ESTIMACIÓN DE VARIANZAS Y PROPORCIONES POBLACIONALES MEDIANTE INTERVALOS DE CONFIANZA

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ESTIMACIÓN DE VARIANZAS Y PROPORCIONES POBLACIONALES MEDIANTE INTERVALOS DE CONFIANZA"

Transcripción

1 UNP-Facultad de Igeiería Carreras: Ig. Electróica y Electricista CAPÍTUO 6 ESTIMACIÓN DE VARIANZAS PROPORCIONES POBACIONAES MEDIANTE INTERVAOS DE CONFIANZA 6.1 Itervalo de cofiaza ara la variaza de ua oblació oral 6. Itervalos de cofiaza ara la roorció oblacioal ara uestras grades 6.3 Itervalos de cofiaza ara la diferecia etre dos roorcioes Págia 1 de 9

2 UNP-Facultad de Igeiería Carreras: Ig. Electróica y Electricista 6.1 Itervalo de cofiaza ara la variaza de ua oblació oral Suogaos ua oblació N (, dode es descoocida y deseaos obteer u itervalo de cofiaza ara la variaza oblacioal al ivel de cofiaza del (1-100%. Para ello toaos ua uestra aleatoria ( 1,,, de la oblació, cosideraos el estiador utual de ya estudiado ( σˆ = S y usaos u estadístico ivote ue deeda del aráetro y de su estiador S y cuya distribució uestral o deeda de. Defiios el estadístico ivote coo sigue: - W ( 1,,..., ; ( i i 1 ( - i 1 i ( -1 ( - l1 i ( -1 ( -1S Recordeos ue, a S es la variaza uestral. ( -1S b ara cada valor fijo de sigue ua distribució Chi Cuadrado co (-1 grados de σ libertad (a esa v.a. la idicaos χ -1. Ua vez fijado el ivel de cofiaza (1-, odeos ecotrar dos valores k 1 y k tales ue: P[k 1 χ -1 k ] = 1- α Estos valores k 1 y k se deteria de aera tal ue el itervalo ue se obtega sea de logitud íia, ero, coo la distribució Chi Cuadrado o es siétrica resulta ue los extreos del itervalo deederá de los grados de libertad, y co el fi de silificar y oder llegar a u itervalo úico se adotará el criterio de cosiderar la isa robabilidad e los dos extreos, es decir, k 1 = / y k = / Distribució χ -1 Para obteer el itervalo de cofiaza lateaos: [ ( -1.s -1,1- / 1-1, / P -1,1- / -1, / ] 1- P[ ] 1- ( -1 ( -1 s s O bie, ( -1 s ( -1s ( -1s ( -1 s P [ ] 1- P[ ] 1- -1,1- / -1, / -1, / -1,1- / Podeos dar etoces la siguiete defiició: Págia de 9

3 UNP-Facultad de Igeiería Carreras: Ig. Electróica y Electricista Defiició Itervalo de cofiaza ara la variaza de ua distribució oral Si s es la variaza uestral de ua uestra aleatoria de observacioes toadas de ua distribució oral co variaza descoocida, etoces u itervalo de cofiaza del (1-100% ara es, ( -1.s ( -1s -1, / Itervalos de cofiaza uilaterales a Para hallar u itervalo de cofiaza iferior del (1-100% ara, aálogaete a lo visto ateriorete lateaos, ( -1.S ( -1.S P 1- P 1- [ ] [ ] -1, -1, -1,1- / dode, χ -1, α/ y χ -1,1- α/ so los utos críticos suerior e iferior ue corresode al orcetaje / de la distribució Chi-Cuadrado co = -1 grados de libertad, resectivaete. or tato el itervalo tedrá la fora, ( - 1.S -1, b El itervalo de cofiaza suerior del (1-100% se obtiee lateado, ( -1.S ( -1.S P [ -1,1- ] 1 - [ ] 1 - P -1,1- obteiedo el itervalo, ( -1.S -1,1- Ejelo Ua fábrica de torillos está iteresada e la uiforidad de la áuia ue los corta. E cocreto es deseable ue la desviació tíica, del roceso de cortado sea eor ue cierta edida eueña. Suuesto ue la logitud de los torillos cortados or esa áuia está distribuida oralete y ue se ha obteido s = 0,0153, e ua uestra de 0 torillos, obteer u itervalo del 95 % de cofiaza ara. Solució Dado ue iteresa deteriar ua catidad ue ayore a, costruireos u itervalo de cofiaza suerior, es decir u itervalo ara de la fora, ( -1s (19.(0, ; 0; 0; ,1-19, ; Toado la raíz cuadrada u itervalo ara, co la isa cofiaza, es [0; 0,17] (Recordar ue siere > 0 6. Itervalos de cofiaza ara la roorció oblacioal ara uestras grades Págia 3 de 9

4 UNP-Facultad de Igeiería Carreras: Ig. Electróica y Electricista Quereos costruir u itervalo de cofiaza ara la roorció de eleetos,, de ua oblació ue osee deteriada característica de iterés, a artir de la iforació obteida e ua uestra aleatoria sile de eleetos de la oblació. Para cada eleeto de la uestra aotareos u uo si osee la característica y u cero si carece de ella, or lo cual disodreos de ua uestra aleatoria sile ( 1,,, tal ue, 0 si o osee la característica (fracaso i i = 1,,, 1 si osee la característica (éxito Defiios la v.a. = Sabeos ue es ua variable aleatoria co distribució B(,, es decir ue rereseta el úero de éxitos e reeticioes ideedietes de u esayo de Beroulli. U estiador utual de la roorció e u exerieto bioial está dado or el estadístico, Por tato, la roorció de la uestra, N º de éxitos e ruebas Nº total de ruebas x se usará coo estiador utual del aráetro. El úero de éxitos, x, se uede iterretar coo la sua de valores ue cosiste sólo de ceros y uos, y es sólo la edia uestral de estos valores. Etoces or el Teorea Cetral del íite, ara suficieteete grade, está distribuido e fora aroxiadaete oral co edia, E P E ( ˆ ( y variaza, (1 - Var ( Estadarizado, ˆ - Z P N(0,1 Podeos escribir, P [-z / Z z / ] 1 - P[-z / - z / ] 1 - Oerado coveieteete, P [ - z ˆ / P z / ] 1 - Observar ue ara ua uestra articular de taaño, los extreos del itervalo de cofiaza ue se obtiee de la exresió aterior deede de, ue es el aráetro descoocido. Para evitar esta x situació reelazaos bajo el sigo radical or el estiador utual. Cuado es grade el error ue se itroduce al hacer esta sustitució es eueño. Págia 4 de 9

