int(s) o int(s, var) S puede ser una expresión simbólica o el nombre de una expresión simbólica.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "int(s) o int(s, var) S puede ser una expresión simbólica o el nombre de una expresión simbólica."

Transcripción

1 Práctic 3: Cálculo Integrl con MtLb Curso

2 1 Introducción Un de los pquetes más útiles pr el cálculo con MtLb lo constituye Symbolic Mth Toolbox, que permite relizr cálculo simbólico vnzdo, es decir, se puede prescindir de signr un número un vrible y trtrl como un constnte genéric. Est herrmient disponible en MtLb nos permitir relizr operciones de integrción simbólic como clculr integrles definids, impropis o clculr áres, por ejemplo. 2 Cálculo de primitivs El cálculo de primitivs con MtLb es muy sencillo. utilizndo el comndo int, emplendo ls sintxis L integrción simbólic se llev cbo donde: int(s) o int(s, vr) S puede ser un expresión simbólic o el nombre de un expresión simbólic. En el comndo int(s), si l expresión contiene un únic vrible simbólic, el cálculo se llevrá cbo con respecto es vrible. Si l expresión contiene más de un vrible, l integrción se relizrá respecto l vrible simbólic por defecto (x). En el comndo int(s, vr), l integrción se relizrá con respecto l vrible vr. sintxis se utiliz pr integrr expresiones con más de un vrible simbólic. Est Del mismo modo que l derivción, l integrción se puede extender vectores y mtrices. Ejemplo.- Clcul (2cos(x) 6x)dx. >> S = 2 cos(x) 6 x; >> int(s) 2 sin(x) 3 x 2 MtLb no incluye l constnte de integrción que se debe tener en cuent en el cálculo de primitivs. Not 2.1 Si x no está definid como un vrible simbólic, utilizremos l siguiente sintxis: int( S, x ) En el cso del ejemplo nterior, tendrímos lo siguiente: 2

3 >> int( 2 cos(x) 6 x ) 2 sin(x) 3 x 2 O bien: >> int( 2 cos(x) 6 x, x ) 2 sin(x) 3 x 2 Sin embrgo, est versión de Mtlb nos d un viso como el que sigue: Wrning. The method chr/int will be removed in future relse. Use sym/int insted. Ejemplo.- Clcul x+1 (x 2 +1)(x 2 +4) dx. >> int((x + 1)/((x 2 + 1) (x 2 + 4)), x) log(x i) (1/6 i/6)+log(x+i) (i/6+1/6)+log(x 2 i) (i/12 1/6)+log(x+2 i) (i/12 1/6) Ejercicios: 1. Clcul I = e 4x dx. 2. Clcul x 5 logxdx. 3. Clcul cos(sen(x))dx. Mtlb permite introducir prámetros en ls integrles y, en consecuenci, podremos trbjr con ellos como si fuern constntes. Vemos un ejemplo. Ejemplo.- Clcul sen(x)cos(bx)dx. >> syms b x; >> int(sin( x) cos(b x), x) (b sin( x) sin(b x) + cos( x) cos(b x))/( 2 b 2) 3

4 Not 2.2 En los dos ejemplos nteriores, podrímos prescindir del segundo rgumento en el comndo int y en ese cso, l integrciń se relizrí con respecto l vrible simbólic por defecto x. 4

5 3 Integrles definids Ls integrles definids tmbién son conocids como integrles propis. Se dice que un integrl es propi si el integrndo está definido y es finito en un intervlo cerrdo y cotdo, cuyos extremos son los límites de integrción. Pr clculr integrles definids se utilizn ests vrintes del comndo int que vimos en l primer sección: int(s,, b) o int(s, vr,, b) donde: S puede ser un expresión simbólic o el nombre de un expresión simbólic. y b son los límites de integrción. Pueden ser esclres o vribles simbólics. El comndo int(s,, b) relizrá l integrl, si S solo depende de un vrible simbólic, con respecto dich vrible simbólic o, en cso de depender de más de un, lo hrá con respecto l vrible simbólic por defecto (x). El comndo int(s, vr,, b) relizrá l integrl con respecto l vrible simbólic vr. Ejemplo.- Clcul l integrl definid π 0 (sen(y) 5y2 )dy. >> syms y; >> int(sin(y) 5 y 2, 0, pi) 2 (5 pi 3)/3 Si l vrible x no está definid como simbólic, utilizrímos l siguiente sintxis: int( f, x,, b) L integrción es menudo un proceso difícil y puede suceder que ni siquier exist un respuest completmente cerrd pr un problem ddo. En ese cso, puede ocurrir que Mtlb no encuentre un solución y devolverá int(s) junto con un mensje del tipo Explicit integrl could not be found. Por otro ldo, si se dese obtener el resultdo en form deciml y con un número preciso de decimles, trs l instrucción int se usrí vp(i,n), que evlurá l expresión simbólic I con n cifrs decimles prefijds. Ejemplo.- Clcul el vlor de l integrl 1 0 x2 dx y expres el resultdo con tres cifrs decimles. 5

6 >> int(x 2, 0, 1) 1/3 >> vp(ns, 3).333 Not 3.1 Si tenemos el formto por defecto ( formt short) el número máximo de decimles es 4. 6

