Pruebas Estadísticas de Números Pseudoaleatorios

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Pruebas Estadísticas de Números Pseudoaleatorios"

Transcripción

1 Pruebas Estadístcas de Números Pseudoaleatoros Prueba de meda Consste en verfcar que los números generados tengan una meda estadístcamente gual a, de esta manera, se analza la sguente hpótess: H 0 : = H : Paso. Calcular la meda de los n números generados. x n n r Paso. Calcular los límtes nferor y superor de aceptacón: l z x /, n ls z x / n Paso 3. S el valor de x se encuentra entre l x, ls x, se acepta que los números tenen una meda estadístcamente gual a con un nvel de confanza del - %.

2 Ejemplo (Prueba de meda). Realce la prueba de meda a los sguentes 30 números pseudoaleatoros, con un nvel de confanza del 95% Con la ecuacón para la meda muestral se calcula la meda x n n r Los límtes de aceptacón para n = 30 y = 0.05 son: l x z.96 n 30 / ls x z.96 n 30 / dado que el valor promedo se encuentra entre los límtes, se acepta la hpótess H 0 es decr, se puede afrmar que la meda de los números es estadístcamente gual a.

3 Pruebas Estadístcas de Números Pseudoaleatoros Prueba de varanza Consste en verfcar que los números generados tengan una varanza estadístcamente gual a , de esta manera, se analza la sguente hpótess: H 0 : Var(x) = H : Var(x) Paso. Calcular la varanza de los n números generados. n Var( x) ( r x) n Paso. Calcular los límtes nferor y superor de aceptacón: l Var ( x) /, n ( n ), ls Var ( x) /, n ( n ) Paso 3. S el valor de Var(x) se encuentra entre l Var( x), ls Var(x), se acepta que los números tenen una varanza estadístcamente gual a con un nvel de confanza del - %.

4 Ejemplo (Prueba de varanza). Realce la prueba de varanza a los sguentes 30 números pseudoaleatoros, con un nvel de confanza del 95% Con la ecuacón para la varanza muestral se calcula: n Var( x) ( r x) n Los límtes de aceptacón para n = 30 y = 0.05 son: l /, 0.975, n ( n ) (9) 348 Var ( x) ls /, 0.05, n ( n ) (9) 348 Var ( x) dado que el valor de la varanza muestral se encuentra entre los límtes, se acepta la hpótess H 0 es decr, se puede afrmar que la varanza de los números es estadístcamente gual a.

5 Pruebas Estadístcas de Números Pseudoaleatoros Prueba de forma Para realzar esta prueba se utlza la prueba de bondad de ajuste, ya descrta anterormente. Esta prueba se empleará específcamente para números aleatoros unformes entre 0 y, para probar que un conjunto de datos sgue esta dstrbucón. De esta manera la hpótess propuesta se resume como sgue: H 0 : r ~ U[0,] H : r ~ U[0,] Ejemplo. Tomando los 30 números del ejemplo anteror, determne con un nvel de confanza del 95% s pertenecen a una poblacón unforme. Dvdendo el rango de 0 a en 5 ntervalos y clasfcando los 30 números según su valor se obtene la sguente tabla: Intervalo FO FE=30/ Se calcula C a partr de la ecuacón C m ( FE FO ) FE se obtene un valor de C = Se compara con el valor de tablas con 5-=4 grados de lbertad y un nvel de 5% que es gual a 9.49 y la comparacón ndca que los números generados sguen una dstrbucón unforme entre 0 y.

6 Pruebas Estadístcas de Números Pseudoaleatoros Prueba de ndependenca Las pruebas de ndependenca conssten en demostrar que los números generados son estadístcamente ndependentes entre sí, esto es, que no dependen uno del otro. Para esto se propone la sguente hpótess: H 0 : r ~ Independente H : r ~ Dependente Para realzar estas pruebas de hpótess exsten varos métodos, puede selecconarse cualquera de la sguente lsta: Prueba de póker. Prueba de corrdas arrba y abajo. Prueba de corrdas arrba y debajo de la meda. Prueba de la longtud de las corrdas. Prueba de dstanca. Prueba de seres. Prueba de huecos.

7 Prueba de ndependenca Prueba de Póker H 0 : r ~ Independente H : r ~ Dependente Paso. Calcular las probabldades esperadas para un juego de póker con 5 cartas numeradas del 0 al 9 con reemplazo, se tenen 7 eventos o ntervalos, con las sguentes probabldades: P(Pachuca) = P(Un par) = P(Dos pares) = P(Una terca) = P(Full) = P(Póker) = P(Quntlla) = Paso. Calcular la frecuenca esperada de cada uno de los eventos (FE ) multplcando la probabldad de cada evento por el número de números aleatoros generados. Paso 3. Para cada número aleatoro generado verfcar (magnando que es una mano de póker) s es pachuca, un par, dos pares, etc., tomando los prmeros cnco dígtos a la derecha del punto decmal. Por ejemplo, es un par, es un full, dos pares, etc. Con estos resultados se genera una tabla de frecuencas de estos eventos. La frecuenca observada de cada uno de los eventos se denota como (FO ). Paso 4. Calcular el estadístco C con m = 7. Paso 5. S el valor de C es menor o gual al estadístco de tablas con 6 grados de lbertad y una probabldad de rechazo, entonces se acepta que los datos son estadístcamente ndependentes entre sí.

8 Ejemplo. Realce la prueba de póker a los sguentes 30 números con un nvel de confanza del 95% Agrupando los números de acuerdo con sus dígtos, como s fuera una mano de póker se obtene la sguente tabla de frecuencas: Intervalo FO PE FE=(n*PE) Pachuca Un par Dos pares Una terca Full Póker Quntlla El cálculo de C es gual a 4.5 que comparado contra el valor de tablas con 7- = 6 grados de lbertad, y con un nvel de 5% que es gual a.59, ndca que los números generados son estadístcamente ndependentes.