5 UNP-Facultad de Igeiería Carreras: Ig. Electróica y Electricista Podeos dar ahora la siguiete defiició, Defiició Si es la roorció de éxitos e ua uestra aleatoria de taaño y = 1- u itervalo del (1-100% de cofiaza ara el aráetro bioial está dado or, - z / dode z /.ˆ z / es el valor de z ue deja. u área de / a la derecha Observacioes a El rocediieto exlicado o es cofiable y or tato o debe usarse cuado es eueña y está cercaa a 0 ó a 1, ara estar seguros se debe reuerir ue, 5 ó 5. b os itervalos uilaterales viee dados or, ˆ z ˆ - z ˆ ˆ (- ; z ˆ ˆ [ - z ˆ ˆ ] ˆ ˆ ; Ejelo 1 Co el objeto de deteriarla roorció de ersoas ue tiee coche e ua rovicia deteriada se realizó u uestreo aleatorio sile, de tal fora ue de los 100 ecuestados, 30 de ellos tiee coche. Calcular u itervalo de cofiaza del 95% ara la roorció de ersoas co coche e la rovicia. Solució - z /. z /. 0,3-1,96 (0,3.(0, ,3 1,96 (0,3.(0,7 100 or tato, el itervalo edido es, [ 0,1; 0,39] Taaño uestral ara estiar la roorció oblacioal de ua oblació Sabeos ue el itervalo al ivel de cofiaza del (1-100% ara la roorció oblacioal es: a logitud del itervalo es: [ - z /. ; z /. ].. z / desejado el valor de, se obtiee, z. ˆ.ˆ / 4 (1 a exresió (1 será usada ara deteriar el taaño de la uestra ecesario ara obteer u itervalo de cofiaza ara la roorció oblacioal al ivel de cofiaza (1-100% y, co ua logitud. Si e lugar de utilizar la logitud del itervalo utilizaos el error áxio: E ˆ -, el cual será coo Págia 5 de 9

6 UNP-Facultad de Igeiería Carreras: Ig. Electróica y Electricista E z /. z ˆ /.. etoces el taaño de la uestra es: ( E a exresió ( es euivalete a la (1.. Observació Coviee aclarar auí ue el estiador se uede obteer de varias aeras, a A artir de ua uestra revia, coo ya vios. b Utilizado el valor áxio ue uede toar.ˆ.(1 - ue se alcaza e: ˆ 0,5 etoces el valor áxio de. será: ˆ.(1 -. 0,5 uego sustituyedo e la exresió (1 teeos: z /.(0,5 4. (3 ue será el taaño uestral lo suficieteete grade ara garatizaros u itervalo de cofiaza de logitud. Ejelo a UNP retede estiar la roorció de igeieros atriculados e estudios de doctorado co u error áxio de 0,05 y u ivel de cofiaza del 90%. Deteriar: a El taaño de la uestra ecesario si se tiee coo iforació coleetaria ue la roorció coo áxio es 0,40. b El taaño de la uestra e la isa situació aterior ero co ua recisió de 0,1. c El taaño de la uestra cuado o se tiee iforació algua acerca del valor de la roorció y aditios ua recisió de 0,1. Solució a Alicado ( y toado el áxio valor de la roorció, ˆ 0, 40 teeos: z /. E (1,645.(0,40.(0,60 (0,05 59,7 toaos 60 b Coo la recisió es euivalete a la alitud del itervalo, debeos alicar la exresió (1, etoces: z ˆ /.. (0,60.(0, (1, ,7 toaos 60 (0,1 y veos ue efectivaete coicide co la solució aterior (coo dijios ates (1 y ( so euivaletes. c Coo o se tiee igua iforació sobre el aráetro toareos el valor ás desfavorable, es decir el valor de ue os dé el áxio taaño de uestra, y ese será el valor de ue hace áxio el roducto., luego alicado la exresió (3 se tiee: z /.(0,5 (0, (1, ,6 toaos 71 (0,1 6.3 Itervalos de cofiaza ara la diferecia etre dos roorcioes Págia 6 de 9

7 UNP-Facultad de Igeiería Carreras: Ig. Electróica y Electricista Quereos costruir ahora itervalos de cofiaza ara la diferecia de roorcioes, eleetos de oblacioes ideedietes, e, ue verifica cierta característica de iterés. a aera de roceder es idética a la ya vista e el caso de itervalos ara ua roorció, co la salvedad de ue ahora teeos dos oblacioes. Cocretaete seleccioaos uestras aleatorias ideedietes de taaño y a artir de las dos oblacioes bioiales co edias. y. y variazas.. y.. resectivaete. as uestras seleccioadas será: ( 1,,, y ( 1,,,, dode: a i = 1 si el i-ésio eleeto elegido e la uestra reseta la característica de iterés i = 0 si el i-ésio eleeto elegido e la uestra o reseta la característica de iterés i = 1,,, b j = 1 si el j-ésio eleeto elegido e la uestra reseta la característica de iterés. j = 0 si el j-ésio eleeto elegido e la uestra o reseta la característica de iterés. j = 1,,, Defiiedo las v.a. = e = x y Defiios las roorcioes y. U estiador utual de la diferecia etre las dos roorcioes, - está dado or el estadístico -. Por tato, la diferecia de las roorcioes uestrales, ˆ - se usará coo estiació utual de -. Se uede establecer u itervalo de cofiaza ara P ˆ - -, de - al cosiderar la distribució uestral de. Sabeos ue ˆ. P N(, y ˆ P N (,. Al ser las uestras elegidas ideedietes, P ˆ y so ideedietes, etoces or la roiedad reroductiva de la distribució oral: Podeos asegurar ue, siedo: - N( -,. P (-z / Z z / 1 - ( Z - - ( -... ( - - ( - Por tato, odeos escribir: P [-z / z / ] Oerado ateáticaete y reelazado,,, bajo el sigo del radical or sus estiadores, ˆ x, y, 1-, dado ue:. 5,. 5,. 5 y. 5 se obtiee u itervalo de (1-100% de cofiaza ara -, del cual odeos dar la siguiete defiició: 1 - Págia 7 de 9

