Integración en Variable Compleja

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Integración en Variable Compleja"

Transcripción

1 Semana 4 - lase 36/3 Tema 2: Variable ompleja Integración en Variable ompleja. Integrales complejas omo siempre, luego de definir la derivada, construimos el concepto de integral a partir de la suma de Riemann. Esto es S n = f(ζ j )(z j z j ) si n z j z j lím j= n j= f(ζ j )(z j z j ) = Es decir, que si el lím n S n existe, entonces corresponde con la definición de la integral... Algunas propiedades z2 z dz f(z) Es claro que esta integral es, necesariamente, una integral de línea, ya que z tiene dos dimensiones z2 z dz f(z) = = z2 z x2,y 2 x,y (dx + idy) (u(x, y) + iv(x, y)) (u(x, y)dx v(x, y)dy) + i x2,y 2 x,y (v(x, y)dx + u(x, y)dy) () con lo cual transformamos una integral compleja en una suma de integrales reales, pero necesitamos definir el contorno a través del cual vamos de z = x + iy z 2 = x 2 + iy 2 La integración compleja tendrá las propiedades acostumbradas dz (f(z) + g(z)) = dz f(z) + dzg(z) dz Kf(z) = K dz f(z) con K una constante real o compleja b a dz f(z) = a b dz f(z) b a dz f(z) = m a dz f(z) + b m dz f(z) dz f(z) ML donde M = máx f(z) y L la longitud de Esta última propiedad es importante porque permite establecer cotas a las integrales complejas sin tener que evaluarlas. De la definición de integral es casi inmediata la demotración z2 lím f(ζ j ) z j = dz f(z) n f(ζ j ) z j z f(ζ j ) z j M z j ML j= j= Donde hemos utilizado que f(ζ j ) M y que la suma de los intervalos z j = z j z j es la longitud L del recorrido. Es claro que tomando límites a ambos miembros obtendremos dz f(z) dz f(z) ML. Héctor Hernández / Luis Núñez Universidad de Los Andes, Mérida j= j=

2 Semana 4 - lase 36/3 Tema 2: Variable ompleja.2. Un par de ejemplos Por ejemplo, evaluemos la integral compleja f(z) = z a lo largo de diferentes contornos, tal y como se ilustran en la figura un circuito cerrado a lo largo de una circunferencia de radio R dz z 2π d(re iθ ) R e iθ = i dθ = 2πi siguiendo una semicircunferencia desde (R, ) ( R, ). Esto es z2 =( R,) z =(R,) dz z = (R,π) (R,) π d(re iθ ) R e iθ = i dθ = πi siguiendo dos líneas rectas entre los puntos (R, ) (, R) ( R, ). En este caso, procedemos utilizando la expresión cartesiana para los números complejos. Para ello, vamos a parametrizar z = z(t) para (R, ) (, R) y z = z(s) cuando (, R) ( R, ). Veamos z3 =( R,) z =(R,) dz z = z2 =(,R) z =(R,) dz z + z3 =(, R) z 2 =(,R) para cada una de las integrales se cumple, respectivamente, que dz z z = ( t)r + itr con t z = sr + i( s)r con s con lo cual z2 =( R,) z =(R,) dz z = + i ( t) + it dt + procedemos entonces con la primera de las integrales es decir + i ( t) + it dt = + i ( t) it ( t) + it ( t) it dt = i s + i( s) ds 2t 2t + 2t 2 dt + i dt 2t + 2t 2 + i ( t) + it dt = 2 ln( 2t + 2t2 ) + i arctan (2t ) = + iπ 2 = iπ 2 la segunda integral también tendrá el mismo resultado, con lo cual: z2 =( R,) z =(R,) dz z = πi, el mismo resultado que a través del arco de circunferencia! Héctor Hernández / Luis Núñez 2 Universidad de Los Andes, Mérida

3 Semana 4 - lase 36/3 Tema 2: Variable ompleja Figura : Integrales complejas y circuitos Es interesante notar que si regresamos al punto (R, ) a través del contorno: ( R, ) (, R) (R, ) la integral cerrada se anula, no así cuando nos regresamos a través el arco complementario de circunferencia. En pocas palabras, como se esperaba, el valor de las integrales de camino, para algunas funciones, dependeran del camino seleccionado. Más adelante veremos a cuáles funciones corresponderá un mismo valor de la integral cerrada, independientemente del circuito que uno elija. Queda como ejercicio al lector repetir los mismos pasos anteriores para el caso de f(z) = (z ). Otro ejemplo ilustrativo lo constituye dz (z z ) n+, esto es: 2π Rie iθ dθ R n+ e i(n+)θ = i 2π R n dθ e inθ n = : n : 2π dθ = 2iπ i 2π R n dθ (cos nθ isen nθ) = donde hemos utilizado la forma polar z z Re iθ e integrado a lo largo de una circunferencia de radio R centrada en z = z. Héctor Hernández / Luis Núñez 3 Universidad de Los Andes, Mérida

4 Semana 4 - lase 36/3 Tema 2: Variable ompleja Figura 2: Regiones en el plano complejo 2. Teorema Integral de auchy 2.. El Teorema y las Regiones El teorema integral de auchy es uno de los dos teoremas básicos en la teoría de funciones de variable compleja. Este teorema considera que si f(z) es analítica en una región simplemente conexa, R, en su contorno y su derivada f (z) existe y es contínua en esta región, entonces la circulación a lo largo de cualquier contorno cerrado se anula. Esto es dz f(z) = Antes que nada, y como parte de ese adiestramiento en lenguaje, precisaremos qué queremos decir (qué quieren decir los matemáticos) con regiones simplemente conexa y múltiplemente conexa Una región simplemente conexa es aquella que no tiene huecos, o dicho de una manera más precisa y elegante, en la cual una curva Γ puede ser reducida (encogida) a un punto sin salir de la región R. En la figura 2 cuadrante Ia se muestra una región simplemente conexa y en los cuadrantes Ib y Ic regiones multiplemente conexas. Estas dos últimas figuras clarifican este concepto. Es decir, una región múltiplemente conexa es aquella que no es simplemente conexa y con eso queremos decir que tiene huecos, o lo que es lo mismo existen curvas que no se pueden reducir a puntos en la región. Esta última condición no es necesaria, pero la demostración del Teorema se torna mucho más sofisticada, y referimos al lector a los libros especializados, vale decir a las referencias: hurchill R. V. y a Knopp K. Héctor Hernández / Luis Núñez 4 Universidad de Los Andes, Mérida

