1. CONTINUIDAD EN VARIAS VARIABLES

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1. CONTINUIDAD EN VARIAS VARIABLES"

Transcripción

1 . CONTINUIDAD EN VARIAS VARIABLES. Calcular el dominio de las siguientes funciones reales de varias variables reales:. f(x, y) = 9 x 2 y 2x Debe ocurrir y 2x para evitar que el denominador se anule y 9 x 2 0 para que la raíz no sea negativa. El dominio de la función es D = (x, y) R 2 : x [ 3, 3], y 2x}.2 f(x, y) = ( x y, ln(x 2), x y ) Debe ocurrir: x y 0, x 2 > 0, x y 0}. Esto equivale a pedir x > y, x > 2}. El dominio es D = (x, y) : x > y, x > 2}.3 f(x, y) = ( x 2 + y 2 4, ln(6 x 2 y 2 ), ln(x) + ln(y)) Debe ocurrir: x 2 + y 2 4 0, 6 x 2 y 2 > 0, x > 0, y > 0}. Esto equivale a 4 x 2 + y 2 < 6, x > 0, y > 0}. El dominio es D = (x, y) : 2 x 2 + y 2 < 4, x > 0, y > 0} 2. Calcular (x2 + y 2, (x 2 + y) sen(xy), x 2 + yx) Tenemos x2 + y 2 = 0, (x2 + y) sen(xy) = 0, x2 + yx = 0. En consecuencia, (x2 +y 2, (x 2 +y) sen(xy), x 2 +yx) = (0, 0, 0) 3. Calcular los siguientes ites en el caso de que existan: 3.. (x,y) (,2) 3 x+y 4+x 2y (x,y) (,2) 3 x + y 4 + x 2y = (x,y) (4,π) x 2 sen y x

2 2 CONTINUIDAD EN VARIAS VARIABLES x 2y 2x 3y (x,y) (4,π) x2 sen y x = 6 sen π 4 = 8 2 La función f(x, y) = 3x 2y 2x 3y no está definida en (x, y) = (0, 0) (se tiene una indeterminación del tipo 0 0 ). Veamos si existe dicho ite. Si nos aproximamos por rectas y = kx al punto 0 = (0, 0), tenemos 3x 2y 2x 3y = 3x 2kx x 0 2x 3kx = 3 2k 2 3k y=kx Como el ite depende de k, resulta que según nos acerquemos por una recta u otra el valor será distinto, de modo que no existe el ite buscado x y La función 2x y no está definida en 0. Aproximándonos por rectas y = kx, obtenemos y=kx 2x y x 2 + y 2 = x 0 2x kx x 2 + k 2 x 2 = x 0 2 k x( + k 2 ) Si k = 0, el ite es ±, dependiendo del lado de la recta y = 0 por el que nos aproximemos a 0. De modo que el ite no existe x x+y Intentemos ver qué ocurre al aproximarnos por sucesiones al punto 0. Consideremos las sucesiones (x n, y n )} = (, 0)} (0, 0) cuando n n (x n, y n)} = (0, )} (0, 0) cuando n n Aproximándonos por la primera sucesión, tenemos n x n /n = x n + y n n /n = Si nos aproximamos por la segunda sucesión, obtenemos n x n x n + y n 0 = n /n = 0

3 3 Como los ites no coinciden, no existe el ite de la función en x 2 y 2 ln(x 2 + y 2 ) Pasando a coordenadas polares, tenemos Además, x2 y 2 ln(x 2 + y 2 ) = ρ 4 cos 2 θ sen 2 θ ln(ρ 2 ) ρ 0 ρ 4 cos 2 θ sen 2 θ ln(ρ 2 ) ρ 4 ln(ρ 2 ) 0 cuando ρ 0 Para probar que ρ 4 ln(ρ 2 ) 0 cuando ρ 0, se aplica la regla de L Hôpital. Por la regla del Sandwich, ρ 0 ρ 4 cos 2 θ sen 2 θ ln(ρ 2 ) = 0, lo cual equivale a que x 2 y 2 ln(x 2 + y 2 ) = x 2 y x 2 y x 2 + y 2 = Por la regla del Sandwich, 3.8. x 2 y 2 ( ) 3/2 Pasando a polares, x2 x 2 y y 0 cuando (x, y) (0, 0) + y2 x 2 y = 0. Como x 2 y 2 ρ 4 cos 2 θ sen 2 θ (x 2 + y 2 = ) 3/2 ρ 0 ρ 3 = ρ 0 ρ cos 2 θ sen 2 θ ρ cos 2 θ sen 2 θ ρ 0 cuando ρ 0, resulta ρ 0 ρ cos 2 θ sen 2 θ = 0, con lo que x 2 y 2 (x 2 + y 2 ) 3/2 = x 2 Aproximándonos por rectas y = kx, obtenemos y=kx x 2 x 2 + y 2 = x 0 x 2 x 2 + k 2 x 2 = + k 2

4 4 CONTINUIDAD EN VARIAS VARIABLES Como depende de k, no existe el ite. x y 3.0. Se tiene x y = x 2 + y 2 Por la regla del Sandwich, 3.. (y 2 x) 2 x 2 +y 4 x y y 0 cuando (x, y) (0, 0) x 2 + y2 x y = 0. Aproximémonos por parábolas x = ky 2 al punto 0. (y 2 x) 2 x 2 + y 4 x=ky 2 (y 2 ky 2 ) 2 ( k)2 = y 0 k 2 y 4 + y 4 = k 2 + Como la expresión depende de k, el ite no existe. También se puede intentar resolver aproximándonos por sucesiones a 0 (por ejemplo (/n 2, /n)} y (/n, 0)}). Obsérvese que, en este caso, si nos aproximamos por rectas y = kx, los ites siempre son los mismos (valen ) pero, sin embargo, el ite de la función en 0 no existe (y 2 x) 2 Pasando a polares, (y 2 x) 2 x 2 + y 2 = ρ 0 ρ 2 (ρ2 sen 2 θ ρ cos θ) 2 = = ρ 0 ρ 2 (ρ4 sen 4 θ 2ρ 3 sen 2 θ cos θ + ρ 2 cos 2 θ) = = ρ 0 (ρ 2 sen 4 θ 2ρ sen 2 θ cos θ + cos 2 θ) = cos 2 θ De modo que no existe el ite ya que, dependiendo del ángulo θ por el que nos aproximemos a 0, obtendremos resultados distintos. Otro modo de resolver el ejercicio es aproximándose por sucesiones adecuadas y x sen( ) Consideremos la sucesión

