CINEMATICA. que interpretemos erróneamente cuándo un cuerpo se acelera

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CINEMATICA. que interpretemos erróneamente cuándo un cuerpo se acelera"

Transcripción

1 CINEMTIC Inroducción Cinemáica es la pare de la física que esudia el movimieno de los cuerpos, aunque sin ineresarse por las causas que originan dicho movimieno. Un esudio de las causas que lo originan es lo que se conoce como dinámica. Las magniudes que define la cinemáica son principalmene res, la posición, la velocidad y la aceleración. Posición Es el lugar en que se encuenra el móvil en un ciero insane de iempo. Suele represenarse con el vecor de posición. Dada la dependencia de ese vecor con el iempo, es decir, si nos dan, enemos oda la información necesaria para los cálculos cinemáicos. Velocidad Es la rapidez de cambio de posición que realiza un cuerpo a ravés del iempo. Nos indica si el móvil se mueve, es decir, si varía su posición a medida que varía el iempo. La velocidad en física se corresponde al concepo inuiivo y coidiano de velocidad. celeración Es la rapidez de cambio de la velocidad a ravés del iempo que realiza un cuerpo es decir iindica cuáno varía la velocidad al ir pasando el iempo. El concepo de aceleración no es an claro como el de velocidad, ya que la inervención de un crierio de signos puede hacer que inerpreemos erróneamene cuándo un cuerpo se acelera o cuándo se ``decelera''. Por ejemplo, cuando lanzamos una piedra al aire y ésa cae es fácil ver que, según sube la piedra, su aceleración es negaiva, pero no es an sencillo consaar que cuando cae su aceleración sigue siendo negaiva porque realmene su velocidad esá disminuyendo, ya que hemos de considerar ambién el signo de esa velocidad. Velocidad Se define velocidad media como omando los incremenos enre los insanes inicial y final que se precisen. No obsane, aunque la velocidad media es una magniud úil, hay que desacar que en su cálculo se deja mucha información sin precisar. sí, aunque sepamos que la velocidad media de un móvil desde un insane a oro ha sido ``anos'' meros por segundo, no sabremos si los ha hecho de forma consane, o si ha ido muy leno al principio y rápido al final o si...por eso se define una magniud que

2 exprese la velocidad insanánea, es decir, la velocidad en ciero y deerminado insane y que pueda calcularse como una velocidad media donde los inervalos sean an pequeños que pueda decirse exacamene a qué velocidad se desplazaba el móvil en cada insane. Es fácil darse cuena de que esa definición se logra omando como velocidad insanánea: y por ano, coincide con la definición de derivada respeco al iempo. sí pues se define finalmene De esa definición se obienen algunas consecuencias: La dirección de va a ser siempre angene a la rayecoria. El módulo de puede calcularse, además de operando sobre el vecor, sabiendo que siendo la disancia que el móvil ha recorrido sobre la rayecoria 5.. celeración celeración es la variación de la velocidad en la unidad de iempo. Se puede definir una aceleración media enre dos insanes, inicial y final, como y, de manera análoga a la velocidad, puede definirse una aceleración insanánea llevando esos insanes inicial y final muy cerca uno del oro, hasa ener así que la aceleración insanánea es la derivada de la velocidad respeco al iempo

3 Clasificación de movimienos Los movimienos se pueden clasificar de acuerdo dos concepos: a).- Por su nauraleza: Movimieno uniforme Movimieno uniformemene variado Movimieno variado b).- Por su rayecoria: Movimieno recilíneo Movimieno curvilíneo. Circular, parabólico, elípico, helicoidal,ec. De los cuales se puede lograr una combinación de las mismas, obeniéndose oros ipos de movimieno como son: MOVIMIENTO RECTILÍNEO UNIFORME.- (MRU) Si un cuerpo recorre espacios iguales en iempos iguales, es decir endrá una velocidad consane; luego la velocidad se obiene por la siguiene expresión: V x MOVIMIENTO RECTILÍNEO UNIFORMEMENTE VRIDO (MRUV).- se caraceriza porque cuerpo varía su velocidad en forma proporcional a ravés del iempo es decir ienen la aceleración consane; luego la expresión permie calcular son : si V Velocidad final ; Vo Velocidad inicial, a aceleración a.- La velocidad en función del iempo: b.- El espacio en función del iempo : c.- Velocidad en función del espacio : V V + o x Vo + a a V Vo + ax Movimieno Recilíneo.- Dos aleas pasan por un mismo, y corren en el mismo senido con velocidad de 4.5 y 6. m/s. Delane de ellos a 30 m hay un árbol, después de que iempo los móviles equidisaran del árbol. V V B 30m a B V 30 x x V 30 + x x b igualando : seg

4 .- Dos ciclisas pasan por un puno, en el mismo senido, sus velocidades son de 5 y 0 m/s. Después de que iempo esarán separados 00m. Solución: V V B x 00 Por MRU se iene: 5 x + 00 x 5 0 B 0 x x 0 Igualando : seg. 3.- Un móvil viaja con MRU y debe llegar a su desino a las 7 p.m. si viajaran a 40 km/hr llegarían una hora después y si viajaran a 60 km/h llegarían una hora anes. Que velocidad debe llevar para llegar a su desino a la hora fijada. V Deerminando espacio recorrido: V( ) V B x V ( + ) B igualando : 40( ) 60( ) 5seg. 4.- Un ren para aravesar un únel de 900m de longiud arda 76 seg y en pasar delane de un observador arda 6 seg. Cuál es la longiud del ren? L T6s 900+L T76seg l l V 6V l V V 76V V 5m / seg. o l 6(5) l 40m Un móvil se mueve con MRUV y al pasar por un puno P iene una velocidad de de 60 m/s, si 360m mas adelane su velocidad es de 0 m/s. Cual es su velocidad 00m arás?

5 00m P 60m/s 0m/s eg 360m VB VP + ax 60 a 5m V V V P 0 / (360) V m / s s + (5)(00) (5)(00) 5.- Un auomóvil pare del reposo con aceleración consane, enre el ocavo y noveno segundo recorre 34m. qué disancia recorre en el doceavo seg? Para el MRUV se iene: x Vo + a ; pero co0mo inicia del reposo V o 0 luego: x luego : a x 9 x 8 x a(9 34x 7 (4)( 8 ) 4m / s ) 46m x a Para seg Para seg x a() a() 3 a(3) x Para 3seg x En general : Para n seg Para Para 8seg Para 9seg a(8 64) 34 x 8 a(8) 9 a(9) x x n a ( n ) PROBLEMS PROPUESTOS.-Un auo esá esperando que cambie la luz roja, cuando la luz cambia el auo acelera uniformemene durane 6 seg a razón de m/s, después del cual se mueve con velocidad consane en el insane que el auo comienza a moverse, un camión que se mueve a la misma dirección con velocidad de 0 m/s lo pasa. En que iempo se enconraran nuevamene el auo y el camión?.