5 Semana 4 - lase 36/3 Tema 2: Variable ompleja Tal y como hemos comentado la demostración rigurosa del Teorema de auchy está fuera de los alcances de estas notas, pero algo se puede hacer si invocamos el Teorema de Stokes (o uno de los Teoremas de Green en el plano) que vimos cuando estudiamos análisis vectorial. on ello recordamos la ecuación (), entonces z2 z dz f(z) = x2,y 2 x,y El Teorema de Stokes nos dice que dxdy R (u(x, y)dx v(x, y)dy) + i x2,y 2 x,y ( p x + q ) = (pdy qdx) y (v(x, y)dx + u(x, y)dy) con lo cual, si una vez más suponemos f(z) = u(x, y)+iv(x, y) y dz = dx+idy, entonces tendremos que ( ( v) (udx vdy)+i (vdx + udy) = dxdy R x + ( u) ) ( (u) +i dxdy y R x + ( v) ) = y y acto seguido, como f(z) es analítica, invocamos las condiciones de auchy Riemann y es inmediato ver que se anula la integral de circulación Algunas observaciones y el Teorema de Morera De la anterior demostración del Teorema de auchy Riemann emergen algunas observaciones: La primera es la insistencia de que la condición que la derivada f (z) existe y es contínua en esta región no es necesaria. La segunda es que el Teorema de auchy Riemann, es válido también para regiones múltiplementes conexas. onsieremos una región como la descrita en la figura 2 cuadrante II, es claro que podemos circular la integral en los siguientes contornos dz f(z) = dz f(z) dz f(z)+ dz f(z)+ dz f(z)+ dz f(z) = ABDEAF GHF A ABDEA AF F GHF F A y como AF dz f(z) = F A dz f(z), entonces: dz f(z) + dz f(z) = dz f(z) + dz f(z) = ABDEA F GHF 2 con lo cual se nota que para regiones múltiplemente conexas, a pesar que las circulaciones son opuestas, el observador que circula por y 2 siempre tiene la región R a su izquierda. Siguiendo con la reflexión anterior, podemos invertir el sentido de la circulación en el contorno 2 con lo cual dz f(z) dz f(z) = 2 dz f(z) = dz f(z) 2 Es decir, que si f(z) es analítica en una región R, da igual cualquier recorrido por las fronteras de una región y el valor de la integral permanecerá inalterado. Héctor Hernández / Luis Núñez 5 Universidad de Los Andes, Mérida

6 Semana 4 - lase 36/3 Tema 2: Variable ompleja Más aún este resultado puede extenderse a regiones con n huecos de tal forma que, tal y como ilustra en en la figura 2 cuadrante III dz f(z) = dz f(z) j j= on lo cual estamos afirmando que, dada una región que contiene un número finito ( numerable?) n de singularidades, la integral a lo largo del contorno que encierra la región R es equivalente a la suma de las integrales que encierran cada una de las n singularidades. Enunciaremos sin demostración el Teorema de Morera 2, también conocido como el teorema inverso de auchy. Teorema de Morera: Si una función f(z) es continua en una región R encerrada por un contorno y dz f(z) = entonces f(z) es analítica en R Ejemplo: onsidere la función definida en una región R f(z) = z z con { z fuera de la región R z dentro de la región R Si z está fuera de la región, entonces f(z) esa analítica en R, con lo cual el Teorema de auchy implica que dz f(z) = Si z está dentro de la región, entonces f(z) no es analítica en R por cuanto existe una singularidad z = z. Si consideramos el contorno que bordea a R, como una circunsferencia centrada en z = z y Γ otra circunsferencia que aisla a z con un radio z z = ɛ (esta situación se ilustra en la figura 3 cuadrante I). Entonces, si hacemos z z = z = ɛe iθ el Teorema de auchy implica dz z z = Γ dz 2π ɛie iθ dθ = z z ɛe iθ 2π = i dθ = 2iπ 3. Fórmula integral de auchy El ejemplo de la sección anterior nos lleva a una de las expresiones más útiles e importantes del análisis complejo: La Fórmula Integral de auchy la cual dice que si f(z) es analítica en una región R encerrada por un contorno y consideramos un punto z = z contenido en esa región, entonces 2iπ z z = f(z ). 2 Pueden consultar la demostración en el Arfken,Weber: Mathematical Methods for Physicists Héctor Hernández / Luis Núñez 6 Universidad de Los Andes, Mérida

7 Semana 4 - lase 36/3 Tema 2: Variable ompleja Figura 3: irculaciones y Polos Para probar esta afirmación supongamos, una vez más un circuito en encierra al polo z = z (ver figura 3, cuadrante II). on lo cual, como f(z) es analítica en esa región, el Teorema de auchy nos garantiza = si z z = re iθ, 2iπ z z 2iπ Γ z z esto implica que 2π f(z + re iθ )rie iθ dθ 2iπ re iθ = 2π f(z + re iθ )dθ, 2π si hacemos r tendremos que = 2iπ z z 2iπ Γ z z 2π = lím f(z +re iθ )dθ = 2π lím r 2π 2π f(z +re iθ )dθ = f(z ) r Observaciones Surgen también observaciones al respecto Obvio que es válido para regiones múltiplemente conexas y es fácil demostrarlo. Se lo dejamos al lector como ejercicio. Si reacomodamos la expresión para la forma integral podemos hacer en esa fórmula es válida para todo z f(z) = f(ζ) dζ 2iπ ζ z Héctor Hernández / Luis Núñez 7 Universidad de Los Andes, Mérida

8 Semana 4 - lase 36/3 Tema 2: Variable ompleja Más aún veremos que es fácil generalizar esta fórmula para derivadas de funciones, vale decir f (n) (z ) = n! 2iπ (z z ) n+ Veamos con el caso más sencillo y demostremos que para n = f (z ) = f(z)dz 2iπ (z z ) 2 f f(z + h) f(z ) (z ) = lím = lím h h h 2iπ tal y como se muestra en la figura 3, cuadrante III tenemos que [ ] f (z ) = lím = h 2iπ (z z h)(z z ) 2iπ f(z) h (z z ) 2 [ z z h ] dz z z Pero mucho más interesante hubiera sido derivar respecto a una constante. Este truco implica que f(z) = f(ζ) dζ f (n) (z) = n [ ] f(ζ) 2iπ ζ z 2iπ z n dζ = n! f(ζ) dζ ζ z 2iπ (ζ z) n+ (2) Esta fórmula es muy util para calcular integrales. onsidere, por ejemplo la siguiente integral e 2ζ dζ (ζ + ) 4 2iπ 3! f (3) ( ) con f(z) = e 2z 8iπ 3 e 2 donde hemos supuesto que el contorno encerraba el punto z =, porque de otro modo la función e 2z sería analítica y la integral se anularía por el Teorema de auchy. (z + ) 4 Ejemplos:.- Evaluar 2πi e z dz, para los entornos: : z = 3 y : z =. z 2 El entorno z = 3 contiene en su interior al punto z = 2, esto implica que: e z 2πi z 2 dz = e2. Para el entorno z =, vemos que el punto z = 2 no está contenido en ese entorno, esto significa que el integrando es una función analítica en toda la región. Por lo tanto: e z dz =. 2πi z Evaluar z dz, para los entornos: : z = 2, 2 : z = 3 y 3 : z + i = 2. Héctor Hernández / Luis Núñez 8 Universidad de Los Andes, Mérida

