13. DETERMINACIÓN DEL EQUIVALENTE MECÁNICO DEL CALOR

Tamaño: px
Comenzar la demostración a partir de la página:

Download "13. DETERMINACIÓN DEL EQUIVALENTE MECÁNICO DEL CALOR"

Transcripción

1 13. DETERMINACIÓN DEL EQUIVALENTE MECÁNICO DEL CALOR OBJETIVO El objetivo de la práctica es la determinación del equivalente mecánico J de la caloría. Para obtenerlo se calcula el calor absorbido por una masa de agua que se calienta gracias a la energía suministrada por una resistencia eléctrica por la que circula una cierta intensidad I. Dado que el agua se encuentra en un calorímetro, se ha de determinar en primer lugar el equivalente en agua K de este último. MATERIAL (1) Calorímetro. La resistencia calefactora se encuentra en el interior del calorímetro. () Probeta (3) Vaso de precipitado (4) Agitador. (5) Sonda térmica. (6) Termómetro. (7) Amperímetro (8) Voltímetro. Interruptor de pedal y cronómetro. 1

2 FUNDAMENTO TEÓRICO En esta práctica vas a calcular la equivalencia existente entre calor y trabajo, es decir, en el Sistema Internacional de unidades, la equivalencia entre Julios y Calorías (1 J = cal). Es importante que no confundas calor con temperatura. El calor es una energía en tránsito entre dos cuerpos que están a distinta temperatura. Definición de Caloría: cantidad de energía térmica que se necesita para elevar la temperatura de un gramo de agua un grado Celsius. Joule demostró que existen diversas formas de energía que, al suministrarlas a un sistema pueden elevar la temperatura de un gramo de agua un grado Celsius. De esta forma pudo calcular el trabajo necesario (en Julios) para realizar esta acción. En esta práctica mediremos el trabajo eléctrico necesario para calentar un gramo de agua y elevar su temperatura un grado celsius. Este experimento se realiza en un calorímetro, que es un recipiente de paredes aislantes. En nuestro caso utilizaremos un termo con una resistencia en su interior de modo que, al pasar corriente eléctrica por la resistencia se calentará el líquido que contiene el calorímetro. Un calorímetro perfecto no cede ni absorbe calor. Sin embargo, no existen calorímetros perfectos por lo que a la hora de trabajar con un calorímetro tienes que conocer el llamado equivalente en agua del calorímetro, que se define como la masa de agua capaz de absorber la misma cantidad de calor que el calorímetro para una misma elevación de temperatura. Para obtener el valor de K vamos a usar el MÉTODO DE LAS MEZCLAS, en el cual a una masa caliente de agua M1 le añades una masa de agua fria M. Teniendo en cuenta que el calorímetro y la masa caliente (que en un principio están a temperatura T 1 ) ceden calor a la masa fria (que está a temperatura T ) hasta alcanzar una temperatura de equilibrio T eq, el balance de energía toma la siguiente forma. c( M1 K )(T1 Teq ) = cm (Teq T ) [13-1] donde c es el calor específico del agua, c =1 cal/(g K). Por tanto, despejando K M (Teq T ) = M1 [13-] T T 1 eq Una vez calculado el equivalente en agua de tu calorímetro ya puedes estudiar la cantidad de trabajo eléctrico necesario para elevar la temperatura de una masa de agua de un gramo, un grado centígrado; es decir, ya puedes determinar el llamado Equivalente Mecánico del Calor. El principio en el que se basa esta parte del experimento consiste en suministrar energía eléctrica a una resistencia eléctrica rodeada de agua dentro de un calorímetro, y medir el calor desarrollado en éste. Como la potencia eléctrica, P, suministrada a un sistema viene dada por P = I V, (donde I es la corriente eléctrica, y V la diferencia de potencial del generador, que se suponen constantes), la energía W aportada a la resistencia en un tiempo t será igual a la potencia multiplicada por el tiempo, de modo que: W = P t = V I t julios [13-3] Cuando la resistencia se sumerge en el calorímetro, que contiene una masa de agua M=M 1 M, la energía eléctrica W se invierte en elevar la temperatura del sistema (agua y calorímetro) desde una temperatura inicial T a una temperatura final T f. Por tanto, el calor absorbido por el agua y el calorímetro desde una temperatura T a una T f es:

3 Q f = c (M K) (T - T ) [13-4] De este modo, la relación entre trabajo y calor, o lo que es lo mismo, el equivalente mecánico del calor queda: J W V I t = = [13-5] Q c ( M K )(T T ) f MÉTODO (1) Cálculo del Equivalente en agua del calorímetro (K). a.- Toma un volumem de agua V 1 =5 cm 3 con la probeta graduada. Introduce la sonda térmica en la probeta y mide la temperatura T 1 de dicho volumen de agua. Anota los resultados. Calcula la masa M 1 correspondiente a este volumen de agua utilizando la tabla [13.1], donde aparece la densidad del agua a distintas temperaturas. b.- Vierte en el calorímetro el volumen de agua V 1. c.- Calienta esta masa M 1 utilizando la resistencia calefactora hasta una temperatura T 1 (unos 1ºC por encima de la temperatura ambiente). Debe cuidarse que el termómetro no esté en contacto con la resistencia calefactora y, al desconectar el circuito, es conveniente agitar el calorímetro para homogeneizar la temperatura más rápidamente. Para calentar el agua es necesario conectar el circuito, para lo cual se presionará con el pie el interruptor de pedal colocado en el suelo. d.- Toma un volumen V = cm 3 de agua y mide su temperatura T. e.- Añade a esta masa una pequeña cantidad de hielo hasta alcanzar una temperatura T (5 ºC por debajo de la temperatura T ). Calcula su masa M utilizando la tabla [13.1]. f.- Añade esta masa M de agua enfriada al calorímetro (cuídese que no caiga hielo). Mide la temperatura T eq de la mezcla cuando se alcanza el equilibrio. g.- Aplica la ecuación del balance de energía para obtener el valor de K (ec.[13-]) Tabla [13.1] T(º C) ρ (g/cm 3 ),9998 1,,9997,9991,998,997,9956,9941,99 () Cálculo del Equivalente mecánico del calor (J) a.-toma un cronómetro del laboratorio y ponlo a cero. b.- Toma el valor de la temperatura del volumen de agua V que se encuentra en el calorímetro (T ). Anota su valor. Calcula, a partir de la tabla [13.1], la masa de agua M que se encuentra en el calorímetro. c.- Cierra el circuito con el interrumptor de pedal y pulsa el cronómetro para medir el tiempo (t) que tarda el volumen V de agua en calentarse 1 grados por encima de T. Anota este tiempo t. d.-. Anota el valor de la intensidad (I) y del voltaje (V), a partir de las lecturas que realices del amperímetro y del voltímetro, respectivamente. e.- Calcula el valor del equivalente mecánico del calor (J) a partir de la ec. [13-5]. 3