7 Ejercicios.- 1. Sen ls funciones f(x) = x y g(x) = (x + 1) 2. Clcul 2 (f + g)dx. Compr el resultdo 0 obtenido con 2 f(x)dx + 2 g(x)dx Clcul π kf(x)dx con f(x) = sen(x) y k = 5. π 2 k π f(x)dx. π 2 Compr el resultdo con el cálculo de 3. Clcul 1 1 f(x)dx donde f(x) = x2. 4. Se f(x) = cos(x). Clcul I = π f(x)dx. Explic qué sucede si clculmos 0 f(x)dx + π π π f(x)dx. 0 4 Integrles impropis El cálculo de integrles impropis combin el concepto de integrl definid y el de límite. Existen tres tipos de integrles impropis: Primer especie. Son quells en ls que l función integrr es cotd pero el intervlo de integrción no lo es. Segund especie. Son quells en ls que l función integrr no es cotd, mientrs que el intervlo de integrción sí que está cotdo. Tercer especie. Son un combinción de los dos tipos nteriores. A lo lrgo de est sección, veremos los psos seguir pr clculr integrles impropis emplendo MtLb. Ejemplo.- Clcul l integrl de primer especie 0 >> f = sin(x)/x; >> int(f, 0, inf) pi/2 Ejemplo.- Clcul l integrl de segund especie 1 0 sen(x) dx. x 1 dx. x 7

8 >> int(1/x, 0, 1) Inf Ejemplo.- Clcul l integrl de tercer especie 4 >> J = int(1/(x 2 5 x + 4), 4, Inf) J = Inf 1 dx. x 2 5x+4 5 Aplicciones geométrics 5.1 Cálculo de áres El cálculo de l integrl de un función no negtiv en un intervlo [, b] se interpret geométricmente como el áre delimitd por l gráfic de l función, el eje de bsciss y ls rects x =, x = b. Ejemplo.- Clcul el áre bjo l curv y = 5x 2 2x + 1 en el intervlo [0, 1]. >> int(5 x 2 2 x + 1, 0, 1) 5/3 Not 5.1 L prábol del ejercicio nterior tiene su gráfic en el semiplno positivo, pues sus ríces son complejs, como se puede comprobr utilizndo el comndo solve: >> solve(5 x 2 2 x + 1) 1/5 (2 i)/5 (2 i)/5 + 1/5 5.2 Cálculo de volúmenes Volumen de un sólido de secciones conocids Si cortmos un cuerpo por un plno perpendiculr l eje de bsciss, obtenemos un sección de áre A(x) en cd punto de bscis x. Entonces, el volumen de ese cuerpo comprendido entre los plnos perpendiculres l eje OX en los puntos de bsciss y b, viene ddo por: 8

9 V = b A(x)dx De modo nálogo, se puede definir el volumen de un sólido comprendido entre los plnos perpendiculres l eje OY. Ejemplo.- Hll el volumen limitdo por un elipsoide x2 + y2 + z2 = 1 2 b 2 c 2 Si cortmos el elipsoide por el plno x = k, l sección es l elipse y2 b 2 y 2 b 2 ( 2 k 2 ) + 2 z2 c 2 ( 2 k 2 ) = z2 c 2 = 1 k2 2, es decir, suyos semiejes son b 2 k 2 y c 2 k 2. El áre A(k) de l elipse viene dd por Entonces, el volumen pedido es A(k) = π bc 2 (2 k 2 ) V = Si clculmos l integrl con Mtlb obtenemos: >> syms b c x; >> A = pi (b c/ 2 ) ( 2 x 2 ); >> V = int(a, x,, ) V = (4 pi b c )/ Volumen de un cuerpo de revolución A(x)dx Si se hce girr l curv y = f(x) lrededor del eje de bsciss, se gener un sólido de revolución cuyos cortes l eje OX tienen áre A(x) = π(f(x)) 2. Por tnto: V = b π(f(x)) 2 dx Ejemplo.- Clcul el volumen del sólido generdo l hcer girr l región cotd por l función f(x) = x, l rect x = 3 y el eje de bsciss. Por lo tnto, si clculmos l integrl con Mtlb obtenemos: >> V = pi int( sqrt(x) 2, x, 0, 3) V = (9 pi)/2 9

10 5.3 Longitudes de rcos de curvs Se l curv y = f(x) con f función derivble y con derivd continu en [, b]. L longitud del rco de dich curv entre los puntos de bsciss y b, viene dd por: L = b 1 + (f (x)) 2 Ejemplo.- Clcul l longitud del rco de l curv y = (1 x 2 ) 1 2 (1,0). desde el punto (0, 1) l punto Se f(x) = (1 x 2 ) 1 2, entonces f (x) = x 1 x 2. Nótese que no existe l derivd de l función en el punto 1, s que tendrímos un integrl impropi. Por lo tnto, L = b (f (x)) 2 dx = 1 + x2 1 x dx = 2 Si utilizmos Mtlb pr clculr est integrl, obtenemos: >> L = int( sqrt(1/(1 x 2)), x, 0, 1) L = pi/ x 2 dx Not 5.2 Se podrín hcer todos los cálculos usndo Mtlb. En ese cso, tendrímos: >> f = sqrt(1 x 2); >> df = diff(f) df = x/(1 x 2) (1/2) >> A = sqrt(1 + df 2) A = (1 x 2/(x 2 1)) (1/2) >> L = int(a, x, 0, 1) L = pi/2 10

11 6 Integrción numéric L integrción numéric es utilizd pr clculr el vlor numérico de un integrl definid cundo no se puede clculr de form nlític. 6.1 Regl del trpecio Se un función f y queremos clculr b f(x)dx. b f() + f(b) f(x)dx (b ) 2 MtLb tiene implementd l regl del trpecio y el comndo propio es trpz, cuy sintxis es l siguiente trpz(x, y) Donde x e y son vectores de l mism dimensión. De est form, clculmos l integrl de y con respecto x. Ejemplo.- Clcul medinte l Regl del trpecio l integrl I 1 = 2 0 e(cos(x2 )) dx. Implementmos el código en un fichero (trpecio.m). = 0; b = 2; syms x; f = exp(cos(x 2)); f = subs(f, ); fb = subs(f, b); intf = ((b )/2) (f + fb) Ejecutmos: >> trpecio intf = Si repetimos el cálculo utilizndo trpz, obtenemos: >> x = [0 : 0.1 : 2]; >> y = exp(cos(x. 2)); >> I1 = trpz(x, y) I1 =