8 UNP-Facultad de Igeiería Carreras: Ig. Electróica y Electricista Defiició Si ˆ y so las roorcioes de éxitos e uestras aleatorias de taaños y, resectivaete, ˆ 1 - y 1 -, u itervalo de (1-100% de cofiaza ara la diferecia de dos aráetros bioiales -, está dado or... ( - - z - ( ˆ / - z / dode z / es el valor de z ue deja u área de / a la derecha.. Deteriació del taaño uestral Suuesto ue elegios uestras del iso taaño e abas oblacioes ( =, uereos hallar el taaño uestral ecesario ara ue el itervalo del (1-100% de cofiaza ara la diferecia de roorcioes tega logitud redeteriada. Suoiedo ue el taaño uestral a elegir es grade ( 30, desejado e la exresió ara la logitud del itervalo de cofiaza ara la diferecia de roorcioes,.(1 - z.(1 -. /. se obtiee: 4. z /.[.(1 - (1 - ] Si reelazaos las roorcioes oblacioales or las roorcioes uestrales estiadas co uestras reliiares, el taaño uestral reuerido es 4. z ˆ ˆ /.[.(1 - (1 - ] si e cabio, suoeos la situació ás desfavorable = = ½, el taaño uestral resultate es z / Ejelo a Eresa Telefóica Argetia (e aos de caitales extrajeros E la ciudad de Barceloa se toa ua uestra aleatoria de 98 eresarios de los cuales 48 ha sido oseedores de accioes de Telefóica. E la ciudad de Madrid se seleccioa otra uestra aleatoria de 17 eresarios, de los cuales 1 ha sido oseedores de accioes de Telefóica. a Obteer u itervalo del 95% de cofiaza ara la diferecia etre las roorcioes de eresarios ue ha sido oseedores de este tio de accioes e abas ciudades. b Qué coclusió uede obteer del itervalo hallado? Solució a De la iforació dada e el euciado se deduce: Taaño de la uestra ( Eresarios ue ha teido accioes (x Barceloa Madrid 17 1 Proorció corresodiete ( ˆ ˆ ˆ 48 0, , Págia 8 de 9

9 UNP-Facultad de Igeiería Carreras: Ig. Electróica y Electricista Para el ivel de cofiaza del 95%, = 0,05, luego, P [ Z z 0,05 ] 0,05 z 0,05 1,96 Sabeos ue el itervalo es de la fora: or tato: [( - - z /. ˆ. ˆ ; ( - z /. ˆ. ˆ ] (0,490.(0,540 (0,165.(0,835 ( 0,490-0,165 1, haciedo las cuetas idicadas se obtiee el itervalo: [ 0,08; 0,443] b Coo el 0 está fuera del itervalo, esto os idica ue es bastate ás robable ue u eresario de la ciudad de Barceloa haya teido accioes de Telefóica ue uo de la ciudad de Madrid. Págia 9 de 9

Propuesta de un modelo para la gestión de los neumáticos de una flota de vehículos

Propuesta de un modelo para la gestión de los neumáticos de una flota de vehículos 5 th Iteratioal oferece o Idustrial Egieerig ad Idustrial Maageet XV ogreso de Igeiería de Orgaizació artagea, 7 a 9 de Setiebre de 2 Prouesta de u odelo ara la gestió de los euáticos de ua flota de vehículos

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 04 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Reserva, Ejercicio 4, Opció A Reserva, Ejercicio 4, Opció

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció B Reserva 1, Ejercicio 4, Opció B Reserva, Ejercicio 4,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 7: CONTRASTE DE HIPÓTESIS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 7: CONTRASTE DE HIPÓTESIS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 214 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 7: CONTRASTE DE HIPÓTESIS Juio, Ejercicio 4, Oció B Reserva 2, Ejercicio 4, Oció B Reserva 4, Ejercicio

Más detalles

Permutaciones y combinaciones

Permutaciones y combinaciones Perutacioes y cobiacioes Cotaos posibilidades Coezaos co u secillo ejeplo E España los coches tiee ua atrícula que costa de cuatro dígitos deciales seguidos de tres letras sacadas de u alfabeto de 26 Cuátas

Más detalles

Tema 9. Inferencia Estadística. Intervalos de confianza.

Tema 9. Inferencia Estadística. Intervalos de confianza. Tema 9. Iferecia Estadística. Itervalos de cofiaza. Idice 1. Itroducció.... 2 2. Itervalo de cofiaza para media poblacioal. Tamaño de la muestra.... 2 2.1. Itervalo de cofiaza... 2 2.2. Tamaño de la muestra...

Más detalles

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 2 Septiembre) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 2 Septiembre) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 006 (Modelo Septiembre) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (1 5 putos) Represete gráficamete el recito defiido por el siguiete sistema de iecuacioes:

Más detalles

MODELOS DE PROBABILIDAD

MODELOS DE PROBABILIDAD 3 MODELOS DE PROBABILIDAD.- VARIABLES ALEATORIAS DISCRETAS E ocasioes, alguas variables aleatorias sigue distribucioes de probabilidad uy cocretas, coo por ejeplo el estudio a u colectivo ueroso de idividuos

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 1999-2. - CONVOCATORIA: Juio MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo

Más detalles

OPERACIONES CON POLINOMIOS.

OPERACIONES CON POLINOMIOS. OPERACIONES CON POLINOMIOS. EXPRESIONES ALGEBRAICAS. Ua epresió ateática que usa úeros o variables o abos para idicar productos o cocietes es u tério. Los térios,, (ab), so todos epresioes algebraicas.