4 Nombre Apellidos Curso Grupo Fecha : Letra de prácticas DATOS EXPERIMENTALES Indica en la siguiente tabla los aparatos que has empleado en la practica junto con su precisión. APARATO DE MEDIDA - PRECISIÓN Probeta Termómetro Cronómetro Amperímetro Voltímetro Indica, en la siguiente tabla, el valor experimental de las medidas realizadas en el laboratorio junto con su incertidumbre y en unidades del Sistema Internacional. Indica los valores, tras aplicarles el redondeo Variable V 1 T 1 V T T 1 T T eq CÁLCULO DE K (VALOR ± Incertidumbre) (VALOR ± Incertidumbre) (unidades S.I.) Medidas directas CÁLCULO DE J (VALOR ± Incertidumbre) (VALOR ± Incertidumbre) Variable (unidades S.I.) Medidas directas V (*) I T Tf t (*) VOLTAJE, NO CONFUNDIR CON VOLUMEN Refleja los cálculos del valor del equivalente en agua del calorímetro (K) y del Equivalente Mecánico del Calor (J), con sus correspondientes unidades. K= J= 4

5 Nombre Curso Fecha : Apellidos Grupo Letra de prácticas RESUMEN DE RESULTADOS (A) Calcula a continuación las incertidumbres de medida indirecta para M 1, M y M, a partir del volumen y la densidad. (M i = ρ i V i ) FÓRMULAS GENÉRICAS CALCULADAS = ΔM i (a.1) Calcula la densidad de las masas de agua M 1, M y M, interpolando linealmente si es necesario a partir de la tabla [13.1]. (a.) Indica asimismo los cálculos numéricos, con sus correspondientes unidades, que has realizado para obtener las incertidumbres M 1, M y M. Rellena la siguiente tabla expresando en la última columna el resultado final convenientemente redondeado. M 1 VALOR INCERTIDUMBRE (VALOR ± Incertidumbre) M M 5

6 (B) Calcula a continuación la incertidumbre de medida indirecta para J, suponiendo, para simplificar, que en la ecuación [13.5] la incertidumbre de c es nula. FÓRMULAS GENÉRICAS CALCULADAS = ΔM ΔM1 ΔTeq ΔT1 ΔT M M1 Teq T1 T ΔK Teq - T - M (Teq - T) M (T1 - T) - M = ΔM ΔM1 ΔTeq ΔT1 ΔT T1 - Teq (T1 - Teq) (T1 - Teq) T1 - Teq ΔJ = ΔV ΔI V I = c (M 1 ( K)(T - To) Δt t ΔM M ΔK It ΔV Vt ΔI VI Δt) V It c (M K)(T - To) ΔTf Tf V It c (M K) (T ( ΔTf ΔTo ) ΔTo To ( - To) ΔM ΔK ) (b.1) Sustituye tus valores experimentales en las fórmulas genéricas de ΔK y ΔJ. Indica las unidades! Refleja, en cada caso, la contribución numérica de cada sumando afectado de incertidumbre. Qué sumando afecta más al cálculo de la incertidumbre ΔJ? Rellena la siguiente tabla expresando en la última columna el resultado final convenientemente redondeado. K J VALOR INCERTIDUMBRE (VALOR ± Incertidumbre) Valora la precisión de tu resultado (error relativo en tanto por ciento: 1* ΔJ / J): Valora la exactitud de tu resultado comparándolo con el valor J=4.184 J/cal. (error relativo en tanto por ciento: 1* J experimental - J verdadero / J verdadero ), 6

7 CUESTIONES Analiza brevemente las posibles fuentes de error no incluidas en el cálculo de la incertidumbre de J. El calorímetro que has empleado en esta práctica se aproxima a un calorímetro perfecto? Razona brevemente la respuesta. En el experimento que has llevado a cabo en el laboratorio has descubierto tu la equivalencia entre calor y trabajo calculando el trabajo eléctrico necesario para que un cuerpo se caliente. En el siguiente texto te contamos cómo realizó James Joule su experimento allá por 184 en Gran Bretaña. Léelo atentamente y señala las equivalencias entre el experimento de Joule y el tuyo. El experimento de Joule fue una verdadera proeza de precisión y de ingenio considerando los medios de que se disponían en esa época. El aparato (ver Figura) consistía esencialmente en un eje rotatorio dotado de una serie de paletas, de hecho ocho brazos revolventes, girando entre cuatro conjuntos de paletas estacionarias. El propósito de estas paletas era agitar el líquido que se colocaba en el espacio libre entre ellas. El eje se conectaba mediante un sistema de poleas y cuerdas muy finas a un par de masas de peso conocido. El experimento consistía en enrollar la cuerda sujetando las masas sobre las poleas hasta colocarlas a una altura determinada del suelo. Al dejar caer las masas, el eje giraba lo cual a su vez generaba una rotación de los brazos revolventes agitando el líquido contenido en el recipiente. Aparato empleado por Joule en la medición del equivalente mecánico del calor. Las masas conocidas m se enrollan por medio de la manivela sobre el cilindro. La cuerda pasa por dos poleas P perfectamente bien engrasadas. La altura de las masas sobre el suelo es conocida, y la temperatura del agua se controla mediante el termómetro. Indica qué tipo de trabajo empleó Joule para producir calor Cita tres ejemplos en los que distintas formas de energía se conviertan en calor 7

13. DETERMINACIÓN DEL EQUIVALENTE MECÁNICO DEL CALOR

13. DETERMINACIÓN DEL EQUIVALENTE MECÁNICO DEL CALOR 13. DETERMINACIÓN DEL EQUIVALENTE MECÁNICO DEL CALOR OBJETIVO El objetivo de la práctica es la determinación del equivalente mecánico J de la caloría. Para obtenerlo se calcula el calor absorbido por una

Más detalles

14. ENTALPÍA DE FUSIÓN DEL HIELO

14. ENTALPÍA DE FUSIÓN DEL HIELO 14. ENTALPÍA DE FUSIÓN DEL HIELO OBJETIVO Determinar la entalpía de fusión del hielo, H f, utilizando el método de las mezclas. Previamente, ha de determinarse el equivalente en agua del calorímetro, K,

Más detalles

PRÁCTICA 5. CALORIMETRÍA

PRÁCTICA 5. CALORIMETRÍA PRÁCTICA 5. CALORIMETRÍA INTRODUCCIÓN Al mezclar dos cantidades de líquidos a distinta temperatura se genera una transferencia de energía en forma de calor desde el más caliente al más frío. Dicho tránsito

Más detalles

Calor de neutralización

Calor de neutralización Práctica 3 Calor de neutralización Objetivo Determinar el calor de neutralización de una reacción química por calorimetría. Fundamento teórico El dispositivo ideal requerirá producir la reacción en un