12 Si clculmos l integrl de form exct emplendo el cálculo simbólico obtenemos: >> f = exp(cos(x 2)); >> int(f, 0, 2) W rning : Explicit integrl could not be found. int(exp(cos(x 2)), x = 0..2) Ejercicio.- Clcul medinte l Regl del trpecio l integrl I 2 = 3 1 (e x2 )dx. 6.2 Regl de Simpson Se un función f y queremos clculr b f(x)dx.. b f(x)dx b 6 Ejemplo.- Clcul l integrl 2 0 e(cos(x2 )) dx. Implementmos el código en un fichero (simpson.m). = 0; b = 2; c = ( + b)/2; syms x; f = exp(cos(x 2)); f = subs(f, ); fb = subs(f, b); fc = subs(f, c); intf = ((b )/6) (f + 4 fc + fb) Ejecutmos: >> simpson intf = Ejercicio.- Clcul l integrl 3 1 e( x2) dx. ( f() + 4f( + b ) 2 ) + f(b) 12

13 7 Ejercicios A continución se proponen lgunos ejercicios en los que se utilizrán los conceptos desrrolldos en los prtdos nteriores. 1. Clcul 3 1 dx. x Clcul 0 b 2 1 x dx. 3. Clcul 1 16 (. Repetir el cálculo utilizndo l definición de integrl impropi y compr x 4) los resultdos obtenidos. 4. Clcul l integrl x medinte l regl del trpecio. 5. Clcul l integrl 3 1 ex sen(x)dx medinte l regl de Simpson. 6. Clcul el áre delimitd por l curv y = x 2 +3, el eje OX y ls rects x=0, x=4. Represent gráficmente l función, los ejes crtesinos y ls rects que delimitn el áre pedid. 7. Clcul l longitud del rco de l curv y = x 2 desde el origen hst el punto (2,4). 8. Clcul el volumen del sólido generdo l hcer girr l región cotd por l función f(y) = y 1, l rect y = 3 y el eje de ordends. 13

Integrales impropias

Integrales impropias Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral 5 Mtemátics I : Cálculo integrl en I Tem 4 Aplicciones de l integrl 4. Áres de superficies plns 4.. Funciones dds de form explícit A l vist del estudio de l integrl definid relizdo en el Tem 3, prece rzonle

Más detalles

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de

Más detalles

1. INTEGRALES DEFINIDAS E IMPROPIAS

1. INTEGRALES DEFINIDAS E IMPROPIAS . INTEGRALES DEFINIDAS E IMPROPIAS.. INTEGRAL DEFINIDA Se y = f(x) definid pr todo x [, b]. Consideremos un prtiión P del intervlo [, b] P {x 0 = < x < x 2 < < x n = b} Sen P = máx{x i x i }, s n = n m

Más detalles

Aplicaciones de la integral indefinida

Aplicaciones de la integral indefinida Aplicciones_de_l_integrl.n Aplicciones de l integrl indefinid Práctic de Cálculo, E.U.A.T,Grupos ºA y ºB, 2005 Est práctic muestr cómo clculr lguns áres y volúmenes utilizndo integrles. En cd cso dremos

Más detalles

Tema 4: Integrales Impropias

Tema 4: Integrales Impropias Prof. Susn López 1 Universidd Autónom de Mdrid Tem 4: Integrles Impropis 1 Integrl Impropi En l definición de un integrl definid f (x) se exigió que el intervlo [, b] fuese finito. Por otro ldo el teorem

Más detalles

Integral Definida. Aplicaciones

Integral Definida. Aplicaciones Itegrl Defiid. Apliccioes. Itegrl defiid. Defiició Se f(x u fució cotiu e u itervlo cerrdo [, b] y cosideremos el itervlo dividido e prtes igules x < x < x s < < x b. Pr cd subitervlo [x i, x i ], l fució

Más detalles

Integración en una variable. Aplicaciones

Integración en una variable. Aplicaciones Tem 4 Integrción en un vrible. Aplicciones Ls integrles formlizn un concepto bstnte sencillo e intuitivo, el de áre. Los orígenes del cálculo de áres los podemos encontrr en el método de exhución desrrolldo

Más detalles

CAPÍTULO XII. INTEGRALES IMPROPIAS

CAPÍTULO XII. INTEGRALES IMPROPIAS CAPÍTULO XII. INTEGRALES IMPROPIAS SECCIONES A. Integrles impropis de primer especie. B. Integrles impropis de segund especie. C. Aplicciones l cálculo de áres y volúmenes. D. Ejercicios propuestos. 9

Más detalles

INTEGRACIÓN. CÁLCULO DE

INTEGRACIÓN. CÁLCULO DE Cpítulo INTEGRACIÓN. CÁLCULO DE ÁREAS.. Introducción Si el problem del cálculo de l rect tngente llevó los mtemáticos del siglo XVII l desrrollo de ls técnics de l derivción, otro problem, el del cálculo

Más detalles

7.1. Definición de integral impropia y primeras propiedades

7.1. Definición de integral impropia y primeras propiedades Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,

Más detalles

Tema 4. Integración de Funciones de Variable Compleja

Tema 4. Integración de Funciones de Variable Compleja Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22 Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

Cálculo integral. Beatriz Campos Sancho Cristina Chiralt Monleon. Departament de matemàtiques. Codi d assignatura 305. Cálculo integral - UJI

Cálculo integral. Beatriz Campos Sancho Cristina Chiralt Monleon. Departament de matemàtiques. Codi d assignatura 305. Cálculo integral - UJI Cálculo integrl Betriz Cmpos Sncho Cristin Chirlt Monleon Deprtment de mtemàtiques Codi d ssigntur 35 Betriz Cmpos / Cristin Chirlt - ISBN: 978-84-694-64- Edit: Publiccions de l Universitt Jume I. Servei

Más detalles

CAPÍTULO 3 CÁLCULO INTEGRAL

CAPÍTULO 3 CÁLCULO INTEGRAL CAPÍTULO 3 CÁLCULO INTEGRAL. INTERROGANTES CENTRALES DEL CAPÍTULO Concepto de áre Sums de Riemnn Integrl definid Propieddes de l integrl definid Integrl indefinid Propieddes de l integrl indefinid Teorem

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua.

Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua. Integrción indefinid y definid. Aplicciones de l integrl: vlor medio de un función continu. Jun Ruiz 1 Mrcos Mrvá 1 1 Deprtmento de Mtemátics. Universidd de Alclá de Henres. Contenidos Introducción 1 Introducción

Más detalles

Herramientas computacionales para la matemática MATLAB: limites e integración

Herramientas computacionales para la matemática MATLAB: limites e integración Herramientas computacionales para la matemática MATLAB: limites e integración Verónica Borja Macías Junio 2012 1 límites La idea fundamental del cálculo es hacer el cálculo de una función cuando una variable

Más detalles

Introducción a la integración numérica

Introducción a la integración numérica Tem 7 Introducción l integrción numéric Versión: 13 de ril de 009 7.1 Motivción L integrl definid de un función continu f : [, ] R R en el intervlo [, ], If) = fx) dx 7.1) es el áre de l región del plno

Más detalles

CURSO DE MATEMÁTICA 1. Facultad de Ciencias

CURSO DE MATEMÁTICA 1. Facultad de Ciencias CURSO DE MATEMÁTICA 1. Fcultd de Ciencis Reprtido Teórico 1 Mrzo de 2008 1. Conceptos Básicos de Funciones Definiciones 1. Si A y B son conjuntos no vcíos, un función de A en B es un correspondenci tl

Más detalles

5. Integral y Aplicaciones

5. Integral y Aplicaciones Métodos Mtemáticos (Curso 203 204) Grdo en Óptic y Optometrí 29 5. Integrl y Aplicciones Primitiv de un función Un función F es un primitiv de f, en un intervlo I, si F (x) = f(x) pr todo x en I. Observción

Más detalles

O(0, 0) verifican que. Por tanto,

O(0, 0) verifican que. Por tanto, Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O

Más detalles

8 - Ecuación de Dirichlet.

8 - Ecuación de Dirichlet. Ecuciones Diferenciles de Orden Superior Prte V III Integrl de Dirichle t Ing. Rmón scl Prof esor Titulr de nálisi s de Señles Sistems Teorí de los Circuit os I I en l UTN, Fcultd Regionl vellned uenos

Más detalles

La Geometría de las Normas del Espacio de las Funciones Continuas

La Geometría de las Normas del Espacio de las Funciones Continuas Divulgciones Mtemátics Vol. 11 No. 1(2003), pp. 71 82 L Geometrí de ls Norms del Espcio de ls Funciones Continus The Geometry of the Norms of the Spce of Continuous Functions Arístides Arellán (ristide@ciens.ul.ve)

Más detalles

TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL

TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL TEMA INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL. Funciones.. Incrementos rzones de cmbio. 3. Derivds 4. Derivds de orden superior. 5. Primitivs 6. Integrl definid. Este mteril puede descrgrse desde

Más detalles

INTEGRACIÓN NUMÉRICA

INTEGRACIÓN NUMÉRICA INTEGRACIÓN NUMÉRICA El principio de los métodos de integrción numeric, bsdos en ls fórmuls de Newton- Cotes, consiste en justr un un polinomio un conjunto de puntos y luego integrrlo. Al relizr dichs

Más detalles

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,

Más detalles

LA INTEGRAL DEFINIDA Y SUS APLICACIONES

LA INTEGRAL DEFINIDA Y SUS APLICACIONES Integrl Definid y Aplicciones LA INTEGRAL DEFINIDA Y SUS APLICACIONES Autores: Pco Mrtínez (jmrtinezos@uoc.edu), Ptrici Molinàs (pmolins@uoc.edu), Ángel A. Jun (junp@uoc.edu). ESQUEMA DE CONTENIDOS Aplicciones

Más detalles

El Teorema Fundamental del Cálculo

El Teorema Fundamental del Cálculo del Cálculo Deprtmento de Análise Mtemátic Fcultde de Mtemátics Universidde de Sntigo de Compostel Sntigo, 2011 L Regl de Brrow: un resultdo sorprendente Recordemos que f es integrble en I = [, b] y su

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

TEMA 6. INTEGRAL DE RIEMANN. 6.1 INTEGRAL DE RIEMANN 6.1.1 Partición de un intervalo

TEMA 6. INTEGRAL DE RIEMANN. 6.1 INTEGRAL DE RIEMANN 6.1.1 Partición de un intervalo TEMA 6. INTEGRAL DE RIEMANN 6.1 INTEGRAL DE RIEMANN 6.1.1 Prtición de un intervlo Se f :, y fx K x,. Definición: Un prtición de, es un conjunto ordendo y finito de números reles y distintos P x 0,...,x

Más detalles

1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas)

1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas) Tem : L integrl definid. Cálculo de primitivs. Aplicciones.. Cálculo de primitivs. Definición. Dds f, F : D R R, decimos que F es un primitiv de l función f si: F ( f(, D. Está clro que si F es un primitiv

Más detalles

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales Universidd Centrl de Venezuel Fcultd de Frmci Mtemátic - Físic Prof J R Morles Guí de Vectores (Resumen de l Teorí) 1 En físic distinguiremos dos tipos de cntiddes: vectoriles esclres Ls cntiddes vectoriles

Más detalles

7. Integrales Impropias

7. Integrales Impropias Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Dierencil e Integrl 08-2 Bsdo en el punte del curso Cálculo (2d semestre), de Roerto Cominetti, Mrtín Mtml y Jorge

Más detalles

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles

Integral de una función real. Tema 08: Integrales Múltiples. Integral definida. Aproximación de una integral simple

Integral de una función real. Tema 08: Integrales Múltiples. Integral definida. Aproximación de una integral simple Integrl de un función rel Tem 08: Integrles Múltiples Jun Igncio Del Vlle Gmbo Sede de Guncste Universidd de Cost ic Ciclo I - 2014 Ls integrles definids clculn el áre bjo un curv y = f (x) pr un región

Más detalles

INTEGRALES DOBLES SOBRE REGIONES GENERA- LES.