9 Prueba de ndependenca Prueba de Corrdas H 0 : r ~ Independente H : r ~ Dependente Paso. Clasfcar cada número aleatoro con respecto al anteror, de acuerdo con: S r r S r r Paso. Calcular el número de corrdas observadas h. Una corrda se forma por un conjunto de números aleatoros consecutvos del msmo sgno. Paso 3. Calcular E(h) y Var(h) de acuerdo con: r r E ( h) n 3 6n 9 Var ( h) 90 donde n es el número de datos generados. Paso 4. Calcular el estadístco ( h E( h)) z Var( h), s el valor absoluto z es menor que el valor crítco Z / se acepta la hpótess de ndependenca.

10 Ejemplo. Determne s la sguente sere de 30 números puede ser aceptada como ndependente con un nvel de confanza del 95%, usando la prueba de corrdas La secuenca de corrdas es: donde exsten h = corrdas. Con n = 30 tenemos de las ecuacones anterores que E(h) = corrdas y Var(h) = 5.0. ( h E( h)) Var( h) El valor de z Comparado contra Z 0.05 =.96, de tal manera que ndca que los números generados son estadístcamente ndependentes.

11 Prueba de ndependenca Prueba de Seres H 0 : r ~ Independente H : r ~ Dependente Paso. Crear un hstograma de dos dmensones con m ntervalos, clasfcando cada pareja de números consecutvos (r, r + ) dentro de las casllas de dcho hstograma de frecuencas. El número total de pares ordenados en cada caslla formará la frecuenca observada: FO. Paso. Calcular la frecuenca esperada en cada caslla FE de acuerdo con FE = núm/m donde núm es el número total de parejas ordenadas. Paso 3. Calcular el valor del estadístco C. Paso 4. S el valor de C es menor o gual al valor en tablas con m- grados de lbertad y una probabldad de rechazo, entonces se acepta la hpótess de ndependenca.

12 Ejemplo. Determne s la sguente sere de 30 números puede ser aceptada como ndependente con un nvel de confanza del 95%, usando la prueba de seres Al formar parejas ordenadas se obtene: (.7484,.48999) (.48999,.5050) (.5050,.3958)... (.98953,.733). La clasfcacón en una tabla de frecuencas de dos dmensones de 44, (m=6), queda: r r Tomando en cuenta que se tenen 9 parejas ordenadas clasfcadas unformemente en 6 casllas, la frecuenca esperada FE en cada una es.85 y al calcular el estadístco C, para cada una de las 6 celdas o ntervalos de la tabla anteror, se tene: C C m ( FE FO ) FE 6 (.85 FO ).85 [7( ) 5(.85 ) 4(.85 3) ] 5.75 El valor de la tabla con un nvel de confanza del 95% y con 5 grados de lbertad es gual a 5. S se compara C = 5.75 con este valor, se acepta la ndependenca de la sere de números.

MÉTODOS PARA PROBAR NUMEROS

MÉTODOS PARA PROBAR NUMEROS Capítulo 3 ALEATORIOS MÉTODOS PARA PROBAR NUMEROS III.1 Introduccón Exsten algunos métodos dsponbles para verfcar varos aspectos de la caldad de los números pseudoaleatoros. S no exstera un generador partcular

Más detalles

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado Análss de la varanza con dos factores. Introduccón Hasta ahora se ha vsto el modelo de análss de la varanza con un factor que es una varable cualtatva cuyas categorías srven para clasfcar las meddas de

Más detalles

EXPERIMENTACIÓN COMERCIAL(I)

EXPERIMENTACIÓN COMERCIAL(I) EXPERIMENTACIÓN COMERCIAL(I) En un expermento comercal el nvestgador modfca algún factor (denomnado varable explcatva o ndependente) para observar el efecto de esta modfcacón sobre otro factor (denomnado

Más detalles

Media es la suma de todas las observaciones dividida por el tamaño de la muestra.

Media es la suma de todas las observaciones dividida por el tamaño de la muestra. Estadístcos Los estadístcos son valores calculados con los datos de una varable cuanttatva y que mden alguna de las característcas de la dstrbucón muestral. Las prncpales característcas son: tendenca central,

Más detalles

Medidas de Tendencia Central y de Variabilidad

Medidas de Tendencia Central y de Variabilidad Meddas de Tendenca Central y de Varabldad Contendos Meddas descrptvas de forma: curtoss y asmetría Meddas de tendenca central: meda, medana y moda Meddas de dspersón: rango, varanza y desvacón estándar.

Más detalles

Diseño y Análisis de Experimentos en el SPSS 1

Diseño y Análisis de Experimentos en el SPSS 1 Dseño y Análss de Expermentos en el SPSS EJEMPLO. Los sguentes datos muestran las meddas de hemoglobna (gramos por 00 ml) en la sangre de 40 ejemplares de una espece de truchas marrones. Las truchas se

Más detalles

TEMA 4 Variables aleatorias discretas Esperanza y varianza

TEMA 4 Variables aleatorias discretas Esperanza y varianza Métodos Estadístcos para la Ingenería Curso007/08 Felpe Ramírez Ingenería Técnca Químca Industral TEMA 4 Varables aleatoras dscretas Esperanza y varanza La Probabldad es la verdadera guía de la vda. Ccerón

Más detalles

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS P L V S V LT R A BANCO DE ESPAÑA OPERACIONES Gestón de la Informacón ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS El proceso de ntegracón fnancera dervado de la Unón Monetara exge la

Más detalles

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS Edgar Acuña Fernández Departamento de Matemátcas Unversdad de Puerto Rco Recnto Unverstaro de Mayagüez Edgar Acuña Analss de Regreson Regresón con varables

Más detalles

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos. ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:

Más detalles

Análisis de Weibull. StatFolio de Muestra: Weibull analysis.sgp

Análisis de Weibull. StatFolio de Muestra: Weibull analysis.sgp Análss de Webull Resumen El procedmento del Análss de Webull está dseñado para ajustar una dstrbucón de Webull a un conjunto de n observacones. Es comúnmente usado para analzar datos representando tempos

Más detalles

Análisis de Regresión y Correlación

Análisis de Regresión y Correlación 1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón

Más detalles

Capacidad de Procesos según ISO 9000 Ing o. Angel Francisco Arvelo

Capacidad de Procesos según ISO 9000 Ing o. Angel Francisco Arvelo EVALUACION DE LA CAPACIDAD DE CALIDAD DE UN PROCESO INDUSTRIAL METODOS ESTADISTICOS SUGERIDOS POR LA NORMA ISO 9000 ANGEL FRANCISCO ARVELO L. Ingenero Industral Master en Estadístca Matemátca CARACAS,

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles

XII. Uso de la Estimación de la Distribución de Probabilidad para Muestras Pequeñas y de la Simulación en la Inferencia de Carteras de Seguros.