Más detalles

Determinación del equivalente eléctrico del calor

Determinación del equivalente eléctrico del calor Determinación del equivalente eléctrico del calor Julieta Romani Paula Quiroga María G. Larreguy y María Paz Frigerio julietaromani@hotmail.com comquir@ciudad.com.ar merigl@yahoo.com.ar mapaz@vlb.com.ar

Más detalles

Actividad V.53 Transiciones de fases Calor latente de transformación

Actividad V.53 Transiciones de fases Calor latente de transformación Actividad V.53 Transiciones de fases Calor latente de transformación Objetivo Estudio de transiciones de fase líquido vapor y sólido líquido. Medición de los calores latentes de evaporación y de fusión

Más detalles

MEDIDA DEL CALOR ESPECÍFICO

MEDIDA DEL CALOR ESPECÍFICO Laboratorio de Física General Primer Curso (Termodinámica) MEDIDA DEL CALOR ESPECÍFICO Fecha: 07/02/05 1. Objetivo de la práctica Familiarizarse con las medidas calorimétricas mediante la medida del calor

Más detalles

Ing. Gerardo Sarmiento CALOR Y TEMPERATURA

Ing. Gerardo Sarmiento CALOR Y TEMPERATURA Ing. Gerardo Sarmiento CALOR Y TEMPERATURA Como se mide y transporta el calor La cantidad de calor (Q) se expresa en las mismas unidades que la energía y el trabajo, es decir, en Joule. Otra unidad es

Más detalles

CALORIMETRIA. dh dt. C p

CALORIMETRIA. dh dt. C p CALORIMETRIA Fundamento teórico Los procesos termodinámicos (mezcla de agua fría con caliente, mezcla de dos líquidos, reacción química,...) se puede caracterizar a partir de las variaciones de energía

Más detalles

PROBLEMAS RESUELTOS EQUILIBRIO TERMICO. Para cualquier inquietud o consulta escribir a: quintere@hotmail.com quintere@gmail.com quintere2006@yahoo.

PROBLEMAS RESUELTOS EQUILIBRIO TERMICO. Para cualquier inquietud o consulta escribir a: quintere@hotmail.com quintere@gmail.com quintere2006@yahoo. PROBLEMAS RESUELTOS EQUILIBRIO TERMICO Para cualquier inquietud o consulta escribir a: quintere@hotmail.com quintere@gmail.com quintere2006@yahoo.com Erving Quintero Gil Ing. Electromecánico Bucaramanga

Más detalles

Comparación entre curvas de calentamiento teóricas y experimentales

Comparación entre curvas de calentamiento teóricas y experimentales Comparación entre curvas de calentamiento teóricas y experimentales Práctica no pautada de Laboratorio, Física experimental II, 9 Larregain, Pedro pedrolarregain@yahoo.com Machado, Alejandro machado.alejandro@yahoo.com

Más detalles

TEMA 11 LA MATERIA EN EL UNIVERSO

TEMA 11 LA MATERIA EN EL UNIVERSO TEMA 11 LA MATERIA EN EL UNIVERSO TEMA 11 LA MATERIA EN EL UNIVERSO QUÉ ES LA MATERIA? Materia es todo aquello que tiene volumen (ocupa un espacio) y que tiene una determinada masa (por tanto, pesa). QUÉ

Más detalles

ASPECTOS GENERALES PARA LA SOLUCIÓN DE PROBLEMAS RELACIONADOS CON LA CONDUCCIÓN TRANSITORIA.

ASPECTOS GENERALES PARA LA SOLUCIÓN DE PROBLEMAS RELACIONADOS CON LA CONDUCCIÓN TRANSITORIA. CONDUCCIÓN TRANSITORIA Aquí encontrarás Los métodos gráficos y el análisis teórico necesario para resolver problemas relacionados con la transferencia de calor por conducción en estado transitorio a través

Más detalles

Polo positivo: mayor potencial. Polo negativo: menor potencial

Polo positivo: mayor potencial. Polo negativo: menor potencial CORRIENTE ELÉCTRICA Es el flujo de carga a través de un conductor Aunque son los electrones los responsables de la corriente eléctrica, está establecido el tomar la dirección de la corriente eléctrica

Más detalles

Densidad. Objetivos. Introducción. Equipo y Materiales. Laboratorio de Mecánica y fluidos Práctica 10

Densidad. Objetivos. Introducción. Equipo y Materiales. Laboratorio de Mecánica y fluidos Práctica 10 Densidad Objetivos Determinación de densidad de sustancias sólidas, liquidas y de soluciones. Determinar la densidad de un líquido y un sólido midiendo su masa y su volumen. Deteminar la la variación de

Más detalles

P cabeza Sca 5 1 0 6 m 2 2 10 6 Pa. beza. 6 m 2 10 8 Pa unta

P cabeza Sca 5 1 0 6 m 2 2 10 6 Pa. beza. 6 m 2 10 8 Pa unta Pág. 1 16 Ejercemos una fuerza de 10 N sobre un clavo. Si la superficie de su cabeza es de 5 mm y la de la punta 0,1 mm, qué presión se ejercerá al aplicar la fuerza sobre uno u otro de sus extremos? La

Más detalles

TERMOMETRÌA Y CALORIMETRÌA

TERMOMETRÌA Y CALORIMETRÌA TERMOMETRÌA Y CALORIMETRÌA Termómetros Basados en alguna propiedad física de un sistema que cambia con la temperatura: Volumen de un líquido Longitud de un sólido Presión de un gas a volumen constante

Más detalles

RELACIÓN DE MATERIAL NECESARIO PARA LA REALIZACIÓN DE LAS PRÁCTICAS:

RELACIÓN DE MATERIAL NECESARIO PARA LA REALIZACIÓN DE LAS PRÁCTICAS: RELACIÓN DE MATERIAL NECESARIO PARA LA REALIZACIÓN DE LAS PRÁCTICAS: Para la realización de las prácticas, necesitaremos el siguiente material: 1 5 m de cable de hilos de cobre de pequeña sección. Cartón

Más detalles

ENERGÍA ELÉCTRICA. Central Eólica

ENERGÍA ELÉCTRICA. Central Eólica ENERGÍA ELÉCTRICA. Central Eólica La energía eólica es la energía obtenida por el viento, es decir, la energía cinética obtenida por las corrientes de aire y transformada en energía eléctrica mediante

Más detalles

INTRODUCCIÓN AL TRABAJO DE LABORATORIO

INTRODUCCIÓN AL TRABAJO DE LABORATORIO PRÁCTICA 1 INTRODUCCIÓN AL TRABAJO DE LABORATORIO OBJETIVOS 1. Manipular de manera adecuada el equipo de uso común en el laboratorio. 2. Ejecutar tareas básicas en la realización de experimentos. INTRODUCCIÓN

Más detalles

PRÁCTICA 7: PRINCIPIO DE ARQUÍMEDES

PRÁCTICA 7: PRINCIPIO DE ARQUÍMEDES Departamento de Física Aplicada Universidad de Castilla-La Mancha Escuela Técnica Superior Ing. Agrónomos PRÁCTICA 7: PRINCIPIO DE ARQUÍMEDES MATERIAL - Dinamómetro de 1 N - Bolas de péndulo (3 al menos)