Más detalles

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 2002 (Modelo 3 Juio) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) U cliete de u supermercado ha pagado u total de 156 euros por 24 litros de leche,

Más detalles

OPCIÓN A EJERCICIO 1_A 1-2 1 Sean las matrices A =

OPCIÓN A EJERCICIO 1_A 1-2 1 Sean las matrices A = IES Fco Ayala de Graada Sobrates de 007 (Juio Modelo ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1-1 x -x Sea las matrices A, X y e Y -1 3 0 - z (1 puto) Determie la matriz iversa de A. ( putos)

Más detalles

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato.

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato. UH ctualizació de oocimietos de Matemáticas ara Tema Poliomios y otras eresioes algebraicas Estos cocetos está etraídos del libro Matemáticas de achillerato McGrawHill Poliomios: oeracioes co oliomios

Más detalles

INFERENCIA ESTADÍSTICA. CONTRASTE DE HIPÓTESIS

INFERENCIA ESTADÍSTICA. CONTRASTE DE HIPÓTESIS INFERENCIA ESTADÍSTICA. CONTRASTE DE HIPÓTESIS 1. El peso medio de ua muestra aleatoria de 100 arajas de ua determiada variedad es de 272 g. Se sabe que la desviació típica poblacioal es de 20 g. A u ivel

Más detalles

IES Fco Ayala de Granada Junio de 2013 (Reserva 2 Modelo 1 ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2013 (Reserva 2 Modelo 1 ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Graada Juio de 03 (Reserva Modelo ) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 03 MODELO (RESERVA ) OPCIÓN A EJERCICIO (A) ( 5 putos) U fabricate elabora

Más detalles

ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS COCOS. (Resolución por JMEB.)

ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS COCOS. (Resolución por JMEB.) ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS OOS. (Resolució por JMEB.) 1. Defiició. El problema cosiste e calcular la catidad de cocos que había iicialmete e u motó que... ierto día se reuiero moos para recoger

Más detalles

Estimación puntual y por intervalos de confianza

Estimación puntual y por intervalos de confianza Ídice 6 Estimació putual y por itervalos de cofiaza 6.1 6.1 Itroducció.......................................... 6.1 6. Estimador........................................... 6. 6.3 Método de costrucció

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2001 (Modelo 6) Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 x -1 Se cosidera la matriz A = 1 1 1. x x 0 (1 5 putos) Calcule los valores de x para los que o existe

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

-6-2 1 15 5-6 10 1-4 15 5-6 10 1-4

-6-2 1 15 5-6 10 1-4 15 5-6 10 1-4 IES Fco Ayala de Graada Sobrates de 2002 (Modelo 6 Septiembre) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 2 1-1 Sea la matriz A = 0 m-6 m+1 2 0 (1 puto) Calcule los valores de m para que dicha

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 2)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 2) IES Fco Ayala de Graada Sobrates de 0 (Modelo ) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 0 (MODELO ) OPCIÓN A EJERCICIO _A ( 5 putos) Halle la matriz X que verifique la ecuació

Más detalles

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación)

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación) Aputes: Matemáticas Fiacieras 1. Lecció 11 - Operacioes Fiacieras a largo plazo - Préstamos (Cotiuació) 1.1. Préstamo: Método de cuotas de amortizació costates E este caso se verifica A 1 = A 2 = = A =

Más detalles

COLEGIO CRISTIANA FERNÁNDEZ DE MERINO Trípoli No. 112, Col. Portales, México, D. F. Tel. 5604-3628, 5605-1509

COLEGIO CRISTIANA FERNÁNDEZ DE MERINO Trípoli No. 112, Col. Portales, México, D. F. Tel. 5604-3628, 5605-1509 COLEGIO CRISTIANA FERNÁNDEZ DE MERINO Trípoli No. 112, Col. Portales, México, D. F. Tel. 5604-3628, 5605-1509 MATEMATICAS SEGUNDO GRADO SECCIÓN SECUNDARIA ACTIVIDADES PARA DESARROLLAR EN CLASE CURSO 2015-2016

Más detalles

PRUEBAS DE HIPÓTESIS

PRUEBAS DE HIPÓTESIS PRUEBAS DE HIPÓTESIS E vez de estimar el valor de u parámetro, a veces se debe decidir si ua afirmació relativa a u parámetro es verdadera o falsa. Vale decir, probar ua hipótesis relativa a u parámetro.

Más detalles

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ANÁLISIS EXPLORATORIO DE DATOS Ejemplos y ejercicios de Aálisis Exploratorio de Datos Descripció estadística de ua variable. Ejemplos y ejercicios..1 Ejemplos. Ejemplo.1 Se ha medido el grupo saguíeo de

Más detalles

INTERVALOS DE CONFIANZA Y TAMAÑO MUESTRAL. 1. Una muestra aleatoria de 9 tarrinas de helado proporciona los siguientes pesos en gramos

INTERVALOS DE CONFIANZA Y TAMAÑO MUESTRAL. 1. Una muestra aleatoria de 9 tarrinas de helado proporciona los siguientes pesos en gramos 1 INTERVALOS DE CONFIANZA Y TAMAÑO MUESTRAL La mayoría de estos problemas ha sido propuestos e exámees de selectividad de los distitos distritos uiversitarios españoles. 1. Ua muestra aleatoria de 9 tarrias

Más detalles

Estimación puntual y por Intervalos de Confianza

Estimación puntual y por Intervalos de Confianza Capítulo 7 Estimació putual y por Itervalos de Cofiaza 7.1. Itroducció Cosideremos ua v.a X co distribució F θ co θ descoocido. E este tema vemos cómo dar ua estimació putual para el parámetro θ y cómo

Más detalles

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 5 Septiembre) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 5 Septiembre) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 00 (Modelo 5 Septiembre) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A (3 putos) Para fabricar tipos de cable, A y B, que se vederá a 50 y 00 pts el metro, respectivamete,

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO.-.3 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 2014 MODELO 3 (COLISIONES) OPCIÓN A

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 2014 MODELO 3 (COLISIONES) OPCIÓN A IES Fco Ayala de Graada Juio de 014 (Colisioes Modelo 3) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 014 MODELO 3 (COLISIONES) OPCIÓN A EJERCICIO 1 (A) 1 a Sea las matrices

Más detalles

TEMA 5: INTERPOLACIÓN

TEMA 5: INTERPOLACIÓN 5..- ITRODUCCIÓ TEMA 5: ITERPOLACIÓ Supogamos que coocemos + putos (x,y, (x,y,..., (x,y, de la curva y = f(x, dode las abscisas x k se distribuye e u itervalo [a,b] de maera que a x x < < x b e y k = f(x