6 .-Un auomovilisa viaja a una velocidad de 08 km/h, un policía de ransio que observa la maniobra sube a su moo y en el insane que pasa frene a él pare acelerando a razón de 4 m/s qué disancia fue alcanzado el infracor? 3.-Un auo corre en una pisa horizonal con una aceleración de m/s, después de 5 seg de pasar por el puno posee una velocidad de 7 km/h. Qué velocidad enía el auo cuando le falaba 9m para llegar al puno?. 4.- Dos móviles se desplaza con MRUV y recorre en el ercer segundo 6m menos que el recorrido en el sépimo segundo. Calcular la aceleración del móvil?. 5.- Dos móviles disanciados 64m paren simuláneamene al encuenro en línea reca y senido conrario con aceleraciones consanes de a 5 m/s y a 3 m/s. Después de cuanos segundos se enconraran?. 6.- Durane que seg un móvil que pare del reposo que iene un movimieno con aceleración consane recorrerá en riple del espacio recorrido durane 5 seg. 7.-Un auomóvil violando las reglas de ránsio se mueve a 08 km/h en una zona donde la velocidad máxima es de 80 km/h. Un policía arranca en su persecución juso cuando el auo pasa frene de él. La aceleración consane del policía es de 0.5 m/s. después de cuano iempo alcanza al auomóvil? 8.-un moorisa marcha 80 km/h cuando ve que un semáforo siuado a 50 m delane de él cambia a rojo. El sabe que durane 5seg permanece rojo. qué debe hacer para pasar el semáforo a 80 km/h jusamene cuando cambie al verde de nuevo? 9.-Un avión de caza, que vuela línea reca a 50 m/s, da alcance a un avión de bombardeo que vuela, según la misma línea, a 80 m/s. Cuando el caza esá 600m derás del bombardero su piloo dispara conra ese un cohee aire-aire. El cohee se acelera a un valor consane de 300 m/s durane un seg y después vuela consane. Cuános segundos ranscurrirán desde que se dispara el cohee hasa que alcanza al bombardero? 0.-Un auomóvil y un camión marcha a la velocidad consane de 0 km/h, el auomóvil va 0m derás del camión. El conducor del camión frena de repene, someiendo al vehículo a una aceleración consane de 3 m/s.dos segundos después frena el conducor del auomóvil de al manera que queda exacamene juno al camión, sin llegar a chocar con su pare rasera. Deerminar la aceleración consane que se aplica al auomóvil..-debido a un obsáculo, un moociclisa, en un iempo de 0, seg., cambia de dirección de su velocidad en 60. Si su rapidez de 5m/seg permanece consane. Qué aceleración media provocó el obsáculo sobre el móvil?.

7 .-Un obrero sale de casa a las 6 a.m. con dirección a la fábrica que queda a km y camina a razón de m/s, 0 min mas arde de la fábrica sale un moociclisa con una rapidez consane de 4 m/s en busca del obrero. Qué hora se encuenran? 3.-Un móvil pare del reposo con aceleración consane y arda 8 seg en recorrer una disancia de 600m que hay enre dos punos de su rayecoria. Hallar la velocidad en el primer puno y la disancia que hay enre el puno de parida hasa el primer puno. MOVIMIENTO DE CID LIBRE Es cuando un cuerpo recorre una rayecoria verical y cumple las condiciones del MRUV donde la aceleración es igual a la gravedad por lo que se puede analizar dos casos: a.- Cuando el cuerpo sube: b.- Cuando el cuerpo cae Y a g Y a g Mov. Mov. V V o y Vo V g g V o ay V Vo + y Vo + V g g V o + ay Problemas.-Un cuerpo es disparado vericalmene hacia arriba con una velocidad de 30 m/s si la alura es alcanzada por el cuerpo coincide con la de un edificio. Cuános pisos iene el edifico? (Cada piso 3m)

8 V Vo ay y V o g Nº ) V o 30m/ s El edificio iene 5 pisos.-de la azoea de un edificio se deja caer un cuerpo, se sabe que en el úlimo segundo de su caída recorre la miad de la alura del edificio. Qué iempo duró su caída?. y Y, seg Para el ramo final: Y V o + g Y g Para odo el ramo: V ( + ) + g( + y o y g( +) Igualando + + ) 0 ( )( + ) seg 0 Tiempo oal : + 3 seg. 3.-Un observador mira a ravés de una rendija muy angosa, ve pasar un cuerpo vericalmene hacia arriba y 8 seg después lo ve pasar hacia abajo. Si dicho cuerpo fue impulsado desde el piso con una velocidad de 49m/s. qué alura del piso se encuenra los ojos del observador?. Y o Y El ojo del observador se encuenra a una alura Y Cuando vuelve y pasa por los ojos pasó 4 seg y recorrió Y o y V g o o + g (9.8)( 4 ) y o m

9 Deerminando la velocidad con la que pasa en el mismo puno es igual cuando sube o baja V ayo (9.8)(78.4) 39.m / s Cuando sube pariendo del piso y cuando pasa por el observador: V V ay y o V V o g (9.8) m 4.-Un alumno de Biofisica mira por una venana de 4 pies de alura en un deerminado insane ve pasar un cuerpo vericalmene hacia arriba y luego de regreso hacia abajo. Si el iempo oal que el alumno ve el cuerpo es de ¼ de seg. qué alura por encima del marco superior de la venana ascenderá dicho cuerpo?. 4 pies /4seg y o + V g (( ) + g( ) 8 8 y + 4 V g [( + ) ] seg 5.-Un globo aéreo esáico asciende vericalmene con una velocidad consane de 3 pies/seg, cuando dicho globo se encuenra a una alura de 768 pies se deja caer un cuerpo. Qué iempo se demora dicho cuerpo en llegar al piso?. 6.- De la base de un pozo se deja caer un cuerpo y después de un minuo con 8 seg, la persona que dejó caer el cuerpo escucha el golpe en el fondo. Qué profundidad iene el pozo? 7.-un observador ve pasar un cuerpo hacia arriba y 6 seg. mas arde lo ve pasar hacia abajo. Calcular la velocidad inicial y la alura máxima que alcanza si los ojos de la persona esaban a 49.9 m del piso? 7.-De la azoea de un edificio se deja caer un cuerpo el cuál para cruzar frene a una venana de 3 pies de alura se demora ¼ de seg. Cuál es la disancia que exise enre la azoea y el marco superior de la venana? 8.- Desde un puene que esá a 44 pies sobre el agua se deja caer una piedra. Ora piedra se arroja vericalmene hacia abajo un seg después de solar la primera. mbas piedras llegan al agua al mismo insane. Cuál es la velocidad inicial de la segunda piedra? 9.-Desde y B se lanza en el mismo insane objeos vericalmene hacia arriba con velocidades V y V, si el objeo que se lanzó de llega solo hasa B Cuál es la disancia que separa a los objeos cuando el cuerpo que se lanzó de B comienza a descender?

10 V B h V 3.-Por el pozo de una mina caen goas de agua a la velocidad uniforme de una goa por segundo. Un monacargas, que baja por el pozo a 8 m/s, es alcanzado por una goa de agua cuando esá 80m por debajo del suelo. Dónde y en qué iempo alcanzará la próxima goa de agua al monacargas? 4.- Un muchacho lanza una peloa vericalmene hacía arriba con una velocidad inicial de 4 m/s. dos segundos mas arde lanza una segunda peloa con la misma velocidad inicial de la primera. Se desea saber si esos chocan en el aire y en que iempo después de lanzada la peloa. 0.-Se deja caer una piedra desde un elevado edificio y seg. Mas arde es lanzada ora piedra vericalmene hacia abajo con Vo 45 m/seg. Cuál es el iempo que arda en alcanzar a la primera piedra?.-lanzamos un cuerpo vericalmene hacia arriba con una velocidad de 0 m/s. que disancia del puno de lanzamieno dicho cuerpo endrá una velocidad de 30 m/s? (g 0 m/s) 9.-Para deerminar la profundidad de un pozo, se deja caer libremene una piedra, se hoye el choque con el fondo al cabo de 6 seg. Cuál será dicha profundidad sabiendo que la velocidad del sonido es de 334 m/seg?