Más detalles

Cifras significativas e incertidumbre en las mediciones

Cifras significativas e incertidumbre en las mediciones Unidades de medición Cifras significativas e incertidumbre en las mediciones Todas las mediciones constan de una unidad que nos indica lo que fue medido y un número que indica cuántas de esas unidades

Más detalles

"DETERMINACIÓN EXPERIMENTAL DE LA LEY DE ENFRIAMIENTO DE NEWTON"

DETERMINACIÓN EXPERIMENTAL DE LA LEY DE ENFRIAMIENTO DE NEWTON EXPERIMENTO FA5 LABORATORIO DE FÍSICA AMBIENTAL "DETERMINACIÓN EXPERIMENTAL DE LA LEY DE ENFRIAMIENTO DE NEWTON" MATERIAL: 1 (1) PLACA CALEFACTORA CON TERMOSTATO. 2 (2) TERMOPARES TIPO "K". 3 (1) TERMÓMETRO

Más detalles

2.3 SISTEMAS HOMOGÉNEOS.

2.3 SISTEMAS HOMOGÉNEOS. 2.3 SISTEMAS HOMOGÉNEOS. 2.3.1 DISOLUCIONES. Vemos que muchos cuerpos y sistemas materiales son heterogéneos y podemos observar que están formados por varias sustancias. En otros no podemos ver que haya

Más detalles

Transformación de calor en trabajo: el motor de Stirling

Transformación de calor en trabajo: el motor de Stirling Práctica Nº 1 ransformación de calor en trabajo: el motor de Stirling 1. Conceptos implicados Primera y segunda ley de la termodinámica, calor, trabajo, máquinas térmicas, transformación de la energía.

Más detalles

Procesos de Separación: Destilación Simple de un Vino para la Determinación de su Grado Alcohólico

Procesos de Separación: Destilación Simple de un Vino para la Determinación de su Grado Alcohólico Destilación y Grado Alcohólico de un Vino EXPERIMENTACIÓN EN QUÍMICA EUITIG INGENIERO TÉCNICO EN QUÍMICA INDUSTRIAL PRÁCTICA Nº 14 Apellidos y Nombre: Grupo:. Apellidos y Nombre: Pareja:. Procesos de Separación:

Más detalles

PRUEBA LIBRE PARA LA OBTENCIÓN DEL TÍTULO DE GRADUADO EN EDUCACIÓN SECUNDARIA GRUPO CIENTÍFICO-TECNOLÓGICO

PRUEBA LIBRE PARA LA OBTENCIÓN DEL TÍTULO DE GRADUADO EN EDUCACIÓN SECUNDARIA GRUPO CIENTÍFICO-TECNOLÓGICO PRUEBA LIBRE PARA LA OBTENCIÓN DEL TÍTULO DE GRADUADO EN EDUCACIÓN SECUNDARIA GRUPO CIENTÍFICO-TECNOLÓGICO PRIMER APELLIDO: SEGUNDO APELLIDO: NOMBRE: D.N.I.: N.I.E. (Extranjeros) : CENTRO EN EL QUE SE

Más detalles

Radiación de una lámpara de incandescencia

Radiación de una lámpara de incandescencia Prueba experimental. Radiación de una lámpara de incandescencia OBJETIVO. Se va a estudiar experimentalmente la radiación emitida por el filamento de una lámpara de incandescencia y su dependencia con

Más detalles

Temas de electricidad II

Temas de electricidad II Temas de electricidad II CAMBIANDO MATERIALES Ahora volvemos al circuito patrón ya usado. Tal como se indica en la figura, conecte un hilo de cobre y luego uno de níquel-cromo. Qué ocurre con el brillo

Más detalles

Termometría Ley de enfriamiento de Newton

Termometría Ley de enfriamiento de Newton Termometría Ley de enfriamiento de Newton Objetivo Estudio del enfriamiento y el calentamiento de cuerpos y líquidos. Uso de distintos métodos de medición y análisis de los datos. Introducción El tiempo

Más detalles

Práctica II: DENSIDAD Y HUMEDAD DEL AIRE

Práctica II: DENSIDAD Y HUMEDAD DEL AIRE Física Ambiental, I.T. Agrícola Práctica II: DENSIDAD Y HUMEDAD DEL AIRE Universidad de Huelva. Dpto. de Física Aplicada. Prácticas de Física Ambiental, I.T. Agrícola 1 3. Densidad y humedad del aire 3.1.

Más detalles

CALOR. Q = c m (Tf - Ti) (1) Q será positivo si la temperatura final es mayor que la inicial (Tf > Ti) y negativo en el caso contrario (Tf < Ti).

CALOR. Q = c m (Tf - Ti) (1) Q será positivo si la temperatura final es mayor que la inicial (Tf > Ti) y negativo en el caso contrario (Tf < Ti). 1. CANTIDADES DE CALOR CALOR Aun cuando no sea posible determinar el contenido total de energía calorífica de un cuerpo, puede medirse la cantidad que se toma o se cede al ponerlo en contacto con otro

Más detalles

P9: ENSAYO DE VACÍO Y CORTOCIRCUITO DEL TRANSFORMADOR MONOFÁSICO FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA

P9: ENSAYO DE VACÍO Y CORTOCIRCUITO DEL TRANSFORMADOR MONOFÁSICO FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA INDUSTRIAL (BILBAO) Departamento de Ingeniería Eléctrica INDUSTRI INGENIARITZA TEKNIKORAKO UNIBERTSITATE-ESKOLA (BILBO) Ingeniaritza Elektriko Saila ALUMNO P9:

Más detalles

La separación de mezclas de las cuales existen dos tipos como son las homogéneas y heterogéneas

La separación de mezclas de las cuales existen dos tipos como son las homogéneas y heterogéneas Introducción En el tema operaciones fundamentales de laboratorio se dan una serie e pasos muy importantes para el desarrollo del programa de laboratorio por ejemplo podemos citar varios procedimientos

Más detalles

I. Objetivos 1. Determinar el cambio de entalpía de una reacción de metal de magnesio con ácido clorhídrico.

I. Objetivos 1. Determinar el cambio de entalpía de una reacción de metal de magnesio con ácido clorhídrico. UNIVERSIDAD INTERAMERICANA Recinto de Bayamón Departamento de Ciencias Naturales y Matemáticas Fundamentos de Química: CHEM 1111 Experimento No. 9: Cambio de entalpía de una reacción I. Objetivos 1. Determinar

Más detalles

PRÁCTICA NÚMERO 1 DENSIDAD DE UNA SUSTANCIA. I. Objetivo Determinar la densidad de un líquido y un sólido midiendo su masa y su volumen.