XII. Uso de la Estimación de la Distribución de Probabilidad para Muestras Pequeñas y de la Simulación en la Inferencia de Carteras de Seguros. Uso de la Estmacón de la Dstrbucón de Probabldad para Muestras Pequeñas y de la Smulacón en la Inferenca de Carteras de Seguros. Trabajo presentado para el XII Premo de Investgacón sobre Seguros y Fanzas

Más detalles

Glosario básico. de términos estadísticos

Glosario básico. de términos estadísticos Glosaro básco de térmnos estadístcos Lma, mayo de 2006 CREDITOS Dreccón y Supervsón Lupe Berrocal de Montestruque Drectora Técnca del Centro de Investgacón y Desarrollo Responsable del documento Hermna

Más detalles

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio.

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio. Tema 9 - Estadístca - Matemátcas B 4º E.S.O. 1 TEMA 9 - ESTADÍSTICA 9.1 DOS RAMAS DE LA ESTADÍSTICA 9.1.1 - INTRODUCCIÓN La estadístca tene por objeto el desarrollo de técncas para el conocmento numérco

Más detalles

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis Tema. Estadístcos unvarados: tendenca central, varabldad, asmetría y curtoss 1. MEDIDA DE TEDECIA CETRAL La meda artmétca La medana La moda Comparacón entre las meddas de tendenca central. MEDIDA DE VARIACIÓ

Más detalles

Correlación y regresión lineal simple

Correlación y regresión lineal simple . Regresón lneal smple Correlacón y regresón lneal smple. Introduccón La correlacón entre dos varables ( e Y) se refere a la relacón exstente entre ellas de tal manera que a determnados valores de se asocan

Más detalles

REGRESION Y CORRELACION

REGRESION Y CORRELACION nav Estadístca (complementos) 1 REGRESION Y CORRELACION Fórmulas báscas en la regresón lneal smple Como ejemplo de análss de regresón, descrbremos el caso de Pzzería Armand, cadena de restaurantes de comda

Más detalles

GANTT, PERT y CPM INDICE

GANTT, PERT y CPM INDICE GANTT, PERT y CPM INDICE 1 Antecedentes hstórcos...2 2 Conceptos báscos: actvdad y suceso...2 3 Prelacones entre actvdades...3 4 Cuadro de prelacones y matrz de encadenamento...3 5 Construccón del grafo...4

Más detalles

4. PROBABILIDAD CONDICIONAL

4. PROBABILIDAD CONDICIONAL . ROBBILIDD CONDICIONL La probabldad de que ocurra un evento B cuando se sabe que ha ocurrdo algún otro evento se denomna robabldad Condconal, Se denota como (B/) y se lee como la probabldad de que ocurra

Más detalles

MODELOS DE ELECCIÓN BINARIA

MODELOS DE ELECCIÓN BINARIA MODELOS DE ELECCIÓN BINARIA Econometría I UNLP http://www.econometra1.depeco.econo.unlp.edu.ar/ Modelos de Eleccón Bnara: Introduccón Estamos nteresados en la probabldad de ocurrenca de certo evento Podemos

Más detalles

PROPUESTAS PARA LA DETERMINACIÓN DE LOS PARÁMETROS DEL GRÁFICO DE CONTROL MEWMA

PROPUESTAS PARA LA DETERMINACIÓN DE LOS PARÁMETROS DEL GRÁFICO DE CONTROL MEWMA Est. María. I. Flury Est. Crstna A. Barbero Est. Marta Rugger Insttuto de Investgacones Teórcas y Aplcadas. Escuela de Estadístca. PROPUESTAS PARA LA DETERMINACIÓN DE LOS PARÁMETROS DEL GRÁFICO DE CONTROL

Más detalles

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales ESTADÍSTICA DESCRIPTIVA Métodos Estadístcos Aplcados a las Audtorías Socolaborales Francsco Álvarez González http://www.uca.es/serv/fag/fct/ francsco.alvarez@uca.es Bajo el térmno Estadístca Descrptva

Más detalles

Trabajo Especial 2: Cadenas de Markov y modelo PageRank

Trabajo Especial 2: Cadenas de Markov y modelo PageRank Trabajo Especal 2: Cadenas de Markov y modelo PageRank FaMAF, UNC Mayo 2015 1. Conceptos prelmnares Sea G = (V, E, A) un grafo drgdo, con V = {1, 2,..., n} un conjunto (contable) de vértces o nodos y E

Más detalles

SIMULACIÓN CAPITULO 3 LECTURA 6.3. SIMULACIÓN Y ANÁLISIS DE MODELOS ESTOCÁSTICOS Azarang M., Garcia E. Mc. Graw Hill. México 3.

SIMULACIÓN CAPITULO 3 LECTURA 6.3. SIMULACIÓN Y ANÁLISIS DE MODELOS ESTOCÁSTICOS Azarang M., Garcia E. Mc. Graw Hill. México 3. LECTURA 6.3 SIMULACIÓN Y ANÁLISIS DE MODELOS ESTOCÁSTICOS Azarang M., Garcia E. Mc. Graw Hill. México CAPITULO 3 SIMULACIÓN 3.1 INTRODUCCIÓN Simulación es el desarrollo de un modelo lógico-matemático de

Más detalles

METODOLOGÍA MUESTRAL ENCUESTA A LAS PEQUEÑAS Y MEDIANAS EMPRESAS

METODOLOGÍA MUESTRAL ENCUESTA A LAS PEQUEÑAS Y MEDIANAS EMPRESAS SUBDIRECCIÓN TÉCNICA DEPARTAMENTO DE INVESTIGACIÓN Y DESARROLLO ÁREA DE ANÁLISIS ESTADÍSTICAS ECONÓMICAS METODOLOGÍA MUESTRAL ENCUESTA A LAS PEQUEÑAS Y MEDIANAS EMPRESAS Santago, Enero de 2008. Departamento