5 5 (x n, y n )} = (/n, /n)} (0, 0) cuando n Entonces, y n sen( (x n,y n) (0,0) x n x 2 n + y 2 n ) = n sen(n2 /2) de modo que no existe ite al aproximarnos a 0 por esta sucesión. Por tanto, la función no tiene ite en 0. sen(x y) 3.4. Aproximémonos por la recta y = x. Se tiene sen(x y) y=x x 2 + y = sen(x x) = 0 2 x 0 2x 2 Aproximándonos por la recta y = 0, queda sen(x y) x 2 + y = sen x = 2 x 0 x y=0 La última igualdad se obtiene aplicando la regla de L Hôpital. Se concluye que el ite no existe (x,y,z) (0,0,0) xy 2 z +z 2 Como y 2 x 2 + y 2 + z 2 xz xz 0 cuando (x, y, z) (0, 0, 0), aplicando la regla del Sandwich, (x,y,z) (0,0,0) xy 2 z +z 2 = Representar gráficamente las superficies de nivel de las siguientes funciones: 4.. f(x, y, z) = 4x 2 + y 2 + 4z 2 Se tiene f( x) 0. Hacemos f( x) = k 2, lo que equivale a escribir 4x 2 + y 2 + 4z 2 = k 2 x2 k 2 /4 + y2 k 2 + z2 k 2 /4 = Si k 2 > 0, entonces tenemos elipsoides de centro 0 y semiejes k/2, k, k/2.

6 6 CONTINUIDAD EN VARIAS VARIABLES Si k 2 = 0, tenemos x = y = z = 0, que es el punto f(x, y, z) = x 2 + y 2 z 2 Si k > 0, x2 k. k + y2 k z2 k =. Hiperboloide de una hoja con a = b = c = x Si k < 0, 2 k + y2 k z2 k c = k. =. Hiperboloide de 2 hojas con a = b = Si k = 0, x 2 + y 2 z 2 = 0 lo que nos da un cono f(x, y, z) = (x a) 2 + (y b) 2 Al igualar a constante, se tiene (x a) 2 +(y b) 2 = k 2 que es la ecuación de un cilindro de sección circular de radio k y centro (a, b). Para el caso en que k = 0, el cilindro degenera en la recta r x = a, y = b} paralela al eje OZ.

7 7 5. Analizar la continuidad de las siguientes funciones: x 2 y 2 si (x, y) (0, 0) 5.. f(x, y) = x 2 y 2 +(x y) 2 La función es claramente continua para todo (x, y) (0, 0) al ser en estos puntos un cociente de dos polinomios donde el denominador no se anula. Únicamente queda estudiar la continuidad en (x, y) = (0, 0). La función será continua en 0 = (0, 0) si existe el ite de la función cuando nos aproximamos a 0 y dicho ite vale f(x, y) = f(0, 0) = 0. Aproximémonos a (0, 0) por la sucesión (x n, y n )} = (/n, /n)}. f(x (/n) 2 (/n) 2 n, y n ) = (x n,y n) (0,0) n (/n) 2 (/n) 2 + (/n /n) 2 = = f(0, 0) = 0 De modo que la función no es continua en 0. x 2 y 2 si (x, y) (0, 0) 5.2. f(x, y) = La función es continua para todo (x, y) (0, 0) al ser en estos puntos un cociente de dos polinomios donde el denominador no se anula. Únicamente queda estudiar la continuidad en (x, y) = (0, 0). Aproximémonos a 0 por la sucesión (x n, y n )} = (/n, 0)}. Entonces f(x (/n) 2 n, y n ) = = f(0, 0) = 0 (x n,y n) (0,0) n (/n) 2 La función no es continua en 0. (x + y) 2 cos( ) si (x, y) (0, 0) 5.3. f(x, y) = La función es claramente continua en todo (x, y) (0, 0). Veamos qué ocurre en (x, y) = (0, 0). Obsérvese que (x + y)2 cos( x 2 + y 2 ) (x + y)2 0 cuando (x, y) (0, 0) Por la regla del Sandwich, (x + y) 2 cos( ) = 0 = f(0, 0), con lo que f es continua también en 0.

8 8 CONTINUIDAD EN VARIAS VARIABLES 5.4. f(x, y) = (x 2 + y 2 ) cos( ) si (x, y) (0, 0) Es análogo al ejercicio 5.3. La función es continua en todo (x, y) R 2. 2xy si (x, y) (0, 0) 5.5. f(x, y) = La función es continua en todo (x, y) (0, 0). Estudiemos lo que ocurre en 0 aproximándonos por la sucesión (x n, y n )} = (/n, /n)}. f(x 2/n 2 n, y n ) = = f(0, 0) = 0 (x n,y n) (0,0) n 2/n2 La función no es continua en 0. x 5.6. f(x, y) = x+y si x + y 0 0 si x + y = 0 La función es continua en todo (x, y) que no pertenezca a la recta r x + y = 0}. Estudiemos lo que ocurre en los puntos de esta recta. Sea (x 0, y 0 ) r, esto es, y 0 = x 0. Veamos si (x,y) (x0,y 0 ) f(x, y) = f(x 0, y 0 ) = 0. Consideremos la sucesión (x n, y n )} = (x 0 + /n, y 0 )} = Entonces = (x 0 + /n, x 0 )} (x 0, y 0 ) = (x 0, x 0 ) cuando n f(x x 0 + /n n, y n ) = = (x n,y n) (x 0, x 0 ) n /n si x 0 > 0 si x 0 = 0 si x 0 < 0 De aquí se deduce que (xn,yn) (x 0, x 0 ) f(x n, y n ) f(x 0, x 0 ) = 0, de modo que f no es continua en ningún punto (x 0, x 0 ) r. x 2 sen( 5.7. f(x, y) = y ) si y 0 x 2 si y = 0 La función es continua en todo (x, y) que no pertenezca a la recta r y = 0}. Veamos qué ocurre con los puntos de la recta. Sea (x 0, 0) r. Nos aproximaremos a este punto mediante la sucesión (x n, y n )} = (x 0, /n)}. Entonces