= Δx 2. Escogiendo un sistema de referencia común para ambos móviles x A

= Δx 2. Escogiendo un sistema de referencia común para ambos móviles x A Ejemplos de solución a problemas de Cinemáica de la parícula Diseño en PDF MSc. Carlos Álvarez Marínez de Sanelices, Dpo. Física, Universidad de Camagüey. Carlos.alvarez@reduc.edu.cu Acividad # C1. Un

Más detalles

Solución: El sistema de referencia, la posición del cuerpo en cada instante respecto a dicha referencia, el tiempo empleado y la trayectoria seguida.

Solución: El sistema de referencia, la posición del cuerpo en cada instante respecto a dicha referencia, el tiempo empleado y la trayectoria seguida. 1 Qué es necesario señalar para describir correcamene el movimieno de un cuerpo? El sisema de referencia, la posición del cuerpo en cada insane respeco a dicha referencia, el iempo empleado y la rayecoria

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS Dada la dependencia de la velocidad con la posición en un movimieno recilíneo mosrada por la siguiene gráfica, deerminar la dependencia con

Más detalles

FÍSICA. Centro Educativo de Nivel Secundario Nº 451 Anexo Universidad Tecnológica Nacional. Dirección de Capacitación No Docente.

FÍSICA. Centro Educativo de Nivel Secundario Nº 451 Anexo Universidad Tecnológica Nacional. Dirección de Capacitación No Docente. Cenro Educaivo de Nivel Secundario Nº 45 Anexo Universidad Tecnológica Nacional Dirección de Capaciación No Docene Dirección General de Culura y Educación Provincia de Buenos Aires FÍSICA Segundo Año Unidad

Más detalles

2 El movimiento y su descripción

2 El movimiento y su descripción El movimieno y su descripción EJERCICIOS PROPUESTOS. Una malea descansa sobre la cina ransporadora de un aeropuero. Describe cómo ve su movimieno un pasajero que esá: parado en la misma cina; en una cina

Más detalles

ACTIVIDADES UNIDAD 7: Funciones elementales

ACTIVIDADES UNIDAD 7: Funciones elementales ACTIVIDADES UNIDAD 7: Funciones elemenales 1. La facura del gas de una familia, en sepiembre, fue de 4,8 euros por 1 m 3, y en ocubre, de 43,81 por 4 m 3. a) Escribe la función que da el impore de la facura

Más detalles

TIPOS Y ESTUDIO DE LOS PRINCIPALES MOVIMIENTOS (CINEMÁTICA).

TIPOS Y ESTUDIO DE LOS PRINCIPALES MOVIMIENTOS (CINEMÁTICA). 1 TIPOS Y ESTUDIO DE LOS PRINCIPALES MOVIMIENTOS (CINEMÁTICA). Movimieno recilíneo uniforme. 1.- Un objeo se encuenra en el puno de coordenadas (4,) en unidades del SI moviéndose en el senido posiivo del

Más detalles

UD: 3. ENERGÍA Y POTENCIA ELÉCTRICA.

UD: 3. ENERGÍA Y POTENCIA ELÉCTRICA. D: 3. ENEGÍA Y OENCA ELÉCCA. La energía es definida como la capacidad de realizar rabajo y relacionada con el calor (ransferencia de energía), se percibe fundamenalmene en forma de energía cinéica, asociada

Más detalles

MATEMATICAS I FUNCIONES ELEMENTALES. PROBLEMAS

MATEMATICAS I FUNCIONES ELEMENTALES. PROBLEMAS 1º) La facura del gas se calcula a parir de una canidad fija y de un canidad variable que se calcula según los m 3 consumidos (el precio de cada m 3 es consane). El impore de la facura de una familia,

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS.

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS. CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS. Una parícula se muee en la dirección posiia del eje X, de modo que su elocidad aría según la ley = α donde α es una consane. Teniendo en cuena que en el

Más detalles

Guía para el examen de 4ª y 6ª oportunidad de FÍsica1

Guía para el examen de 4ª y 6ª oportunidad de FÍsica1 4a 4a 6a Guía para el examen de 4ª y 6ª oportunidad de FÍsica1 Capitulo 1 Introducción a la Física a) Clasificación y aplicaciones b) Sistemas de unidades Capitulo 2 Movimiento en una dimensión a) Conceptos

Más detalles

- FÓRMULAS - LEYES - GRÁFICAS -UNIFORMEMENTE VARIADO

- FÓRMULAS - LEYES - GRÁFICAS -UNIFORMEMENTE VARIADO E L - CONCEPTO - ELEMENTOS : - M O - I M I E N T O CLASES TEMA: EL MOIMIENTO - SEGÚN EL PUNTO DE REFERENCIA - SEGÚN LA TRAYECTORIA - SEGÚN LA ELOCIDAD UNIFORME ARIADO - FÓRMULAS - LEYES - GRÁFICAS -UNIFORMEMENTE

Más detalles

CINEMÁTICA II: MRUA. 370 GUÍA DE FÍSICA Y QUÍMICA 1. Bachillerato MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. PROBLEMAS RESUELTOS

CINEMÁTICA II: MRUA. 370 GUÍA DE FÍSICA Y QUÍMICA 1. Bachillerato MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. PROBLEMAS RESUELTOS CINEMÁTICA II: MRUA PROBLEMAS RESUELTOS PROBLEMA RESUELTO Una persona lanza un objeto desde el suelo verticalmente hacia arriba con velocidad inicial de 0 m/s. Calcula: a) La altura máxima alcanzada. b)

Más detalles

GUIA DE PROBLEMAS. 3) La velocidad de un auto en función del tiempo, sobre un tramo recto de una carretera, está dada por

GUIA DE PROBLEMAS. 3) La velocidad de un auto en función del tiempo, sobre un tramo recto de una carretera, está dada por Unidad : Cinemática de la partícula GUIA DE PROBLEMAS 1)-Un automóvil acelera en forma uniforme desde el reposo hasta 60 km/h en 8 s. Hallar su aceleración y desplazamiento durante ese tiempo. a = 0,59

Más detalles

F I S I C A LA GUIA SE ENTREGA PEGADA EN EL CUADERNO, CONTESTADA DIRECTAMENTE SOBRE LAS HOJAS IMPRESAS.