9 Semana 4 - lase 36/3 Tema 2: Variable ompleja La integral puede ser escrita de la siguiente manera: (z + 2i)(z 2i) dz. Para el contorno z = 2, tenemos que éste contiene en su interior al punto z = 2i. Si escribimos la integral como z+2i z 2i dz, la función /(z + 2i) es analítica dentro de y entonces por el teorema de auchy ( ) z+2i dz = 2πi = π z 2i 4i 2. onsideremos ahora el contorno z = 3. Este contorno contiene en su interior a los puntos 2i y 2i. Podemos trazar dos contornos adicionales, de radio ɛ alrededor de cada punto, entonces: z dz = (2i) z dz + ( 2i) z dz z+2i = (2i) z 2i dz + z 2i ( 2i) z + 2i dz [ ] [ ] = 2πi + 2πi z + 2i z=2i z 2i z= 2i [ ] [ = 2πi + 2πi ] =. 4i 4i Finalmente, para el contorno z +i = 2 se tiene que éste contiene al punto z = 2i. Repitiendo lo que hicimos en el primer caso tenemos: z 2i z + 2i dz la función /(z 2i) es analítica dentro de 3 y entonces por el teorema de auchy ( z 2i dz = 2πi ) = π z + 2i 4i 2. Héctor Hernández / Luis Núñez 9 Universidad de Los Andes, Mérida

Integrales de línea. Teorema de Green

Integrales de línea. Teorema de Green Integrales de línea. Teorema de Green José Antonio Vallejo Departamento de Matemáticas Facultad de iencias Universidad Autónoma de San Luis Potosí email: jvallejo@fciencias.uaslp.mx 16 Noviembre 2007 1.

Más detalles

Variable compleja. Juan Manuel Tejeiro. 1 Algebra de los números complejos

Variable compleja. Juan Manuel Tejeiro. 1 Algebra de los números complejos Variable compleja Juan Manuel Tejeiro Algebra de los números complejos La teoría de las funciones complejas es uno de los campos de la matemática más interesantes y tal ve una de las herramientas más útiles

Más detalles

1. Definición de campo vectorial

1. Definición de campo vectorial Universidad Nacional de La Plata Facultad de iencias Exactas ANÁLII MATEMÁTIO II (ibex - Física Médica) 214 egundo emestre GUÍA Nro. 6: AMPO VETORIALE 1. Definición de campo vectorial Durante el curso

Más detalles

Lectura 3 Ampliación de Matemáticas. Grado en Ingeniería Civil

Lectura 3 Ampliación de Matemáticas. Grado en Ingeniería Civil 1 / 32 Lectura 3 Ampliación de Matemáticas. Grado en Ingeniería Civil Curso Académico 2011-2012 2 / 32 Motivación: muchas ecuaciones y propiedades fundamentales de la Física (y, en consecuencia, de aplicación

Más detalles

Las Funciones Analíticas. f (z 0 + h) f (z 0 ) lim. h=z z 0. = lim

Las Funciones Analíticas. f (z 0 + h) f (z 0 ) lim. h=z z 0. = lim Las Funciones Analíticas 1 Las Funciones Analíticas Definición 12.1 (Derivada de una función compleja). Sea D C un conjunto abierto. Sea z 0 un punto fijo en D y sea f una función compleja, f : D C C.

Más detalles

Usamos que f( p) = q y que, por tanto, g( q) = g(f( p)) = h( p) para simplificar esta expresión:

Usamos que f( p) = q y que, por tanto, g( q) = g(f( p)) = h( p) para simplificar esta expresión: Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Propiedades de las funciones diferenciables. 1. Regla de la cadena Después de la generalización que hemos

Más detalles

Trabajo y Energía. Mario I. Caicedo. Departamento de Física. Universidad Simón Bolívar

Trabajo y Energía. Mario I. Caicedo. Departamento de Física. Universidad Simón Bolívar Trabajo y Energía Mario I. Caicedo Departamento de Física Universidad Simón Bolívar Índice 1. Motivación 2 2. Elementos de Matemáticas 4 2.1. Desplazamiento Infintesimal........................... 4 2.2.

Más detalles

Teorema de Chauchy-Goursat

Teorema de Chauchy-Goursat hauchy- hauchy- MA3002 Tma auchy hauchy- Tipos Un dominio D se dice simplemente conexo si cualquier contorno cerrado que esté en D pue encogerse hasta un punto sin abandonar D: ualquier contorno cerrado

Más detalles

Banco de Ejercicios del Departamental Métodos Matemáticos para Sistemas Lineales Numeros Complejos

Banco de Ejercicios del Departamental Métodos Matemáticos para Sistemas Lineales Numeros Complejos Banco de Ejercicios del Departamental Métodos Matemáticos para Sistemas Lineales Numeros Complejos 1. Efectuar cada una de las operaciones indicadas. a) (35 + 25i) + ( 12 5i) b) ( 75 i) + (34 + 42i) c)

Más detalles

Teoría global de Cauchy

Teoría global de Cauchy CAPÍTULO 7 Teoría global de Cauchy 7.1 INTRODUCCIÓN Los éxitos logrados con la teoría local de Cauchy invitan a refinar las herramientas básicas teorema de Cauchy, fórmula de Cauchy para ampliar su alcance.

Más detalles

C 4 C 3 C 1. V n dσ = C i. i=1

C 4 C 3 C 1. V n dσ = C i. i=1 apítulo 2 Divergencia y flujo Sea V = V 1 i + V 2 j + V 3 k = (V 1, V 2, V 3 ) un campo vectorial en el espacio, por ejemplo el campo de velocidades de un fluido en un cierto instante de tiempo, en un

Más detalles

(a) El triángulo dado se descompone en tres segmentos de recta que parametrizamos de la siguiente forma: (0 t 1); y = 0. { x = 1 t y = t. (0 t 1).