9 9 No existe si f(x x0 0 n, y n ) = (x n,y n) (x 0,0) n x2 0 sen(n) = 0 si x 0 = 0 Es claro que f no es continua en (x 0, 0) cuando x 0 0. Por otro lado, f(x, y) x 2 0 cuando (x, y) (0, 0) Por la regla del Sandwich, f(x, y) = 0 = f(0, 0), con lo que f es continua en (0, 0). xy si (x, y) (0, 0) 5.8. f(x, y) = La función es continua en todo (x, y) (0, 0). Veamos qué ocurre en 0. xy y 0 cuando (x, y) (0, 0) x 2 + y 2 Por la regla del Sandwich, xy = 0 = f(0, 0), de manera que f es continua en 0. ( x2 y, sen xy) si (x, y) (0, 0) 5.9. f(x, y) = (0, 0) si (x, y) = (0, 0) Sean las funciones coordenadas de f, f (x, y) = f 2 (x, y) = x 2 y si (x, y) (0, 0) sen xy si (x, y) (0, 0) Para que f sea continua en un punto (x, y), deben serlo tanto f como f 2. Es claro que, para todo (x, y) (0, 0), tanto f como f 2 son continuas. Veamos qué ocurre en (x, y) = (0, 0). Por el problema 3.7, la función f es continua en 0. Además, sen(xy) = 0 = f 2(0, 0) con lo que f 2 también es continua en 0. Hemos probado que f es continua en 0.

que corresponde al dominio definido por el paralelogramo de vértices (0, 2), (2, 1), (1, 6) y (3, 5).

que corresponde al dominio definido por el paralelogramo de vértices (0, 2), (2, 1), (1, 6) y (3, 5). 74 MÉTOOS NUMÉRICOS Informática de Sistemas - curso 9/1 Hojas de problemas Tema I - Cálculo diferencial e integral en varias variables I.1 Representación de funciones de dos variables 1. ibuja el plano

Más detalles

(a) El triángulo dado se descompone en tres segmentos de recta que parametrizamos de la siguiente forma: (0 t 1); y = 0. { x = 1 t y = t. (0 t 1).

(a) El triángulo dado se descompone en tres segmentos de recta que parametrizamos de la siguiente forma: (0 t 1); y = 0. { x = 1 t y = t. (0 t 1). INTEGRALES DE LÍNEA. 15. alcular las siguientes integrales: (a) (x + y) ds donde es el borde del triángulo con vértices (, ), (1, ), (, 1). (b) x + y ds donde es la circunferencia x + y ax (a > ). (a)

Más detalles

Funciones vectoriales de variable vectorial. Son aplicaciones entre espacios eucĺıdeos, IR n, f : X IR n Y IR m

Funciones vectoriales de variable vectorial. Son aplicaciones entre espacios eucĺıdeos, IR n, f : X IR n Y IR m Funciones vectoriales de variable vectorial Son aplicaciones entre espacios eucĺıdeos, IR n, f : X IR n Y IR m x y x = (x 1, x 2,, x n ), y = (y 1, y 2,, y m ) e y j = f j (x 1, x 2,, x n ), 1 j n n =

Más detalles

1. Hallar los extremos de las funciones siguientes en las regiones especificadas:

1. Hallar los extremos de las funciones siguientes en las regiones especificadas: 1 1. DERIVACIÓN 1. Hallar los extremos de las funciones siguientes en las regiones especificadas: b) f(x) x (x 1) en el intervalo [, ] y en su dominio. DOMINIO. D R. CORTES CON LOS EJES. Cortes con el

Más detalles

1. Definición y representaciones gráficas

1. Definición y representaciones gráficas Universidad Nacional de La Plata Facultad de Ciencias Exactas ANÁLISIS MATEMÁTICO II (CiBEx - Física Médica) 2014 Segundo Semestre GUÍA Nro. 3: FUNCIONES ESCALARES DE VARIAS VARIABLES 1. Definición y representaciones

Más detalles

CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES

CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES CAPÍTULO II. CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES SECCIONES 1. Dominios y curvas de nivel. 2. Cálculo de ites. 3. Continuidad. 55 1. DOMINIOS Y CURVAS DE NIVEL. Muchos problemas geométricos y físicos

Más detalles

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales Práctica 4 - Parte Límite de funciones En lo que sigue, veremos cómo la noción de límite introducida para sucesiones se etiende al caso de funciones reales. Esto nos permitirá estudiar el comportamiento

Más detalles

S n = 3n + 2 n + 4. ln(1 + a n ) (3) Decidir, para cada una de las siguientes series, si es convergente o divergente.

S n = 3n + 2 n + 4. ln(1 + a n ) (3) Decidir, para cada una de las siguientes series, si es convergente o divergente. CÁLCULO HOJA 1 INGENIERO TÉCNICO EN INFORMÁTICA DE SISTEMAS GRUPO DE MAÑANA, MÓSTOLES, 2008-09 (1) De la serie a n se sabe que la sucesión de sumas parciales viene dada por: S n = 3n + 2 n + 4. Encontrar

Más detalles

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES )

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS SOLUCIONES HOJA 5: Optimización 5-1. Hallar los puntos críticos de las siguiente funciones y clasificarlos: a fx, y = x y + xy.

