0, ) = 0,5 ; Dcrcint (, ) = 2 ; Crcint Crcint, -) (, ) ; Dcrcint (-, 0) (0, ) Curvatura d f() > 0 ; > 0,0) = - ; = < 0 ramas hacia abajo,0) ) = ; = > 0 ramas hacia arriba ) No istn corts con loa js,

4 AV: = 0 y =

5 Calcular puntos notabls intrvalos d monotonía y curvatura d D = R Monotonía: y' < 0 ya qu y'= - ( / ) < 0 R Dcrcint Curvatura: y'' > 0 ya qu y'' = + ( / ) > 0 R ramas hacia arriba Cort j OY :

6 Dada la función f() = a) Hallar sus máimos y mínimos locals y/o globals. b) Dtrminar l valor dl parámtro a > 0 para l cual (Slctividad Pruba ) a) D = R Posibls máimos, mínimos Monotonía. (-,-): = - 2 ; Crcint (-,): = 0; Dcrcint (, ) : = 2 ; Crcint Má (-,) Min (,-) b) 0 Como

7 Intrvalos d curvatura PI(-3,-3/3) PI(0,0) PI(3,3/3)

8 Srá conva (-3,0) (3, ) Srá cóncava (-,-3) (0,3) Asíntota Vrtical: No ist pus l dominio s todo R.

9 Dada la función ral d la variabl ral dfinida por: Dtrminar las asíntotas d la función. b) Calcular sus máimos y mínimos y dtrminar sus intrvalos d crciminto. Grafica (PAU JUNIO 2007) La rcta y = 9 s una asindota oblicua. b) Igualamos a cro la primra drivada y studiamos su signo: = 0 = - 9 = 3 posibls máimos y minimos ) ( ) ( (-,-9) f (-0) > 0 Crcint (-9, -3) f (-6) < 0 Dcrcint (-3, 3) f (0) < 0 Crcint (3, ) f (5) < 0 Dcrcint La función f() s crcint n (-,-9) (3, ) y, dcrcint n (-9, -3) (-3,3). Admas, f() tin um máimo rlativo n (-9,-24) y un mínimo rlativo n (3,0)

10 Si calculamos la y y La igualamos a cro, no istn puntos d inflión

11 2. Dada la función y = S pid dtrminar su dominio, sus máimos y mínimos, si los tin y cuantos lmntos contribuyan a laborar la gráfica d mi función. Dibujarla. Dominio: = 0 ; 4. 2 = - ; qu anul l dnominador lugo D = R Como y' = 0 0 = ; 8 2 = 2 ==> 2 = ==> Puntos d inflión: Hacmos la y'' = = 0 ==> 8 (8 2-6) = 0 d dond ó bin = 0 ó bin = 0 ==> 8. 2 = 6 ==> 2 = => son los trs posibls puntos d inflión.

12 PI PI PI Asintota oblicua: y = m. + n

13 - (PAU Sptimbr ) a) D = R ya qu - y 2 + stán dfinidas R. Estudio d asíntotas: No istn Asíntotas vrticals porqu D = R Asíntotas Horizontals: Asíntotas oblicuas: Asíntota oblicua cuando Estúdio d Ma, mín.: = posibl má., mín.

14 )( )( (-, ) = 0 y (0) > 0 ramas arriba (, 3) = 2 y (2) < 0 ramas abajo (3, ) =4 y (4) > 0 ramas arriba PI (, 2/) PI (3, 0/) Monotonía: (-, ) = 0 => y (0) = 0 (-) < 0 Dcrcint simpr Cort j o y = 0 ; 2 + = 0, no hay cort con l j d las Cort j oy = 0; y(0) = (0,)

15 (Slctividad ) a) La rcta tangnt srá : y - f(a) = f (a) ( - a) b) c) d(a,b) = Para qu d sa mínimo, cálculo d Cogmos l valor a = > 0 Si hallo d, la particularizo d () > 0 para qu la distancia sa mínima.

16 Dominio: Puntos d cort: o Ej OX. y=0 =-4 P (-4,0) o Ej OY. =0 P 2 (0,2) Asíntotas: o Vrtical. A.V. =2 o Horizontal. o Oblicua y= m +n A.H. y=- Drivada

17 D = (-, -) (-, ) ya qu + = 0 = - anula l dnominador A.V; = - A.O; y = m + n ; y = - 2 Cort n (0,0) y = = 0 ; 2 ( + 3) = 0

18 y = 0 ; 6 = 0 ; = 0 posibl P.I )( )( (-, -) = 2 y (-2) = (-, 0) = 0,5 y (0,5) = P.I(0,0) (0, ) = y () = 0 +

19 Estudiar y rprsntar gráficamnt y = Dominio = R Cort con j OX ==> y = 0 ==> = = 0 = -2 0 Cort con j OY ==> = 0 ==> y = 2 (0,2) Máimos y mínimos: y' = ==> y' = 0 ==> = 0 ==> 3 2 = 3 2 = ==> = ± y'' = 6 y''() = 6 > 0 Min (,0) y''(-) = - 6 < 0 Ma (-,6) Punto d inflión: y'' = 0 ==> 6 = 0 ==> = 0 y''' = 6 ==> y'''(0) 0 P.I (0,2) No ist A.Vrtical No ist A.Horizontal pus y = No ist A.Oblicua pus m =, habrá dos ramas parabólicas.