(a) El triángulo dado se descompone en tres segmentos de recta que parametrizamos de la siguiente forma: (0 t 1); y = 0. { x = 1 t y = t. (0 t 1). INTEGRALES DE LÍNEA. 15. alcular las siguientes integrales: (a) (x + y) ds donde es el borde del triángulo con vértices (, ), (1, ), (, 1). (b) x + y ds donde es la circunferencia x + y ax (a > ). (a)

Más detalles

Los teoremas de Stokes y Gauss

Los teoremas de Stokes y Gauss Capítulo 13 Los teoremas de tokes y Gauss En este último capítulo estudiaremos el teorema de tokes, que es una generalización del teorema de Green en cuanto que relaciona la integral de un campo vectorial

Más detalles

A modo de Presentación

A modo de Presentación Ecuaciones Diferenciales de Orden Superior Primera Parte Funciones Eulerianas Ing. Ramón Abascal Prof esor Titular de Análisi s de Señales y Sist emas y Teoría de los Circuit os I I en la UTN, Facultad

Más detalles

Apuntes sobre algunos teoremas fundamentales de análisis complejo, con 20 ejemplos resueltos (2007-08)

Apuntes sobre algunos teoremas fundamentales de análisis complejo, con 20 ejemplos resueltos (2007-08) Variable Compleja I (3 o de Matemáticas) Apuntes sobre algunos teoremas fundamentales de análisis complejo, con ejemplos resueltos (7-8) En estos apuntes, consideraremos las funciones anaĺıticas (holomorfas)

Más detalles

Funciones de Variable Compleja - Clase 27-28/08/2012 ( ) 4) Acotación del módulo de la integral. Demostrar

Funciones de Variable Compleja - Clase 27-28/08/2012 ( ) 4) Acotación del módulo de la integral. Demostrar Funciones de Vrile omplej - lse 7-8/08/01 [ ] ω : I =, R t I ω Donde : ω = u + iv( y) L derivd de ω se define como: [ ] ω : I =, R t I ω Donde : ω = u + iv L integrl definid de funciones ω sore t, se define

Más detalles

Ampliación de Matemáticas. Integrales de línea

Ampliación de Matemáticas. Integrales de línea Ampliación de Matemáticas Integrales de línea En Física la idea intuitiva de trabajo queda recogida en la fórmula Trabajo = Fuerza x Espacio Si f(x) es la fuerza aplicada, a lo largo del eje x, a un objeto

Más detalles

4 Integrales de línea y de superficie

4 Integrales de línea y de superficie a t e a PROBLEMA DE ÁLULO II t i c a s 1 o Ings. Industrial y de Telecomunicación URO 2009 2010 4 Integrales de línea y de superficie 4.1 Integrales sobre curvas y campos conservativos. Problema 4.1 Integra

Más detalles

El teorema de Green. 1 x (t) 2 + y (t) 2 ( N(t) = y (t), x (t) ).

El teorema de Green. 1 x (t) 2 + y (t) 2 ( N(t) = y (t), x (t) ). apítulo 11 El teorema de Green El teorema de Green relaciona la integral de línea de un campo vectorial sobre una curva plana con una integral doble sobre el recinto que encierra la curva. Este tipo de

Más detalles

Ejemplos y problemas resueltos de análisis complejo (2014-15)

Ejemplos y problemas resueltos de análisis complejo (2014-15) Variable Compleja I (3 o de Matemáticas y 4 o de Doble Titulación) Ejemplos y problemas resueltos de análisis complejo (04-5) Teoremas de Cauchy En estos apuntes, la palabra dominio significa, como es

Más detalles

(3) Regla del cociente: Si g(z 0 ) 0, f/g es derivable en z 0 y. (z 0 ) = f (z 0 )g(z 0 ) f(z 0 )g (z 0 ) . g

(3) Regla del cociente: Si g(z 0 ) 0, f/g es derivable en z 0 y. (z 0 ) = f (z 0 )g(z 0 ) f(z 0 )g (z 0 ) . g Funciones holomorfas 2.1. Funciones variable compleja En este capítulo vamos a tratar con funciones f : Ω C C, donde Ω C es el dominio de definición. La forma habitual de expresar estas funciones es como

Más detalles

Variable Compleja para Ingeniería

Variable Compleja para Ingeniería Variable ompleja para Ingeniería William La ruz VERSIÓN PRELIMINAR para el uso en el curso Variable ompleja y álculo Operacional Escuela de Ingeniería Eléctrica Departamento de Electrónica, omputación

Más detalles

(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0),

(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0), NÚMEROS COMPLEJOS 1. Preliminares Definición. Se llama número complejo a todo par ordenado de números reales. Si z = (a, b) es un número complejo, se dice que a es la parte real de z y b es la parte imaginaria

Más detalles

FUNCIONES TRIGONOMÉTRICAS

FUNCIONES TRIGONOMÉTRICAS UNIDAD 3 FUNCIONES TRIGONOMÉTRICAS Concepto clave: 1. Razones trigonométricas Si A es un ángulo interior agudo de un triángulo rectángulo y su medida es, entonces: sen longitud del cateto opuesto al A

Más detalles

Universidad de Sevilla. GIOI y GIERM. Matemáticas III. Departamento de Matemática Aplicada II. Guión del Tema 5: Integrales de Línea.

Universidad de Sevilla. GIOI y GIERM. Matemáticas III. Departamento de Matemática Aplicada II. Guión del Tema 5: Integrales de Línea. Universidad de Sevilla. GO y GERM. Matemáticas. Departamento de Matemática Aplicada. Guión del Tema 5: ntegrales de Línea. 1. ntegrales de línea. ntegral de línea de un campo escalar. Sea una curva parametrizada

Más detalles

Campos conservativos. f(x) = f (x) = ( f x 1

Campos conservativos. f(x) = f (x) = ( f x 1 Capítulo 1 Campos conservativos En este capítulo continuaremos estudiando las integrales de linea, concentrándonos en la siguiente pregunta: bajo qué circunstancias la integral de linea de un campo vectorial

Más detalles

Fundamentos Matemáticos de la Ingeniería Ingeniería de Telecomunicación

Fundamentos Matemáticos de la Ingeniería Ingeniería de Telecomunicación Fundamentos Matemáticos de la Ingeniería Ingeniería de Telecomunicación Universidad de Alcalá José Enrique Morais San Miguel 27 de septiembre de 2004 Índice general I VARIABLE COMPLEJA 1 1. Funciones de

Más detalles

03 ENERGÍA ALGUNOS COMENTARIOS Y CUESTIONES

03 ENERGÍA ALGUNOS COMENTARIOS Y CUESTIONES 03 ENERGÍA ALGUNOS COMENTARIOS Y CUESTIONES Feynman: Es importante darse cuenta que en la física actual no sabemos lo que la energía es 03.0 Le debe interesar al óptico la energía? 03.1 Fuerza por distancia.