INTEGRALES DOBLES SOBRE REGIONES GENERA- LES. INTEGRALES DOBLES SOBRE REGIONES GENERA- LES. 6. En l integrl dole f(, ), colocr los límites de integrción en mos órdenes, pr los siguientes recintos: i) trpecio de vértices (, ), (, ), (, ) (, ). ii)

Más detalles

E.T.S. Minas: Métodos Matemáticos

E.T.S. Minas: Métodos Matemáticos E... Mins: Métodos Mtemáticos Resumen y ejemplos em 6: Integrción numéric Frncisco Plcios Escuel Politécnic uperior de Ingenierí de Mnres Universidd Politécnic de Ctluñ Octubre 8, Versión.5 Contenido.

Más detalles

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr

Más detalles

TEMA 3. Integración de funciones reales de variable real.

TEMA 3. Integración de funciones reales de variable real. TEMA 3 Integrción de funciones reles de vrible rel. Ls integrles formlizn un concepto bstnte sencillo e intuitivo, el de áre. Los orígenes del cálculo de áres los podemos encontrr en el método de exhución

Más detalles

A modo de repaso. Preliminares

A modo de repaso. Preliminares UNIDAD I A modo de repso. Preliminres Conjuntos numéricos. Operciones. Intervlos. Conjuntos numéricos Los números se clsificn de cuerdo con los siguientes conjuntos: Números nturles.- Son los elementos

Más detalles

Segunda Versión. Integración y Series. Tomo II

Segunda Versión. Integración y Series. Tomo II UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE CIENCIA Deprtmento de Mtemátic y Cienci de l Computción CÁLCULO Segund Versión Integrción y Series Tomo II Gldys Bobdill A. y Rfel Lbrc B. Sntigo de Chile 4

Más detalles

ÍNDICE GENERAL. Índice de Símbolos 37. Bibliografía 39

ÍNDICE GENERAL. Índice de Símbolos 37. Bibliografía 39 Índice generl. L Integrl Indenid.. Antiderivd e Integrl Indenid...................... Integrles inmedits........................... 3.3. Regl de l Cden............................ 4.4. Sustitución o Cmbio

Más detalles

Aplicaciones de la integral.

Aplicaciones de la integral. Tem 1 Aplicciones de l integrl. 1.1 Áres de superficies plns. 1.1.1 Funciones dds de form explícit. A l vist del estudio de l integrl definid relizdo en el Tem 1, prece rzonble l siguiente definición:

Más detalles

INTEGRALES DEFINIDAS Y CÁLCULOS DE ÁREAS

INTEGRALES DEFINIDAS Y CÁLCULOS DE ÁREAS INTEGRALES DEFINIDAS Y CÁLCULOS DE ÁREAS CÁLCULO AUTOMÁTICO DE INTEGRALES DEFINIDAS La integral de una función definida puede obtenerse en DERIVE tecleando el icono Cálculo integral,, También puede obtenerse

Más detalles

3.- Derivada e integral de funciones de variable compleja.

3.- Derivada e integral de funciones de variable compleja. 3.- Derivd e integrl de funciones de vrile complej. ) Derivds, funciones nlítics e interpretción geométric. ) Regls de diferencición. c) Ecuciones de uch-riemnn. d) Funciones rmónics. e) Integrción complej.

Más detalles

APUNTES DE VARIABLE COMPLEJA PARA INGENIEROS DE TELECOMUNICACION Elaborados por José Manuel Rodríguez Versión abreviada de Dmitry Yakubovich (2011)

APUNTES DE VARIABLE COMPLEJA PARA INGENIEROS DE TELECOMUNICACION Elaborados por José Manuel Rodríguez Versión abreviada de Dmitry Yakubovich (2011) APUNTES DE VARIABLE COMPLEJA PARA INGENIEROS DE TELECOMUNICACION Elbordos por José Mnuel Rodríguez Versión brevid de Dmitry Ykubovich (20). INTRODUCCIÓN A LOS NÚMEROS COMPLEJOS Se define el conjunto de

Más detalles

Apuntes de Integración de funciones de una variable

Apuntes de Integración de funciones de una variable Apuntes de Integrción de funciones de un vrible Miguel Mrtín Suárez Deprtmento de Análisis Mtemático Universidd de Grnd INTEGRACIÓN DE FUNCIONES DE UNA VARIABLE Sums de Riemnn. Definición de áre y de integrl.

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito

Más detalles

Integración en el plano complejo

Integración en el plano complejo Integrción en el plno complejo 4.1. Funciones complejs de vrible rel Un función complej de vrible rel es un función w : [, b] C, donde b. L prte rel y l prte imginri de w son dos funciones reles de vrible

Más detalles

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES 5.1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. LÍMITES LATERALES 5.1.1. Concepto de tendenci Decimos que " tiende " si tom los vlores de un sucesión que se proim. Se

Más detalles

Electromagnetismo. es nula. Encuentre el campo eléctrico en todo el espacio.