20 Estudia la curva y rprséntala, para la función f() = 2 + 2/ - Dominio: para todo ε R mnos para = 0 D= (-, 0) U ( 0, + ) - Crciminto y dcrciminto. Máimos y Mínimos ; y ' = 0 ; 2 3 = 2 ; 3 = ; = Estudio monotonía : Intrvalos (-, 0) ( 0, ) y (, + ) - < < 0 ; = - ; Dcrcint 0 < < ; = 0 5 ; Dcrcint < < + ; = 2 ; Crcint En = pasa d dcrcint a crcint Min(, 3) -Concavidad, convrsidad, P.I : y'' = = - 4 ; 3 = - 2 ; = -,26 Estudio curvatura : Intrvalos : ( -, 3-2), ( 3-2, 0 ) y ( 0, + ) = P.I = 0 No ist curva Asintotas :

21 Corts con los js : = 0 ; y = No ist punto d cort y = 0 ; 0 = ; 3 = - 2 ;

22 Estudiar la curva rprsntada por la función Dominio: todos los valors d prtncints a R salvo para = 0 D = R-{0} Crciminto, Dcrciminto, máimos y mínimos Tomo los intrvalos (-, - 077), (- 077, 0) y (0, ) = pasa d crcint a dcrcint Ma n (- 077, ) Concavidad, convidad y PI Posibls cambios d concavidad n (-, 0), En = y = 0 PI

23 Asíntotas Vrticals n = 0 y = = 0 Asíntota V. Corts con los js = 0 ; y = No corta y = 0 ; ( 3572, 0) s cort con j OY

24 Hallar a) los máimos y mínimos rlativos y los puntos d Inflión d la función. Dibujar la curva. b) dtrminar una función F() tal qu su drivada sa f() y admás F(0) = 4 a) Calculamos la primra drivada: f ( ) 0 Máimo 3, ( ) f Mínimo,0 Como D = R los intrvalos d curvatura son:

25 Si F ( 0) ln c c 4 2 F() = 3 ln 2 2

26 Hallar máimos y mínimos rlativos y puntos d inflión d la función f()= sn + cos, para 0 < <. Dibujar la curva n l intrvalo (0, ). y= sn + cos ; y = cos sn ; y = - sn cos ; y = - cos + sn y = 0 cos = sn tg = = /4 y ( /4)= - sn /4 cos /4 = - n ( /4, 2 ) = - 2 < 0. Hay un máimo 2 y = 0 - sn = cos tg = - = 3 /4 y (3 /4) = - cos 35 + sn 35 = = Hay un punto d inflión n (3 /4, 0) Para dibujar la curva, calculmos los puntos trmos n = 0 y n = Para = 0 y = sn 0 + cos 0 = (0,) Para = y = sn + cos = - (,-)

27 Para cada valor d c >0, a) calcular l ára d la rgión acotada comprndida ntr la gráfica d la función: ; l j OX y las rctas = 0, =. b) Hallar l valor d c para l cual l ára obtnida n l apartado a) s mínima. a) Si c > 0, Tnindo n cunta qu la función simpr s positiva (stá situada simpr por ncima dl j OX), l ára n un intrvalo srá: 0 b) El ára mínima s obtin drivando la prsión rspcto d c igualando a cro. La comprobación d qu s trata d un ára mínima s hac con la sgunda drivada.

28 Rprsntar la grafica d la función y = cos - D = R por sr la función cos sinusoidal y priódica y la función - s constant. corta n : (- 4π, 0), (- 2π, 0), (0, 0), (2π, 0), (4π, 0). ( )( )( )( -2π -3π/2 π/2 π/2 3π/2 2π (- 3π/2,- π/2) = - π ; y (-π) = - cos(-π) = > 0 (-π/2, π/2) = 0 ; y (0)= - cos 0 = - < 0 (π/2, 3π/2) = π ; y (π) = - cosπ = > 0 PI (-π/2, -) PI (π/2, -)

29 2 + = 0 ; 2 = - ; = - /2 Dom: (s iguala l dnominador a 0 para sabr los valors qu lo anulan) = 0 ; 3 = -2 ; = - y = = 2 Posibls mas, min : s halla y y s iguala a 0 y = 0 ; - 0 no ist ma, min. Posibls P.I : S halla y y s iguala a 0 Asintota vrtical: (coincid con la dl dominio)

30 Rprsntar la grafica d la función: D = R { = 2} D = (-, 2) U (2, ) No istn ma, min No ist P.I. El único intrvalo n dond s pud studiar monotonia y curvatura s n l Dominio En (-, 2) = 0 y (0) = y (0) = En (2, ) = 3 y (3) = y (3) =

31 Rprsntar squmáticamnt la grafica d, dtrminando para llo los corts, asíntotas, trmos rlativos, puntos d inflión y con todo llo su grafica..

32

33 Rprsntar (PAU Junio Espcifica ) S buscan los valors qu anulan l dnominador y s quitan d la rcta ral. D = (-, ) U (, ) Posibls máimos, mínimos: S halla la drivada, s iguala a cro y s buscan los posibls d los máimos y mínimos. S calcula la y y s particulariza para los posibls máimos o mínimos. Posibls PI. S igual la y = 0 para buscar los posibls valors d qu san PI. Aquí no hay.

34 Asintotas. y = + b) 3 2 =

35 Rprsntar Dominio: - 2 = 0 ; 2 = ; = ± ; D = R - ± Puntos cort con j OX: y = 0 ==> 3 = 0 ; = 0 ==> (0,0) Puntos cort con j OY: = 0 ==> y = ; (0;0) y = -

36 P.I n (0,0) Monotonia: )( )()()( /2-0 3/2 3 2 Crcint (-, -) (-,) (, ) Dcrcint (-, - ) (, )

37 Posibls Maimos y minimos Posibls Puntos d inflion A.Vrticals = 0 f() = A.V: = 0 A.Horizontals A.Oblicuas Monotonia: Crciminto y dcrciminto Curvatura: Concavidad y convidad

38

39 Rprsntar. Calcular prviamnt sus asíntotas si las tin, los corts con los js, sus máimos, mínimos y puntos d inflión si los tin. Intrvalos d monotonía y curvatura. D: / + > 0 ; > - ; D: AV; ln(+) = ln 0 = => = s A.V. AH; +)= ln = A.H. AO; m= = = = = 0 A.O. Máimos y mínimos Monotonía Curvatura (-, ); = 0 y (0) = > 0 Crcint. (-, ); = 0 y = < 0 -

40 2 Rprsntar f() = = Dom f()= R 0 4 y Cort con j OX 0 cort con j OX y 0 4 y 2 Cort con j OY y cort con j OY 0 0 AV 0 4 AH lim AH lim AO m AO Rama parabolica 3 Posibls maimos y minimos f( ) f ( ) posibls ma./min f ( ) f ( ) 0 ma(,2) f ( ) 0 min(,2) (2 2) (8 ) (6 6) 2 6 Posibls puntos d inflion f ( ) puntos d inflión =0

41 Rprsntar Dominio: Puntos d cort: o Ej OX. y=0 =-4 P (-4,0) o Ej OY. =0 P2 (0,2) Asíntotas: o Vrtical. A.V. =2 o Horizontal. A.H. y=- o Oblicua y= m +n Drivada