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 7 Funciones reales de una variable real Elaborado por la Profesora Doctora

Más detalles

Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor

Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor Tema 5 Aproximación funcional local: Polinomio de Taylor Teoría Los polinomios son las funciones reales más fáciles de evaluar; por esta razón, cuando una función resulta difícil de evaluar con exactitud,

Más detalles

f( x) = ( x)2 + 11 x + 5 = 0 = x2 + 11 = 0 = No hay solución y = 0 + 11 0 + 5 = 11

f( x) = ( x)2 + 11 x + 5 = 0 = x2 + 11 = 0 = No hay solución y = 0 + 11 0 + 5 = 11 1. y = x + 11 x + 5 a) ESTUDIO DE f: 1) Dominio: Como es un cociente del dominio habrá que excluir los valores que anulen el denominador. Por tanto: x + 5 = 0 x = 5 ) Simetría: A simple vista, como el

Más detalles

Límites y Continuidad de funciones

Límites y Continuidad de funciones CAPITULO Límites y Continuidad de funciones Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet (www.cidse.itcr.ac.cr)

Más detalles

LÍMITES Y CONTINUIDAD

LÍMITES Y CONTINUIDAD UNIDAD 5 LÍMITES Y CONTINUIDAD Páginas 0 y Describe las siguientes ramas: a) f () b) f () no eiste c) f () d) f () + e) f () f) f () + g) f () h) f () no eiste; f () 0 i) f () + f () + j) f () 5 4 f ()

Más detalles

Para hallar el límite de una sucesión podemos utilizar algunas técnicas como: El concepto de límite de una función:

Para hallar el límite de una sucesión podemos utilizar algunas técnicas como: El concepto de límite de una función: Tema 3 Sucesiones y Series 3.1. Sucesiones de números reales Definición 3.1.1 Una sucesión de números reales { } es una aplicación que asigna a cad N un número real: : N R a 1, a 2, a 3... son los términos

Más detalles

Tema 7. Límites y continuidad de funciones

Tema 7. Límites y continuidad de funciones Matemáticas II (Bachillerato de Ciencias) Análisis: Límites y continuidad de funciones 55 Límite de una función en un punto Tema 7 Límites y continuidad de funciones Idea inicial Si una función f está

Más detalles

1. Limite de Funciones

1. Limite de Funciones 1. Limite de Funciones 1.1. Introducción. Consideremos la función f() = { 1+ 2 si > 0 1 2 si < 0 Se observa que la función no está definida en 0 = 0. Sin embargo, se observa que cuando se consideran valores

Más detalles

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES. Estudiar el crecimiento, el decrecimiento y los etremos relativos de las siguientes funciones: a) f( ) 7 + + b) ln f( ) c) 5 si < f(

Más detalles

Inversión en el plano

Inversión en el plano Inversión en el plano Radio de la circunferencia x 2 + y 2 + Ax + By + D = 0 Circunferencia de centro (a, b) y radio r: (x a) 2 + (y b) 2 = r 2. Comparando: x 2 + y 2 2ax 2by + a 2 + b 2 r 2 = 0 con x

Más detalles

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula:

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula: 1. Dada la función f(x) = : a) Encontrar el dominio, las AH y las AV. b) Intervalos de crecimiento, decrecimiento, máximos y mínimos relativos. c) Primitiva que cumpla que F(0) = 0. a) Para encontrar el

Más detalles

UAM CSIC Grupo 911 Febrero 2013. Ejercicios Resueltos del Tema 2.2.5. Asignatura de Matemáticas Grado en Química

UAM CSIC Grupo 911 Febrero 2013. Ejercicios Resueltos del Tema 2.2.5. Asignatura de Matemáticas Grado en Química UAM CSIC Grupo 9 Febrero Ejercicios Resueltos del Tema..5 Asignatura de Matemáticas Grado en Química Lista de ejercicios en estas páginas: y. Consejo: En todos los ejercicios es esencial dibujar el dominio

Más detalles

Límites y Continuidad de funciones de varias variables

Límites y Continuidad de funciones de varias variables 1.- Se construye un depósito de propano adosando dos hemisferios a los etremos de un cilindro circular recto. Epresar el volumen V de ese depósito en función del radio r del cilindro y de su altura h..-

Más detalles

LÍMITES DE FUNCIONES. CONTINUIDAD

LÍMITES DE FUNCIONES. CONTINUIDAD LÍMITES DE FUNCIONES. CONTINUIDAD Página REFLEXIONA Y RESUELVE Algunos ites elementales Utiliza tu sentido común para dar el valor de los siguientes ites: a,, b,, @ c,, 5 + d,, @ @ + e,, @ f,, 0 @ 0 @

Más detalles

TEMA 2: FUNCIONES CONTINUAS DE VARIAS VARIABLES

TEMA 2: FUNCIONES CONTINUAS DE VARIAS VARIABLES TEMA 2: FUNCIONES CONTINUAS DE VARIAS VARIABLES ÍNDICE 1. Funciones de varias variables 1 2. Continuidad 2 3. Continuidad y composición de funciones 4 4. Continuidad y operaciones algebraicas 4 5. Carácter

Más detalles

1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva:

1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: 1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: a) x = senθ, y = cosθ, 0 θ π t b), t x = e y = e + 1 c) x = senθ, y =

Más detalles

Diferenciabilidad, Regla de la Cadena y Aplicaciones

Diferenciabilidad, Regla de la Cadena y Aplicaciones Universidad Técnica Federico Santa María Departamento de Matemática Matemática III Guía Nº3 Primer Semestre 015 Diferenciabilidad, Regla de la Cadena y Aplicaciones Problemas Propuestos 1. Sea f : R R

Más detalles

ANÁLISIS DE FUNCIONES RACIONALES

ANÁLISIS DE FUNCIONES RACIONALES ANÁLISIS DE FUNCIONES RACIONALES ( x 9) Dada la función f( x) = x 4 DETERMINE: Dominio, asíntotas, intervalos de crecimiento, intervalos de concavidad, extremos relativos y puntos de inflexión, representar

Más detalles

Diferenciabilidad. Definición 1 (Función diferenciable). Cálculo. Segundo parcial. Curso 2004-2005

Diferenciabilidad. Definición 1 (Función diferenciable). Cálculo. Segundo parcial. Curso 2004-2005 Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Diferenciabilidad. 1. Definición de función diferenciable Después del estudio de los ites de funciones

Más detalles

EL MÉTODO DE LA BISECCIÓN

EL MÉTODO DE LA BISECCIÓN EL MÉTODO DE LA BISECCIÓN Teorema de Bolzano Sea f : [a, b] IR IR una función continua en [a, b] tal que f(a) f(b) < 0, es decir, que tiene distinto signo en a y en b. Entonces, existe c (a, b) tal que

Más detalles

Integrales paramétricas e integrales dobles y triples.