Más detalles

ANÁLISIS EXPLORATORIO DE DATOS

ANÁLISIS EXPLORATORIO DE DATOS ANÁLISIS EXPLORATORIO DE DATOS 1. INTRODUCCIÓN HISTÓRICA 2 1.1 La Estadístca como cenca 2 1.2 Algunos problemas que resuelve la Estadístca 2 2. INTRODUCCIÓN A LA ESTADÍSTICA 3 2.1. Concepto y Objetvo de

Más detalles

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA Alca Maroto, Rcard Boqué, Jord Ru, F. Xaver Rus Departamento de Químca Analítca y Químca Orgánca Unverstat Rovra Vrgl. Pl. Imperal Tàrraco,

Más detalles

MATERIAL Y MÉTODOS. Se utilizó el listado de códigos que Caminal estableció para España, a los cuales se

MATERIAL Y MÉTODOS. Se utilizó el listado de códigos que Caminal estableció para España, a los cuales se MATERIAL Y MÉTODOS Fuentes de nformacón Los datos de hosptalzacón se obtenen del Conjunto Mínmo de Datos de Egresos Hosptalaros del Seguro Públco de Salud Costarrcense (SPSC) y las proyeccones de poblacón

Más detalles

RESISTENCIAS EN SERIE Y LEY DE LAS MALLAS V 1 V 2 V 3 A B C

RESISTENCIAS EN SERIE Y LEY DE LAS MALLAS V 1 V 2 V 3 A B C RESISTENCIS EN SERIE Y LEY DE LS MLLS V V 2 V 3 C D Fgura R R 2 R 3 Nomenclatura: Suponemos que el potencal en es mayor que el potencal en, por lo tanto la ntensdad de la corrente se mueve haca la derecha.

Más detalles

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos)

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos) PROBLEMAS DE ELECTRÓNCA ANALÓGCA (Dodos) Escuela Poltécnca Superor Profesor. Darío García Rodríguez . En el crcuto de la fgura los dodos son deales, calcular la ntensdad que crcula por la fuente V en funcón

Más detalles

Matemáticas aplicadas a las ciencias sociales Estadística y Probabilidad 1º de bachillerato

Matemáticas aplicadas a las ciencias sociales Estadística y Probabilidad 1º de bachillerato Departamento de Matemátcas Matemátcas aplcadas a las cencas socales Estadístca y Probabldad º de bachllerato Matemátcas aplcadas a las cencas socales I, pág. de 48 Departamento de Matemátcas TEMA : ESTADÍSTICA

Más detalles

COLEGIO FRANCISCANO AGUSTIN GEMELLI

COLEGIO FRANCISCANO AGUSTIN GEMELLI COLEGIO FRANCISCANO AGUSTIN GEMELLI AREA MATEMATICAS Las matemátcas son el alfabeto con el cual Dos ha escrto el Unverso. Galleo Galle ESTADISTICA GRADO NOVENO 0 Contendo UNIDAD... 6 PROBABILIDAD I (INTRODUCCION

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

UNIVERSIDAD DE SONORA

UNIVERSIDAD DE SONORA UNIVERSIDAD DE SONORA Dvsón de Cencas Exactas y Naturales Departamento de Matemátcas Estadístca Aplcada a las Lcencaturas: Admnstracón, Contaduría e Inormátca Admnstratva. Fascículo II: Estadístca Descrptva

Más detalles

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma Estadístca Tema 1: Estadístca Descrptva Undmensonal Undad 2: Meddas de Poscón, Dspersón y de Forma Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Septembre 2010 Contendos...............................................................

Más detalles

DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL

DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL DISEÑO MECÁNICO PRÁCTICA Nº 4 METROLOGÍA Y CALIDAD. CALIBRACIÓN DE UN PIE DE REY Metrología y Caldad. Calbracón de n pe de rey. INDICE 1. OBJETIVOS

Más detalles

PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE 25 AÑOS MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES

PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE 25 AÑOS MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE AÑOS EXÁMENES PROPUESTOS Y RESUELTOS DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES CONVOCATORIAS DE --- F Jménez Gómez Este cuaderno

Más detalles

Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó

Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó Comparacón entre dstntos Crteros de decsón (, TIR y PRI) Por: Pablo Lledó Master of Scence en Evaluacón de Proyectos (Unversty of York) Project Management Professonal (PMP certfed by the PMI) Profesor

Más detalles

a) Qué población (la de hombres o la de mujeres) presenta un salario medio mayor? b) Qué porcentaje de varones gana más de 900?

a) Qué población (la de hombres o la de mujeres) presenta un salario medio mayor? b) Qué porcentaje de varones gana más de 900? EJERCICIO 1. A contnuacón tene dos dstrbucones por sexo y salaro declarado en el prmer empleo tras obtener la lcencatura de un grupo de ttulados por la UNED. Salaro en Hombres en % Mujeres en % < de 600

Más detalles

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández MEMORIA DE LA ESTANCIA CON EL GRUPO DE VISIÓN Y COLOR DEL INSTITUTO UNIVERSITARIO DE FÍSICA APLICADA A LAS CIENCIAS TECNOLÓGICAS. UNIVERSIDAD DE ALICANTE. 1-16 de Novembre de 01 Francsco Javer Burgos Fernández

Más detalles

Modelos de elección simple y múltiple. Regresión logit y probit. Modelos multilogit y multiprobit.

Modelos de elección simple y múltiple. Regresión logit y probit. Modelos multilogit y multiprobit. Modelos de eleccón smple y múltple. Regresón logt y probt. Modelos multlogt y multprobt. Sga J.Muro(14/4/2004) 2 Modelos de eleccón dscreta. Modelos de eleccón smple. Modelos de eleccón múltple. Fnal J.Muro(14/4/2004)

Más detalles

4ºB ESO Capítulo 12: Estadística LibrosMareaVerde.tk www.apuntesmareaverde.org.es

4ºB ESO Capítulo 12: Estadística LibrosMareaVerde.tk www.apuntesmareaverde.org.es 4ºB ESO Capítulo 1: Estadístca 350 Índce 1. POBLACIÓ Y MUESTRA. VARIABLES ESTADÍSTICAS 1.1. POBLACIÓ 1.. MUESTRA 1.3. IDIVIDUO 1.4. VARIABLE ESTADÍSTICA. TABLAS DE FRECUECIAS.1. FRECUECIA ABSOLUTA.. FRECUECIA