42 Dominio: Puntos d cort: o Ej OX. y=0 P (0,0) o Ej OY. =0 P (0,0) Asíntotas: o Vrtical. A.V. o Horizontal. A.H. y=0 o Oblicua y= m +n Drivadas Máimos y mínimos. - f () - f (-) Puntos d inflión

43 PI n ( PI n (0,0) - PI n (

44 Rprsntar Dominio: ( Puntos d cort: Ej OX. y=0 o Ej OY. =0 P (0,0) Asíntotas: o Vrtical. A.V. 0,7 o Horizontal. o Oblicua y= m +n A.H. y = - 7/2, tomando la m como, aparc otra asíntota oblicua d la forma y= - + 7/2 Drivadas Máimos y mínimos. Puntos d inflión 4

45

46 Lo primro s acotar l ára, si s posibl, rprsntar l ára pdida y a continuación calcular los limits d intgración. La función f() stá dfinida por prsions lmntals, por lo qu su rprsntación s sncilla. El ára pdida s calcula como la suma d dos áras. La primra comprndida ntr la función y =, y las rctas y =, =. El límit d intgración infrior s calcula como intrscción d y= con y =. : = ; = 0; = 2 (no válida por sr mayor qu ). La sgunda, comprndida ntr y = intrscción d y = con y =., y =, =. El límit suprior s calcula como : Conocidos los límits d intgración s calcula l ára. Ára = Cálculo d las primitivas:

47 Calculadas las primitivas, s calcula l ára. Sa f() = Ln. a) Rprsntar la grafica. b) Hallar f () indicando su dominio El dominio son todos los valors d / > 0 s dcir qu salvo l = 0 simpr ist f() D : R { = 0} f() = f () = La f() corta n Ln (-) = 0 Ln (- ) = 0 - = = - (-, 0) La f() corta n Ln () = 0 Ln ( ) = 0 = = (, 0) La f () = / simpr para todo prtncint al Dominio ya qu = 0 s l valor qu anula l dnominador

48 (PAU pruba ) a) f() n (-, 3 / 2 ) y n ( 3 / 2, ) s continua Є R por sr funcions polinómicas d grado 2 => f() continua n cada intrvalo. f () n (-, 3 / 2 ) y n ( 3 / 2, ) s continua R por sr funcions polinómicas d grado => f () continua n cada intrvalo => f() s drivabl n cada intrvalo b) Máimos y mínimos.

49 c) Gráfica. En (-, 3 / 2 ) y En ( 3 / 2, ) y 3 / 2 7 / 6 (Dl límit) 3 / 2 7 / 6 (Dl límit) 0 Má 2 7 / 2 Má -2 0 Cort j OX 3 0 Cort j OX 7 / / /2 2 3

50 (Slctividad Sptimbr ) a) El dominio s [ -2π, 2π]

51

52 S considra la f() = 2 ) ( : a) Calcular los trmos locals d f(). b) Dtrminar l valor dl parámtro a tal qu a d f 0 4 ) ( a) D= R ya qu + = 0; = - ln = ln(-) no ist qu anul l dnominador. 4 2 ) '( f = = 3 2 Posibls máimos y mínimos f ()= ; 0 2 ln ;ln 2 2 POSIBLE. No hac falta hallar f, basta con studiar la monotonía d f + 0 '() ; ; 0, 0 ) '( ; ;, f f En f (,0) s crcint En =0 ist un MAXIMO n l punto 4, 0 En ) (, 0 f s dcrcint b) d d a a o a a a Como a a d a a ; a a ln ;ln ln a

53 S considra la función S pid: a) Calcular a y b para qu f sa continua y drivabl a todo R. b) Para los valors d a y b obtnidos n l apartado antrior, calcular l ára d la rgión acotada limitada por la gráfica d f, l j horizontal y las rctas =, = 3. Para qu una función sa continua n un punto, l valor d la función n l punto db sr igual al valor dl límit d la función n él, lo cual quival a qu san iguals los límits latrals n l punto. Continua n = -2: Continua n = 2: En dfinitiva s llga a una sola rlación. La sgunda rlación s obtin con la condición d drivabilidad. Una forma sncilla d dmostrar la drivabilidad d la función n un punto frontra (punto dond cambia la prsión d función), s dmostrar qu n dicho punto las drivadas latrals coincidn. La drivada d la función s obtin drivando las distintas prsions qu la dfinn y prsando los intrvalos n forma abirta. Drivabl n = -2 Drivabl n = 2 Con la condición d drivabilidad s obtin l valor d a.

54 Con l valor d a y la condición d drivabilidad, s obtin l valor d b. Para qu la función sa continua y drivabl n todo R su prsión db sr: Nota:

55 Sa g() una función continua y drivabl siguint información: I) g () >0 II) III) IV), d lo qu s conoc la S pid: a) Analizar la posibl istncia o no d asíntotas vrticals, horizontals u oblicuas. b) Dibujar d manra squmática la grafica d la función g(). a) A.V. ya qu la función s continua : l dominio s toda la rcta ral. b) Si - Si Pasa por (-, 0), má. (0, 2), min ( 2, )

56

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4

Más detalles

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13 º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES Matmáticas º Bachillrato. Prosora: María José Sánchz Quvdo REPRESENTACIÓN DE FUNCIONES Para l studio y rprsntación d una unción s sigun los siguints pasos:. Dominio d dinición y d continuidad.. Corts con

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES

Más detalles

LÍMITES DE FUNCIONES.

LÍMITES DE FUNCIONES. LÍMITES DE FUNCIONES. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Sa y una unción ral d variabl ral. D una manra intuitiva y oco rcisa, dirmos qu l it d s L, cuando s aroima a, si ocurr qu cuanto más róimo sté

Más detalles

Opción A Ejercicio 1 opción A, modelo Septiembre 2011

Opción A Ejercicio 1 opción A, modelo Septiembre 2011 IES Fco Ayala d Granada Sptimbr d 0 (Modlo ) Grmán-Jsús Rubio Luna UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 0-0 MATEMÁTICAS II Opción A Ejrcicio opción A, modlo Sptimbr 0 k si

Más detalles

ASÍNTOTAS Y RAMAS INFINITAS Cálculo y representación

ASÍNTOTAS Y RAMAS INFINITAS Cálculo y representación LÍMITES Cálculo y rprsntación...... 7. 8. - + + - - + + - + - ( + ) - + + - - + + 9. + - +. + - + - 9. + -. + + + - +. + + +. + + + -. +. + - ASÍNTOTAS Y RAMAS INFINITAS Cálculo y rprsntación. y = - +.