Integrales paramétricas e integrales dobles y triples. Integrales paramétricas e integrales dobles y triples. Eleonora Catsigeras * 19 de julio de 2006 PRÓLOGO: Notas para el curso de Cálculo II de la Facultad de Ingeniería. Este texto es complementario al

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES INECUACIONES NOTA IMPORTANTE: El signo de desigualdad de una inecuación puede ser,, < o >. Para las cuestiones teóricas que se desarrollan en esta unidad únicamente se utilizará la desigualdad >, siendo

Más detalles

CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática

CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática CAPITULO Aplicaciones de la Derivada Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Créditos Primera edición impresa: Rosario Álvarez, 1988. Edición Latex: Marieth

Más detalles

Funciones definidas a trozos

Funciones definidas a trozos Concepto de función Dominio de una función Características de las funciones Intersecciones con los ejes Crecimiento y decrecimiento Máximos y mínimos Continuidad y discontinuidad Simetrías Periodicidad

Más detalles

ANALISIS MATEMATICO II Grupo Ciencias 2015

ANALISIS MATEMATICO II Grupo Ciencias 2015 ANALISIS MATEMATICO II Grupo Ciencias 05 Práctica : Geometría Analítica: Vectores, Rectas y Planos A. Vectores Hasta el 9 de marzo. Sean v = (0,, ) y w = (,, 4) dos vectores de IR 3. (a) Obtener el coseno

Más detalles

Apuntes de cálculo diferencial en una y varias variables reales. Eduardo Liz Marzán

Apuntes de cálculo diferencial en una y varias variables reales. Eduardo Liz Marzán Apuntes de cálculo diferencial en una y varias variables reales Eduardo Liz Marzán Diciembre de 2013 Índice general 1 Preliminares 1 11 Introducción 1 12 La relación de orden en el conjunto de los números

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sean f : R R y g : R R las funciones definidas por f(x) = x 2 + ax + b y g(x) = c e (x+1) Se sabe que las gráficas de f y g se cortan en el punto ( 1, 2) y tienen en ese punto la

Más detalles

Funciones de varias variables

Funciones de varias variables Tema 5 Funciones de varias variables Supongamos que tenemos una placa rectangular R y determinamos la temperatura T en cada uno de sus puntos. Fijado un sistema de referencia, T es una función que depende

Más detalles

Tema 10: Límites y continuidad de funciones de varias variables

Tema 10: Límites y continuidad de funciones de varias variables Tema 10: Límites y continuidad de funciones de varias variables 1 Funciones de varias variables Definición 1.1 Llamaremos función real de varias variables atodafunciónf : R n R. Y llamaremos función vectorial

Más detalles

Funciones de varias variables

Funciones de varias variables Funciones de varias variables Derivadas parciales. El concepto de función derivable no se puede extender de una forma sencilla para funciones de varias variables. Aquí se emplea el concepto de diferencial

Más detalles

Funciones de varias variables reales

Funciones de varias variables reales Capítulo 6 Funciones de varias variables reales 6.1. Introducción En muchas situaciones habituales aparecen funciones de dos o más variables, por ejemplo: w = F D (Trabajo realizado por una fuerza) V =

Más detalles

Extremos de varias variables

Extremos de varias variables Capítulo 1 Extremos de varias variables Problema 1 Encontrar los extremos absolutos de la función fx, y) = xy en el conjunto A = x, y) IR : x + y 4, x 5/}. Solución: En primer lugar representamos el conjunto

Más detalles

Aproximación local. Plano tangente. Derivadas parciales.

Aproximación local. Plano tangente. Derivadas parciales. Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 004-005 Aproximación local. Plano tangente. Derivadas parciales. 1. Plano tangente 1.1. El problema de la aproximación

Más detalles

Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo

Polinomios: Definición: Se llama polinomio en x de grado n a una expresión del tipo Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo P (x) = a 0 x n + a 1 x n 1 +... + a n Donde n N (número natural) ; a 0, a 1, a 2,..., a n son coeficientes reales

Más detalles

Apuntes de Mecánica Newtoniana Cinemática de la Partícula

Apuntes de Mecánica Newtoniana Cinemática de la Partícula Apuntes de Mecánica Newtoniana Cinemática de la Partícula Ariel Fernández Daniel Marta Introducción. En este capítulo se introducirán los elementos necesarios para la descripción del movimiento de una

Más detalles

Las Funciones Analíticas. f (z 0 + h) f (z 0 ) lim. h=z z 0. = lim

Las Funciones Analíticas. f (z 0 + h) f (z 0 ) lim. h=z z 0. = lim Las Funciones Analíticas 1 Las Funciones Analíticas Definición 12.1 (Derivada de una función compleja). Sea D C un conjunto abierto. Sea z 0 un punto fijo en D y sea f una función compleja, f : D C C.

Más detalles

2.1.5 Teoremas sobre derivadas

2.1.5 Teoremas sobre derivadas si x < 0. f(x) = x si x 0 x o = 0 Teoremas sobre derivadas 9 2. f(x) = x 3, x o = 3 a. Determine si f es continua en x o. b. Halle f +(x o ) y f (x o ). c. Determine si f es derivable en x o. d. Haga la

Más detalles

MATEMÁTICAS CCSS JUNIO 2010 (COMÚN MODELO5) SELECTIVIDAD ANDALUCÍA

MATEMÁTICAS CCSS JUNIO 2010 (COMÚN MODELO5) SELECTIVIDAD ANDALUCÍA IES Fco Ayala de Granada Junio de 010 (General Modelo 5) Soluciones Germán-Jesús Rubio Luna MATEMÁTICAS CCSS JUNIO 010 (COMÚN MODELO5) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1 Sea el recinto definido

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

(3) Regla del cociente: Si g(z 0 ) 0, f/g es derivable en z 0 y. (z 0 ) = f (z 0 )g(z 0 ) f(z 0 )g (z 0 ) . g

(3) Regla del cociente: Si g(z 0 ) 0, f/g es derivable en z 0 y. (z 0 ) = f (z 0 )g(z 0 ) f(z 0 )g (z 0 ) . g Funciones holomorfas 2.1. Funciones variable compleja En este capítulo vamos a tratar con funciones f : Ω C C, donde Ω C es el dominio de definición. La forma habitual de expresar estas funciones es como

Más detalles

Diferenciabilidad de funciones de R n en R m

Diferenciabilidad de funciones de R n en R m Diferenciabilidad de funciones de R n en R m Cálculo II (2003) En este capítulo generalizamos la noción de diferenciabilidad para funciones vectoriales de variable vectorial, que también llamamos aplicaciones.