Más detalles

CAPÍTULO 7: INFERENCIA PARA PROPORCIONES Y MEDIAS

CAPÍTULO 7: INFERENCIA PARA PROPORCIONES Y MEDIAS Págia 1 de 13 CAPÍTULO 7: INFERENCIA PARA PROPORCIONES Y MEDIAS E este capítulo etraremos al fial del ciclo del método cietífico, usado la iformació de la muestra para geeralizar y llegar a coclusioes

Más detalles

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª Sea a, b y eteros positivos tales que a b y ab Prueba que a b 4 Idica justificadamete cuádo se alcaa la igualdad Supogamos que el resultado a demostrar fuera falso

Más detalles

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN Págia 98 Cuátas caras cabe esperar? El itervalo característico correspodiete a ua probabilidad del 95% (cosideramos casas raros al 5% de los casos extremos)

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 4)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 4) IES Fco Ayala de Graada Sobrates de 8 (Modelo 4) Solució Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 8 (MODELO 4) OPCIÓN A EJERCICIO 1_A (3 putos) U joyero fabrica dos modelos

Más detalles

ESTIMACIÓN PUNTUAL Y ESTIMACIÓN POR INTERVALOS DE CONFIANZA

ESTIMACIÓN PUNTUAL Y ESTIMACIÓN POR INTERVALOS DE CONFIANZA ESTIMACIÓN PUNTUAL Y ESTIMACIÓN POR INTERVALOS DE CONFIANZA Autores: Ágel A. Jua (ajuap@uoc.edu), Máimo Sedao (msedaoh@uoc.edu), Alicia Vila (avilag@uoc.edu). ESQUEMA DE CONTENIDOS Defiició Propiedades

Más detalles

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor.

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Fucioes y derivada. 5. Aproimació de fucioes: poliomios de Taylor y teorema de Taylor. Alguas veces podemos aproimar fucioes complicadas mediate otras

Más detalles

16 Distribución Muestral de la Proporción

16 Distribución Muestral de la Proporción 16 Distribució Muestral de la Proporció 16.1 INTRODUCCIÓN E el capítulo aterior hemos estudiado cómo se distribuye la variable aleatoria media aritmética de valores idepedietes. A esta distribució la hemos

Más detalles

Para construir intervalos de confianza recordemos la distribución muestral de la proporción muestral $p :

Para construir intervalos de confianza recordemos la distribución muestral de la proporción muestral $p : Itervalos de Cofiaza para ua proporció Cuado hacemos u test de hipótesis decidimos sobre u valor hipotético del parámetro. Qué proporció de mujeres espera compartir las tareas de la casa co su pareja?

Más detalles

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 1) Enunciado Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 1) Enunciado Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 011 (Modelo 1) Euciado Germá-Jesús Rubio Lua SOLUCIONES PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 010-011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES PAUTA DE CORRECCIÓN PRUEBA PARCIAL N o 3 Profesor: Hugo S. Salias. Primer Semestre 2012 1. El ivel

Más detalles

Este centro consta de 20 cuartos sencillos, 12 cuartos dobles, 7 corredores y 4 salas de sesiones.

Este centro consta de 20 cuartos sencillos, 12 cuartos dobles, 7 corredores y 4 salas de sesiones. reguta 6 utos Ua empresa de limpieza cotrata persoal e forma putual depediedo de las solicitudes de trabajo de sus clietes. ara el iicio de ua coferecia iteracioal, u cliete platea la limpieza a fodo del

Más detalles

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios Poliomios Defiició de poliomio y sus propiedades U poliomio puede expresarse como ua suma de productos de fucioes de x por ua costate o como ua suma de térmios algebraicos; es decir U poliomio e x es ua

Más detalles

Fracciones. 1º y 2º de ESO

Fracciones. 1º y 2º de ESO Fraccioes. º y º de ESO º Y º ESO CAPÍTULO : FRACCIONES www.autesareaverde.org.es Autor: Eduardo Cuchillo Revisora: Nieves Zuasti Ilustracioes: Baco de iágees del INTEF Mateáticas º y º de ESO. Caítulo

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO.001-.00 - CONVOCATORIA: SEPTIEMBRE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella,

Más detalles

Ejercicio 1. Sea el recinto limitado por las siguientes inecuaciones: y + 2x 2; 2y 3x 3; 3y x 6.

Ejercicio 1. Sea el recinto limitado por las siguientes inecuaciones: y + 2x 2; 2y 3x 3; 3y x 6. Materiales producidos e el curso: Curso realizado e colaboració etre la Editorial Bruño y el IUCE de la UAM de Madrid del 1 de marzo al 30 de abril de 013 Título: Curso Moodle para matemáticas de la ESO

Más detalles

14 Intervalos de confianza

14 Intervalos de confianza Solucioario 14 Itervalos de cofiaza ACTIVIDADES INICIALES 14.I. Calcula tal que P z < Z z α α = 0,87. P zα < Z zα = P Z zα P Z < zα = P Z zα 1= 0,87 P Z P Z P Z = 1,87 = 0,935. Buscado e el iterior de

Más detalles

UNIDAD 7: ESTADÍSTICA INFERENCIAL

UNIDAD 7: ESTADÍSTICA INFERENCIAL UNIDAD 7: ESTADÍSTICA INFERENCIAL ÍNDICE DE LA UNIDAD 1.- INTRODUCCIÓN.... 1.- VARIABLES ESTADÍSTICAS. PARÁMETROS... 3.- DISTRIBUCIONES DE PROBABILIDAD... 3 3.1.- Distribució Biomial... 4 3..- Distribució

Más detalles

Calculamos los vértices del recinto convexo, resolviendo las ecuaciones las rectas de dos en dos.