PRÁCTICA NÚMERO 1 DENSIDAD DE UNA SUSTANCIA. I. Objetivo Determinar la densidad de un líquido y un sólido midiendo su masa y su volumen. PRÁCTICA NÚMERO DENSIDAD DE UNA SUSTANCIA I. Objetivo Determinar la densidad de un líquido y un sólido midiendo su masa y su volumen. II. Material. Una balanza granataria de 0. gramo.. Una probeta de 0-00

Más detalles

Agentes para la conservación de la energía mecánica

Agentes para la conservación de la energía mecánica Agentes para la conservación de la energía mecánica Para levantar un cuerpo verticalmente a velocidad constante, es necesario que algún agente externo realice trabajo y hemos demostrado que este trabajo

Más detalles

Módulo 3: Fluidos. Fluidos

Módulo 3: Fluidos. Fluidos Módulo 3: Fluidos 1 Fluidos Qué es un fluido? En Física, un fluido es una sustancia que se deforma continuamente (fluye) bajo la aplicación de una tensión tangencial, por muy pequeña que sea. Es decir,

Más detalles

Calibración del termómetro

Calibración del termómetro Calibración del termómetro RESUMEN En esta práctica construimos un instrumento el cual fuera capaz de relacionar la temperatura con la distancia, es decir, diseñamos un termómetro de alcohol, agua y gas

Más detalles

METROS CÚBICOS O LITROS?

METROS CÚBICOS O LITROS? METROS CÚBICOS O LITROS? 10 Comprende qué son las unidades de volumen (litros y decímetros cúbicos). En Presentación de Contenidos, para explicar las unidades de volumen se explica la diferencia entre

Más detalles

Medidas de Intensidad

Medidas de Intensidad Unidad Didáctica Medidas de Intensidad Programa de Formación Abierta y Flexible Obra colectiva de FONDO FORMACION Coordinación Diseño y maquetación Servicio de Producción Didáctica de FONDO FORMACION (Dirección

Más detalles

TEMA 2. CIRCUITOS ELÉCTRICOS.

TEMA 2. CIRCUITOS ELÉCTRICOS. TEMA 2. CIRCUITOS ELÉCTRICOS. 1. INTRODUCCIÓN. A lo largo del presente tema vamos a estudiar los circuitos eléctricos, para lo cual es necesario recordar una serie de conceptos previos tales como la estructura

Más detalles

CARACTERÍSTICAS TÉCNICAS

CARACTERÍSTICAS TÉCNICAS ECOTERMO CARACTERÍSTICAS TÉCNICAS 2 DESCRIPCIÓN DEL CALENTADOR 3 REGULACIÓN DE LA TEMPERATURA DEL AGUA _ 5 CONEXIÓN A LA RED DE AGUA POTABLE 5 CONEXIÓN A LA RED ELÉCTRICA 6 PRINCIPIO DE FUNCIONAMIENTO

Más detalles

Incertidumbre y errores en mediciones experimentales

Incertidumbre y errores en mediciones experimentales UNIVERSIDAD SAN CARLOS DE GUATEMALA FACULTAD DE ODONTOLOGÍA ÁREA BÁSICA CURSO FÍSICAMATEMÁTICA Incertidumbre y errores en mediciones experimentales Documento de apoyo a la docencia Elaborado por: Ing.

Más detalles

1.2. PROPIEDADES DE LA MATERIA.

1.2. PROPIEDADES DE LA MATERIA. 1.2. PROPIEDADES DE LA MATERIA. Toda la materia tiene unas propiedades que nos permiten distinguirla de las cosas inmateriales. Se las llama propiedades generales. Otras propiedades nos permiten diferenciar

Más detalles

Información importante. 1. El potencial eléctrico. Preuniversitario Solidario. 1.1. Superficies equipotenciales.

Información importante. 1. El potencial eléctrico. Preuniversitario Solidario. 1.1. Superficies equipotenciales. 1.1 Superficies equipotenciales. Preuniversitario Solidario Información importante. Aprendizajes esperados: Es guía constituye una herramienta que usted debe manejar para poder comprender los conceptos

Más detalles

GUIA DE EJERCICIOS I. Gases Primera Ley de la Termodinámica Equilibrio Térmico (Ley Cero).

GUIA DE EJERCICIOS I. Gases Primera Ley de la Termodinámica Equilibrio Térmico (Ley Cero). UNIVERSIDAD PEDRO DE VALDIVIA TERMODINAMICA. GUIA DE EJERCICIOS I. Gases Primera Ley de la Termodinámica Equilibrio Térmico (Ley Cero). Gases - Primera ley de la Termodinámica Ley Cero. 1. Se mantiene

Más detalles

Ejemplo 2. Velocidad de arrastre en un alambre de cobre

Ejemplo 2. Velocidad de arrastre en un alambre de cobre Ejemplo 1 Cual es la velocidad de desplazamiento de los electrones en un alambre de cobre típico de radio 0,815mm que transporta una corriente de 1 A? Si admitimos que existe un electrón libre por átomo

Más detalles

Electricidad y electrónica - Diplomado

Electricidad y electrónica - Diplomado CONOCIMIENTOS DE CONCEPTOS Y PRINCIPIOS Circuitos Eléctricos: principios, conceptos, tipos, características Unidades Básicas de los circuitos eléctricos: conceptos, tipos, características Leyes fundamentales

Más detalles

CENTRO DE CIENCIA BÁSICA ESCUELA DE INGENIERÍA FÍSICA II: Fundamentos de Electromagnetismo PRÁCTICA 1: LEY DE COULOMB

CENTRO DE CIENCIA BÁSICA ESCUELA DE INGENIERÍA FÍSICA II: Fundamentos de Electromagnetismo PRÁCTICA 1: LEY DE COULOMB 1 CENTRO DE CIENCIA BÁSICA ESCUELA DE INGENIERÍA FÍSICA II: Fundamentos de Electromagnetismo PRÁCTICA 1: LEY DE COULOMB 1.1 OBJETIVO GENERAL - Verificación experimental de la ley de Coulomb 1.2 Específicos:

Más detalles

Ley de crecimiento de una mancha de aceite.