Más detalles

Hoja de Prácticas tema 3: Máximos y Mínimos

Hoja de Prácticas tema 3: Máximos y Mínimos Cálculo II EPS (Grado TICS) Curso 2012-2013 Hoja de Prácticas tema 3: Máximos y Mínimos 1. Hallar los puntos críticos de las funciones dadas y determinar cuáles son máximos locales, mínimos locales o puntos

Más detalles

GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1,0, la recta x 1 y z

GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1,0, la recta x 1 y z GEOMETRÍA Junio 94. 1. Sin resolver el sistema, determina si la recta x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia (x 1) (y ) 1. Razónalo. [1,5 puntos]. Dadas las ecuaciones de los

Más detalles

Área Académica: Matemáticas (Geometría Analítica) Tema: Coordenadas rectangulares y polares, definiciones fundamentales y teoremas.

Área Académica: Matemáticas (Geometría Analítica) Tema: Coordenadas rectangulares y polares, definiciones fundamentales y teoremas. Área Académica: Matemáticas (Geometría Analítica) Tema: Coordenadas rectangulares y polares, definiciones fundamentales y teoremas. Profesor(a): Juana Inés Pérez Zárate Periodo: Enero Junio 2012 Topic:

Más detalles

Una función f es derivable en un punto a de su dominio si existe el límite. f(x) f(a) Si f y g son derivables en a, entonces fg es derivable en a y

Una función f es derivable en un punto a de su dominio si existe el límite. f(x) f(a) Si f y g son derivables en a, entonces fg es derivable en a y 4. Derivabilidad 1 Una función f es derivable en un punto a de su dominio si existe el límite f (a) = lím x a f(x) f(a) x a f(a + h) f(a) = lím, h 0 h y es un número real. El número f (a) se denomina derivada

Más detalles

Continuidad y ramas infinitas. El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A = 2. lm í

Continuidad y ramas infinitas. El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A = 2. lm í Unidad. Límites de funciones. Continuidad y ramas infinitas Resuelve Página 7 A través de una lupa AUMENTO DISTANCIA (dm) El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A

Más detalles

Problemas Resueltos de Ecuaciones en Derivadas Parciales

Problemas Resueltos de Ecuaciones en Derivadas Parciales Problemas Resueltos de Ecuaciones en Derivadas Parciales Alberto Cabada Fernández 4 de diciembre de. Índice general Introducción I. Ecuaciones de primer orden.. Método de las bandas características...................

Más detalles

Tema 2 Límites de Funciones

Tema 2 Límites de Funciones Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos

Más detalles

LÍMITES DE FUNCIONES. CONTINUIDAD

LÍMITES DE FUNCIONES. CONTINUIDAD LÍMITES DE FUNCIONES. CONTINUIDAD Página 7 REFLEXIONA Y RESUELVE Visión gráfica de los ites Describe análogamente las siguientes ramas: a) f() b) f() no eiste c) f() d) f() +@ e) f() @ f) f() +@ g) f()

Más detalles

Límites. 1. Calcula los límites de las siguientes funciones en los puntos que se indican: 2 2 2 a) lim b) lim c) lim d) lim

Límites. 1. Calcula los límites de las siguientes funciones en los puntos que se indican: 2 2 2 a) lim b) lim c) lim d) lim Límites CIT_H. Calcula los límites de las siguientes funciones en los puntos que se indican: ( ) + + + a) lim b) lim c) lim d) lim + + + + + e) lim f) lim g) lim h) lim + 0 + + 9 + j) lim k) lim l) lim

Más detalles

5 Demostrar cada una de las siguientes afirmaciones empleando la definición de

5 Demostrar cada una de las siguientes afirmaciones empleando la definición de Hallar el dominio de las siguientes funciones: x 3 a) x +ln(x ) b) ln x + 6 x + c) x x d) ln x x + e) cos x + ln(x 5π) + 8π x Graficar la función sen(x π ). Hallar para que valores de x es 3 Hallar las

Más detalles

1 Función real de dos variables reales

1 Función real de dos variables reales Cálculo Matemático. Tema 10 Hoja 1 Escuela Universitaria de Arquitectura Técnica Cálculo Matemático. Tema 10: Funciones de dos variables. Curso 008-09 1 Función real de dos variables reales Hasta el momento

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN

INSTRUCCIONES GENERALES Y VALORACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2014-2015 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN Después

Más detalles

ANÁLISIS DE FUNCIONES, LÍMITES Y CONTINUIDAD. RESUMEN

ANÁLISIS DE FUNCIONES, LÍMITES Y CONTINUIDAD. RESUMEN ANÁLISIS DE FUNCIONES, LÍMITES Y CONTINUIDAD. RESUMEN Problema Datos Procedimiento Ejemplo Dominio de una La ecuación de Casos en los que en dominio no es IR: función la función Irracionales (ecluir valores

Más detalles

Soluciones a los problemas Olimpiada de Matemáticas Fase local Extremadura Enero de 2015

Soluciones a los problemas Olimpiada de Matemáticas Fase local Extremadura Enero de 2015 Olimpiada atemática Española RSE Soluciones a los problemas Olimpiada de atemáticas Fase local Extremadura Enero de 2015 1. lrededor de una mesa circular están sentadas seis personas. ada una lleva un