Más detalles

Convocatoria de Febrero 26 de Enero de 2007. Nombre y Apellidos:

Convocatoria de Febrero 26 de Enero de 2007. Nombre y Apellidos: Univrsidad d Vigo Dpartamnto d Matmática Aplicada II E.T.S.I. Minas Cálculo I Convocatoria d Fbrro 6 d Enro d 007 Nombr y Apllidos: DNI: (4.5 p.) ) S considra la función f(x) = x ln(x). (0.5 p.) (a) Calcular

Más detalles

12 Representación de funciones

12 Representación de funciones Rprsntación d funcions ACTIVIDADES INICIALES.I. Factorizando prviamnt las prsions, rsulv las siguints cuacions: a) 6 7 5 0 6 c) 0 7 b) 6 d) 0 a) 6 7 5 0 ( )(6 5) 0 5 6 5 0, b) 7 6 ( )( ) 6 6 ( ) 7 ( )

Más detalles

SOLUCIONES HOJA 5: APLICACIONES DE LA DERIVADA 1

SOLUCIONES HOJA 5: APLICACIONES DE LA DERIVADA 1 MATEMÁTICAS:º BACHILLERATO SOLUCIONES HOJA 5: APLICACIONES DE LA DERIVADA.- Calcular los etremos relativos de las siguientes funciones: a) f ( ) D(f) (Por ser polinómica) ; Posibles máimos o mínimos 6

Más detalles

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c)

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c) TEOREMAS DEL VALOR MEDIO Torma d Roll Si f () s continua n [a, b] y drivabl n (a, b), y si f (, ntoncs ist algún punto c (a, b) tal qu Intrprtación gométrica: ist un punto al mnos d s intrvalo, n l qu

Más detalles

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos Matmáticas II TEMA 8 Drivadas Torma Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto Utilizando la dfinición, calcula la drivada d f ( ) n l punto = Utilizando la dfinición, halla la

Más detalles

COMPUTACIÓN. Práctica nº 2

COMPUTACIÓN. Práctica nº 2 Matmáticas Computación COMPUTACIÓN Práctica nº NÚMEROS REALES Eistn algunos númros irracionals prdfinidos n Maima como son l númro π l númro qu s corrspondn con los símbolos %pi % rspctivamnt. Otros númros

Más detalles

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS 8. LÍMITE DE UNA FUNCIÓN 8.. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límit d una función n un punto f () = l S l: El it cuando tind a c d f() s l c Significa:

Más detalles

TEMA 4. APLICACIONES DE LA DERIVADA.

TEMA 4. APLICACIONES DE LA DERIVADA. 7 Unidad 4. Funcions. Aplicacions d la drivada TEMA 4. APICACIONES DE A DERIVADA.. Monotonía. Crciminto y dcrciminto d una función. Etrmos rlativos 3. Optimización 4. Curvatura 5. Punto d Inflión 6. Propidads

Más detalles

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES ) (Part d un problma d Slctividad d Cincias y Tcnología 007) Sa f: R R la función dfinida por f() =. Dtrmina la cuación d la rcta tangnt a la gráfica

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DEIVADA Ecucación d la rcta tangnt Ejrcicio nº.- Halla las rctas tangnts a la circunrncia: y y 6 n Ejrcicio nº.- Dada la unción abscisa., scrib la cuación d su rcta tangnt n l punto

Más detalles

DERIVADAS. Las gráficas A, B y C son las funciones derivadas de las gráficas 1, 2 y 3, pero en otro orden. = 0 utilizando la definición.

DERIVADAS. Las gráficas A, B y C son las funciones derivadas de las gráficas 1, 2 y 3, pero en otro orden. = 0 utilizando la definición. DERIVADAS Dinición d drivada Ejrcicio nº.- Las gráicas A, B y C son las uncions drivadas d las gráicas, y, pro n otro ordn. Cuál s la drivada d cual? Justiica tus rspustas. Ejrcicio nº.- Calcula la drivada

Más detalles

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES.

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. TEMA DERIVADAS Y APLICACIONES MATEMÁTICAS I º Bach. TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. Tasa d variación mdia. Cálculo y signiicado EJERCICIO : Considramos la unción:. Halla la tasa

Más detalles

ANÁLISIS. Junio 94. cosx si x Dada la función. f(x) a 2x si 0 x 1. b si x 1 x

ANÁLISIS. Junio 94. cosx si x Dada la función. f(x) a 2x si 0 x 1. b si x 1 x ANÁLISIS Junio 9.. Dada la función cos si 0 b si f() a si 0 a) [ punto] Calcular los valors d a y b para qu la función f() sa continua n b) [ punto] Es drivabl la función obtnida n = 0?. En =?. Razona

Más detalles

ANÁLISIS. a) Derivabilidad de la función en los puntos x = -1, x = 1, x = 2. Calcular la derivada en cada uno de los puntos

ANÁLISIS. a) Derivabilidad de la función en los puntos x = -1, x = 1, x = 2. Calcular la derivada en cada uno de los puntos Matmáticas II Prubas d Accso a la Univrsidad ANÁLISIS Junio 9.. Dada la función cos f () a b si si si a) Calcular los valors d a y b para qu la función f() sa continua n [ punto] b) Es drivabl la función

Más detalles

Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 8

Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 8 Matmáticas II (Bacillrato d Cincias) Solucions d los problmas propustos Tma 8 7 TEMA 8 Drivadas Tormas Rgla d L Hôpital Problmas Rsultos Drivada d una función n un punto Utilizando la dfinición, calcula

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II IES CASTELAR BADAJOZ Emn Junio d (Gnrl) Antonio ngino Corbcho UNIVERSIDAD DE ETREADURA ATEÁTICAS II ATEÁTICAS II Timpo máimo: hor minutos Instruccions: El lumno lgirá un d ls dos opcions propusts Cd un

Más detalles

Idea La derivada de una función, f(x), en un punto P se interpreta geométricamente con la pendiente de la recta tangente a la curva en ese punto.