Ley de crecimiento de una mancha de aceite. Ley de crecimiento de una mancha de aceite. María Florencia Filadoro Alikhanoff E-mail: floty@hotmail.com Resumen Se realizaron mediciones del diámetro de una mancha de petróleo para determinar la tasa

Más detalles

CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION

CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION Como hemos dicho anteriormente, los instrumentos de medición hacen posible la observación de los fenómenos eléctricos y su cuantificación. Ahora

Más detalles

PR-SSI ACTIVIDAD 8: SE DISOLVERÁN TODOS LOS MATERIALES EN AGUA? GUÍA DEL MAESTRO(A)

PR-SSI ACTIVIDAD 8: SE DISOLVERÁN TODOS LOS MATERIALES EN AGUA? GUÍA DEL MAESTRO(A) Tiempo sugerido: 150 minutos Objetivos específicos: PR-SSI ACTIVIDAD 8: SE DISOLVERÁN TODOS LOS MATERIALES EN AGUA? GUÍA DEL MAESTRO(A) 1. Determinar la cantidad de soluto que se disuelve en un volumen

Más detalles

ELECTROFORESIS BASICA

ELECTROFORESIS BASICA Ref.ELECBASICA (4 prácticas) 1.OBJETIVO DEL EXPERIMENTO ELECTROFORESIS BASICA El objetivo de este experimento es introducir a los alumnos en el conocimiento de la teoría electroforética y familiarizarse

Más detalles

Colegio Ntra. Sra. del Buen Consejo 1º Bachillerato Física y Química Nombre y apellidos:

Colegio Ntra. Sra. del Buen Consejo 1º Bachillerato Física y Química Nombre y apellidos: EXPERIENCIA: Equivalente en agua o capacidad caloríica de un calorímetro. 1. OBJEIVO: Determinar el equivalente en agua de un calorímetro. 2. MAERIAL: a. Calorímetro b. Agitador c. Dos termómetros d. Base

Más detalles

LABORATORIO DE QUÍMIA FACULTAD DE FARMACIA DESTILACIÓN

LABORATORIO DE QUÍMIA FACULTAD DE FARMACIA DESTILACIÓN LABORATORIO DE QUÍMIA FACULTAD DE FARMACIA DESTILACIÓN 1. Introducción La destilación es un proceso mediante el cual un líquido se calienta hasta hacerlo pasar a estado gaseoso. A continuación, los vapores

Más detalles

Seminario de Electricidad Básica

Seminario de Electricidad Básica Seminario de Electricidad Básica Qué es la Electricidad? Es una forma de energía natural que puede ser producida artificialmente y que se caracteriza por su poder de transformación; ya que se puede convertir

Más detalles

PR-SSI ACTIVIDAD 1: EL SENTIDO DEL TACTO, LO CALIENTE Y LO FRIO GUIA DEL MAESTRO(A)

PR-SSI ACTIVIDAD 1: EL SENTIDO DEL TACTO, LO CALIENTE Y LO FRIO GUIA DEL MAESTRO(A) PR-SSI ACTIVIDAD 1: EL SENTIDO DEL TACTO, LO CALIENTE Y LO FRIO Tiempo sugerido: 100 minutos Objetivos específicos: GUIA DEL MAESTRO(A) 1. Examinar lo que se siente al tocar objetos que están a diferente

Más detalles

SISTEMAS DE NUMERACIÓN. Sistema decimal

SISTEMAS DE NUMERACIÓN. Sistema decimal SISTEMAS DE NUMERACIÓN Sistema decimal Desde antiguo el Hombre ha ideado sistemas para numerar objetos, algunos sistemas primitivos han llegado hasta nuestros días, tal es el caso de los "números romanos",

Más detalles

Determinación del calor latente de fusión del hielo

Determinación del calor latente de fusión del hielo Determinación del calor latente de usión del hielo Apellidos, nombre Atarés Huerta, Lorena (loathue@tal.upv.es) Departamento Centro Departamento de Tecnología de Alimentos ETSIAMN (Universidad Politécnica

Más detalles

UNIVERSIDAD DE ORIENTE NÚCLEO MONAGAS ESCUELA DE INGENIERÍA DE PETRÓLEO LABORATORIO DE YACIMIENTO

UNIVERSIDAD DE ORIENTE NÚCLEO MONAGAS ESCUELA DE INGENIERÍA DE PETRÓLEO LABORATORIO DE YACIMIENTO LABORATORIO DE YACIMIENTO Laboratorio de Yacimiento (063-3121) Propiedades de las Soluciones Salinas UNIVERSIDAD DE ORIENTE NÚCLEO MONAGAS ESCUELA DE INGENIERÍA DE PETRÓLEO LABORATORIO DE YACIMIENTO (Propiedades

Más detalles

1. Calcula la energía cinética de un vehículo de 1000 kg que circula a 100 km/h. Resultado: E C = 385.802,47 J

1. Calcula la energía cinética de un vehículo de 1000 kg que circula a 100 km/h. Resultado: E C = 385.802,47 J 1.- CONCEPTOS BÁSICOS 1. Calcula la energía cinética de un vehículo de 1000 kg que circula a 100 km/h. Resultado: E C = 385.802,47 J 2. Calcula la energía potencial de una masa de 500 kg colgada a 10 m

Más detalles

Unidad Didáctica. Transformadores Trifásicos

Unidad Didáctica. Transformadores Trifásicos Unidad Didáctica Transformadores Trifásicos Programa de Formación Abierta y Flexible Obra colectiva de FONDO FORMACION Coordinación Diseño y maquetación Servicio de Producción Didáctica de FONDO FORMACION

Más detalles

EJERCICIOS DE HIDROSTÁTICA. 4º E.S.O.

EJERCICIOS DE HIDROSTÁTICA. 4º E.S.O. EJERCICIOS DE HIDROSTÁTICA. 4º E.S.O. La finalidad de esta colección de ejercicios resueltos consiste en que sepáis resolver las diferentes situaciones que se nos plantea en el problema. Para ello seguiremos

Más detalles

EQUILIBRIOS VAPOR-LÍQUIDO EN MEZCLAS BINARIAS

EQUILIBRIOS VAPOR-LÍQUIDO EN MEZCLAS BINARIAS OBJETIVO PRÁCTICA 15 EQUILIBRIOS VAPOR-LÍQUIDO EN MEZCLAS BINARIAS Obtención de las curvas "liquidus" y "vapor" del sistema binario etanol-agua. MATERIAL NECESARIO - Aparato de Othmer para destilación,

Más detalles

Colegio : Liceo Miguel de Cervantes y Saavedra Dpto. Física (3 ero Medio) Profesor: Héctor Palma A.

Colegio : Liceo Miguel de Cervantes y Saavedra Dpto. Física (3 ero Medio) Profesor: Héctor Palma A. Tópico Generativo: La presión en vasos comunicantes. Aprendizajes Esperados: 1.-Aplicar la definir conceptual de presión y aplicarla a vasos comunicante. 2.- Caracterizar la presión en función de la fuerza

Más detalles

INTERCAMBIO MECÁNICO (TRABAJO)

INTERCAMBIO MECÁNICO (TRABAJO) Colegio Santo Ángel de la guarda Física y Química 4º ESO Fernando Barroso Lorenzo INTERCAMBIO MECÁNICO (TRABAJO) 1. Un cuerpo de 1 kg de masa se encuentra a una altura de 2 m y posee una velocidad de 3

Más detalles

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido Tema 3 Medidas de tendencia central Contenido 31 Introducción 1 32 Media aritmética 2 33 Media ponderada 3 34 Media geométrica 4 35 Mediana 5 351 Cálculo de la mediana para datos agrupados 5 36 Moda 6