Más detalles

Capítulo 3 Soluciones de ejercicios seleccionados

Capítulo 3 Soluciones de ejercicios seleccionados Capítulo 3 Soluciones de ejercicios seleccionados Sección 3.1.4 1. Dom a = [ 1, 1]. Dom b = R. Dom c = (, 4). Dom d = ( 1, ). Dom e = R ( 1, 3] y Dom f = R {, }. 5x 4 x < 1, (x 1)(3x ) x < 1,. (f + g)(x)

Más detalles

1. Funciones de varias variables

1. Funciones de varias variables Análisis Matemático II. Curso 2008/2009. Diplomatura en Estadística/Ing. Téc. en Inf. de Gestión. Universidad de Jaén TEMA 2: CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES 1. Funciones de varias variables

Más detalles

Límite y continuidad de funciones de varias variables

Límite y continuidad de funciones de varias variables Límite y continuidad de funciones de varias variables 20 de marzo de 2009 1 Subconjuntos de R n y sus propiedades De nición 1. Dado x 2 R n y r > 0; la bola de centro x y radio r es B(x; r) = fy 2 R n

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II ANDALUCÍA CNVCATRIA JUNI 009 SLUCIÓN DE LA PRUEBA DE ACCES AUTR: José Luis Pérez Sanz pción A Ejercicio En este límite nos encontramos ante la indeterminación. Agrupemos la

Más detalles

DERIVABILIDAD DE FUNCIONES

DERIVABILIDAD DE FUNCIONES CAPÍTULO V. DERIVABILIDAD DE FUNCIONES SECCIONES A. Definición de derivada. B. Reglas de derivación. C. Derivadas sucesivas. D. Funciones implícitas. Derivación logarítmica. E. Ecuaciones paramétricas.

Más detalles

A modo de Presentación

A modo de Presentación Ecuaciones Diferenciales de Orden Superior Primera Parte Funciones Eulerianas Ing. Ramón Abascal Prof esor Titular de Análisi s de Señales y Sist emas y Teoría de los Circuit os I I en la UTN, Facultad

Más detalles

1. Dominio, simetría, puntos de corte y periodicidad

1. Dominio, simetría, puntos de corte y periodicidad Estudio y representación de funciones 1. Dominio, simetría, puntos de corte y periodicidad 1.1. Dominio Al conjunto de valores de x para los cuales está definida la función se le denomina dominio. Se suele

Más detalles

1-Comportamiento de una función alrededor de un punto:

1-Comportamiento de una función alrededor de un punto: Matemática II 7 Modulo Límites continuidad En esta sección desarrollaremos el concepto de límite, una de las nociones fundamentales del cálculo. A partir de este concepto se desarrollan también los conceptos

Más detalles

Problemas y Soluciones

Problemas y Soluciones La Gaceta de la RSME, Vol. 12 (29), Núm. 2, Págs. 315 322 315 Problemas y Soluciones Sección a cargo de Óscar Ciaurri Ramírez y José Luis Díaz Barrero Las soluciones para esta sección deben enviarse, preferentemente,

Más detalles

Tema 10: Funciones de varias variables. Funciones vectoriales. Límites y continuidad

Tema 10: Funciones de varias variables. Funciones vectoriales. Límites y continuidad Tema 10: Funciones de varias variables. Funciones vectoriales. Límites y continuidad 1 Funciones de varias variables Observación 1.1 Conviene repasar,enestepunto,lodadoeneltema8paratopología en R n : bolas,

Más detalles

EJERCICIOS RESUELTOS DE CÓNICAS

EJERCICIOS RESUELTOS DE CÓNICAS EJERCICIOS RESUELTOS DE CÓNICAS 1. Hallar la ecuación de la circunferencia que tiene: a) el centro en el punto (, 5) y el radio es igual a 7. b) un diámetro con extremos los puntos (8, -) y (, 6). a) La

Más detalles

Polinomios de Taylor.

Polinomios de Taylor. Tema 7 Polinomios de Taylor. 7.1 Polinomios de Taylor. Definición 7.1 Recibe el nombre de polinomio de Taylor de grado n para la función f en el punto a, denotado por P n,a, el polinomio: P n,a (x) = f(a)

Más detalles

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Funciones de Antonio Francisco Roldán López de Hierro * Convocatoria de 200 Las siguientes páginas contienen las soluciones de los ejercicios propuestos

Más detalles

1. Estudiar el problema siguiente: Hallar un polinomio de grado 2 tal que:

1. Estudiar el problema siguiente: Hallar un polinomio de grado 2 tal que: Interpolación 1. Estudiar el problema siguiente: Hallar un polinomio de grado 2 tal que: px ( ) = z ; px ( ) = z; p ( x) = z 0 0 1 1 2 2 2. Queda determinado un polinomio p(x) de grado 3 por los siguiente

Más detalles

Anexo 2: Demostraciones

Anexo 2: Demostraciones 0 Matemáticas I : Cálculo diferencial en IR Aneo : Demostraciones Funciones reales de variable real Demostración de: Propiedades del valor absoluto 79 de la página 85 Propiedades del valor absoluto 79.-

Más detalles

LÍMITES Y CONTINUIDAD DE FUNCIONES

LÍMITES Y CONTINUIDAD DE FUNCIONES Capítulo 9 LÍMITES Y CONTINUIDAD DE FUNCIONES 9.. Introducción El concepto de ite en Matemáticas tiene el sentido de lugar hacia el que se dirige una función en un determinado punto o en el infinito. Veamos

Más detalles

Repaso de funciones elementales, límites y continuidad

Repaso de funciones elementales, límites y continuidad Tema 3 Repaso de funciones elementales, ites y continuidad 3.1. Funciones. Definiciones básicas. Operaciones con funciones 3.1.1. Definiciones Una función real de (una) variable real es una aplicación

Más detalles

Usamos que f( p) = q y que, por tanto, g( q) = g(f( p)) = h( p) para simplificar esta expresión:

Usamos que f( p) = q y que, por tanto, g( q) = g(f( p)) = h( p) para simplificar esta expresión: Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Propiedades de las funciones diferenciables. 1. Regla de la cadena Después de la generalización que hemos

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 013 Capítulo 13 Año 01 13.1. Modelo 01 - Opción A Problema 13.1.1 (3 puntos) Dados los puntos A(1,

Más detalles

(Apuntes en revisión para orientar el aprendizaje)

(Apuntes en revisión para orientar el aprendizaje) (Apuntes en revisión para orientar el aprendizaje) LÍMITES DE FUNCIONES TRIGONOMÉTRICAS Para resolver límites que involucran funciones circulares directas, resulta conveniente conocer los límites de las

Más detalles

Prof. Claudio del Pino O.