Más detalles

UAM CSIC Grupo 911 Febrero 2013. Ejercicios Resueltos del Tema 2.2.5. Asignatura de Matemáticas Grado en Química

UAM CSIC Grupo 911 Febrero 2013. Ejercicios Resueltos del Tema 2.2.5. Asignatura de Matemáticas Grado en Química UAM CSIC Grupo 9 Febrero Ejercicios Resueltos del Tema..5 Asignatura de Matemáticas Grado en Química Lista de ejercicios en estas páginas: y. Consejo: En todos los ejercicios es esencial dibujar el dominio

Más detalles

Matemáticas II CURVAS

Matemáticas II CURVAS CURVAS En este tema introduciremos nuevos conceptos relacionados con la curva y sus parametrizaciones. Definiciones.- Sea γ : I = [a,b] R n. Se dice que la curva es cerrada si γ(a) = γ(b). Se dice que

Más detalles

Ecuaciones Diferenciales Ordinarias de Primer Orden

Ecuaciones Diferenciales Ordinarias de Primer Orden Tema 2 Ecuaciones Diferenciales Ordinarias de Primer Orden Introducción Estudiaremos en este tema varios tipos de E.D.O. de primer orden que es posible resolver de forma exacta. 2.1 Ecuaciones en variables

Más detalles

1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva:

1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: 1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: a) x = senθ, y = cosθ, 0 θ π t b), t x = e y = e + 1 c) x = senθ, y =

Más detalles

Ejercicios de. Funciones de Variable Compleja y. Geometría Diferencial

Ejercicios de. Funciones de Variable Compleja y. Geometría Diferencial 1-1 -5 5-5 5 Ejercicios de Funciones de Variable Compleja y Geometría Diferencial Martín Rivas e-mail:martin.rivas@ehu.es http://tp.lc.ehu.es/martin.htm Departamento de Física Teórica UPV/EHU Leioa, Febrero

Más detalles

Introducción al Análisis Complejo

Introducción al Análisis Complejo Introducción al Análisis Complejo Aplicado al cálculo de integrales impropias Complementos de Análisis, I.P.A Prof.: Federico De Olivera Leandro Villar 13 de diciembre de 2010 Introducción Este trabajo

Más detalles

INTEGRACIÓN COMPLEJA. Curso 2010-11

INTEGRACIÓN COMPLEJA. Curso 2010-11 Ampliación de Matemáticas (ngeniería de Telecomunicación) urso 2/ urso 2 o. ngeniero de Telecomunicación. Ampliación de Matemáticas. Lección 8. NTEGRAÓN OMPLEJA. urso 2- Un aspecto esencial de la teoría

Más detalles

Teoremas de Stokes y Gauss

Teoremas de Stokes y Gauss Lección 9 Teoremas de Stokes y Gauss Presentamos a continuación los dos resultados principales del Cálculo Vectorial. Por una parte, el Teorema de Stokes generaliza la fórmula de Green, estableciendo la

Más detalles

Escuela Técnica Superior de Ingeniería Universidad de Sevilla. GradoenIngenieríadelas Tecnologías de Telecomunicación EJERCICIOS DE MATEMÁTICAS II

Escuela Técnica Superior de Ingeniería Universidad de Sevilla. GradoenIngenieríadelas Tecnologías de Telecomunicación EJERCICIOS DE MATEMÁTICAS II Escuela Técnica Superior de Ingeniería Universidad de Sevilla GradoenIngenieríadelas Tecnologías de Telecomunicación EJERCICIOS DE MATEMÁTICAS II CURSO 2015-2016 Índice general 1. Derivación de funciones

Más detalles

Funciones elementales

Funciones elementales Funciones elementales 3.1. Función exponencial Ya hemos introducido la exponencial compleja definiéndola como e z = e x (cosy + i sen y) para todo z = x + iy C. Dicha definición fue propuesta por Euler

Más detalles

Variable Compleja Teoria, problemas resueltos y propuestos

Variable Compleja Teoria, problemas resueltos y propuestos Variable Compleja Teoria, problemas resueltos y propuestos Dr. Carlos Lizama Universidad de Santiago de Chile Facultad de Ciencias Departamento de Matemática y C.C. Introducción El presente texto de apuntes

Más detalles

CÁLCULO VECTORIAL Notas de clase. Profesor: A. Leonardo Bañuelos Saucedo

CÁLCULO VECTORIAL Notas de clase. Profesor: A. Leonardo Bañuelos Saucedo CÁLCULO VECTORIAL Notas de clase Profesor: A. Leonardo Bañuelos Saucedo TEMA IV INTEGRALES MÚLTIPLES INTEGRALES ITERADAS Y ÁREA EN EL PLANO Desde el curso de Cálculo II se estudió la forma de derivar parcialmente

Más detalles

a y Para aplicar el teorema de Stokes, calculamos en primer lugar el rotacional del campo vectorial: i j k / x / y / z

a y Para aplicar el teorema de Stokes, calculamos en primer lugar el rotacional del campo vectorial: i j k / x / y / z TEOREMA E TOKE. 1. Usar el teorema de tokes para calcular la integral de línea ( ) d + ( ) d + ( ) d, donde es la curva intersección de la superficie del cubo a, a, a el plano + + 3a/, recorrida en sentido

Más detalles

1. Producto escalar, métrica y norma asociada

1. Producto escalar, métrica y norma asociada 1. asociada Consideramos el espacio vectorial R n sobre el cuerpo R; escribimos los vectores o puntos de R n, indistintamente, como x = (x 1,..., x n ) = n x i e i i=1 donde e i son los vectores de la

Más detalles

VARIABLE COMPLEJA. 1 Definición, propiedades y reglas de cálculo

VARIABLE COMPLEJA. 1 Definición, propiedades y reglas de cálculo VARIABLE COMPLEJA LOS NÚMEROS COMPLEJOS 1 Definición, propiedades y reglas de cálculo Generalmente se introducen los diferentesconjuntosdenúmeros argumentando que en cada uno de estos conjuntos se puede

Más detalles

Métodos Matemáticos I

Métodos Matemáticos I Métodos Matemáticos I Curso 203-4 Hoja de Problemas #2. Dados los siguientes conjuntos: () + 2i (2) 3 + i < 6 (3) + 2i < (4) 0 arg π/3, 0 (5) Re( 2 ) 0 (6) Re( 2 ) < 0 Represéntalos gráficamente. (b) Cuáles

Más detalles

Apuntes de cálculo diferencial en una y varias variables reales. Eduardo Liz Marzán

Apuntes de cálculo diferencial en una y varias variables reales. Eduardo Liz Marzán Apuntes de cálculo diferencial en una y varias variables reales Eduardo Liz Marzán Diciembre de 2013 Índice general 1 Preliminares 1 11 Introducción 1 12 La relación de orden en el conjunto de los números

Más detalles

Teoremas de la función implícita y de la función inversa

Teoremas de la función implícita y de la función inversa Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Teoremas de la función implícita y de la función inversa 1. El teorema de la función implícita 1.1. Ejemplos

Más detalles

Diferenciabilidad de funciones de R n en R m

Diferenciabilidad de funciones de R n en R m Diferenciabilidad de funciones de R n en R m Cálculo II (2003) En este capítulo generalizamos la noción de diferenciabilidad para funciones vectoriales de variable vectorial, que también llamamos aplicaciones.