Más detalles

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II PRACTICA 11: Crcutos no lneales elementales con el amplfcador operaconal OBJETIVO: El alumno se famlarzará con

Más detalles

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia Investgacón y Técncas de Mercado Prevsón de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): s de Tendenca Profesor: Ramón Mahía Curso 00-003 I.- Introduccón Hasta el momento,

Más detalles

Rentas financieras. Unidad 5

Rentas financieras. Unidad 5 Undad 5 Rentas fnanceras 5.. Concepto de renta 5.2. Clasfcacón de las rentas 5.3. Valor captal o fnancero de una renta 5.4. Renta constante, nmedata, pospagable y temporal 5.4.. Valor actual 5.4.2. Valor

Más detalles

Procesamiento Digital de Imágenes. Pablo Roncagliolo B. Nº 17

Procesamiento Digital de Imágenes. Pablo Roncagliolo B. Nº 17 Procesamento Dgtal de mágenes Pablo Roncaglolo B. Nº 7 Orden de las clases... CAPTURA, DGTALZACON Y ADQUSCON DE MAGENES TRATAMENTO ESPACAL DE MAGENES TRATAMENTO EN FRECUENCA DE MAGENES RESTAURACON DE MAGENES

Más detalles

Equilibrio termodinámico entre fases fluidas

Equilibrio termodinámico entre fases fluidas CAPÍTULO I Equlbro termodnámco entre fases fludas El conocmento frme de los conceptos de la termodnámca se consdera esencal para el dseño, operacón y optmzacón de proyectos en la ngenería químca, debdo

Más detalles

CAPÍTULO 7 ESTIMACIÓN DE PARÁMETROS

CAPÍTULO 7 ESTIMACIÓN DE PARÁMETROS CAPÍTULO 7 ESTIMACIÓN DE PARÁMETROS En los capítulos anterores se han analzado varos modelos usados en la evaluacón de stocks, defnéndose los respectvos parámetros. En las correspondentes fchas de ejerccos

Más detalles

Capítulo 3. SISTEMAS DE PARTÍCULAS

Capítulo 3. SISTEMAS DE PARTÍCULAS Capítulo 3. SISTEMAS DE PARTÍCULAS 3.1. Introduccón En la mayoría de los sstemas partculados esten partículas de dstnto tamaño tal como se observa en la Fgura 3.1. Muchos de los métodos que mden tamaño

Más detalles

ADENDA 008 LICITACIÓN L-CEEC-001-12

ADENDA 008 LICITACIÓN L-CEEC-001-12 ADENDA 008 LICITACIÓN L-CEEC-001-12 OBJETO: CONTRATACIÓN DE LA CONSTRUCCIÓN DE LA FASE I DEL RECINTO FERIAL, DEL CENTRO DE EVENTOS Y EXPOSICIONES DEL CARIBE PUERTA DE ORO POR EL SISTEMA DE ECIOS UNITARIOS

Más detalles

SISTEMAS COMBINACIONALES

SISTEMAS COMBINACIONALES Tema 2 SISTEMAS COMBINACIONALES En este tema se estudarán algunas de las funcones combnaconales más utlzadas, las cuales se mplementan en chps comercales Como estas funcones son relatvamente complejas,

Más detalles

Scientia Et Technica ISSN: 0122-1701 scientia@utp.edu.co Universidad Tecnológica de Pereira Colombia

Scientia Et Technica ISSN: 0122-1701 scientia@utp.edu.co Universidad Tecnológica de Pereira Colombia Scenta Et Technca ISSN: 0122-1701 scenta@utp.edu.co Unversdad Tecnológca de Perera Colomba OSPINA GUTIÉRREZ, LUZ MARÍA; ZAPATA RAMÍREZ, GEISON ALEXIS; RODAS RENDON, PAULA ANDREA PRUEBA DE NO LINEALIDAD

Más detalles

YIELD MANAGEMENT APLICADO A LA GESTIÓN DE UN HOTEL

YIELD MANAGEMENT APLICADO A LA GESTIÓN DE UN HOTEL 27 Congreso Naconal de Estadístca e Investgacón Operatva Lleda, 8- de abrl de 2003 YIELD MANAGEMENT APLICADO A LA GESTIÓN DE UN HOTEL J. Guad, J. Larrañeta, L. Oneva Departamento de Organzacón Industral

Más detalles

COMPARADOR CON AMPLIFICADOR OPERACIONAL

COMPARADOR CON AMPLIFICADOR OPERACIONAL COMAADO CON AMLIFICADO OEACIONAL COMAADO INESO, COMAADO NO INESO Tenen como msón comparar una tensón arable con otra, normalmente constante, denomnada tensón de referenca, dándonos a la salda una tensón

Más detalles

Incentivos económicos de las empresas a participar en acuerdos ambientales voluntarios: análisis del Programa de Industria Limpia

Incentivos económicos de las empresas a participar en acuerdos ambientales voluntarios: análisis del Programa de Industria Limpia Gaceta de Economía Año 16, Número Especal, Tomo I Incentvos económcos de las empresas a partcpar en acuerdos ambentales voluntaros: análss del Programa de Industra Lmpa Vcente Ruíz 1, Marsol Rvera-Planter

Más detalles

Matemáticas A 4º E.S.O. pág. 1

Matemáticas A 4º E.S.O. pág. 1 Matemátcas A º E.S.O. pág. HOJA : ESTADÍSTICA º.- Agrupa en ntervalos y construye una tabla de frecuencas (con la marca de clase ncluda) y la frecuenca absoluta de las sguentes alturas, meddas en centímetros,

Más detalles

4 Contraste de hipótesis en el modelo de regresión múltiple

4 Contraste de hipótesis en el modelo de regresión múltiple 4 Contraste de hpótess en el modelo de regresón múltple Ezequel Urel Unversdad de Valenca Versón: 9-13 4.1 El contraste de hpótess: una panorámca 1 4.1.1 Formulacón de la hpótess nula y de la hpótess alternatva

Más detalles

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22 DOCENTE: LIC.GUSTO DOLFO JUEZ GUI DE TJO PCTICO Nº 22 CES: POFESODO Y LICENCITU EN IOLOGI PGIN Nº 132 GUIS DE CTIIDDES Y TJO PCTICO Nº 22 OJETIOS: Lograr que el lumno: Interprete la nformacón de un vector.