Prof. Claudio del Pino O. Índice 1. Derivadas parciales 2 1.1. Definición de derivadas parciales..... 2 1.2. Actividades iniciales............ 3 1.3. Costo marginal............... 5 1.3.1. Una actividad........... 6 1.4. Productos

Más detalles

Tarea 1 - Vectorial 201420

Tarea 1 - Vectorial 201420 Tarea - Vectorial 040. Part :. - 3... Hacer parametrización de la curva de intersección del cilindro x + y = 6 y el plano x + z = 5. Encontrar las coordenadas de los puntos de la curva donde la curvatura

Más detalles

ACLARACIONES SOBRE EL EXAMEN

ACLARACIONES SOBRE EL EXAMEN 1 (1 punto) Desarrolle el siguiente tema de teoría: Teorema de Taylor y aplicación. 2 (1.2 puntos) Considere los números complejos z = 1 + i y w = 3(cos( π) + i sen( π )). Calcule 3 3 a) z + w b) z 4 c)

Más detalles

Repasando lo aprendido...con una propuesta autoinstruccional

Repasando lo aprendido...con una propuesta autoinstruccional Repasando lo aprendido......con una propuesta autoinstruccional Te propongo un rápido repaso en matemática básica, que te será de suma utilidad para fijar los conocimientos dados. Sólo te brindo una guía

Más detalles

5.3 Esfuerzos y deformaciones producidos por flexión. Puente grúa. 5.3.1 Flexión pura

5.3 Esfuerzos y deformaciones producidos por flexión. Puente grúa. 5.3.1 Flexión pura 5.3 Esfuerzos y deformaciones producidos por flexión Puente grúa 5.3.1 Flexión pura Para cierta disposición de cargas, algunos tramos de los elementos que las soportan están sometidos exclusivamente a

Más detalles

13.TRANSFORMACIONES LINEALES 273 13.1. DEFINICIÓN DE TRANSFORMACIÓN LINEAL... 273 13.2. DETERMINACIÓN DE UNA TRANSFORMACIÓN LINEAL... 275 13.3.

13.TRANSFORMACIONES LINEALES 273 13.1. DEFINICIÓN DE TRANSFORMACIÓN LINEAL... 273 13.2. DETERMINACIÓN DE UNA TRANSFORMACIÓN LINEAL... 275 13.3. ÍNDICE 13.TRANSFORMACIONES LINEALES 273 13.1. DEFINICIÓN DE TRANSFORMACIÓN LINEAL............. 273 13.2. DETERMINACIÓN DE UNA TRANSFORMACIÓN LINEAL...... 275 13.3. REPRESENTACIÓN MATRICIAL DE UNA TRANSFORMACIÓN

Más detalles

Bienvenidos a los concertos para violin entre el álgebra y la Geometría.

Bienvenidos a los concertos para violin entre el álgebra y la Geometría. Bienvenidos a los concertos para violin entre el álgebra y la Geometría. Capitulo 17 Atención Esta guía no pretender ser una sustituta del libro de texto del curso. Lo que busca es presentar las herramientas

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES )

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA : Límites continuidad de funciones en R n. -. Dibuja cada uno de los subconjuntos de R siguientes. Dibuja su

Más detalles

Gráficas. Funciones Reales. Variable Real

Gráficas. Funciones Reales. Variable Real I. E. S. Siete Colinas (Ceuta) Departamento de Matemáticas Matemáticas de º de Bachillerato Gráficas de Funciones Reales de Variable Real Por Javier Carroquino CaZas Catedrático de matemáticas del I.E.S.

Más detalles

ESTÁTICA 2. VECTORES. Figura tomada de http://www.juntadeandalucia.es/averroes/~04001205/fisiqui/imagenes/vectores/473396841_e1de1dd225_o.

ESTÁTICA 2. VECTORES. Figura tomada de http://www.juntadeandalucia.es/averroes/~04001205/fisiqui/imagenes/vectores/473396841_e1de1dd225_o. ESTÁTICA Sesión 2 2 VECTORES 2.1. Escalares y vectores 2.2. Cómo operar con vectores 2.2.1. Suma vectorial 2.2.2. Producto de un escalar y un vector 2.2.3. Resta vectorial 2.2.4. Vectores unitarios 2.2.5.

Más detalles

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases. BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades

Más detalles

1. Breve resumen de optimización sin restricciones en varias variables.

1. Breve resumen de optimización sin restricciones en varias variables. MATEMÁTICAS EMPRESARIALES G.A.D.E. CURSO 202/203 Práctica 2: Aplicaciones a la Optimización. En esta práctica se introducen las herramientas que nos ofrece el programa Mathematica para optimizar funciones

Más detalles

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2 SISTEMA DE ACCESO COMÚN A LAS CARRERAS DE INGENIERÍA DE LA UNaM III. UNIDAD : FUNCIONES POLINÓMICAS III..1 POLINOMIOS La expresión 5x + 7 x + 4x 1 recibe el nombre de polinomio en la variable x. Es de

Más detalles

Unidad 5 Estudio gráfico de funciones

Unidad 5 Estudio gráfico de funciones Unidad 5 Estudio gráfico de funciones PÁGINA 84 SOLUCIONES Representar puntos en un eje de coordenadas. 43 Evaluar un polinomio. a) P(-1) = 1 + + 1 1 = 3 b) P(0) = -1 c) P(-) = 8 + 8 + 1 = 17 d) P(1) =

Más detalles

no descompone no descompone no descompone

no descompone no descompone no descompone Problema 1. Sea I n el conjunto de los n primeros números naturales impares. Por ejemplo: I 3 = {1, 3, 5, I 6 = {1, 3, 5, 7, 9, 11, etc. Para qué números n el conjunto I n se puede descomponer en dos partes

Más detalles