F I S I C A LA GUIA SE ENTREGA PEGADA EN EL CUADERNO, CONTESTADA DIRECTAMENTE SOBRE LAS HOJAS IMPRESAS. MC. Angélica slas Medina LA GUA SE ENTREGA PEGADA EN EL CUADERNO, CONTESTADA DRECTAMENTE SOBRE LAS HOJAS MPRESAS. RESUELVE LOS SGUENTES PROBLEMAS 1. Un muchacho parado encima de un edificio, suela una

Más detalles

1.CINEMÁTICA. Movimiento Se define el movimiento como el cambio de posición de algo respecto a un sistema de referencia

1.CINEMÁTICA. Movimiento Se define el movimiento como el cambio de posición de algo respecto a un sistema de referencia Magniudes fundamenales Son las magniudes que se pueden medir direcamene 1.CINEMÁTICA Definiciones Reposo Se define como el no cambiar de posición respeco a un sisema de referencia. No hay ningún cuerpo

Más detalles

GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME

GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME INSTITUTO NACIONAL Deparameno de Física Coordinación Segundo Medio 06. GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME NOMBRE: CURSO: Caracerísica general de M.R.U: Si una parícula se mueve en la dirección del

Más detalles

Índice. Tema 1: Cinemática. Capítulo 1: Introducción a la Cinemática

Índice. Tema 1: Cinemática. Capítulo 1: Introducción a la Cinemática Índice Tema 1: Cinemáica Capíulo 1: Inroducción a la Cinemáica TEMA 1: CINEMÁTICA Capíulo 1: Inroducción a la cinemáica Inroducción Dos nuevas ciencias Galileo Galilei (1564 164) El movimieno en el Renacimieno.

Más detalles

3 Aplicaciones de primer orden

3 Aplicaciones de primer orden CAÍTULO 3 Aplicaciones de primer orden 3.2. Modelo logísico El modelo de Malhus iene muchas limiaciones. or ejemplo, predice que una población crecerá exponencialmene con el iempo, que no ocurre en la

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Acividades del final de la unidad ACTIVIDADES DEL FINAL DE LA UNIDAD. Dibuja las gráficas x- y v- de los movimienos que corresponden a las siguienes ecuaciones: a) x = +. b) x = 8. c) x = +. Calcula la

Más detalles

Ejercicios de cinemática

Ejercicios de cinemática Ejercicios de cinemática 1.- Un ciclista recorre 32,4 km. en una hora. Calcula su rapidez media en m/s. (9 m/s) 2.- La distancia entre dos pueblos es de 12 km. Un ciclista viaja de uno a otro a una rapidez

Más detalles

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Campos de pendientes y líneas de fase

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Campos de pendientes y líneas de fase Lección 5 Técnicas cualiaivas para las Ecuaciones diferenciales de primer orden: Campos de pendienes y líneas de fase 5.. Técnicas Cualiaivas Hasa ahora hemos esudiado écnicas analíicas para calcular,

Más detalles

LANZAMIENTOS VERTICALES soluciones

LANZAMIENTOS VERTICALES soluciones LANZAMIENTOS VERTICALES soluciones 1.- Desde un puente se lanza una piedra con una velocidad inicial de 10 m/s y tarda 2 s en llegar al agua. Calcular la velocidad que lleva la piedra en el momento de

Más detalles

Física 2º Bach. Tema: Ondas 27/11/09

Física 2º Bach. Tema: Ondas 27/11/09 Física º Bach. Tema: Ondas 7/11/09 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Problemas [6 PUNTOS: 1 / APARTADO] 1. Una onda ransversal se propaga en el senido negaivo de las X con una velocidad de 5,00

Más detalles

EL MOVIMIENTO CUESTIONES Y PROBLEMAS RESUELTOS

EL MOVIMIENTO CUESTIONES Y PROBLEMAS RESUELTOS EL MOVIMIENTO CUESTIONES Y PROBLEMAS RESUELTOS 1 DIFICULTAD BAJA 1. Qué magnitud nos mide la rapidez con la que se producen los cambios de posición durante un movimiento? Defínela. La velocidad media.

Más detalles

MOVIMIENTO RECTILÍNEO

MOVIMIENTO RECTILÍNEO Transparencia Nº 1. CINEMÁTICA. MOVIMIENTO QUÉ ES EL MOVIMIENTO? Cambio de posición de un móvil con el iempo. TIPOS DE MOVIMIENTO Según su rayecoria Todo movimieno es RELATIVO Lo rápido del cambio lo indoca

Más detalles

Para revisarlos ponga cuidado en los paréntesis. No se confunda.

Para revisarlos ponga cuidado en los paréntesis. No se confunda. Ejercicios MRUA Para revisarlos ponga cuidado en los paréntesis. No se confunda. 1.- Un cuerpo se mueve, partiendo del reposo, con una aceleración constante de 8 m/s 2. Calcular: a) la velocidad que tiene

Más detalles

Ejercicios resueltos de cinemática

Ejercicios resueltos de cinemática Ejercicios resueltos de cinemática 1) Un cuerpo situado 50 metros por debajo del origen, se mueve verticalmente con velocidad inicial de 20 m/s, siendo la aceleración de la gravedad g = 9,8 m/s 2. a) Escribe

Más detalles

Trabajo Práctico 1 Cinemática: el estudio del movimiento

Trabajo Práctico 1 Cinemática: el estudio del movimiento Trabajo Prácico 1 Cinemáica: el esudio del movimieno 1. Cómo e das cuena que un cuerpo esá en movimieno? Qué significa decir que el movimieno es relaivo? 2. Qué diferencia hay enre la rapidez y la velocidad?

Más detalles

1. El vector de posición de una partícula viene dado por la expresión: r = 3t 2 i 3t j.

1. El vector de posición de una partícula viene dado por la expresión: r = 3t 2 i 3t j. 1 1. El vector de posición de una partícula viene dado por la expresión: r = 3t 2 i 3t j. a) Halla la posición de la partícula para t = 3 s. b) Halla la distancia al origen para t = 3 s. 2. La velocidad

Más detalles

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Física General Proyeco PMME - Curso 8 Insiuo de Física Faculad de Ineniería UdelaR CÓMO GANAR UN PARTIDO DE FÚTBOL SABIENDO FÍSICA Nahuel Barrios, Juan Pablo Gadea, Valenina Groposo, Luciana Marínez. INTRODUCCIÓN

Más detalles

UNA APROXIMACION A LA SOSTENIBILIDAD FISCAL EN REPUBLICA DOMINICANA Juan Temístocles Montás

UNA APROXIMACION A LA SOSTENIBILIDAD FISCAL EN REPUBLICA DOMINICANA Juan Temístocles Montás UNA APROXIMACION A LA SOSTENIBILIDAD FISCAL EN REPUBLICA DOMINICANA Juan Temísocles Monás Puede el comporamieno acual de la políica fiscal sosenerse sin generar una deuda pública que crezca sin límie?

Más detalles

De las siguientes funciones decir cuál de ellas son funciones, y en ese caso indica el dominio y el recorrido.