Más detalles

PEQUEÑA INVESTIGACIÓN DE LA ENERGÍA DE LOS ALIMENTOS

PEQUEÑA INVESTIGACIÓN DE LA ENERGÍA DE LOS ALIMENTOS PEQUEÑA INVESTIGACIÓN DE LA ENERGÍA DE LOS ALIMENTOS José Enrique Martínez Benavent COLEGIO JUAN XXIII Burjassot (Valencia) Introducción: Los alimentos nos proporcionan la energía necesaria para mantener

Más detalles

MANEJO DE REACTIVOS Y MEDICIONES DE MASA Y VOLUMEN

MANEJO DE REACTIVOS Y MEDICIONES DE MASA Y VOLUMEN Actividad Experimental 1 MANEJO DE REACTIVOS Y MEDICIONES DE MASA Y VOLUMEN Investigación previa 1. Investiga los siguientes aspectos de una balanza granataria y de una balanza digital: a. Características

Más detalles

INTERCAMBIADORES DE CALOR. Mg. Amancio R. Rojas Flores

INTERCAMBIADORES DE CALOR. Mg. Amancio R. Rojas Flores INTERCAMBIADORES DE CALOR Mg. Amancio R. Rojas Flores INTRODUCCIÓN Los intercambiadores de calor son aparatos que facilitan el intercambio de calor entre dos fluidos que se encuentran a temperaturas diferentes

Más detalles

LOS GASES Y SUS LEYES DE

LOS GASES Y SUS LEYES DE EMA : LOS GASES Y SUS LEYES DE COMBINACIÓN -LAS LEYES DE LOS GASES En el siglo XII comenzó a investigarse el hecho de que los gases, independientemente de su naturaleza, presentan un comportamiento similar

Más detalles

CIRCUITOS ELECTRÓNICOS BÁSICOS: EL DIVISOR DE TENSIÓN

CIRCUITOS ELECTRÓNICOS BÁSICOS: EL DIVISOR DE TENSIÓN CIRCUITOS LCTRÓNICOS ÁSICOS: L DIVISOR D TNSIÓN RSUMN: n esta actividad aprenderás a diseñar un tipo de circuito, muy utilizado en electrónica, que sirve para alimentar (proporcionar tensión de alimentación)

Más detalles

Mecánica de Fluidos Trabajo Práctico # 1 Propiedades Viscosidad Manometría.

Mecánica de Fluidos Trabajo Práctico # 1 Propiedades Viscosidad Manometría. Mecánica de Fluidos Trabajo Práctico # 1 Propiedades Viscosidad Manometría. Como proceder: a.-imprima los contenidos de esta guía, el mismo contiene tablas y gráficas importantes para el desarrollo de

Más detalles

PROBLEMAS RESUELTOS. Grupo A: APLICACIÓN DE LAS ECUACIONES GENERALES DE LOS GASES IDEALES

PROBLEMAS RESUELTOS. Grupo A: APLICACIÓN DE LAS ECUACIONES GENERALES DE LOS GASES IDEALES PROBLEMAS RESUELOS Grupo A: APLICACIÓN DE LAS ECUACIONES GENERALES DE LOS GASES IDEALES A-01 -.- El "hielo seco" es dióxido de carbono sólido a temperatura inferior a -55 ºC y presión de 1 atmósfera. Una

Más detalles

Líneas Equipotenciales

Líneas Equipotenciales Líneas Equipotenciales A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. En esta experiencia se estudia

Más detalles

TRABAJO POTENCIA Y ENERGÍA

TRABAJO POTENCIA Y ENERGÍA TRABAJO POTENCIA Y ENERGÍA TRABAJO, POTENCIA Y ENERGÍA Todos habitualmente utilizamos palabras como trabajo, potencia o energía. En esta unidad precisaremos su significado en el contexto de la física;

Más detalles

MODULO II - Unidad 3

MODULO II - Unidad 3 Calificación de instaladores solares y seguimiento de calidad para sistemas solares térmicos de pequeña escala MODULO II - Unidad 3 Profesores Wilfredo Jiménez + Massimo Palme + Orlayer Alcayaga Una instalación

Más detalles

Ciencias Naturales 5º Primaria Tema 7: La materia

Ciencias Naturales 5º Primaria Tema 7: La materia 1. La materia que nos rodea Propiedades generales de la materia Los objetos materiales tienes en común dos propiedades, que se llaman propiedades generales de la materia: Poseen masa. La masa es la cantidad

Más detalles

LEY DE BOYLE: A temperatura constante, el volumen (V) que ocupa una masa definida de gas es inversamente proporcional a la presión aplicada (P).

LEY DE BOYLE: A temperatura constante, el volumen (V) que ocupa una masa definida de gas es inversamente proporcional a la presión aplicada (P). CÁTEDRA: QUÍMICA GUÍA DE PROBLEMAS N 3 TEMA: GASES IDEALES OBJETIVO: Interpretación de las propiedades de los gases; efectos de la presión y la temperatura sobre los volúmenes de los gases. PRERREQUISITOS:

Más detalles

19 EL OSCILOSCOPIO OBJETIVO MATERIAL FUNDAMENTO TEÓRICO

19 EL OSCILOSCOPIO OBJETIVO MATERIAL FUNDAMENTO TEÓRICO 19 EL OSCILOSCOPIO OBJETIVO Familiarizarse con el manejo del osciloscopio. Medida del periodo y del valor eficaz y de pico de una señal alterna de tensión. Visualización de las figuras de Lissajous. MATERIAL

Más detalles

XIX OLIMPIADA ESPAÑOLA DE FÍSICA.

XIX OLIMPIADA ESPAÑOLA DE FÍSICA. P Exp. Estudio experimental de un generador de corriente Introducción; objetivos Según la ley de Faraday, cuando cambia el flujo magnético a través de un circuito se induce en él una fuerza electromotriz

Más detalles

Prácticas Semana 3 GESTIÓN DE DATOS CON HOJAS DE CÁLCULO

Prácticas Semana 3 GESTIÓN DE DATOS CON HOJAS DE CÁLCULO Guía actividades semana 3 TAREA: Lee el contenido correspondiente al tema 6: Funciones (a partir del apartado 6.5: Funciones matemáticas). TAREA T6 P1 Practicando con las funciones estadísticas se pide

Más detalles

INBECA. GENERADOR DE VAPOR Doméstico para BOX de ducha MANUAL MONTAJE E INSTALACIÓN. USO CONSERVACIÓN MANTENIMIENTO.

INBECA. GENERADOR DE VAPOR Doméstico para BOX de ducha MANUAL MONTAJE E INSTALACIÓN. USO CONSERVACIÓN MANTENIMIENTO. MANUAL MONTAJE E INSTALACIÓN. USO CONSERVACIÓN MANTENIMIENTO. GENERADOR DE VAPOR Doméstico para BOX de ducha SAUNAS INBECA S.L. Galileo, 138 Bajo 08028 Barcelona Tel. (93) 339 13 29 - (93) 339 11 90 Fax.