Calculamos los vértices del recinto convexo, resolviendo las ecuaciones las rectas de dos en dos. IES Fco Ayala de Graada Sobrates de 2000 (Modelo 1) Solució Germá-Jesús Rubio Lua Los Exámees del año 2000 me los ha proporcioado D. José Gallegos Ferádez OPCIÓN A EJERCICIO 1_A (2 putos) Dibuje el recito

Más detalles

Muestreo. Tipos de muestreo. Inferencia Introducción

Muestreo. Tipos de muestreo. Inferencia Introducción Germá Jesús Rubio Lua Catedrático de Matemáticas del IES Fracisco Ayala Muestreo. Tipos de muestreo. Iferecia Itroducció Nota.- Puede decirse que la Estadística es la ciecia que se preocupa de la recogida

Más detalles

Matemáticas I - 1 o BACHILLERATO Binomio de Newton

Matemáticas I - 1 o BACHILLERATO Binomio de Newton Matemáticas I - o Bachillerato Matemáticas I - o BACHILLERATO El biomio de Newto es ua fórmula que se utiliza para hacer el desarrollo de la potecia de u biomio elevado a ua potecia cualquiera de expoete

Más detalles

Las funciones de Cobb-Douglas como base del espacio vectorial de funciones homogéneas

Las funciones de Cobb-Douglas como base del espacio vectorial de funciones homogéneas Las fucioes de Cobb-Douglas como base del esacio vectorial de fucioes homogéeas Zuleyka Díaz Martíez Mª Pilar García Pieda José Atoio Núñez del Prado Uiversidad Comlutese de Madrid Facultad de Ciecias

Más detalles

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 2) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 2) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 001 (Modelo ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) Se quiere orgaizar u puete aéreo etre dos ciudades, co plazas suficietes de pasaje y carga,

Más detalles

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Por: Lic. Eleazar J. García. República Bolivariaa de Veezuela Tiaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Usted está familiarizado co alguas operacioes iversas. La adició y la sustracció so operacioes

Más detalles

Gradiente, divergencia y rotacional

Gradiente, divergencia y rotacional Lecció 2 Gradiete, divergecia y rotacioal 2.1. Gradiete de u campo escalar Campos escalares. U campo escalar e R es ua fució f : Ω R, dode Ω es u subcojuto de R. Usualmete Ω será u cojuto abierto. Para

Más detalles

Propuesta A. { (x + 1) 4. Se considera la función f(x) =

Propuesta A. { (x + 1) 4. Se considera la función f(x) = Pruebas de Acceso a Eseñazas Uiversitarias Oficiales de Grado (0) Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumo deberá cotestar a ua de las dos opcioes propuestas A o B. Se podrá utilizar

Más detalles

10. Estimadores 7 11. Estimación de las precisiones 8

10. Estimadores 7 11. Estimación de las precisiones 8 Ídice Págia 1. Objetivo de la ecuesta 1. Població objetivo 1 3. Cobertura geográfica 1 4. iseño de la uestra 1 4.1 Marco de la ecuesta 1 4. Foració de las uidades priarias de uestreo (UPM) 1 a) E urbao

Más detalles

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2004

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2004 Solució del eame de Ivestigació Operativa de Sistemas de septiembre de 4 Problema (,5 putos: Ua marca de cereales para el desayuo icluye u muñeco de regalo e cada caja de cereales. Hay tres tipos distitos

Más detalles

INSTITUTO NACIONAL DE SALUD PÚBLICA DISEÑO MUESTRAL

INSTITUTO NACIONAL DE SALUD PÚBLICA DISEÑO MUESTRAL INSTITUTO NACIONAL E SALU PÚBLICA ISEÑO MUESTRAL Noviebre 2008 1. Objetivo de la ecuesta Obteer iforació estadística sobre las características de la població de tipo deográfico, social, de salud, de ocupació

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 5)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 5) IES Fco Ayala de Graada Sobrates de 008 (Modelo 5) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 008 (MODELO 5) OPCIÓN A EJERCICIO 1_A De las restriccioes que debe cumplir las

Más detalles

Estimación puntual y por intervalos

Estimación puntual y por intervalos 0/1/011 Aálisis de datos gestió veteriaria Estimació putual por itervalos Departameto de Producció Aimal Facultad de Veteriaria Uiversidad de Córdoba Córdoba, 30 de Noviembre de 011 Estimació putual por

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE ESPECÍFICA: MATERIAS DE MODALIDAD

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE ESPECÍFICA: MATERIAS DE MODALIDAD PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE ESPECÍFICA: MATERIAS DE MODALIDAD CURSO 009-010 CONVOCATORIA: MATERIA: MATEMÁTICAS APLICADAS A LAS CC SS - Cada alumo debe elegir sólo ua de las pruebas (A o B).

Más detalles

Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo

Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo Modelos lieales e Biología, 5ª Curso de Ciecias Biológicas Clase 8/10/04 Estimació y estimadores: Distribucioes asociadas al muestreo Referecias: Cualquiera de los textos icluidos e la bibliografía recomedada

Más detalles

Sistemas Automáticos. Ing. Organización Conv. Junio 05. Tiempo: 3,5 horas

Sistemas Automáticos. Ing. Organización Conv. Junio 05. Tiempo: 3,5 horas Sistemas Automáticos. Ig. Orgaizació Cov. Juio 05. Tiempo: 3,5 horas NOTA: Todas las respuestas debe ser debidamete justificadas. Problema (5%) Ua empresa del sector cerámico dispoe de u horo de cocció

Más detalles

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN 3 INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN Págia 99 REFLEXIONA Y RESUELVE Cuátas caras cabe esperar? Repite el razoamieto aterior para averiguar cuátas caras cabe esperar si lazamos 00 moedas

Más detalles

IES Fco Ayala de Granada Sobrantes 2014 (Modelo 2 ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes 2014 (Modelo 2 ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates 014 (Modelo ) Solucioes Germá-Jesús Rubio Lua SELETIVIDAD ANDALUÍA MATEMÁTIAS SS SOBRANTES 014 MODELO OPIÓN A EJERIIO 1 (A) (1 75 putos) Represete gráficamete la regió

Más detalles

La volatilidad implícita

La volatilidad implícita La volatilidad implícita Los mercados de opcioes ha evolucioado bastate desde los años setetas, época e la que ue publicada la órmula de Black Scholes (BS). Dicha órmula quedó ta arraigada e la mete de

Más detalles

INSTITUTO NACIONAL DE ESTADÍSTICA Y GEOGRAFÍA. Encuesta Nacional de la Dinámica Demográfica 2009. Diseño muestral