De las siguientes funciones decir cuál de ellas son funciones, y en ese caso indica el dominio y el recorrido. EJERCICIOS FUNCIONES 4º OPCIÓN B 1 De las siguienes funciones decir cuál de ellas son funciones, en ese caso indica el dominio el recorrido. a) b) c) Aplicando el es de la línea verical se observa que

Más detalles

Energía mecánica y Caída Libre y lanzamiento vertical hacia arriba

Energía mecánica y Caída Libre y lanzamiento vertical hacia arriba Soluciones Energía mecánica y Caída Libre y lanzamiento vertical hacia arriba Si no se dice otra cosa, no debe considerarse el efecto del roce con el aire. 1.- Un objeto de masa m cae libremente de cierta

Más detalles

Las derivadas de los instrumentos de renta fija

Las derivadas de los instrumentos de renta fija Las derivadas de los insrumenos de rena fija Esrella Peroi, MBA Ejecuivo a cargo Capaciación & Desarrollo Bolsa de Comercio de Rosario eperoi@bcr.com.ar Como viéramos en el arículo el dilema enre la asa

Más detalles

Funciones exponenciales y logarítmicas

Funciones exponenciales y logarítmicas 89566 _ 0363-00.qd 7/6/08 09:30 Página 363 Funciones eponenciales y logarímicas INTRODUCCIÓN En esa unidad se esudian dos funciones que se aplican a numerosas siuaciones coidianas y, sobre odo, a fenómenos

Más detalles

PROBLEMAS RESUELTOS MOVIMIENTO EN DOS DIMENSIONES CAPITULO 4 FISICA TOMO 1. Cuarta y quinta edición. Raymond A. Serway

PROBLEMAS RESUELTOS MOVIMIENTO EN DOS DIMENSIONES CAPITULO 4 FISICA TOMO 1. Cuarta y quinta edición. Raymond A. Serway PROBLEMAS RESUELTOS MOIMIENTO EN DOS DIMENSIONES CAPITULO 4 FISICA TOMO Cuara y quina edición Raymond A. Serway MOIMIENTO EN DOS DIMENSIONES 4. Los vecores de desplazamieno, velocidad y aceleración 4.

Más detalles

Dispositivos semiconductores

Dispositivos semiconductores Deparameno de Telecomunicaciones Disposiivos semiconducores 3 Inroduccion Veremos los disposiivos semiconducores más básicos: los diodos. Veremos las variables más comunes de esos semiconducores; El diodo

Más detalles

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N Ejercicios de dinámica, fuerzas (4º de ESO/ 1º Bachillerato): 1º Calcular la masa de un cuerpo que al recibir una fuerza de 0 N adquiere una aceleración de 5 m/s. Sol: 4 kg. º Calcular la masa de un cuerpo

Más detalles

La masa es la magnitud física que mide la inercia de los cuerpos: N

La masa es la magnitud física que mide la inercia de los cuerpos: N Pág. 1 16 Las siguientes frases, son verdaderas o falsas? a) Si el primer niño de una fila de niños que corren a la misma velocidad lanza una pelota verticalmente hacia arriba, al caer la recogerá alguno

Más detalles

Práctica 2: Análisis en el tiempo de circuitos RL y RC

Práctica 2: Análisis en el tiempo de circuitos RL y RC Prácica 2: Análisis en el iempo de circuios RL y RC Objeivo Esudiar la respuesa ransioria en circuios serie RL y RC. Se preende ambién que el alumno comprenda el concepo de filro y su uilidad. 1.- INTRODUCCIÓN

Más detalles

CINEMÁTICA. 2/34 Pon dos ejemplos de movimientos con trayectoria rectilínea y de movimientos con trayectoria circular.

CINEMÁTICA. 2/34 Pon dos ejemplos de movimientos con trayectoria rectilínea y de movimientos con trayectoria circular. CINEMÁTICA /34 Un ren pare de una esación. Una niña senada en su inerior lanza hacia arria una peloa y la recoge al caer. Diuja la rayecoria de la peloa al como la ven la niña y la jefe de esación siuada

Más detalles

PROBLEMAS RESUELTOS 1 (continuidad, derivabilidad y diferenciabilidad de funciones de varias variables)

PROBLEMAS RESUELTOS 1 (continuidad, derivabilidad y diferenciabilidad de funciones de varias variables) Funciones de varias variables. PROBLEMAS RESUELTOS 1 (coninuidad, derivabilidad y diferenciabilidad de funciones de varias variables) PROBLEMA 1 Esudiar la coninuidad de la función: xy ( xy, ) (,) x +

Más detalles

TEMA 9: LA TASA NATURAL DE DESEMPLEO Y LA CURVA DE PHILLIPS

TEMA 9: LA TASA NATURAL DE DESEMPLEO Y LA CURVA DE PHILLIPS TEMA 9: LA TASA NATURAL DE DESEMPLEO Y LA CURVA DE PHILLIPS 9.2 La asa naural de desempleo y la curva de Phillips La relación enre el desempleo y la inflación La curva de Phillips, basada en los daos aneriores

Más detalles

Ecuaciones diferenciales, conceptos básicos y aplicaciones

Ecuaciones diferenciales, conceptos básicos y aplicaciones GUIA 1 Ecuaciones diferenciales, concepos básicos y aplicaciones Las ecuaciones diferenciales ordinarias son una herramiena básica en las ciencias y las ingenierías para el esudio de sisemas dinámicos

Más detalles

EJERCICIOS DE TRABAJO, POTENCIA Y ENERGÍA. CONSERVACIÓN DE LA ENERGÍA MECÁNICA. 4º E.S.O.

EJERCICIOS DE TRABAJO, POTENCIA Y ENERGÍA. CONSERVACIÓN DE LA ENERGÍA MECÁNICA. 4º E.S.O. EJERCICIOS DE TRABAJO, POTENCIA Y ENERGÍA. CONSERVACIÓN DE LA ENERGÍA MECÁNICA. 4º La finalidad de este trabajo implica tres pasos: a) Leer el enunciado e intentar resolver el problema sin mirar la solución.

Más detalles

MACROECONOMIA II. Grado Economía 2013-2014

MACROECONOMIA II. Grado Economía 2013-2014 MACROECONOMIA II Grado Economía 2013-2014 PARTE II: FUNDAMENTOS MICROECONÓMICOS DE LA MACROECONOMÍA 3 4 5 Tema 2 Las expecaivas: los insrumenos básicos De qué dependen las decisiones económicas? Tipo de

Más detalles

TEMA: FUNCIONES: Cuadrantes 3 er cuadrante, x 0, 4º cuadrante, x 0,

TEMA: FUNCIONES: Cuadrantes 3 er cuadrante, x 0, 4º cuadrante, x 0, TEMA: FUNCIONES: ÍNDICE:. Inroducción.. Dominio y recorrido.. Gráficas de funciones elemenales. Funciones definidas a rozos. 4. Coninuidad.. Crecimieno y decrecimieno, máimos y mínimos. 6. Concavidad y

Más detalles

FUNCIONES VECTORIALES CON DERIVE.

FUNCIONES VECTORIALES CON DERIVE. FUNCIONES VECTORIALES CON DERIVE. Las operaciones de cálculo de Dominio, adición susracción, muliplicación escalar y vecorial de funciones vecoriales, se realizan de manera similar a las operaciones con

Más detalles

{ 3} Nota. La raíz no impone condiciones al dominio por ser de índice impar.

{ 3} Nota. La raíz no impone condiciones al dominio por ser de índice impar. . Esudia el dominio de las siguienes unciones: a ( : Función Racional, el dominio son odos los números reales ecepo los que anulen el denominador. R / 0 : 0 : : ± [ ( ] { } R ± { } b ( : Función Racional,

Más detalles

Construcción de señales usando escalones y rampas

Construcción de señales usando escalones y rampas Consrucción de señales usando escalones y rampas J. I. Huircán Universidad de La Fronera March 3, 24 bsrac Se planean méodos para componer y descomponer señales basadas en escalones y rampas. Se de ne

Más detalles

Decimos que un cuerpo se mueve cuando cambia de posición respecto a un sistema de referencia que se considera fijo.