Idea La derivada de una función, f(x), en un punto P se interpreta geométricamente con la pendiente de la recta tangente a la curva en ese punto. http://matmaticas-tic.wikispacs.com Lambrto Cortázar Vinusa 06 DERIVADAS EJERCICIOS WIKI Ida La drivada d una unción, (), n un punto P s intrprta gométricamnt con la pndint d la rcta tangnt a la curva

Más detalles

Ejercicios de representación de funciones

Ejercicios de representación de funciones Ejercicios de representación de funciones 1.- Representar las siguientes funciones, estudiando su: Dominio. Simetría. Puntos de corte con los ejes. Asíntotas y ramas parabólicas. Crecimiento y decrecimiento.

Más detalles

INTEGRAL INDEFINIDA MÉTODOS ELEMENTALES DE INTEGRACIÓN

INTEGRAL INDEFINIDA MÉTODOS ELEMENTALES DE INTEGRACIÓN INTEGRAL INDEFINIDA MÉTODOS ELEMENTALES DE INTEGRACIÓN El almán Gottfrid Libniz (66-76), quin, junto con su antagonista l inglés Isaac Nwton (6-77), fu l crador dl cálculo infinitsimal. MATEMÁTICAS II

Más detalles

RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD

RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD DEFINICIÓN DE FUNCIÓN REAL DE VARIABLE REAL Una unción ral d variabl ral s una aplicación d un subconjunto D d los númros rals n un subconjunto I d los númros

Más detalles

TEMA 5. REPRESENTACIÓN DE FUNCIONES

TEMA 5. REPRESENTACIÓN DE FUNCIONES 94 TEMA 5. REPRESENTACIÓN DE FUNCIONES 1. Representación de funciones 1.1. Dominio 1.. Puntos de corte con los ejes 1..1. Con el eje 1... Con el eje y 1.. Signo de la función 1.4. Periodicidad y simetría

Más detalles

Para que exista límite de una f(x) en un punto han de coincidir los límites laterales en dicho punto.

Para que exista límite de una f(x) en un punto han de coincidir los límites laterales en dicho punto. REPASO LÍMITES º BACH. RECORDAR: Para qu ista límit d una f() n un punto han d coincidir los límits latrals n dicho punto. A fctos dl f() no tnmos n cunta lo qu ocurr actamnt n a, sino n las a proimidads.

Más detalles

LÍMITES DE FUNCIONES. CONTINUDAD

LÍMITES DE FUNCIONES. CONTINUDAD LÍMITES DE FUNCIONES. CONTINUDAD Signiicado dl it Ejrcicio nº.- Rprsnta gráicamnt y plica l gniicado d la prón: Ejrcicio nº.- Eplica l gniicado d la guint prón y rprséntalo gráicamnt: 9 Ejrcicio nº.- Escrib

Más detalles

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar

Más detalles

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES. Estudiar el crecimiento, el decrecimiento y los etremos relativos de las siguientes funciones: a) f( ) 7 + + b) ln f( ) c) 5 si < f(

Más detalles

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES INSTITUTO TENOLÓGIO DE OSTA RIA ESUELA DE INGENIERÍA ELETRÓNIA URSO: MODELOS DE SISTEMAS ÁLULO DE RESIDUOS Y SUS APLIAIONES ING. FAUSTINO MONTES DE OA FEBRERO DE álculo d Rsiduos y sus Aplicacions INDIE

Más detalles

LIMITES DE FUNCIONES EN 1D

LIMITES DE FUNCIONES EN 1D LIMITES DE FUNCIONES EN D Límits d funcions n D Autor: Patrici Molinàs Mata (pmolinas@uoc.du), José Francisco Martínz Boscá (jmartinzbos@uoc.du) ESQUEMA DE CONTENIDOS Dfinición Límits latrals LÍMITE DE

Más detalles

x - Verticales. No tiene asíntotas verticales porque f(x) está definida en R y no cambia de criterio en ningún punto. - Oblicuas.

x - Verticales. No tiene asíntotas verticales porque f(x) está definida en R y no cambia de criterio en ningún punto. - Oblicuas. f ( ) + +. Dominio D (f ) R 4. Recorrido Im( f ) [, ). Puntos de corte - Con el eje y, donde 0 y + + y P (0,) - Con el eje, donde y 0 No hay punto de corte con el eje 4. Asíntotas - Horizontales lim +

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES Tema 4: Representación de funciones Índice:. Información obtenida de la función... Dominio de la función.. Simetrías..3. Periodicidad.4. Puntos de corte con los ejes..5. Ramas

Más detalles

ANÁLISIS (Selectividad 2014) 1

ANÁLISIS (Selectividad 2014) 1 ANÁLISIS (Slctividad 4) ALGUNOS PROBLEMAS DE ANÁLISIS PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD EN 4 ( Obsrvación: La slcción s ha hcho dando prioridad a las custions más tóricas) Andalucía, junio 4 San

Más detalles

Ejercicios resueltos Distribuciones discretas y continuas

Ejercicios resueltos Distribuciones discretas y continuas ROBABILIDAD ESADÍSICA (Espcialidads: Civil-Eléctrica-Mcánica-Química) Ejrcicios rsultos Distribucions discrtas y continuas ) La rsistncia a la comprsión d una mustra d cmnto s una variabl alatoria qu s

Más detalles

Análisis. b) Calcular razonadamente b y c para que sea derivable y calcular su función derivada.