INSTITUTO NACIONAL DE ESTADÍSTICA Y GEOGRAFÍA. Encuesta Nacional de la Dinámica Demográfica 2009. Diseño muestral INSTITUTO NACIONAL E ESTAÍSTICA Y GEOGRAFÍA Ecuesta Nacioal de la iáica eográfica 2009 iseño uestral Ídice Págia. Objetivo de la ecuesta 2. Població objetivo 3. Cobertura geográfica 4. iseño de la uestra

Más detalles

PRESENTACIONES ESTADISTICAS. Número de Trabajadores (frecuencia)

PRESENTACIONES ESTADISTICAS. Número de Trabajadores (frecuencia) Distribucioes de frecuecia: PRESENTACIONES ESTADISTICAS So tablas e las que se agrupa lo valores posibles de ua variable y se registra el úmero de valores observados que correspode a cada clase. Como ejemplo

Más detalles

SEGUNDA PARTE PRESENTACIÓN DEL MÉTODO DE ANÁLISIS FACTORIAL DE CORRESPONDENCIAS MÚLTIPLES

SEGUNDA PARTE PRESENTACIÓN DEL MÉTODO DE ANÁLISIS FACTORIAL DE CORRESPONDENCIAS MÚLTIPLES SEGUNDA PARTE PRESENTACIÓN DEL MÉTODO DE ANÁLISIS FACTORIAL DE CORRESPONDENCIAS MÚLTIPLES L. GENERALIZACIÓN DEL A.F.C. : ANÁLISIS FACTORIAL DE CORRESPONDENCIAS MÚLTIPLES 1. Itroducció Las «ecuestas» se

Más detalles

Intervalo de confianza para µ

Intervalo de confianza para µ Itervalo de cofiaza para p y ˆp1 ˆp ˆp1 ˆp ˆp z 1 α/ ; ˆp + z 1 α/, 7.6 ˆp + z 1 α/ ± z 1 α/ 1 + z 1 α/ ˆp1 ˆp + z 1 α/ 4 7.7 siedo ˆp = x/ y z 1 α/ el cuatil 1 α/ de la distribució ormal estádar. El itervalo

Más detalles

Fórmula de Taylor. Si f es continua en [a,x] y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) = f(x) = f(a) + f '(c)(x a)

Fórmula de Taylor. Si f es continua en [a,x] y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) = f(x) = f(a) + f '(c)(x a) Aproimació de ua fució mediate u poliomio Cuado yf tiee ua epresió complicada y ecesitamos calcular los valores de ésta, se puede aproimar mediate fucioes secillas (poliómicas). El teorema del valor medio

Más detalles

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n)

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n) 1 Sucesioes De ició. Ua sucesió, a, es ua fució que tiee como domiio el cojuto de los úmeros aturales y como cotradomiio el cojuto de los úmeros reales: a : N! R. Se usa la siguiete otació: a () = a :

Más detalles

SUCESIONES Y SERIES página 205 SUCESIONES Y SERIES. 12.1 Una sucesión es un conjunto de números ordenados bajo cierta regla específica.

SUCESIONES Y SERIES página 205 SUCESIONES Y SERIES. 12.1 Una sucesión es un conjunto de números ordenados bajo cierta regla específica. págia 05. Ua sucesió es u cojuto de úmeros ordeados bajo cierta regla específica. E muchos problemas cotidiaos se preseta sucesioes, como por ejemplo los días del mes, ya que se trata del cojuto {,,, 4,

Más detalles

ÁREA DE INGENIERÍA QUÍMICA Prof. Isidoro García García. Operaciones Básicas de Transferencia de Materia. Tema 4

ÁREA DE INGENIERÍA QUÍMICA Prof. Isidoro García García. Operaciones Básicas de Transferencia de Materia. Tema 4 ÁRE DE IGEIERÍ QUÍMIC Operacioes Básicas de Trasferecia de Materia Tea 4 Operacioes Básicas de Trasferecia de Materia ITRODUCCIÓ a aoría de las corrietes de u proceso quíico está costituidas por varios

Más detalles

IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna 12 2 = 3 12. , es decir

IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna 12 2 = 3 12. , es decir IES Fco Ayala de Graada Sobrates de 008 (Modelo Juio) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 008 (MODELO ) OPCIÓN A EJERCICIO _A 0 a b Sea las matrices A= y B= 0 6 a) ( 5 putos)

Más detalles

Soluciones problemas del Tema 2

Soluciones problemas del Tema 2 1 Solucioes problemas del Tema 1) a) E(W ) = E(X + Y + Z) = E(X) + E(Y ) + E(Z) = 0; V ar(w ) = V ar(x) + V ar(y ) + V ar(z) + (Cov(X, Y ) + Cov(X, Z) + Cov(Y, Z)) = 1 + 1 + 1 + ( 1 + 0 ) 1 4 4 = 3 b)

Más detalles

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS)

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS) Los valores icluidos e u grupo de datos usualmete varía e magitud; alguos de ellos so pequeños y otros so grades. U promedio es u valor simple, el cual es cosiderado como el valor más represetativo o típico

Más detalles

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA CAPÍTULO I CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA El campo de la estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Motgomery

Más detalles

2. LEYES FINANCIERAS.

2. LEYES FINANCIERAS. TEMA 1: CONCEPTOS PREVIOS 1. INTRODUCCIÓN. Se va a aalizar los itercambios fiacieros cosiderado u ambiete de certidumbre. El itercambio fiaciero supoe que u agete etrega a otro u capital (o capitales),

Más detalles

IES Fco Ayala de Granada Sobrantes 2009 (Modelo 3 Junio) Soluciones Germán-Jesús Rubio Luna+

IES Fco Ayala de Granada Sobrantes 2009 (Modelo 3 Junio) Soluciones Germán-Jesús Rubio Luna+ IES Fco Ayala de Graada Sobrates 009 (Modelo 3 Juio) Solucioes Germá-Jesús Rubio Lua+ MATEMÁTICAS CCSS JUNIO 009 (MODELO 3) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1 Sea la igualdad A X + B = A, dode

Más detalles

EXAMEN DE TÉCNICAS PARA EL ANÁLISIS DEL MERCADO. 11-Septiembre-2014.