Decimos que un cuerpo se mueve cuando cambia de posición respecto a un sistema de referencia que se considera fijo. 1. EL MOVIMIENTO Decimos que un cuerpo se mueve cuando cambia de posición respecto a un sistema de referencia que se considera fijo. Por ejemplo: el coche que se mueve cambia de posición respecto a unos

Más detalles

DERECHOS BÁSICOS DE APRENDIZAJE matemáticas - grado 9

DERECHOS BÁSICOS DE APRENDIZAJE matemáticas - grado 9 4 Reconoce el significado de los eponenes racionales posiivos negaivos uiliza las lees de los eponenes. Por ejemplo: 7 7 7 + 7 4 7 7 7 7 40 ( 7 / ) / 7 / / 7 /0 0 7,... Uiliza la noación cienífica para

Más detalles

1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0102) Movimiento Rectilíneo Horizontal

1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0102) Movimiento Rectilíneo Horizontal Física General I Paralelos 5 y. Profesor Rodrigoergara R ) Movimieno Recilíneo Horizonal ) Concepos basicos Definir disancia recorrida, posición y cambio de posición. Definir vecores posicion, velocidad

Más detalles

PROCESOS ESTOCÁSTICOS PROCESOS ESTOCÁSTICOS INTEGRAL ESTOCÁSTICA ECUACIONES DIFERENCIALES ESTOCASTICAS: LEMA DE ITO

PROCESOS ESTOCÁSTICOS PROCESOS ESTOCÁSTICOS INTEGRAL ESTOCÁSTICA ECUACIONES DIFERENCIALES ESTOCASTICAS: LEMA DE ITO PROCESOS ESOCÁSICOS PROCESOS ESOCÁSICOS INEGRAL ESOCÁSICA ECUACIONES DIFERENCIALES ESOCASICAS: LEMA DE IO Procesos esocásicos Un proceso esocásico describe la evolución emporal de una variable aleaoria.

Más detalles

Práctica 20. CARGA Y DESCARGA DE UN CONDENSADOR ELÉCTRICO

Práctica 20. CARGA Y DESCARGA DE UN CONDENSADOR ELÉCTRICO Prácica 20. CARGA Y DESCARGA DE UN CONDENSADOR ELÉCTRICO OBJETIVOS Esudiar los procesos de carga y de descarga de un condensador. Medida de capacidades por el méodo de la consane de iempo. MATERIAL Generador

Más detalles

CINEMÁTICA I FYQ 1º BAC CC.

CINEMÁTICA I FYQ 1º BAC CC. www.matyfyq.com Página 1 de 5 Pregunta 1: La posición de una partícula en el plano viene dada por la ecuación vectorial: r(t) = (t 2 4) i + (t + 2) j En unidades del SI calcula: a) La posición de la partícula

Más detalles

( ) m / s en un ( ) m. Después de nadar ( ) m / s. a) Cuáles

( ) m / s en un ( ) m. Después de nadar ( ) m / s. a) Cuáles CINEMÁTICA: MOVIMIENTO TRIDIMENSIONAL, DATOS EN FUNCIÓN DEL TIEMPO. Una cucaracha sobre una mesa se arrasra con una aceleración consane dada por: a (.3ˆ i. ˆ j ) cm / s. Esa sale desde un puno ( 4, ) cm

Más detalles

MOVIMIENTO RECTILINEO UNIFORMEMENTE VARIADO (M.R.U.V)

MOVIMIENTO RECTILINEO UNIFORMEMENTE VARIADO (M.R.U.V) MOVIMIENTO RECTILINEO UNIFORMEMENTE VARIADO (M.R.U.V) CONCEPTO.- Es aquel mimien en el cual un móil recrre espacis dierenes en iemps iguales, en ese cas aría la Velcidad pr l an aparece la aceleración.

Más detalles

Experimento 3. Análisis del movimiento en una dimensión. Objetivos. Teoría

Experimento 3. Análisis del movimiento en una dimensión. Objetivos. Teoría Experimeno 3 Análisis del movimieno en una dimensión Objeivos. Esablecer la relación enre la posición y la velocidad de un cuerpo en movimieno 2. Definir la velocidad como el cambio de posición en un inervalo

Más detalles

INSTITUTO NACIONAL DE PESCA

INSTITUTO NACIONAL DE PESCA INSTITUTO NACIONAL DE PESCA Dirección General de Invesigación Pesquera en el Pacífico Nore Subdirección de Tecnología en el Pacífico Nore. Indicadores económico-financieros para la capura de camarón y

Más detalles

Tema 1. Movimiento de una Partícula

Tema 1. Movimiento de una Partícula Tema 1. Movimiento de una Partícula CONTENIDOS Rapidez media, velocidad media, velocidad instantánea y velocidad constante. Velocidades relativas sobre una línea recta (paralelas y colineales) Movimiento

Más detalles

UNIDAD DE CONOCIMIENTO Área: Ciencias Naturales y Educación Ambiental Asignatura: Física Docente: Erasmo Gaona Contreras

UNIDAD DE CONOCIMIENTO Área: Ciencias Naturales y Educación Ambiental Asignatura: Física Docente: Erasmo Gaona Contreras Unidad : CONCEPTOS FUNDAMENTALES DE LA FÍSICA Y VECTORES Tiempo: OBJETIVO Desarrollar el proceso de concepualización mediane la consrucción de los concepos fundamenales de la física a parir del análisis

Más detalles

Primer Concurso de Talentos 2008

Primer Concurso de Talentos 2008 AGEFIS Primer Concurso de Talentos 2008 Nombre: Grado Escolar: Escuela: Matrícula: Email: Teléfono: ( ) Indicaciones: Subraya la respuesta correcta para las preguntas con respuesta de opción múltiple.

Más detalles

Su viaje hasta El Cabrito LISTA DE COMPROBACIÓN

Su viaje hasta El Cabrito LISTA DE COMPROBACIÓN Su viaje hasa El Cabrio INFORMACIÓN SOBRE EL TRANSCURSO DEL VIAJE El viaje hasa El Cabrio sigue siendo una pequeña "avenura" porque la pequeña isla canaria de La Gomera no cuena con un aeropuero inernacional

Más detalles

PRÁCTICA 3: Sistemas de Orden Superior:

PRÁCTICA 3: Sistemas de Orden Superior: PRÁCTICA 3: Sisemas de Orden Superior: Idenificación de modelo de POMTM. Esabilidad y Régimen Permanene de Sisemas Realimenados Conrol e Insrumenación de Procesos Químicos. . INTRODUCCIÓN Esa prácica se

Más detalles

DEPARTAMENTO DE QUÍMICA ANALÍTICA Y TECNOLOGÍA DE ALIMENTOS

DEPARTAMENTO DE QUÍMICA ANALÍTICA Y TECNOLOGÍA DE ALIMENTOS DEPARTAMETO DE QUÍMICA AALÍTICA Y TECOLOGÍA DE ALIMETOS FUDAMETOS DE AÁLISIS ISTRUMETAL. 7º RELACIÓ DE PROBLEMAS..- Las susancias A y B ienen iempos de reención de 6.4 y 7.63 min, respecivamene, en una

Más detalles

Modulo II: Ondas. 1. Introducción a las Ondas 2. Ondas en cuerdas 3. Ondas sonoras y acústica