Más detalles

CANTIDADES VECTORIALES: VECTORES

CANTIDADES VECTORIALES: VECTORES INSTITUION EDUTIV L PRESENTION NOMRE LUMN: RE : MTEMÁTIS SIGNTUR: GEOMETRÍ DOENTE: JOSÉ IGNIO DE JESÚS FRNO RESTREPO TIPO DE GUI: ONEPTUL - EJERITION PERIODO GRDO FEH DURION 3 11 JUNIO 3 DE 2012 7 UNIDDES

Más detalles

Procedimiento de Calibración. Metrología PROCEDIMIENTO DI-010 PARA LA CALIBRACIÓN DE COMPARADORES MECÁNICOS

Procedimiento de Calibración. Metrología PROCEDIMIENTO DI-010 PARA LA CALIBRACIÓN DE COMPARADORES MECÁNICOS Procedmento de Calbracón Metrología PROCEDIMIENTO DI-00 PARA LA CALIBRACIÓN DE COMPARADORES MECÁNICOS La presente edcón de este procedmento se emte exclusvamente en formato dgtal y puede descargarse gratutamente

Más detalles

Gráficos de flujo de señal

Gráficos de flujo de señal UNIVRSIDAD AUTÓNOMA D NUVO ÓN FACUTAD D INGNIRÍA MCANICA Y ÉCTRICA Gráfcos de flujo de señal l dagrama de bloques es útl para la representacón gráfca de sstemas de control dnámco y se utlza extensamente

Más detalles

UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS ORESTALES USO DE CALC DE OPENOICE EN EL ANÁLISIS DE DISEÑOS EXPERIMENTALES TESIS PROESIONAL QUE COMO REQUISITO PARCIAL PARA OBTENER EL TÍTULO DE: LICENCIADO

Más detalles

CÁLCULO TEÓRICO AB-INITIO DE ENERGÍAS DE IONIZACIÓN Y ELECTRONEGATIVIDADES

CÁLCULO TEÓRICO AB-INITIO DE ENERGÍAS DE IONIZACIÓN Y ELECTRONEGATIVIDADES DEPARTAMENTO DE QUÍMICA FÍSICA FACULTAD DE CIENCIAS CÁLCULO TEÓRICO AB-INITIO DE ENERGÍAS DE IONIZACIÓN Y ELECTRONEGATIVIDADES JOSÉ ALEJO PÉREZ RASCO Trabajo para optar al título de Doctor en Cencas Químcas

Más detalles

Duración y Probabilidad de Salida del Desempleo: Un estudio para el caso ecuatoriano (2003-2006) con datos de secciones cruzadas repetidas

Duración y Probabilidad de Salida del Desempleo: Un estudio para el caso ecuatoriano (2003-2006) con datos de secciones cruzadas repetidas Duracón y Probabldad de Salda del Desempleo: Un estudo para el caso ecuatorano (23-26) con datos de seccones cruzadas repetdas GABRIELA GONZÁLEZ RICARDO ITURRALDE 1 Resumen El presente trabajo estuda el

Más detalles

JUAN CARLOS VERGARA SCHMALBACH VÍCTOR MANUEL QUESADA IBARGUEN

JUAN CARLOS VERGARA SCHMALBACH VÍCTOR MANUEL QUESADA IBARGUEN Introduccón a la estadístca, dstrbucones de frecuencas, gráfcos estadístcos, meddas de tendenca central, dspersón, poscón y forma, con ejemplos resueltos en Mcrosoft Excel JUAN CARLOS VERGARA SCHMALBACH

Más detalles

16/07/2012 P= F A. Pascals. Bar

16/07/2012 P= F A. Pascals. Bar El Estado Gaseoso El Estado Gaseoso Undad I Característcas de los Gases Las moléculas ndvduales se encuentran relatvamente separadas. Se expanden para llenar sus recpentes. Son altamente compresbles. enen

Más detalles

Un Modelo de Asignación de Recursos a Rutas en el Sistema de Transporte Masivo Transmilenio

Un Modelo de Asignación de Recursos a Rutas en el Sistema de Transporte Masivo Transmilenio Un Modelo de Asgnacón de Recursos a Rutas en el Sstema de Transporte Masvo Transmleno A Model for Resource Assgnment to Transt Routes n Bogota Transportaton System Transmleno Sergo Duarte, Ing., Davd Becerra,

Más detalles

Unidad I. 1. 1. Definición de reacción de combustión. 1. 2. Clasificación de combustibles

Unidad I. 1. 1. Definición de reacción de combustión. 1. 2. Clasificación de combustibles 2 Undad I.. Defncón de reaccón de combustón La reaccón de combustón se basa en la reaccón químca exotérmca de una sustanca (o una mezcla de ellas) denomnada combustble, con el oxígeno. Como consecuenca

Más detalles

XLVII Reunión Anual. Noviembre de 2012

XLVII Reunión Anual. Noviembre de 2012 ANALES ASOCIACION ARGENTINA DE ECONOMIA POLITICA XLVII Reunón Anual Novembre de 2012 ISSN 1852-0022 ISBN 978-987-28590-0-8 EXPLICACIÓN DE LAS DECISIONES DE COMPRA DE ALCOHOL Y TABACO DE LOS HOGARES SANTAFESINOS

Más detalles

Departamento Administrativo Nacional de Estadística

Departamento Administrativo Nacional de Estadística Departamento Admnstratvo Naconal de Estadístca Dreccón de Censos Demografía METODOLOGIA ESTIMACIONES Y PROYECCIONES DE POBLACIÓN, POR ÁREA, SEXO Y EDAD PARA LOS DOMINIOS DE LA GRAN ENCUESTA INTEGRADA DE

Más detalles

INSTRUCTIVO No. SP 04 / 2002 INSTRUCTIVO PARA LA DETERMINACIÓN Y CÁLCULO DEL SALARIO BÁSICO REGULADOR

INSTRUCTIVO No. SP 04 / 2002 INSTRUCTIVO PARA LA DETERMINACIÓN Y CÁLCULO DEL SALARIO BÁSICO REGULADOR El Superntendente de Pensones, en el ejercco de las facultades legales contempladas en el artículo 13, lteral b) de la Ley Orgánca de la Superntendenca de Pensones, EMITE el : INSTRUCTIVO No. SP 04 / 2002

Más detalles

Trabajo y Energía Cinética

Trabajo y Energía Cinética Trabajo y Energía Cnétca Objetvo General Estudar el teorema de la varacón de la energía. Objetvos Partculares 1. Determnar el trabajo realzado por una fuerza constante sobre un objeto en movmento rectlíneo..