EXAMEN DE TÉCNICAS PARA EL ANÁLISIS DEL MERCADO. 11-Septiembre-2014. EXAMEN DE TÉCNICAS PARA EL ANÁLISIS DEL MERCADO. -Septiembre-04. APELLIDOS: DNI: NOMBRE:. Se quiere hacer u estudio sobre las persoas que usa iteret e ua regió dode el 40% de los habitates so mujeres.

Más detalles

IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 1) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 1) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 008 (Modelo 1) Germá-Jesús Rubio Lua SOLUCIONES PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 007-008 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II OPCIÓN A

Más detalles

ESTADÍSTICA. Al preguntar a 20 individuos por el número de personas que viven en su casa, hemos obtenido las siguientes respuestas:

ESTADÍSTICA. Al preguntar a 20 individuos por el número de personas que viven en su casa, hemos obtenido las siguientes respuestas: ESTADÍSTICA Ejercicio º.- Al pregutar a 0 idividuos por el úmero de persoas que vive e su casa, hemos obteido las siguietes respuestas: Elabora ua tabla de frecuecias. Ejercicio º.- E ua empresa de telefoía

Más detalles

ESTADÍSTICA NO PARAMÉTRICA: PRUEBA CHI-CUADRADO χ 2

ESTADÍSTICA NO PARAMÉTRICA: PRUEBA CHI-CUADRADO χ 2 Estadística o Paramétrica ESTADÍSTICA NO PARAMÉTRICA: PRUEBA CHI-CUADRADO χ Autores: Jua Fracisco Moge Ivars (jmoje@uoc.edu), Ágel A. Jua Pérez (ajuap@uoc.edu) ESQUEMA DE CONTENIDOS Estadística o Paramétrica

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central EYP14 Estadística para Costrucció Civil 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los

Más detalles

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0 Tema 4 Series de Potecias Ua expresió de la forma a 0 + a 1 (x c) + a 2 (x c) 2 +... + a (x c) +... = recibe el ombre de serie de potecias cetrada e c. a (x c) Ua serie de potecias puede ser iterpretada

Más detalles

SOLUCIONES Modelo 2 PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 2010-2011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

SOLUCIONES Modelo 2 PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 2010-2011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II IES Fco Ayala de Graada Sobrates de 011 (Modelo ) Germá-Jesús Rubio Lua SOLUCIONES Modelo PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 010-011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II OPCIÓN

Más detalles

3 Capítulo 3. UN NUEVO PROTOCOLO MAC: DQRAP/CDMA (Distributed Queueing Random Access Protocol)

3 Capítulo 3. UN NUEVO PROTOCOLO MAC: DQRAP/CDMA (Distributed Queueing Random Access Protocol) 3 Caítulo 3. UN NUEVO ROTOCOLO MAC: DQRA/CDMA Distriuted Queueig Rado Access rotocol 3. Itroducció E 99, W. Xu y G. Caell, del Illiois Istitute o Techology, rousiero u esquea de cotrol de acceso al edio

Más detalles

Consideremos los siguientes experimentos aleatorios

Consideremos los siguientes experimentos aleatorios 69 Veremos e lo que sigue uevas variables aleatorias discretas. Estas variables y sus distribucioes se utiliza como modelos e muchas alicacioes estadísticas. Distribució Biomial Cosideremos los siguietes

Más detalles

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Cuado estamos iteresados e estudiar algua característica de ua població (peso, logitud de las hojas,

Más detalles

METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES

METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES La serie estadística de Ídice de Precios al por Mayor se iició e 1966, utilizado e

Más detalles

Progresiones. Objetivos. Antes de empezar. 1.Sucesiones.. pág. 74 Definición. Regla de formación Término general

Progresiones. Objetivos. Antes de empezar. 1.Sucesiones.. pág. 74 Definición. Regla de formación Término general 5 Progresioes Objetivos E esta quicea aprederás a: Recoocer ua sucesió de úmeros. Recoocer y distiguir las progresioes aritméticas y geométricas. Calcular él térmio geeral de ua progresió aritmética y

Más detalles

CURSO 2.004-2.005 - CONVOCATORIA:

CURSO 2.004-2.005 - CONVOCATORIA: PRUEBAS DE ACCESO A LA UNIVERSIDAD LOGSE / LOCE CURSO 4-5 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II UNIDAD III: TECNICAS DE ESTIMACIÓN ESTIMACIÓN POR INTERVALOS

PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II UNIDAD III: TECNICAS DE ESTIMACIÓN ESTIMACIÓN POR INTERVALOS PROYECTO DE CARRERA: INGENIERÍA INDUTRIAL AIGNATURA: ETADÍTICA II UNIDAD III: TECNICA DE ETIMACIÓN ETIMACIÓN POR INTERVALO INTRODUCCIÓN E temas ateriores se estableciero las bases que ermite a los estadísticos

Más detalles

TEMA 3.- OPERACIÓN FINANCIERA

TEMA 3.- OPERACIÓN FINANCIERA . DEFINICIÓN Y CLASIFICACIÓN. TEMA 3.- OPEACIÓN FINANCIEA Se deomia operació fiaciera a todo itercambio o simultáeo de capitales fiacieros pactado etre dos agetes, siempre que se verifique la equivalecia,

Más detalles

Sucesiones numéricas.

Sucesiones numéricas. SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El

Más detalles

2.1 - F.e.m de las máquinas de corriente alterna lineales planas

2.1 - F.e.m de las máquinas de corriente alterna lineales planas - CÁLCULO PARAMÉTRICO DE MÁQUINAS LINEALES.1 - F.e.m de las máquias de corriete altera lieales laas El valor medio de la.e.m. iducida e ua esira de aso diametral, ideedietemete de la orma esacial o de

Más detalles

El Transistor de Efecto de Campo (FET)

El Transistor de Efecto de Campo (FET) El Trasistor de Efecto de Camo (FET) J.I.Huirca, R.A. Carrillo Uiversidad de La Frotera. ecember 10, 2011 Abstract El FET es u disositivo activo que oera como ua fuete de corriete cotrolada or voltaje.

Más detalles