Más detalles

Teorema de Green. ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es. 1. Introducción 1

Teorema de Green. ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es. 1. Introducción 1 Teorema de Green ISABEL MAEO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Introducción 1 2. Teorema de Green en regiones simplemente conexas 1 2.1. urvas de Jordan.........................................

Más detalles

Anexo a la guía 4 Geometría: ejemplos y comentarios

Anexo a la guía 4 Geometría: ejemplos y comentarios Anexo a la guía 4 Geometría: ejemplos y comentarios Sergio Dain 26 de mayo de 2014 En las guías 1 y 2 discutimos vectores, covectores y tensores de manera puramente algebraica, sin hacer referencia a la

Más detalles

1. Definición y representaciones gráficas

1. Definición y representaciones gráficas Universidad Nacional de La Plata Facultad de Ciencias Exactas ANÁLISIS MATEMÁTICO II (CiBEx - Física Médica) 2014 Segundo Semestre GUÍA Nro. 3: FUNCIONES ESCALARES DE VARIAS VARIABLES 1. Definición y representaciones

Más detalles

Teorema de Green. 6.1. Curvas de Jordan

Teorema de Green. 6.1. Curvas de Jordan Lección 6 Teorema de Green En la lección anterior, previa caracterización de los campos conservativos, hemos visto que un campo irrotacional puede no ser conservativo. Tenemos por tanto una condición fácil

Más detalles

Un paseo por algunas curvas de nivel elementales en la Geometría Martin Celli*, Jorge Martínez Valdez, Ahmed A. Silva Hernández

Un paseo por algunas curvas de nivel elementales en la Geometría Martin Celli*, Jorge Martínez Valdez, Ahmed A. Silva Hernández Un paseo por algunas curvas de nivel elementales en la Geometría Martin Celli*, Jorge Martínez Valdez, Ahmed A. Silva Hernández *Depto. de Matemáticas, UAM-I cell@xanum.uam.mx 70 ContactoS 90, 69 74 013

Más detalles

Tema 2. Función compleja de una variable compleja

Tema 2. Función compleja de una variable compleja Nota: Las siguientes líneas son un resumen de las cuestiones que se han tratado en clase sobre este tema. El desarrollo de todos los tópicos tratados está recogido en la bibliografía recomendada en la

Más detalles

PROBLEMAS DE ROBIN - COMPLEJO EN DOMINIOS NO ACOTADOS

PROBLEMAS DE ROBIN - COMPLEJO EN DOMINIOS NO ACOTADOS UNIVESIDAD SIMÓN BOLÍVA DECANATO DE ESTUDIOS DE POSTGADO COODINACIÓN DE MATEMÁTICAS MAESTÍA EN MATEMÁTICAS TABAJO DE GADO POBLEMAS DE OBIN - COMPLEJO EN DOMINIOS NO ACOTADOS por Yankis Linares Octubre,

Más detalles

Análisis Real: Primer Curso. Ricardo A. Sáenz

Análisis Real: Primer Curso. Ricardo A. Sáenz Análisis Real: Primer Curso Ricardo A. Sáenz Índice general Introducción v Capítulo 1. Espacios Métricos 1 1. Métricas 1 2. Métricas en espacios vectoriales 4 3. Topología 9 Ejercicios 17 Capítulo 2.

Más detalles

Tema 3.1: Interpretación geométrica de la derivada. Aplicaciones conformes

Tema 3.1: Interpretación geométrica de la derivada. Aplicaciones conformes Tema 3.1: Interpretación geométrica de la derivada. Aplicaciones conformes Facultad de Ciencias Experimentales, Curso 2008-09 E. de Amo En esta lección pretendemos conectar la derivabilidad de las funciones

Más detalles

Solución del examen de Variable Compleja y Transformadas I. T. I. Electrónica y Electricidad 29 de enero de 2004

Solución del examen de Variable Compleja y Transformadas I. T. I. Electrónica y Electricidad 29 de enero de 2004 Solución del examen de Variable Compleja y Transformadas I. T. I. Electrónica y Electricidad 29 de enero de 2004. Estudia si existe alguna función de variable compleja f() entera cuya parte real sea x

Más detalles

1 Sucesiones de números reales

1 Sucesiones de números reales 1 Sucesiones de números reales 1.1 Números reales En el conjunto de los números reales tenemos definidas dos operaciones binarias, suma y producto, y una relación de orden (a, b) a + b (a, b) ab a b. Ellos

Más detalles

Tema 7.2: Teorema de los residuos. Aplicaciones del cálculo con residuos

Tema 7.2: Teorema de los residuos. Aplicaciones del cálculo con residuos Tema 7.: Teorema de los residuos. Aplicaciones del cálculo con residuos Facultad de Ciencias Experimentales, Curso 8-9 Enrique de Amo, Universidad de Almería La teoría de residuos proporciona una técnica

Más detalles

S n = 3n + 2 n + 4. ln(1 + a n ) (3) Decidir, para cada una de las siguientes series, si es convergente o divergente.

S n = 3n + 2 n + 4. ln(1 + a n ) (3) Decidir, para cada una de las siguientes series, si es convergente o divergente. CÁLCULO HOJA 1 INGENIERO TÉCNICO EN INFORMÁTICA DE SISTEMAS GRUPO DE MAÑANA, MÓSTOLES, 2008-09 (1) De la serie a n se sabe que la sucesión de sumas parciales viene dada por: S n = 3n + 2 n + 4. Encontrar

Más detalles

Las leyes de Kepler y la ley de la Gravitación Universal

Las leyes de Kepler y la ley de la Gravitación Universal Las leyes de Kepler y la ley de la Gravitación Universal Rosario Paredes y Víctor Romero Rochín Instituto de Física, UNAM 16 de septiembre de 2014 Resumen Estas notas describen con cierto detalle la deducción

Más detalles

1-Comportamiento de una función alrededor de un punto:

1-Comportamiento de una función alrededor de un punto: Matemática II 7 Modulo Límites continuidad En esta sección desarrollaremos el concepto de límite, una de las nociones fundamentales del cálculo. A partir de este concepto se desarrollan también los conceptos

Más detalles

Inversión en el plano

Inversión en el plano Inversión en el plano Radio de la circunferencia x 2 + y 2 + Ax + By + D = 0 Circunferencia de centro (a, b) y radio r: (x a) 2 + (y b) 2 = r 2. Comparando: x 2 + y 2 2ax 2by + a 2 + b 2 r 2 = 0 con x

Más detalles

Resumen del Tema 3: Cálculo Vectorial

Resumen del Tema 3: Cálculo Vectorial Resumen del Tema 3: Cálculo Vectorial Víctor Domínguez Guillem Huguet Diciembre 2008 I too fell that I have been thinking too much of late, but in a different way, my head running on divergent series,

Más detalles

Tema 9. Campos escalares y campos vectoriales. Integrales de línea e integrales de supercie

Tema 9. Campos escalares y campos vectoriales. Integrales de línea e integrales de supercie Tema 9. ampos escalares y campos vectoriales. Integrales de línea e integrales de supercie Índice de contenidos del tema 9 1. ampos escalares y campos vectoriales 2. Gradiente, laplaciano, divergencia

Más detalles

Polinomios de Taylor.