Análisis. b) Calcular razonadamente b y c para que sea derivable y calcular su función derivada. MATEMÁTICAS º BACHILLERATO B 6-3- Análisis OPCIÓN A.- Dada la función + b + c f = Ln( + ) > a) Calcular sus asínoas b) Calcular razonadamn b y c para qu sa drivabl y calcular su función drivada. a) El

Más detalles

CAPITULO 5. ECUACIONES DIFERENCIALES DE ORDEN N 2. 5.1. Introducción. 5.2. Reducción de orden

CAPITULO 5. ECUACIONES DIFERENCIALES DE ORDEN N 2. 5.1. Introducción. 5.2. Reducción de orden APITULO 5. EUAIONES DIFERENIALES DE ORDEN N 5.. Introducción Una cuación difrncial d sgundo ordn s una prsión matmática n la qu s rlaciona una función con sus drivadas primra sgunda. Es dcir, una prsión

Más detalles

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula:

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula: 1. Dada la función f(x) = : a) Encontrar el dominio, las AH y las AV. b) Intervalos de crecimiento, decrecimiento, máximos y mínimos relativos. c) Primitiva que cumpla que F(0) = 0. a) Para encontrar el

Más detalles

TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS

TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS Tma Límits, continuidad y asíntotas Matmáticas I º Bachillrato TEMA LÍMITES, CONTINUIDAD ASÍNTOTAS CÁLCULO GRÁFICO DE LÍMITES EJERCICIO : Sobr la gráfica d f), halla : 8 8 8 f f c) f f ) f f f c) f f )

Más detalles

Representación gráfica de funciones

Representación gráfica de funciones Gráfica de una fución Representación gráfica de funciones La gráfica de una función está formada por el conjunto de puntos (x, y) para todos los valores de x pertenecientes al Dominio de la función gráfica

Más detalles

26 EJERCICIOS de LOGARITMOS

26 EJERCICIOS de LOGARITMOS 6 EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.

Más detalles

ALGUNOS PROBLEMAS DE ANÁLISIS PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015

ALGUNOS PROBLEMAS DE ANÁLISIS PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015 ANÁLISIS (Slctividad 5) ALGUNOS PROBLEMAS DE ANÁLISIS PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 5 Andalucía, junio 5 Sa f la función dfinida por f( ) para a) [ punto] Estudia y calcula las asíntotas

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x . Drivar las siguints funcions simplificar l rsultado n la mdida d lo posibl. ) 4) 7) ) 4 5 5 5 7 5) 8) ) 5 6) 5 9) 4 5 0) ) 7 ) ) 4) 4 5) 6) 7) 8) 9) ) 5) 0) 4 ln ) ln log 6) ln 8) ln ) 9) ) 5) 4) 7)

Más detalles

Funciones de Variable Compleja

Funciones de Variable Compleja Funcions d Variabl Complja Modlos d Sistmas II Smstr 2008 Ing. Gabrila Ortiz L 1 Función Concpto Matmático Considrando los conjuntos X Y una función comprnd una rlación o rgla qu asocia a cada lmnto x

Más detalles

( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx.

( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx. Albrto Entro Cond Mait Gonzálz Juarrro Intgral indfinida Cálculo d primitivas Calcula las siguints intgrals Solucions A d A d + + + ln( + + ) A d arctan + A sn sn d A d ln ( ) 6A d cos tan + arctan + ln(

Más detalles

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA 7

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA 7 VERSIÓN:.0 FECHA: 19-06-01 I.E. COLEGIO ANDRÉS BELLO PÁGINA: 1 d 9 Nombrs y Apllidos dl Estudiant: Docnt: ALEXANDRA URIBE Ára: Matmáticas Grado: UNDÉCIMO Priodo: TERCERO GUIA 7 Duración: 0 horas Asignatura:

Más detalles

Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES

Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES Marclo Romo Proaño Escula Politécnica dl Ejército - Ecuador Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES 5. CONDICIONES DE FRONTERA: Dbido a qu muchos problmas

Más detalles

Soluciones a los ejercicios propuestos Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I

Soluciones a los ejercicios propuestos Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I Solucions a los jrcicios propustos Unidad. El conjunto d los númros rals Matmáticas aplicadas a las Cincias Socials I NÚMEROS RACIONALES Y NÚMEROS IRRACIONALES. Dtrmina si los siguints númros son o no

Más detalles

1. Hallar los extremos de las funciones siguientes en las regiones especificadas:

1. Hallar los extremos de las funciones siguientes en las regiones especificadas: 1 1. DERIVACIÓN 1. Hallar los extremos de las funciones siguientes en las regiones especificadas: b) f(x) x (x 1) en el intervalo [, ] y en su dominio. DOMINIO. D R. CORTES CON LOS EJES. Cortes con el

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

DERIVADAS. * Definición de derivada. Se llama derivada de la función f en el punto x=a al siguiente límite, si es que existe: lim

DERIVADAS. * Definición de derivada. Se llama derivada de la función f en el punto x=a al siguiente límite, si es que existe: lim DERIVADAS. CONTENIDOS. Recta tangente a una curva en un punto. Idea intuitiva del concepto de derivada de una función en un punto. Función derivada. sucesivas. Reglas de derivación Aplicación de la derivada

Más detalles

RADIO CRÍTICO DE AISLACIÓN

RADIO CRÍTICO DE AISLACIÓN DIO CÍTICO DE ISCIÓN En sta clas s studiará la transfrncia d calor n una tubría d radio xtrno (0,0 ft), rcubirta con un aislant d spsor (0,039 ft), qu transporta un vapor saturado a (80 F). El sistma cañría

Más detalles

TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bach 1

TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bach 1 TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bach 1 TEMA 11 LÍMITES, CONTINUIDAD, ASÍNTOTAS 11.1 LÍMITE DE UNA FUNCIÓN 11.1.1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de una función en un

Más detalles

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44)

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44) IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti OPCIÓN..- Ev Mrt Susn son trs jóvns migs qu s compromtn lr El Quijot st vrno. Cd un por sprdo n unción dl timpo dl qu dispon dcid lr un mismo

Más detalles

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS 14-1 Los tipos d intrés nominals y rals Slid 14.2 Los tipos d intrés xprsados n unidads d la monda nacional s dnominan tipos d intrés nominals. Los

Más detalles

Examen funciones 4º ESO 12/04/13

Examen funciones 4º ESO 12/04/13 Examen funciones 4º ESO 12/04/13 1) Calcula el dominio de las siguientes funciones: a. b. c. d. Calculamos las raíces del numerador y del denominador: Construimos la tabla para ver los signos: - - 0 +

Más detalles

APLICACIONES DEL CÁLCULO DIFERENCIAL-II

APLICACIONES DEL CÁLCULO DIFERENCIAL-II APLICACIONES DEL CÁLCULO DIFERENCIAL-II. Estudia si crecen o decrecen las siguientes funciones en los puntos indicados: π a) f() cos en 0 b) f() ln ( arc tg ) en 0 π c) f() arc sen en 0 d) f() ln en 0