Electromagnetismo. es nula. Encuentre el campo eléctrico en todo el espacio. Electromgnetismo olución Prueb 1 de Cátedr Profesor: José ogn C. 17 de Abril del 24 Ayudntes: Pmel Men. Felipe Asenjo Z. 1. Un distribución de crg esféricmente simétric de rdio tiene un densidd interior

Más detalles

Repaso de vectores. Semana 2 2. Empecemos! Qué sabes de...? El reto es... Repaso de vectores

Repaso de vectores. Semana 2 2. Empecemos! Qué sabes de...? El reto es... Repaso de vectores Semn 2 2 Repso de vectores Repso de vectores Empecemos! Estimdo prticipnte, en est sesión tendrás l oportunidd de refrescr tus seres en cunto l tem de vectores, los cules tienen como principl plicción

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CONCEPTOS CLAVE: FUNCIONES, GRAFICA DE UNA FUNCIÒN, COMPOSICIÒN DE FUNCIONES, INVERSA DE UNA FUNCIÒN, LIMITE DE UNA FUNCIÒN, LIMITES LATERALES, TEOREMAS

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS FUNDAMENTOS MATEMÁTICOS (Grdo n Ingnirí Informátic) Práctic 7. INTEGRALES DEFINIDAS E IMPROPIAS.- L intgrl dfinid d Rimnn. L intgrl dfinid d Rimnn surg prtir dl prolm dl cálculo d árs d suprficis dlimitds

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

Espacios vectoriales y Aplicaciones Lineales I: Bases y coordenadas. Aplicaciones lineales.

Espacios vectoriales y Aplicaciones Lineales I: Bases y coordenadas. Aplicaciones lineales. UNIVERSIDAD DE JAÉN ESCUEA POITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 009/10 PRÁCTICA Nº9 Espcios vectoriles y Aplicciones ineles I: Bses y coordends. Aplicciones lineles. Recordemos

Más detalles

Laboratorio N 7, Asíntotas de funciones.

Laboratorio N 7, Asíntotas de funciones. Universidd Diego Portles Fcultd de Ingenierí. Instituto de Ciencis Básics Asigntur: Cálculo I Lortorio N 7, Asíntots de funciones. Introducción. Ls síntots de un función son rects que seprn ls regiones

Más detalles

MODELOS ALEATORIOS PARA EL TIPO DE INTERÉS REAL

MODELOS ALEATORIOS PARA EL TIPO DE INTERÉS REAL MODELOS ALEATORIOS PARA EL TIPO DE INTERÉS REAL RAFAEL HERRERÍAS PLEGUEZUELO EDUARDO PÉREZ RODRÍGUEZ Deprtmento de Economí Aplicd Universidd de Grnd. INTRODUCCIÓN Se supone que el Sr. Corto dispone de

Más detalles

CÁLCULO ELEMENTAL APUNTES. Valor absoluto. Definición 1. El valor absoluto del número real a, que se designa por a, se define por. a si a < 0.

CÁLCULO ELEMENTAL APUNTES. Valor absoluto. Definición 1. El valor absoluto del número real a, que se designa por a, se define por. a si a < 0. CÁLCULO ELEMENTAL APUNTES Vlor bsoluto Definición 1. El vlor bsoluto del número rel, que se design por, se define por { si 0, = si < 0. Definición 2. L distnci entre los números x 1 y x 2 de l rect rel

Más detalles

ACLARACIONES SOBRE EL EXAMEN

ACLARACIONES SOBRE EL EXAMEN 1 (1 punto) Desarrolle el siguiente tema de teoría: Teorema de Taylor y aplicación. 2 (1.2 puntos) Considere los números complejos z = 1 + i y w = 3(cos( π) + i sen( π )). Calcule 3 3 a) z + w b) z 4 c)

Más detalles

Ejercicios de optimización

Ejercicios de optimización Ejercicios de optimizción 1. Entre todos los triángulos isósceles de perímetro 0, cuál es el de áre máxim? Función mximizr: A yh Relcionr vribles: Estudimos l función: h h y x h x y x y 0 x 0y 0 y 0 0y

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA VECTORES EJERCICIOS DE GEOMETRÍA 1. Hllr un vector unitrio u r r r r de l mism dirección que el vector v = 8i 6j.Clculr otro vector ortogonl v r y de módulo 5.. Normliz los vectores: u r = ( 1, v r = (-4,3

Más detalles

Llamaremos S a la superficie dada y D a su proyección sobre el plano XY (ver figura).

Llamaremos S a la superficie dada y D a su proyección sobre el plano XY (ver figura). TEOREMA E GAU. 15. Hllr el flujo del cmpo i + j + z k trvés de l superficie z 1 +, z 1. ) irectmente. b) Aplicndo el teorem de Guss. olución Llmremos l superficie dd su proección sobre el plno XY (ver

Más detalles

Métodos de Integración I n d i c e

Métodos de Integración I n d i c e Métodos de Integrción I n d i c e Introducción Cmbio de Vrible Integrción por prtes Integrles de funciones trigonométrics Sustitución Trigonométric Frcciones prciles Introducción. En est sección, y con

Más detalles

CAPÍTULO 7 CÁLCULO INTEGRAL EN VARIAS VARIABLES

CAPÍTULO 7 CÁLCULO INTEGRAL EN VARIAS VARIABLES CAPÍTULO 7 CÁLCULO INTEGAL EN VAIA VAIABLE 1. INTEOGANTE CENTALE EL CAPÍTULO Clculr integrles dobles en coordends crtesins y polres, sobre dominios sencillos. Usr l integrl doble pr el cálculo de áres.