Más detalles

Medidas de acuerdo entre indicadores de pobreza en Venezuela*

Medidas de acuerdo entre indicadores de pobreza en Venezuela* Actualdad Contable FACES Año 14 Nº 23, Julo - Dcembre 2011. Mérda. Venezuela (20-38) Meddas de acuerdo entre ndcadores de pobreza en Venezuela Barllas, Francsco; Nava P., Lus; Snha, Surendra P. Recbdo:

Más detalles

1.1 Ejercicios Resueltos Tema 1

1.1 Ejercicios Resueltos Tema 1 .. EJERCICIOS RESUELTOS TEMA. Ejerccos Resueltos Tema Ejemplo: Probarque ++3+ + n 3 + 3 +3 3 + + n 3 n (n +) Ã n (n +)! - Para n es certa, tambén lo comprobamos para n, 3,... ( + ) + 3 (+) supuesto certa

Más detalles

LA MATRIZ DE CO-OCURRENCIA EN LA CLASIFICACIÓN MULTIESPECTRAL: TUTORIAL PARA LA ENSEÑANZA DE MEDIDAS TEXTURALES EN CURSOS DE GRADO UNIVERSITARIO.

LA MATRIZ DE CO-OCURRENCIA EN LA CLASIFICACIÓN MULTIESPECTRAL: TUTORIAL PARA LA ENSEÑANZA DE MEDIDAS TEXTURALES EN CURSOS DE GRADO UNIVERSITARIO. LA MATRIZ DE CO-OCURRECIA E LA CLASIFICACIÓ MULTIESPECTRAL: TUTORIAL PARA LA ESEÑAZA DE MEDIDAS TEXTURALES E CURSOS DE GRADO UIVERSITARIO. Tema do Trabalho: Recursos Ddátcos para o Ensno de Sensoramento

Más detalles

TEMA 6 AMPLIFICADORES OPERACIONALES

TEMA 6 AMPLIFICADORES OPERACIONALES Tema 6 Amplfcadores peraconales ev 4 TEMA 6 AMPLIFICADES PEACINALES Profesores: Germán llalba Madrd Mguel A. Zamora Izquerdo Tema 6 Amplfcadores peraconales ev 4 CNTENID Introduccón El amplfcador dferencal

Más detalles

TEMA 4 Amplificadores realimentados

TEMA 4 Amplificadores realimentados TEM 4 mplfcadores realmentados 4.1.- Introduccón La realmentacón (feedback en nglés) negata es amplamente utlzada en el dseño de amplfcadores ya que presenta múltples e mportantes benefcos. Uno de estos

Más detalles

ESTADISTICA APLICADA A LA EDUCACIÓN

ESTADISTICA APLICADA A LA EDUCACIÓN UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA FACULTAD DE EDUCACIÓN DEPARTAMENTO DE MÉTODOS DE INVESTIGACIÓN Y DIAGNÓSTICO EN EDUCACIÓN I Grados de Educacón Socal y Pedagogía ESTADISTICA APLICADA A LA

Más detalles

Créditos Y Sistemas de Amortización: Diferencias, Similitudes e Implicancias

Créditos Y Sistemas de Amortización: Diferencias, Similitudes e Implicancias Crédtos Y Sstemas de Amortzacón: Dferencas, Smltudes e Implcancas Introduccón Cuando los ngresos de un agente económco superan su gasto de consumo, surge el concepto de ahorro, esto es, la parte del ngreso

Más detalles

Incertidumbre de la Medición: Teoría y Práctica

Incertidumbre de la Medición: Teoría y Práctica CAPACIDAD, GESTION Y MEJORA Incertdumbre de la Medcón: Teoría y Práctca (1 ra Edcón) Autores: Sfredo J. Sáez Ruz Lus Font Avla Maracay - Estado Aragua - Febrero 001 Copyrght 001 L&S CONSULTORES C.A. Calle

Más detalles

Economía de la Empresa: Financiación

Economía de la Empresa: Financiación Economía de la Empresa: Fnancacón Francsco Pérez Hernández Departamento de Fnancacón e Investgacón de la Unversdad Autónoma de Madrd Objetvo del curso: Dentro del contexto de Economía de la Empresa, se

Más detalles

DEFINICIÓN DE INDICADORES

DEFINICIÓN DE INDICADORES DEFINICIÓN DE INDICADORES ÍNDICE 1. Notacón básca... 3 2. Indcadores de ntegracón: comerco total de benes... 4 2.1. Grado de apertura... 4 2.2. Grado de conexón... 4 2.3. Grado de conexón total... 5 2.4.

Más detalles

Introducción al riesgo de crédito

Introducción al riesgo de crédito Introduccón al resgo de crédto Estrella Perott Investgador Senor Bolsa de Comerco de Rosaro eperott@bcr.com.ar. Introduccón El resgo credtco es el resgo de una pérdda económca como consecuenca de la falta

Más detalles

CÁLCULO DE LA TASA INTERNA DE RETORNO DE LA EDUCACIÓN EN COLOMBIA *

CÁLCULO DE LA TASA INTERNA DE RETORNO DE LA EDUCACIÓN EN COLOMBIA * CÁLCULO DE LA TASA INTERNA DE RETORNO DE LA EDUCACIÓN EN * INTRODUCCIÓN Helmuth Yesd Aras Gómez ** Álvaro Hernando Chaves Castro *** El efecto de la educacón sobre el desarrollo económco tradconalmente

Más detalles

PREGUNTAS TIPO TEST Y EJERCICIOS PRÁCTICOS PROPUESTOS EN EXÁMENES DE LOS CAPÍTULOS 2, 3 Y 4 (DISTRIBUCIONES DE FRECUENCIAS UNIDIMENSIONALES )