Más detalles

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Funciones de Antonio Francisco Roldán López de Hierro * Convocatoria de 200 Las siguientes páginas contienen las soluciones de los ejercicios propuestos

Más detalles

TEMA 8: LÍMITES DE FUNCIONES. CONTINUIDAD

TEMA 8: LÍMITES DE FUNCIONES. CONTINUIDAD TEMA 8: DE FUNCIONES. CONTINUIDAD 1. EN EL INFINITO En ocasiones interesa estudiar el comportamiento de una función (la tendencia) cuando los valores de se hacen enormemente grandes ( ) o enormemente pequeños

Más detalles

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES 3. LÍMITES COLEGIO RAIMUNDO LULIO Frnciscnos T.O.R. Cód. 8367 TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES Dfinición: S dic qu l límit d l función f s igul L, cundo tind, si cundo s proim, f s proim L, sin

Más detalles

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos

Más detalles

Tema 3 La elasticidad y sus aplicaciones

Tema 3 La elasticidad y sus aplicaciones Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 3 La lasticidad

Más detalles

5. Convergencia de integrales impropias. Las funciones Γ y Β de Euler.

5. Convergencia de integrales impropias. Las funciones Γ y Β de Euler. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lcción. Intgals y aplicacions. 5. Convgncia d intgals impopias. Las funcions Γ y Β d Eul. La foma haitual d calcula una intgal impopia, po jmplo dl intgando, aplica

Más detalles

f( x) = ( x)2 + 11 x + 5 = 0 = x2 + 11 = 0 = No hay solución y = 0 + 11 0 + 5 = 11

f( x) = ( x)2 + 11 x + 5 = 0 = x2 + 11 = 0 = No hay solución y = 0 + 11 0 + 5 = 11 1. y = x + 11 x + 5 a) ESTUDIO DE f: 1) Dominio: Como es un cociente del dominio habrá que excluir los valores que anulen el denominador. Por tanto: x + 5 = 0 x = 5 ) Simetría: A simple vista, como el

Más detalles

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN ANÁLISIS DL AMPLIFIADO N MISO OMÚN Jsús Pizarro Pláz. INTODUIÓN... 2. ANÁLISIS N ONTINUA... 2 3. TA D AGA N ALTNA... 3 4. IUITO QUIALNT D ALTNA... 4 5. FUNIONAMINTO... 7 NOTAS... 8. INTODUIÓN l amplificador

Más detalles

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm Problmas sultos.0 Un satélit dscrib una órbita circular n torno a la Tirra. Si s cambia d rpnt la dircción d su vlocidad, pro no su módulo, studiar l cambio n su órbita y n su príodo. Al cambiar sólo la

Más detalles

Lim Sinf = Lim Ssup = Área de f( x) = f( x) dx = Integral definida

Lim Sinf = Lim Ssup = Área de f( x) = f( x) dx = Integral definida Concepto de integral definida: INSTITUTO UNIVERSITARIO DE TECNOLOGÍA INTEGRAL DEFINIDA Sea una función continua definida en [a, b]. Supongamos que dividimos este intervalo en n subintervalos : [a, ], [,

Más detalles

TEMA 1: Cálculo Diferencial de una variable

TEMA 1: Cálculo Diferencial de una variable TEMA 1: Cálculo Diferencial de una variable Cálculo para los Grados en Ingeniería EPIG - UNIOVI Curso 2010-2011 Los números Naturales I Los números Naturales N = f1, 2, 3, g I Principio de inducción Supongamos

Más detalles

Gráficas de funciones

Gráficas de funciones Apuntes Tema 1 Gráficas de funciones 1.1 Gráficas de funciones a) Función constante: f(x) = k b) Recta vertical: x = k c) Función lineal: f(x) = mx Todas pasan por el origen O(0, 0). 2 d) Función afín:

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada FUNCIONES CONOCIDAS. FUNCIONES LINEALES. Se llaman funciones lineales a aquellas que se representan mediante rectas. Su epresión en forma eplícita es y f ( ) a b. En sentido más estricto, se llaman funciones

Más detalles

Ejercicios de representación de funciones

Ejercicios de representación de funciones Ejercicios de representación de funciones Representar las siguientes funciones, estudiando su: Dominio. Simetría. Puntos de corte con los ejes. Asíntotas y ramas parabólicas. Crecimiento y decrecimiento.

Más detalles

Tema 7. Límites y continuidad de funciones

Tema 7. Límites y continuidad de funciones Matemáticas II (Bachillerato de Ciencias) Análisis: Límites y continuidad de funciones 55 Límite de una función en un punto Tema 7 Límites y continuidad de funciones Idea inicial Si una función f está

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente

Más detalles

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES Tema Derivadas. Aplicaciones Matemáticas I º Bacillerato TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES TASA DE VARIACIÓN MEDIA DE UNA FUNCIÓN EN UN INTERVALO EJERCICIO : Halla la tasa de variación

Más detalles

GRUPOS Y SEMIGRUPOS. Unidad 5

GRUPOS Y SEMIGRUPOS. Unidad 5 GRUPOS Y SEMIGRUPOS En sta unidad studiarmos algunas d las structuras algbraicas qu s utilizan n Toría d Codificación y también n l studio d máquinas d stado finito, como por jmplo los autómatas qu vrmos

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES Página 5 REFLEXIONA Y RESUELVE Descripción de una gráfica Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos, y sin mirar la gráfica que aparece al principio,

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA 1. MONOTONÍA (CRECIMIENTO O DECRECIMIENTO) Si una función es derivable en un punto = a, podemos determinar su crecimiento o decrecimiento en ese punto a partir del signo de

Más detalles

13 Integral. indefinida. 1. Reglas de integración. Piensa y calcula. Aplica la teoría

13 Integral. indefinida. 1. Reglas de integración. Piensa y calcula. Aplica la teoría Integral indefinida. Reglas de integración Piensa y calcula Calcula: a y =, y' = b y' =, y = c y = cos, y' = d y' = cos, y = a y' = b y = c y' = sen d y = sen Aplica la teoría. 7 Se aplica la integral

Más detalles

12. f(x) = 1 x-1 2 13. f(x) = x+2. x 15. f(x) = 2x+1. x 24. f(x) = x 2 +x+1 2 25. f(x) = x 2 -x-2. 1 21. f(x) = x 2 +x. x-1 27.