Modulo II: Ondas. 1. Introducción a las Ondas 2. Ondas en cuerdas 3. Ondas sonoras y acústica . Inroducción a las Ondas. Ondas en cuerdas 3. Ondas sonoras acúsica Modulo II: Ondas. Ejemplos deinición de onda. Función de onda iajera.3 Ondas armónicas.4 Ecuación de ondas elocidad de propagación Bibliograía:

Más detalles

CIENCIA TECNOLOGÍA Y AMBIENTE

CIENCIA TECNOLOGÍA Y AMBIENTE CIENCIA TECNOLOGÍA Y AMBIENTE MOVIMIENTO RECTILÍNEO UNIFORMENTE VARIADO PROF: JAIME QUISPE CASAS I.E.P.Nº 874 Ex 45 03 MOVIMIENTO RECTILINEO UNIFORMEMENTE VARIADO La luz y el sonio en su propagación por

Más detalles

INSTITUCION EDUCATIVA DEPARTAMENTAL SAN PATRICIO PUENTE DE PÌEDRA MADRID

INSTITUCION EDUCATIVA DEPARTAMENTAL SAN PATRICIO PUENTE DE PÌEDRA MADRID TRABAJO DE RECUPERACION FISICA SEGUNDO PERIODO GRADO 1000 PRESENTADO POR: GRADO: PRESENTADO A: Ing. ALEXANDER CABALLERO FECHA DE ENTREGA: Junio 5 de 2013 FECHA DE RECIBIDO: 1 TRABAJO DE RECUPERACION FISICA

Más detalles

Capítulo 2 Cinemática

Capítulo 2 Cinemática Capíulo 2 Cinemáica 32 Problemas de selección - página 29 (soluciones en la página 104) 17 Problemas de desarrollo - página 40 (soluciones en la página 105) 27 2.A PROBLEMAS DE SELECCIÓN Sección 2.A Problemas

Más detalles

Tema 3. Trabajo y Energía

Tema 3. Trabajo y Energía Tema 3. Trabajo y Energía CONTENIDOS Energía, trabajo y potencia. Unidades SI (conceptos y cálculos) Teorema del trabajo y la energía. Energía cinética (conceptos y cálculos) Fuerzas conservativas. Energía

Más detalles

Problemas de Cinemática. Movimiento rectilíneo uniforme y uniformemente variado. Cinemática

Problemas de Cinemática. Movimiento rectilíneo uniforme y uniformemente variado. Cinemática Problemas de Cinemática Movimiento rectilíneo uniforme y uniformemente variado 1.- Un móvil recorre una recta con velocidad constante. En los instantes t1= 0,5s. y t2= 4s. sus posiciones son: X1= 9,5cm.

Más detalles

6. Movimiento Rectilíneo Uniforme

6. Movimiento Rectilíneo Uniforme 6. Movimieno Recilíneo Uniforme La velocia e un vehículo es mayor en las recas que en las curvas. Cuano un físico se refiere a la prisa con la que se mueve un cuerpo, aemás e conocer su rapiez, necesia

Más detalles

3. Una pelota se lanza desde el suelo hacia arriba. En un segundo llega hasta una altura de 25 m. Cuál será la máxima altura alcanzada?

3. Una pelota se lanza desde el suelo hacia arriba. En un segundo llega hasta una altura de 25 m. Cuál será la máxima altura alcanzada? Problemas de Cinemática 1 o Bachillerato Caída libre y tiro horizontal 1. Desde un puente se tira hacia arriba una piedra con una velocidad inicial de 6 m/s. Calcula: a) Hasta qué altura se eleva la piedra;

Más detalles

Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética

Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética Problema 1: Sobre un cuerpo que se desplaza 20 m está aplicada una fuerza constante, cuya intensidad es de

Más detalles

MATEMÁTICAS Y TECNOLOGÍA CON CALCULADORA GRÁFICA

MATEMÁTICAS Y TECNOLOGÍA CON CALCULADORA GRÁFICA MATEMÁTICAS Y TECNOLOGÍA CON CALCULADORA GRÁFICA 6. MECÁNICA CON LA FX 986G SLIM DIVISIÓN DIDÁCTICA MAURICIO CONTRERAS MATEMÁTICAS Y TECNOLOGÍA CON CALCULADORA GRÁFICA Enero/Febrero 8 Inroducción MECÁNICA

Más detalles

Su viaje hasta Hotel Finca El Cabrito LISTA DE COMPROBACIÓN

Su viaje hasta Hotel Finca El Cabrito LISTA DE COMPROBACIÓN Su viaje hasa Hoel Finca El Cabrio INFORMACIÓN SOBRE EL TRANSCURSO DEL VIAJE El viaje hasa El Cabrio sigue siendo una pequeña "avenura" porque la pequeña isla canaria de La Gomera no cuena con un aeropuero

Más detalles

d s = 2 Experimento 3

d s = 2 Experimento 3 Experimento 3 ANÁLISIS DEL MOVIMIENTO EN UNA DIMENSIÓN Objetivos 1. Establecer la relación entre la posición y la velocidad de un cuerpo en movimiento 2. Calcular la velocidad como el cambio de posición

Más detalles

La Cinemática es la parte de la Física que estudia los movimientos sin preocuparse de la causa que los produce.

La Cinemática es la parte de la Física que estudia los movimientos sin preocuparse de la causa que los produce. CINEMÁTICA La Cinemáica es la pare de la Física que esudia los moimienos sin preocuparse de la causa que los produce. SISTEMA DE REFERENCIA, POSICIÓN Y TRAYECTORIA Un cuerpo esá en moimieno cuando su posición

Más detalles

Observa el diagrama del centro y determina cual de los siguientes corresponde a un diagrama v-t para ese movimiento

Observa el diagrama del centro y determina cual de los siguientes corresponde a un diagrama v-t para ese movimiento De las gráficas. Indica aquellas que presentan movimiento rectilíneo uniforme así como las que pertenecen al movimiento rectilíneo uniformemente acelerado Observa el diagrama del centro y determina cual

Más detalles

IES RIBERA DE CASTILLA ENERGÍA MECÁNICA Y TRABAJO

IES RIBERA DE CASTILLA ENERGÍA MECÁNICA Y TRABAJO UNIDAD 6 ENERGÍA MECÁNICA Y TRABAJO La energía y sus propiedades. Formas de manifestarse. Conservación de la energía. Transferencias de energía: trabajo y calor. Fuentes de energía. Renovables. No renovables.

Más detalles

RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN. Razón de cambio instantánea y la derivada de una función

RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN. Razón de cambio instantánea y la derivada de una función RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN Razón de cambio insanánea y la derivada de una función anerior Reomemos nuevamene el problema del proyecil esudiado en la secuencia

Más detalles

ECUACIÓN DEL MOVIMIENTO (PARAMÉTRICA)

ECUACIÓN DEL MOVIMIENTO (PARAMÉTRICA) CINEMÁTICA PUNTO MATERIAL O PARTÍCULA: OBJETO DE DIMENSIONES DESPRECIABLES FRENTE A LAS DISTANCIAS ENTRE ÉL Y LOS OBJETOS CON LOS QUE INTERACCIONA. SISTEMA DE REFERENCIA: CONUNTO BIEN DEFINIDO QUE, EN

Más detalles

CONTENIDO CINEMÁTICA DE LA PARTÍCULA. Sistemas de coordenadas. Ecuación de la trayectoria. Vectores posición, velocidad y aceleración

CONTENIDO CINEMÁTICA DE LA PARTÍCULA. Sistemas de coordenadas. Ecuación de la trayectoria. Vectores posición, velocidad y aceleración CONTENIDO Sisemas de coordenadas Ecuación de la rayecoria Vecores posición, velocidad y aceleración Componenes inrínsecas de la aceleración Movimieno circular Sisemas de referencia Movimieno relaivo: ransformaciones

Más detalles

Solución y criterios de corrección. Examen de mayores de 25 años. 2012. Matemáticas aplicadas a las ciencias sociales.