Más detalles

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS TRIIGONOMETRÍÍA REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS Recuerd que los ángulos los medímos en grdos o en rdines. Además, los grdos podín dividirse en minutos segundos, de form similr como se distribuen

Más detalles

TEMA 1 EL NÚMERO REAL

TEMA 1 EL NÚMERO REAL Tem El número rel Ejercicios resueltos Mtemátics B º ESO TEMA EL NÚMERO REAL CLASIFICACIÓN Y REPRESENTACIÓN DE NÚMEROS REALES EJERCICIO : Clsific los siguientes números como 0 ; ;,...; 7; ; ; ; 7, = 0,8

Más detalles

1.4. Integral de línea de un campo escalar.

1.4. Integral de línea de un campo escalar. .4. Integrl de líne de un cmpo esclr. L integrl de líne tiene vris plicciones en el áre de ingenierí, y un de ls interpretciones importntes pr tles plicciones es el significdo que posee l integrl de líne

Más detalles

Resumen Segundo Parcial, MM-502

Resumen Segundo Parcial, MM-502 Resumen Segundo Prcil, MM-502 Jose Alvreng 18 de febrero de 2015 1. Integrles de líne ) Definición Se r(t) = f(t)i + g(t)j un función vectoril con dominio D, y L un vector. Decimos que r tiene limite L

Más detalles

CURSOSO. MóduloIV: Continuidadyderivabilidad MATEMÁTICASESPECIALES(CAD) M.TeresaUleciaGarcía RobertoCanogarMcKenzie

CURSOSO. MóduloIV: Continuidadyderivabilidad MATEMÁTICASESPECIALES(CAD) M.TeresaUleciaGarcía RobertoCanogarMcKenzie CURSOSO CURSOSO MATEMÁTICASESPECIALESCAD MóduloIV: Continuiddyderivbilidd MTeresUleciGrcí RobertoCnogrMcKenzie DeprtmentodeMtemáticsFundmentles FcultddeCiencis Curso de Mtemátics Especiles Introducción

Más detalles

Funciones ortogonales y series de Fourier

Funciones ortogonales y series de Fourier Funciones ortogonles y series de Fourier Ls series e integrles de Fourier constituyen un tem clásico del Análisis Mtemático. Desde su prición en el siglo XVIII en el estudio de ls vibrciones de un cuerd,

Más detalles

APLICACIONES LINEALES: Núcleo e Imagen de una aplicación lineal.

APLICACIONES LINEALES: Núcleo e Imagen de una aplicación lineal. Universidd de Jén Deprtmento de Mtemátics (Áre de Álgebr) Curso 2014/15 PRÁCTICA Nº 12 APICACIONES INEAES: Núcleo e Imgen de un plicción linel. Con est práctic se pretende revisr l definición de plicción

Más detalles

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}.

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}. UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 28/9 PRÁCTICA Nº Espcios vectoriles y Aplicciones Lineles II: Núcleo e imgen. Digonlizción. NÚCLEO E IMAGEN

Más detalles

Integración de Funciones de Varias variables

Integración de Funciones de Varias variables Cpítulo 1 Integrción de Funciones de Vris vribles 1. L σ-álgebr de orel 2. L medid de Lebesgue 3. Funciones medibles Un vez estudid l medid de Lebesgue en R n, vmos desrrollr hor l integrción de funciones

Más detalles

Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff.

Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff. Resolución de circuitos complejos de corriente continu: Leyes de Kirchhoff. Jun P. Cmpillo Nicolás 4 de diciemre de 2013 1. Leyes de Kirchhoff. Algunos circuitos de corriente continu están formdos por

Más detalles

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

Tema 4. Integración compleja

Tema 4. Integración compleja Not: Ls siguientes línes son un resuen de ls cuestiones que se hn trtdo en clse sore este te. El desrrollo de todos los tópicos trtdos está recogido en l iliogrfí recoendd en l Progrción de l signtur.

Más detalles

2. Cálculo de primitivas

2. Cálculo de primitivas 5. Cálculo de primitivs Definición. Se dice que un función F () es un primitiv de otr función f() sobre un intervlo (, b) si pr todo de (, b) se tiene que F () f(). Por ejemplo, l función F () es un primitiv

Más detalles

UNIDAD 6: DERIVADAS. 1. TASA DE VARIACIÓN MEDIA. Se define la tasa de variación media de una función f ( x) y = en un intervalo [ b] a, como: = siendo

UNIDAD 6: DERIVADAS. 1. TASA DE VARIACIÓN MEDIA. Se define la tasa de variación media de una función f ( x) y = en un intervalo [ b] a, como: = siendo IES Pdre Poved (Gudi UNIDAD 6: DERIVADAS.. TASA DE VARIACIÓN MEDIA. Se deine l ts de vrición medi de un unción y en un intervlo [ b] T. M. [, b] ( b (, como: b (,, B,, Si considero l rect que une A ( b

Más detalles

Clase del Miércoles 13 de Junio de 2012: Ecuaciones Integrales.

Clase del Miércoles 13 de Junio de 2012: Ecuaciones Integrales. Clse del Miércoles 3 de Junio de 22: Ecuciones Integrles. Introducción En est clse estudiremos ls ecuciones integrles de Fredholm y de Volterr. -+ - Empezremos por considerr l ecución de Fredholm de segund

Más detalles

TRABAJOS DE MATEMATICA

TRABAJOS DE MATEMATICA UNIVERSIDAD NACIONAL DE CÓRDOBA FACULTAD DE MATEMÁTICA, ASTRONOMÍA Y FÍSICA SERIE C TRABAJOS DE MATEMATICA Nº 36/07 Un segundo curso de Cálculo Crin Boyllin, Elid Ferreyr, Mrt Urciuolo, Cynthi Will Editores:

Más detalles

CÁLCULO INTEGRAL EN VARIAS VARIABLES

CÁLCULO INTEGRAL EN VARIAS VARIABLES UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS CÁLCULO INTEGRAL EN VARIAS VARIABLES Rmón Bruzul Mrisel Domínguez Crcs, Venezuel Julio 25 Rmón