PREGUNTAS TIPO TEST Y EJERCICIOS PRÁCTICOS PROPUESTOS EN EXÁMENES DE LOS CAPÍTULOS 2, 3 Y 4 (DISTRIBUCIONES DE FRECUENCIAS UNIDIMENSIONALES ) TUTORÍA DE ITRODUCCIÓ A LA ESTADÍSTICA. (º A.D.E.) e-mal: mozas@el.uned.es PREGUTAS TIPO TEST Y EJERCICIOS PRÁCTICOS PROPUESTOS E EXÁMEES DE LOS CAPÍTULOS, Y 4 (DISTRIBUCIOES DE FRECUECIAS UIDIMESIOALES

Más detalles

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1 Escuela de Ingenería Comercal Ayudantía # 01, Conceptos Generales, Modelo de Regresón Profesor: Carlos R. Ptta 1 1 cptta@spm.uach.cl Escuela de Ingenería Comercal Ayudantía 01 Parte 01: Comentes Señale

Más detalles

METODOLOGÍAS SISTEMA INTEGRAL DE ADMINISTRACIÓN DE RIESGOS

METODOLOGÍAS SISTEMA INTEGRAL DE ADMINISTRACIÓN DE RIESGOS METODOLOGÍAS SISTEMA INTEGRAL DE ADMINISTRACIÓN DE RIESGOS SIARGAF 4.0 FEBRERO 008 CONTENIDO..... Valor en Resgo aramétrco... A) Meddas de Sensbldad... B) Meddas Estadístcas... 6 C) Volatldad... 7 D) Valor

Más detalles

APENDICE A. El Robot autónomo móvil RAM-1.

APENDICE A. El Robot autónomo móvil RAM-1. Planfcacón de Trayectoras para Robots Móvles APENDICE A. El Robot autónomo móvl RAM-1. A.1. Introduccón. El robot autónomo móvl RAM-1 fue dseñado y desarrollado en el Departamento de Ingenería de Sstemas

Más detalles

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS FACULTAD DE CIENCIAS MATEMÁTICAS E.A.P. DE..ESTADÍSTICA La fecunddad y su relacón con varables socoeconómcas, demográfcas y educatvas aplcando el Modelo de Regresón

Más detalles

Valoración de Instrumentos del Vector de Precios

Valoración de Instrumentos del Vector de Precios Valoracón de Instrumentos del Vector de Precos VERSIÓN DICIEMBRE VERSIÓN DICIEMBRE CONTENIDO INTRODUCCIÓN.... INSTRUMENTOS FINANCIEROS.... Títulos de Deuda de Emsores Públcos... A) Bonos de Establzacón

Más detalles

Nuevos Modelos Probabilísticos. de Localización de Servicios de Emergencias 1

Nuevos Modelos Probabilísticos. de Localización de Servicios de Emergencias 1 Departamento de Estadístca y Matemátca Aplcada Nuevos Modelos Probablístcos de Localzacón de Servcos de Emergencas Fernando Borrás Rocher Memora para optar al grado de Doctor por la Unversdad Mguel Hernández,

Más detalles

CAPITULO 4 MEDIDAS DE TENDENCIA CENTRAL

CAPITULO 4 MEDIDAS DE TENDENCIA CENTRAL CAPITULO 4 MEDIDAS DE TENDENCIA CENTRAL La estadístca descrptva en su uncón básca de reducr datos, propone una sere de ndcadores que permten tener una percepcón rápda de lo que ocurre en un enómeno. La

Más detalles

La clasificación de métodos de registro propuesta por Maintz [1998] utiliza las siguientes categorías:

La clasificación de métodos de registro propuesta por Maintz [1998] utiliza las siguientes categorías: II.5. Regstro de mágenes médcas El regstro es la determnacón de una transformacón geométrca de los puntos en una vsta de un objeto con los puntos correspondentes en otra vsta del msmo objeto o en otro

Más detalles

MODELOS DE ÁRBOL DE REGRESIÓN BAYESIANO: UN ESTUDIO DE CASO.

MODELOS DE ÁRBOL DE REGRESIÓN BAYESIANO: UN ESTUDIO DE CASO. REVISTA INVESTIGACIÓN OPERACIONAL VOL., 3, No., 09-5, 00 MODELOS DE ÁRBOL DE REGRESIÓN BAYESIANO: UN ESTUDIO DE CASO. O. Juárez* y E.Castells** *Facultad de Matemátca. Unversdad Autónoma de Guerrero. Méxco.

Más detalles

UNIDAD DE PLANEACIÓN MINERO ENERGÉTICA

UNIDAD DE PLANEACIÓN MINERO ENERGÉTICA UNIDAD DE PLANEACIÓN MINERO ENERGÉTICA FORMULACIÓN DE UN PROGRAMA BÁSICO DE NORMALIZACIÓN PARA APLICACIONES DE ENERGÍAS ALTERNATIVAS Y DIFUSIÓN Documento ANC-0603-10-01 ANTEPROYECTO DE NORMA AEROGENERADORES

Más detalles

CAPITULO 3.- ANÁLISIS CONJUNTO DE DOS VARIABLES. 3.1 Presentación de los datos. Tablas de doble entrada.

CAPITULO 3.- ANÁLISIS CONJUNTO DE DOS VARIABLES. 3.1 Presentación de los datos. Tablas de doble entrada. Introduccón a la Estadístca Empresaral Capítulo - Análss conjunto de dos varables Jesús ánchez Fernández CAPITULO - AÁLII COJUTO DE DO VARIABLE Presentacón de los datos Tablas de doble entrada En el capítulo

Más detalles

Maestría en Economía Facultad de Ciencias Económicas Universidad Nacional de La Plata TESIS DE MAESTRIA. ALUMNO Laura Carella. DIRECTOR Alberto Porto

Maestría en Economía Facultad de Ciencias Económicas Universidad Nacional de La Plata TESIS DE MAESTRIA. ALUMNO Laura Carella. DIRECTOR Alberto Porto Maestría en Economía Facultad de Cencas Económcas Unversdad Naconal de La Plata TESIS DE MAESTRIA ALUMNO Laura Carella TITULO Educacón unverstara: medcón del rendmento académco a través de fronteras de

Más detalles