Polinomios de Taylor. Tema 7 Polinomios de Taylor. 7.1 Polinomios de Taylor. Definición 7.1 Recibe el nombre de polinomio de Taylor de grado n para la función f en el punto a, denotado por P n,a, el polinomio: P n,a (x) = f(a)

Más detalles

Integración por residuos

Integración por residuos Integración por residuos En el capítulo anterior vimos que si una función, f(z), tiene una singularidad aislada en z = a, entonces puede expresarse mediante la serie de Laurent f(z) = n= c n (z a) n,

Más detalles

Estudio de las órbitas acotadas de las funciones cuadráticas para parámetros en el complemento del conjunto de Mandelbrot

Estudio de las órbitas acotadas de las funciones cuadráticas para parámetros en el complemento del conjunto de Mandelbrot Universidad de Los Andes Facultad de Ciencias Departamento de Matemática Mérida - Venezuela Estudio de las órbitas acotadas de las funciones cuadráticas para parámetros en el complemento del conjunto de

Más detalles

Las anteriores fórmulas suelen expresarse matricialmente como

Las anteriores fórmulas suelen expresarse matricialmente como Capítulo III Teoría de las curvas 1. Clasificación de curvas en R 3 En esta sección veremos que, esencialmente, la curvatura y la torsión determinan las curvas de R 3. Para ello necesitaremos las conocidas

Más detalles

Parte I. Iniciación a los Espacios Normados

Parte I. Iniciación a los Espacios Normados Parte I Iniciación a los Espacios Normados Capítulo 1 Espacios Normados Conceptos básicos Sea E un espacio vectorial sobre un cuerpo K = R ó C indistintamente. Una norma sobre E es una aplicación de E

Más detalles

Valores propios y vectores propios

Valores propios y vectores propios Capítulo 6 Valores propios y vectores propios En este capítulo investigaremos qué propiedades son intrínsecas a una matriz, o su aplicación lineal asociada. Como veremos, el hecho de que existen muchas

Más detalles

TEORÍA ELECTROMAGNÉTICA APÉNDICE A INTRODUCCIÓN AL CÁLCULO VECTORIAL

TEORÍA ELECTROMAGNÉTICA APÉNDICE A INTRODUCCIÓN AL CÁLCULO VECTORIAL Página Principal del Profesor: Luis Gerardo Guerrero Ojeda Ir al Capítulo 1 Página Principal de Apuntes de Cursos Pág. Principal de los Apuntes de Teoría TEORÍA ELECTROMAGNÉTICA APÉNDICE A INTRODUCCIÓN

Más detalles

el Capítulo 5, Transform Analysis of Time-Invariant Systems 6.1. Idea de la demostración del Teorema de Cauchy

el Capítulo 5, Transform Analysis of Time-Invariant Systems 6.1. Idea de la demostración del Teorema de Cauchy 6 Transformada Z La bibliografía para el estudio de este tema es: el Capítulos 3, Z Transform y el Capítulo 5, Transform Analysis of Time-Invariant Systems del libro de Oppenheim, A., Schafer, R., Discrete-Time

Más detalles

Límites y Continuidad de funciones

Límites y Continuidad de funciones CAPITULO Límites y Continuidad de funciones Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet (www.cidse.itcr.ac.cr)

Más detalles

Apuntes de Variable Compleja y Análisis de Fourier 2 o ETSI Telecomunicación (Universidad de Málaga)

Apuntes de Variable Compleja y Análisis de Fourier 2 o ETSI Telecomunicación (Universidad de Málaga) Apuntes de Variable Compleja y Análisis de Fourier 2 o ETSI Telecomunicación (Universidad de Málaga) Carlos García Argos (cgasoft@yahoo.com) http://pagina.de/telecos_malaga Curso 1999/2000 2 Índice general

Más detalles

Hasta ahora hemos evitado entrar en la cuestión de qué significa el símbolo

Hasta ahora hemos evitado entrar en la cuestión de qué significa el símbolo Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Límites y continuidad 1. Límite de funciones de dos variables Hasta ahora hemos evitado entrar en la

Más detalles

EL MÉTODO DE LA BISECCIÓN

EL MÉTODO DE LA BISECCIÓN EL MÉTODO DE LA BISECCIÓN Teorema de Bolzano Sea f : [a, b] IR IR una función continua en [a, b] tal que f(a) f(b) < 0, es decir, que tiene distinto signo en a y en b. Entonces, existe c (a, b) tal que

Más detalles

Tema 14: Cálculo diferencial de funciones de varias variables II

Tema 14: Cálculo diferencial de funciones de varias variables II Tema 14: Cálculo diferencial de funciones de varias variables II 1 Desarrollos de Taylor en varias variables Vamos ahora a generalizar los desarrollos de Taylor que vimos para funciones de una variable.

Más detalles

Iniciación a las Matemáticas para la ingenieria

Iniciación a las Matemáticas para la ingenieria Iniciación a las Matemáticas para la ingenieria Los números naturales 8 Qué es un número natural? 11 Cuáles son las operaciones básicas entre números naturales? 11 Qué son y para qué sirven los paréntesis?

Más detalles

2. Fórmula para el cálculo de áreas de figuras de tres o cuatro lados:

2. Fórmula para el cálculo de áreas de figuras de tres o cuatro lados: 9. Integral Definida 9.1. Definición de Integral definida Este artículo permite captar rápidamente la interpretación geométrica de la Integral Definida: área bajo la curva entre dos puntos dados. Se utiliza

Más detalles

TEMA 2. HERRAMIENTAS DE GeoGebra

TEMA 2. HERRAMIENTAS DE GeoGebra TEMA 2. HERRAMIENTAS DE GeoGebra INTRODUCCIÓN Herramientas como Punto, Circunferencia, Segmento, Tangente, entre otras, se han utilizado en las actividades propuestas en el capítulo anterior, para realizar

Más detalles

Advierta que la definición 1 requiere implícitamente tres cosas si f es continua en a:

Advierta que la definición 1 requiere implícitamente tres cosas si f es continua en a: SECCIÓN.5 CONTINUIDAD 9.5 CONTINUIDAD En la sección.3 se le hizo notar que a menudo se puede hallar el ite de una función cuando tiende a a, con sólo calcular el valor de la función en a. Se dice que las