12. f(x) = 1 x-1 2 13. f(x) = x+2. x 15. f(x) = 2x+1. x 24. f(x) = x 2 +x+1 2 25. f(x) = x 2 -x-2. 1 21. f(x) = x 2 +x. x-1 27. . Determina el dominio de la función:. f() = -. f() =. f() = 4. f() = -6. f() = 6. f() = + 7. f() = - 8. f() = e 9. f() = + 0. f() = -. f() = -. f() = -. f() = + 4. f() = +. f() = + 6. f() = - + 7. f()

Más detalles

REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS

REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS DOMINIO - Polinomio : D = R - Cocientes : D = R {puntos que anulan el denominador} - Raíces de índice par : D = {Lo

Más detalles

1. Dominio, simetría, puntos de corte y periodicidad

1. Dominio, simetría, puntos de corte y periodicidad Estudio y representación de funciones 1. Dominio, simetría, puntos de corte y periodicidad 1.1. Dominio Al conjunto de valores de x para los cuales está definida la función se le denomina dominio. Se suele

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS FUNDAMENTOS MATEMÁTICOS (Grdo n Ingnirí Informátic) Práctic 7. INTEGRALES DEFINIDAS E IMPROPIAS.- L intgrl dfinid d Rimnn. L intgrl dfinid d Rimnn surg prtir dl prolm dl cálculo d árs d suprficis dlimitds

Más detalles

FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS.

FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS. FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS. FUNCIÓN. Es toda aplicación entre dos conjuntos A y B formados ambos por números. f A --------> B Al conjunto A se le llama campo de existencia de la función

Más detalles

ANÁLISIS DE FUNCIONES RACIONALES

ANÁLISIS DE FUNCIONES RACIONALES ANÁLISIS DE FUNCIONES RACIONALES ( x 9) Dada la función f( x) = x 4 DETERMINE: Dominio, asíntotas, intervalos de crecimiento, intervalos de concavidad, extremos relativos y puntos de inflexión, representar

Más detalles

ESTUDIO COMPLETO Y REPRESENTACIÓN DE UNA FUNCIÓN

ESTUDIO COMPLETO Y REPRESENTACIÓN DE UNA FUNCIÓN ESTUDIO COMPLETO Y REPRESENTACIÓN DE UNA FUNCIÓN Teoría Práctica Los pasos a seguir para el estudio completo y representación de una Función son los siguientes: ) Hallar el Dominio de la función. En dicho

Más detalles

Ejercicios de Análisis propuestos en Selectividad

Ejercicios de Análisis propuestos en Selectividad Ejercicios de Análisis propuestos en Selectividad.- Dada la parábola y 4, se considera el triángulo rectángulo T( r ) formado por los ejes coordenados y la tangente a la parábola en el punto de abscisa

Más detalles

LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS

LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS LÍMITES DE FUNCIONES. CONTINUIDAD RAMAS INFINITAS Página 7 REFLEIONA RESUELVE Aproimaciones sucesivas Comprueba que: f () = 6,5; f (,9) = 6,95; f (,99) = 6,995 Calcula f (,999); f (,9999); f (,99999);

Más detalles

ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS

ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS INTRODUCCIÓN La noción actual de función comienza a gestarse en el siglo XIV, cuando empiezan a preocuparse de medir y representar las variaciones de ciertas

Más detalles

DERIVADAS LECCIÓN 22. Índice: Representación gráfica de funciones. Problemas. 1.- Representación gráfica de funciones

DERIVADAS LECCIÓN 22. Índice: Representación gráfica de funciones. Problemas. 1.- Representación gráfica de funciones DERIVADAS LECCIÓN Índice: Representación gráfica de funciones. Problemas.. Representación gráfica de funciones Antes de la representación de la gráfica de una función se realiza el siguiente estudio: º)

Más detalles

Continuidad y ramas infinitas. El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A = 2. lm í

Continuidad y ramas infinitas. El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A = 2. lm í Unidad. Límites de funciones. Continuidad y ramas infinitas Resuelve Página 7 A través de una lupa AUMENTO DISTANCIA (dm) El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A

Más detalles

Determina las asíntotas de las siguientes funciones e interpreta gráficamente los resultados:

Determina las asíntotas de las siguientes funciones e interpreta gráficamente los resultados: Tema. Límites y continuidad. HOJA ASÍNTOTAS º Bachillerato de CCSS Determina las asíntotas de las siguientes funciones e interpreta gráficamente los resultados: ) f ( ) 4 f ( ) es una función polinómica

Más detalles

Para la oblicua hacemos lo mismo, calculamos el límite en el menos infinito : = lim. 1 ( ) = = lim

Para la oblicua hacemos lo mismo, calculamos el límite en el menos infinito : = lim. 1 ( ) = = lim ) Sea la función: f(x) = ln( x ): a) Dar su Dominio y encontrar sus asíntotas verticales, horizontales y oblicuas. b) Determinar los intervalos de crecimiento y decrecimiento, los máximos y mínimos, los

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema Representación gráfica de funciones reales de una variable real Elaborado

Más detalles

LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS

LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS LÍMITES DE FUNCIONES. CONTINUIDAD RAMAS INFINITAS Página 7 REFLEIONA RESUELVE Aproimaciones sucesivas Comprueba que: f () =,5; f (,9) =,95; f (,99) =,995 Calcula f (,999); f (,9999); f (,99999); A la vista

Más detalles

a) PAR: Una función es simétrica con respecto al eje Y cuando se verifica:

a) PAR: Una función es simétrica con respecto al eje Y cuando se verifica: TEMA 10: REPRESENTACIÓN DE FUNCIONES. 10.1. DOMINIO. El dominio de definición de una función y = f{) (valores para los cuales eiste la función) es, en principio, todo ir, salvo que haya operaciones imposibles

Más detalles

PROBLEMAS DE INTEGRALES INDEFINIDAS

PROBLEMAS DE INTEGRALES INDEFINIDAS PROBLEMAS DE INTEGRALES INDEFINIDAS Integración por partes. Mediante la integración por partes, hallar una primitiva de la función y = Ln (1 + x) Calcular una primitiva de una función, es hallar su

Más detalles