Solución y criterios de corrección. Examen de mayores de 25 años. 2012. Matemáticas aplicadas a las ciencias sociales. Solución y crierios de corrección. Examen de mayores de años.. Maemáicas aplicadas a las ciencias sociales. BLOQUE A En un cenro de ocio hay salas de cine: A, B y. A una deerminada sesión han acudido personas.

Más detalles

www.matyfyq.blogspot.com EJERCICIOS CINEMÁTICA 4ºESO:

www.matyfyq.blogspot.com EJERCICIOS CINEMÁTICA 4ºESO: Estes exercicios foron sacados de www.matyfyq.blogspot.com EJERCICIOS CINEMÁTICA 4ºESO: 1- Define brevemente los siguientes conceptos: Posición. Trayectoria. Espacio recorrido. Desplazamiento Velocidad

Más detalles

COLEGIO HISPANO-INGLÉS SEMINARIO DE FÍSICA Y QUÍMICA SIMULACRO.

COLEGIO HISPANO-INGLÉS SEMINARIO DE FÍSICA Y QUÍMICA SIMULACRO. COLEGIO HISPANO-INGLÉS SIMULACRO. SEMINARIO DE FÍSICA Y QUÍMICA 1.- Las ecuaciones de la trayectoria (componentes cartesianas en función de t de la posición) de una partícula son x=t 2 +2; y = 2t 2-1;

Más detalles

TEMA 2: CINETICA DE LA TRASLACIÓN

TEMA 2: CINETICA DE LA TRASLACIÓN TEMA 2: CINETICA DE LA TRASLACIÓN 1.1. Inroducción. Para ener caracerizado un movimieno mecánico cualquiera, hay que esablecer primero respeco a que cuerpo (s) se va a considerar dicho movimieno. Ese cuerpo

Más detalles

E G m g h r CONCEPTO DE ENERGÍA - CINÉTICA - POTENCIAL - MECÁNICA

E G m g h r CONCEPTO DE ENERGÍA - CINÉTICA - POTENCIAL - MECÁNICA Por energía entendemos la capacidad que posee un cuerpo para poder producir cambios en sí mismo o en otros cuerpos. Es una propiedad que asociamos a los cuerpos para poder explicar estos cambios. Ec 1

Más detalles

Nota Técnica Índice de Tipo de Cambio Efectivo Real Multilateral con ponderadores móviles

Nota Técnica Índice de Tipo de Cambio Efectivo Real Multilateral con ponderadores móviles Noa Técnica Índice de Tipo de Cambio Efecivo Real Mulilaeral con ponderadores móviles 1. Inroducción: La presene noa écnica preende inroducir y explicar al público el Índice de Tipo de Cambio Efecivo Real

Más detalles

01 Ejercicios de Selectividad Matrices y Sistemas de Ecuaciones

01 Ejercicios de Selectividad Matrices y Sistemas de Ecuaciones 01 Ejercicios de Selecividad Marices y Sisemas de Ecuaciones Ejercicios propuesos en 009 1- [009-1-A-1] a) [1 5] En un comercio de bricolaje se venden lisones de madera de res longiudes: 090 m, 150 m y

Más detalles

1. Derivadas de funciones de una variable. Recta tangente.

1. Derivadas de funciones de una variable. Recta tangente. 1. Derivadas de funciones de una variable. Reca angene. Derivadas Vamos a ver en ese capíulo la generalización del concepo de derivada de funciones reales de una variable a funciones vecoriales con varias

Más detalles

Análisis de inversiones y proyectos de inversión

Análisis de inversiones y proyectos de inversión Análisis de inversiones y proyecos de inversión Auora: Dra. Maie Seco Benedico Índice 5. Análisis de Inversiones 1. Inroducción. 2. Crierios para la valoración de un proyeco. 3. Técnicas de valoración

Más detalles

TRABAJO Y ENERGIA: IMPULSO

TRABAJO Y ENERGIA: IMPULSO TRABAJO Y ENERGIA: IMPULSO Un paquee de 10 kg cae de una rampa con v = 3 m/s a una carrea de 25 kg en reposo, pudiendo ésa rodar libremene. Deerminar: a) la velocidad final de la carrea, b) el impulso

Más detalles

FÍSICA Y QUÍMICA 1º BACHILLERATO

FÍSICA Y QUÍMICA 1º BACHILLERATO FÍSICA Y QUÍMICA 1º BACHILLERATO BLOQUE I: MECÁNICA Unidad 1: Cinemáica 1. INTRODUCCIÓN (pp. 8-3) 1.1. Definición de movimieno. Relaividad del movimieno Un cuerpo esá en movimieno cuando cambia de posición

Más detalles

Representación gráfica de curvas en forma paramétrica x a(t sent) 1.- Representar la curva dada por

Representación gráfica de curvas en forma paramétrica x a(t sent) 1.- Representar la curva dada por Represenación gráfica de curvas en forma paramérica x a( sen) 1.- Represenar la curva dada por, siendo a > 0. y a(1 cos).- Emparejar cada curva con su gráfica ì ì x = a) ï x = í b) ï ì í ï c) ï x = - sen

Más detalles

PROBLEMAS RESUELTOS DE PLANO INCLINADO. Erving Quintero Gil Ing. Electromecánico Bucaramanga Colombia 2010

PROBLEMAS RESUELTOS DE PLANO INCLINADO. Erving Quintero Gil Ing. Electromecánico Bucaramanga Colombia 2010 PROBLEMAS RESUELOS DE PLANO INCLINADO Erving Quintero Gil Ing. Electromecánico Bucaramanga Colombia 010 Para cualquier inquietud o consulta escribir a: quintere@hotmail.com quintere@gmail.com quintere006@yahoo.com

Más detalles

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d.

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d. C U R S O: FÍSICA COMÚN MATERIAL: FC-09 TRABAJO Y ENERGÍA La energía desempeña un papel muy importante en el mundo actual, por lo cual se justifica que la conozcamos mejor. Iniciamos nuestro estudio presentando

Más detalles

Cinemática. El ángulo que forman las gotas de lluvia con la horizontal de la ventana es: 8,9 tg 0,46 arc tg 0,46 24,76º 19,3

Cinemática. El ángulo que forman las gotas de lluvia con la horizontal de la ventana es: 8,9 tg 0,46 arc tg 0,46 24,76º 19,3 Cinemáica. Un auomóil se muee con una elocidad de 9,3 m/s y cae lluia a 8,9 m/s en forma direca hacia abajo. Qué ángulo forma la lluia con respeco a la horizonal en la enanilla del conducor? El ángulo

Más detalles