Más detalles

1. Dar la definición de la integral de línea y de la integral de superficie de un campo vectorial y de un campo escalar.

1. Dar la definición de la integral de línea y de la integral de superficie de un campo vectorial y de un campo escalar. NOTAS DE LASE ÁLULO III Unidad 4: INTEGRALES DE LINEA, DE SUPERFIIE, TEOREMAS FUNDAMENTALES Guía de Estudio Doris Hinestroza 1 Índice 1. INTEGRALES DE LINEA, DE SUPERFIIE, TEO- REMAS FUNDAMENTALES DEL

Más detalles

ÁREAS DE FIGURAS IRREGULARES Y CURVILÍNEAS A

ÁREAS DE FIGURAS IRREGULARES Y CURVILÍNEAS A ÁREAS DE FIGURAS IRREGULARES Y CURVILÍNEAS A TRAVÉS DE CONJUNTOS ELEMENTALES: UNA INTRODUCCIÓN AL CÁLCULO INTEGRAL Julio Cesar Barreto García U. E José Antonio Sosa Guillen. Palito Blanco. Estado Yaracuy,

Más detalles

3. Funciones reales de una variable real. Límites. Continuidad 1

3. Funciones reales de una variable real. Límites. Continuidad 1 3. Funciones reales de una variable real. Límites. Continuidad 1 Una función real de variable real es una aplicación f : D R, donde D es un subconjunto de R denominado dominio de f. La función f hace corresponder

Más detalles

Apuntes de Mecánica Newtoniana Cinemática de la Partícula

Apuntes de Mecánica Newtoniana Cinemática de la Partícula Apuntes de Mecánica Newtoniana Cinemática de la Partícula Ariel Fernández Daniel Marta Introducción. En este capítulo se introducirán los elementos necesarios para la descripción del movimiento de una

Más detalles

Alternativamente, los vectores también se pueden poner en función de los vectores unitarios:

Alternativamente, los vectores también se pueden poner en función de los vectores unitarios: 1. Nociones fundamentales de cálculo vectorial Un vector es un segmento orientado que está caracterizado por tres parámetros: Módulo: indica la longitud del vector Dirección: indica la recta de soporte

Más detalles

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales Práctica 4 - Parte Límite de funciones En lo que sigue, veremos cómo la noción de límite introducida para sucesiones se etiende al caso de funciones reales. Esto nos permitirá estudiar el comportamiento

Más detalles

Problemas Resueltos de Ecuaciones en Derivadas Parciales

Problemas Resueltos de Ecuaciones en Derivadas Parciales Problemas Resueltos de Ecuaciones en Derivadas Parciales Alberto Cabada Fernández 4 de diciembre de. Índice general Introducción I. Ecuaciones de primer orden.. Método de las bandas características...................

Más detalles

Objetivos: Al inalizar la unidad, el alumno:

Objetivos: Al inalizar la unidad, el alumno: Unidad 3 espacios vectoriales Objetivos: Al inalizar la unidad, el alumno: Describirá las características de un espacio vectorial. Identiicará las propiedades de los subespacios vectoriales. Ejempliicará

Más detalles

Tema 3. Problemas de valores iniciales. 3.1. Teoremas de existencia y unicidad

Tema 3. Problemas de valores iniciales. 3.1. Teoremas de existencia y unicidad Tema 3 Problemas de valores iniciales 3.1. Teoremas de existencia y unicidad Estudiaremos las soluciones aproximadas y su error para funciones escalares, sin que ésto no pueda extenderse para funciones

Más detalles

Análisis Dinámico: Integración

Análisis Dinámico: Integración Análisis Dinámico: Integración Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj Análisis Dinámico: Integración 1 / 57 Integración indefinida

Más detalles

El anillo de polinomios sobre un cuerpo

El anillo de polinomios sobre un cuerpo Capítulo 2 El anillo de polinomios sobre un cuerpo En este capítulo pretendemos hacer un estudio sobre polinomios paralelo al que hicimos en el capítulo anterior sobre los números enteros. Para esto, es

Más detalles

Integral definida. 4. La integral definida de una suma de funciones es igual a la suma de integrales (Propiedad de linealidad)

Integral definida. 4. La integral definida de una suma de funciones es igual a la suma de integrales (Propiedad de linealidad) Integral definida Dada una función f(x) de variable real y un intervalo [a,b] R, la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y rectas x = a y x = b. bb

Más detalles

Funciones. Objetivos. Antes de empezar. 1.Relaciones funcionales...pág. 204. 2.Representación gráfica...pág. 211. 3.Propiedades generales...pág.

Funciones. Objetivos. Antes de empezar. 1.Relaciones funcionales...pág. 204. 2.Representación gráfica...pág. 211. 3.Propiedades generales...pág. 11 Funciones. Objetivos En esta quincena aprenderás a: Comprender, distinguir y valorar el concepto de función Interpretar y relacionar tabla, gráfica y fórmula de una relación funcional Distinguir los

Más detalles

MANEJO DEL CÁLCULO INTEGRAL PARA LA SOLUCIÓN DE PROBLEMAS

MANEJO DEL CÁLCULO INTEGRAL PARA LA SOLUCIÓN DE PROBLEMAS Colegio Nacional de Educación Profesional Técnica MANEJO DEL CÁLCULO INTEGRAL PARA LA SOLUCIÓN DE PROBLEMAS Al finalizar la unidad el resolverá problemas prácticos usando integrales Reforma Académica 003

Más detalles

Problemas resueltos. La integral de línea. 1. Halle la longitud de la curva dada por la parametrización. Solución:

Problemas resueltos. La integral de línea. 1. Halle la longitud de la curva dada por la parametrización. Solución: Problemas resueltos 1. Halle la longitud de la curva dada por la parametrización α(t) t ı + 4 3 t3/ j + 1 t k, t [, ]. α (t) (1, t 1/, 1 ), t [, ]. La curva α es de clase C 1 y, por tanto, es rectificable.

Más detalles

El rincón de los problemas. Oportunidades para estimular el pensamiento matemático. Triángulos de área máxima o de área mínima Problema

El rincón de los problemas. Oportunidades para estimular el pensamiento matemático. Triángulos de área máxima o de área mínima Problema www.fisem.org/web/union El rincón de los problemas ISSN: 1815-0640 Número 37. Marzo 2014 páginas 139-145 Pontificia Universidad Católica del Perú umalasp@pucp.edu.pe Oportunidades para estimular el pensamiento

Más detalles

Transformaciones canónicas

Transformaciones canónicas apítulo 29 Transformaciones canónicas 29.1 Introducción onsideremos una transformación arbitraria de las coordenadas en el espacio de las fases de dimensión 2(3N k) (con el tiempo como un parámetro) Q

Más detalles

Cálculo elemental de límites...

Cálculo elemental de límites... Capítulo 5 Cálculo elemental de ites... Vamos a dedicar este capítulo a tratar de mejorar nuestra relación con los ites, desarrollando el método que ya hemos anunciado, que nos permitirá calcular el ite

Más detalles