Más detalles

OBTENCIÓN DEL DOMINIO DE DEFINICIÓN A PARTIR DE LA GRÁFICA

OBTENCIÓN DEL DOMINIO DE DEFINICIÓN A PARTIR DE LA GRÁFICA . DOMINIO inio de o cmpo de eistenci de es el conjunto de vlores pr los que está deinid l unción, es decir, el conjunto de vlores que tom l vrible independiente. Se denot por. { R / y R con y } OBTENCIÓN

Más detalles

CÁLCULO TEMA 5 DERIVACIÓN E INTEGRACIÓN NUMÉRICA

CÁLCULO TEMA 5 DERIVACIÓN E INTEGRACIÓN NUMÉRICA CÁLCULO TEMA 5 DERIVACIÓN E INTEGRACIÓN NUMÉRICA . Conocimientos previos Pr poder seguir decudmente este tem, se requiere que el lumno repse: Límite de un función. Derivción y derivción n-ésim. Integrles

Más detalles

MATEMÁTICA. Unidad 4. Geometría analítica. Objetivos de la unidad:

MATEMÁTICA. Unidad 4. Geometría analítica. Objetivos de la unidad: MATEMÁTICA Unidd Geometrí nlític Objetivos de l unidd: Aplicrás correctmente l geometrí nlític: prábol, elipse e hipérbol l encontrr soluciones diverss problemátics del entorno. 55 Figurs cónics ests son

Más detalles

Relación entre el cálculo integral y el cálculo diferencial.

Relación entre el cálculo integral y el cálculo diferencial. Relción entre el cálculo integrl y el cálculo diferencil. Por: Miguel Solís Esquinc Profesor de tiempo completo Universidd Autónom de Chips En est sección presentmos l relción que gurdn l función derivd

Más detalles

3. Expresa los siguientes radicales mediante potencias de exponente fraccionario y simplifica: 625 d) 0, 25 e) c) ( ) 4 8

3. Expresa los siguientes radicales mediante potencias de exponente fraccionario y simplifica: 625 d) 0, 25 e) c) ( ) 4 8 POTENCIAS. Hll sin clculdor +.. Simplific utilizndo ls propieddes de ls potencis: b c ) 0 b c. Epres los siguientes rdicles medinte potencis de eponente frccionrio y simplific: ). Resuelve sin utilizr

Más detalles

MATRICES DE NÚMEROS REALES

MATRICES DE NÚMEROS REALES MTRICES. MTURITS Luis Gil Guerr.- DEFINICIÓN MTRICES DE NÚMEROS RELES Llmmos mtriz de números reles de orden m x n un conjunto ordendo de m. n números reles dispuestos en m fils y en n columns i m i m

Más detalles

Para funciones reales de una variable real, toda función continua g : [a, b] R es la derivada de su integral indefinida f(x) = x

Para funciones reales de una variable real, toda función continua g : [a, b] R es la derivada de su integral indefinida f(x) = x Cpítulo 13 Integrl curvilíne Cmpos de vectores y forms diferenciles. Integrción curvilíne: Independenci del cmino y existenci de función potencil. Teorem de Green. Aplicciones Pr funciones reles de un

Más detalles

Funciones de Variable Compleja - Clase 27-28/08/2012 ( ) 4) Acotación del módulo de la integral. Demostrar

Funciones de Variable Compleja - Clase 27-28/08/2012 ( ) 4) Acotación del módulo de la integral. Demostrar Funciones de Vrile omplej - lse 7-8/08/01 [ ] ω : I =, R t I ω Donde : ω = u + iv( y) L derivd de ω se define como: [ ] ω : I =, R t I ω Donde : ω = u + iv L integrl definid de funciones ω sore t, se define

Más detalles

SISTEMA DE COORDENADAS CARTESIANAS

SISTEMA DE COORDENADAS CARTESIANAS SISTEMA DE COORDENADAS CARTESIANAS Definición El siste de coordends crtesins en el plno está constituido por dos rects perpendiculres que se intersecn en un punto O l que se le ll el origen. Un de ls rects

Más detalles

UNIDAD 4: INTEGRAL DEFINIDA

UNIDAD 4: INTEGRAL DEFINIDA UNIDAD 4: INTEGRAL DEFINIDA ÍNDICE DE LA UNIDAD.- INTRODUCCIÓN.....- SUMAS SUPERIORES E INFERIORES....- LA INTEGRAL DEFINIDA.... 4.- PROPIEDADES DE LA INTEGRAL DEFINIDA... 5.- TEOREMA FUNDAMENTAL DEL CÁLCULO

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS EXPRESIONES ALGEBRAICAS. POLINOMIOS A. EXPRESIONES ALGEBRAICAS. Cundo se quiere indicr un número no conocido, un cntidd o un expresión generl de l medid de un mgnitud (distnci, superficie, volumen, etc

Más detalles

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función.

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función. LA DERIVADA Tem 6: LA DERIVADA Índice: 1. Derivd de un unción. 1.1. Derivd de un unción en un punto. 1.. Interpretción geométric 1.3. Derivds lterles. 1.4. Función derivd. Derivds sucesivs.. Derivbilidd

Más detalles

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES Digrms en Bloques Un sistem de control puede constr de ciert cntidd de componentes. Pr mostrr ls funciones que reliz cd componente se costumr usr representciones esquemátics denominds Digrm en Bloques.

Más detalles

E-mail: grupociencia@hotmail.com 405 4466 Web-page: www.grupo-ciencia.jimdo.com 945 631 619

E-mail: grupociencia@hotmail.com 405 4466 Web-page: www.grupo-ciencia.jimdo.com 945 631 619 1. En el prlelogrmo mostrdo en l figur M N son puntos medios. Hlle = ++ en función de 3 + D + C +3. En l figur muestr los vectores de inscritos en un cudro de 6m de ldo. Determine el vector unitrio del

Más detalles