Más detalles

CUBITOS SALADOS. - Vamos a ver, tenemos agua salada, y enfriamos. Cómo varía la temperatura con el tiempo de enfriamiento?

CUBITOS SALADOS. - Vamos a ver, tenemos agua salada, y enfriamos. Cómo varía la temperatura con el tiempo de enfriamiento? CUBITOS SALADOS Claudi Mans Departamento de Ingeniería Química Universidad de Barcelona cmans@ub.edu Presentación Si existe el helado de berenjena -yo lo he comido, y no era malo-, por qué no los cubitos

Más detalles

Práctica 7 Arenas para moldeo

Práctica 7 Arenas para moldeo Práctica 7 Arenas para moldeo Objetivo Identificar los diferentes tipos de arena para moldeo, y algunas de las pruebas que se le efectúan. Preguntas detonantes 1. Por qué es importante para los ingenieros

Más detalles

FUNDAMENTOS DEL VUELO

FUNDAMENTOS DEL VUELO CARGA ACADÉMICA FUNDAMENTOS DEL VUELO CONTENIDOS 02 Hrs. La atmosfera y sus principales características Altura Altitud Nivel de vuelo Principales partes del avión Fundamentos básicos del vuelo La atmósfera

Más detalles

INTRODUCCIÓN: PROBLEMAS DE IDENTIFICACIÓN DE VARIABLES SIGNIFICATIVAS, DIAGRAMAS DE BLOQUES Y NOTACIÓN ISA

INTRODUCCIÓN: PROBLEMAS DE IDENTIFICACIÓN DE VARIABLES SIGNIFICATIVAS, DIAGRAMAS DE BLOQUES Y NOTACIÓN ISA INTRODUCCIÓN: PROBLEMAS DE IDENTIFICACIÓN DE VARIABLES SIGNIFICATIVAS, DIAGRAMAS DE BLOQUES Y NOTACIÓN ISA 1) Examen Septiembre 03-04. Sea el tanque con agitador representado en la figura: Fluido frío

Más detalles

Trabajo, energía y potencia

Trabajo, energía y potencia Empecemos! Si bien en semanas anteriores hemos descrito las formas en las que se puede presentar la energía y algunas transformaciones que pueden darse en el proceso de producción, distribución y uso de

Más detalles

EL SISTEMA SOLAR Y EL UNIVERSO

EL SISTEMA SOLAR Y EL UNIVERSO UNIDAD 8 EL SISTEMA SOLAR Y EL UNIVERSO 1. INTRODUCCIÓN Sabemos que el sistema propuesto por Copérnico no es del todo correcto. Actualmente sabemos que el universo contiene miles de galaxias, formadas

Más detalles

ENERGÍA INTERNA DE UN SISTEMA

ENERGÍA INTERNA DE UN SISTEMA ENERGÍA INTERNA DE UN SISTEMA Definimos energía interna U de un sistema la suma de las energías cinéticas de todas sus partículas constituyentes, más la suma de todas las energías de interacción entre

Más detalles

1. Montar un modelo de máquina térmica, 2. Poner a funcionar el modelo para levantar un objeto, 3. Describir y explicar el funcionamiento del modelo

1. Montar un modelo de máquina térmica, 2. Poner a funcionar el modelo para levantar un objeto, 3. Describir y explicar el funcionamiento del modelo Experimento 11 GAS IDEAL Objetivos 1. Montar un modelo de máquina térmica, 2. Poner a funcionar el modelo para levantar un objeto, 3. Describir y explicar el funcionamiento del modelo Teoría La termodinámica

Más detalles

CAMBIO DE FASE : VAPORIZACIÓN

CAMBIO DE FASE : VAPORIZACIÓN CAMBIO DE FASE : VAPORIZACIÓN Un líquido no tiene que ser calentado a su punto de ebullición antes de que pueda convertirse en un gas. El agua, por ejemplo, se evapora de un envase abierto en la temperatura

Más detalles

Efecto térmico de la electricidad

Efecto térmico de la electricidad MANTENIMIENTO ELECTROMECÁNICO Efecto térmico de la electricidad EFECTO JOULE 1 Julio = 0,24 calorías. Q = 0,24 * E Q = 0,24 * R * I 2 * t Cuando la corriente atraviesa un conductor eleva la temperatura

Más detalles

ELEMENTOS DEL CLIMA. Realizado por Elena García Marín

ELEMENTOS DEL CLIMA. Realizado por Elena García Marín ELEMENTOS DEL CLIMA Realizado por Elena García Marín ELEMENTOS DEL CLIMA: El tiempo meteorológico es el estado de la atmósfera en un instante y lugar concretos. Queda determinado por los valores de las

Más detalles

INTRODUCCIÓN A LA INSTRUMENTACIÓN BÁSICA. Nociones básicas sobre el manejo de LOS EQUIPOS DEL LABORATORIO

INTRODUCCIÓN A LA INSTRUMENTACIÓN BÁSICA. Nociones básicas sobre el manejo de LOS EQUIPOS DEL LABORATORIO INTRODUCCIÓN A LA INSTRUMENTACIÓN BÁSICA Esta documentación tiene como objetivo facilitar el primer contacto del alumno con la instrumentación básica de un. Como material de apoyo para el manejo de la

Más detalles

Universidad de Chile. Proyecto MECESUP UCH 0303

Universidad de Chile. Proyecto MECESUP UCH 0303 Universidad de Chile Proyecto MECESUP UCH 0303 Modernización e Integración Transversal de la Enseñanza de Pregrado en Ciencias de la Tierra www.dgf.uchile.cl/mece (provisorio) Área Temática: Desarrollado

Más detalles

El corazón, al tener paredes musculares, puede dilatarse y contraerse, lo que le permite bombear la sangre.

El corazón, al tener paredes musculares, puede dilatarse y contraerse, lo que le permite bombear la sangre. Fisiología del aparato circulatorio El corazón, al tener paredes musculares, puede dilatarse y contraerse, lo que le permite bombear la sangre. El corazón bombea la sangre de forma continua, mediante dos

Más detalles

4.1.1 Identificación y valoración de los recursos necesarios para desarrollar la Propuesta Tecnológica

4.1.1 Identificación y valoración de los recursos necesarios para desarrollar la Propuesta Tecnológica 4. ANÁLISIS ECONÓMICO 4.1 Análisis economico Una vez que hayas elaborado la Propuesta Tecnológica tienes que analizarla desde el punto de vista económico. Para realizar este análisis, por un lado, tendrás

Más detalles

Tema 7 : Trabajo, Energía y Calor

Tema 7 : Trabajo, Energía y Calor Tema 7 : Trabajo, Energía y Calor Esquema de trabajo: 7. Trabajo. Concepto. Unidad de medida. 8. Energía. Concepto 9. Energía Cinética 10. Energía Potencial Gravitatoria 11. Ley de Conservación de la Energía

Más detalles