Generación de Números Pseudo-Aleatorios

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Generación de Números Pseudo-Aleatorios"

Transcripción

1 Números Aleatorios Son un ingrediente básico en la simulación de sistemas Los paquetes de simulación generan números aleatorios para simular eventos de tiempo u otras variables aleatorias Una secuencia de números aleatorios debe tener dos propiedades importantes: -Uniformidad -Independencia Cada número aleatorio es una muestra independiente tomada de una distribución continua uniforme entre 0 y 1 Su valor esperado es 1/2 y su varianza 1/12

2 Generación de Números Pseudo-Aleatorios Es el uso de un método para la generación de números aleatorios. Si el método es conocido, una secuencia de números puede ser regenerada. Por eso es que se dice que no son completamente aleatorios. La meta de cualquier método es el producir una secuencia de números entre cero y uno que simule o imite las propiedades ideales de una distribución uniforme e independiente, tan cerca como sea posible.

3 Posibles Errores en la Generación de Números Pesudo-Aleatorios Los números generados pueden no estar uniformemente distribuidos Los números generados pueden estar valores discretos en lugar de valores continuos La media puede ser muy alta o muy baja La varianza puede ser muy alta o muy baja Pueden tener variaciones cíclicas como: Autocorrelación entre números, números sucesivamente mas altos o bajos que sus adyacentes Un grupo grande de números por debajo de la media seguidos de otro grupo grande de números por arriba de la media

4 Detección de Errores en la Generación de Números Pseudo-Aleatorios Existen pruebas para determinar si los números generados no cumplen con las propiedades de uniformidad e independencia. En la mayoría de los lenguajes de simulación comerciales, los generadores de números aleatorios contenidos en ellos han sido apropiadamente probados.

5 Tipos de Pruebas Prueba de Frecuencias: Se usa la prueba de Kolmogorov-Smirnov o la de Chi-cuadrada para comparar la distribución de los números generados con una distribución normal. Prueba de Corridas: Probar las corridas hacia arriba o hacia abajo o por arriba o debajo de la media comparando los valores actuales con los valores esperados. Prueba de Autocorrelación: Prueba la autocorrelación entre números y compara la correlación de la muestra con una correlación esperada de cero.

6 Tipos de Pruebas (Cont.) Prueba por bandas: Cuenta el número de dígitos que aparecen entre repeticiones de un dígito en particular y usa la prueba de Kolmogorov-Smirnov para compararla con el tamaño esperado de las bandas. Prueba del Poker: Trata a los números agrupados como una mano de Poker. Entonces la manos obtenidas son comparadas con lo que es esperado usando la prueba de Chi-cuadrada.

7 Generación de Variables Aleatorias Las líneas de espera y otros sistemas nos muestran la utilidad de las distribuciones de probabilidad para modelar actividades que generalmente son impredecibles o inciertas como los tiempos de arribo y servicio en las líneas de espera o la demanda de algún producto. Estas actividades pueden ser modeladas como variables aleatorias con alguna distribución estadística específica. Existen procedimientos estadísticos estándares para la determinación de los parámetros de la distribución hipotética y para probar la validez del modelo estadístico asumido.

8 Métodos para Generación de Variables Aleatorias

9 Técnica de la Transformada Inversa Puede ser usada para muestrear distribuciones exponencial, uniforme, Weibull y triangular. Es usada como base para muestrear una gran variedad de distribuciones discretas. Es la técnica mas facil, pero no siempre es la mas eficiente en términos computacionales.

10 Transformación Directa de la Distribución Normal Técnica intuitiva de transformación directaque produce un par de variables normales estandar independientes una de otra con media cero y varianza uno. No es tan eficiente pero es fácil de implementar en leguajes como C, Pascal o FORTRAN.

11 Método de Convolución La distribución de probabilidad de la suma de dos o mas variables aleatorias independientes es llamada la convolución de las distribuciones de las variables originales. El método de convolución es entonces la suma de dos o mas variables aleatorias para obtener una nueva variable aleatoria con la distribución de probabilidad deseada. Puede ser usada para obtener variables con distribuciones Erlang y binomiales.

12 Técnica de Aceptación-Rechazo Se generan variables aleatorias con alguna distribución y son aceptadas si cumplen con una condición determinada, sino son rechazadas. La eficiencia de esta técnica depende grandemente en ser capaz de minimizar el número de rechazos. La número medio de dígitos aleatorios requerido para generar una variable X es uno mas que el número de rechazos.

Simulación Computacional. Tema 1: Generación de números aleatorios

Simulación Computacional. Tema 1: Generación de números aleatorios Simulación Computacional Tema 1: Generación de números aleatorios Irene Tischer Escuela de Ingeniería y Computación Universidad del Valle, Cali Typeset by FoilTEX 1 Contenido 1. Secuencias pseudoaleatorias

Más detalles

SIMULACIÓN CAPITULO 3 LECTURA 6.3. SIMULACIÓN Y ANÁLISIS DE MODELOS ESTOCÁSTICOS Azarang M., Garcia E. Mc. Graw Hill. México 3.

SIMULACIÓN CAPITULO 3 LECTURA 6.3. SIMULACIÓN Y ANÁLISIS DE MODELOS ESTOCÁSTICOS Azarang M., Garcia E. Mc. Graw Hill. México 3. LECTURA 6.3 SIMULACIÓN Y ANÁLISIS DE MODELOS ESTOCÁSTICOS Azarang M., Garcia E. Mc. Graw Hill. México CAPITULO 3 SIMULACIÓN 3.1 INTRODUCCIÓN Simulación es el desarrollo de un modelo lógico-matemático de

Más detalles

13. Técnicas de simulación mediante el método de Montecarlo

13. Técnicas de simulación mediante el método de Montecarlo 13. Técnicas de simulación mediante el método de Montecarlo Qué es la simulación? Proceso de simulación Simulación de eventos discretos Números aleatorios Qué es la simulación? Simulación = técnica que

Más detalles

Unidad II: Números pseudoaleatorios

Unidad II: Números pseudoaleatorios Unidad II: Números pseudoaleatorios 2.1 Métodos de generación de números Pseudoaleatorio Métodos mecánicos La generación de números aleatorios de forma totalmente aleatoria, es muy sencilla con alguno

Más detalles

DESCRIPCIÓN ESPECÍFICA

DESCRIPCIÓN ESPECÍFICA DESCRIPCIÓN ESPECÍFICA NÚCLEO: COMERCIO Y SERVICIO SUBSECTOR: PRODUCCION Y SALUD OCUPACIONAL Nombre del Módulo: Análisis estadístico de datos. total: 45 HORAS. Objetivo General: Analizar la conformidad

Más detalles

Universidad TecMilenio: Profesional IO04002 Investigación de Operaciones II

Universidad TecMilenio: Profesional IO04002 Investigación de Operaciones II IO04002 Investigación de Operaciones II Tema #4 Generación de números pseudo aleatorios y Objetivo de aprendizaje del tema Al finalizar la sesión serás capaz de: Calcular números pseudo aleatorios. Determinar

Más detalles

Programación en R para Estadística. Simulación

Programación en R para Estadística. Simulación Programación en R para Estadística 1 de 2 Programación en R para Estadística Simulación J. Elías Rodríguez M. Facultad de Matemáticas Universidad de Guanajuato XXIII Foro Nacional de Estadística 11 de

Más detalles

Simulación. Carrera: INE-0405 2-2-6. Participantes. Representante de las academias de ingeniería industrial de los Institutos Tecnológicos.

Simulación. Carrera: INE-0405 2-2-6. Participantes. Representante de las academias de ingeniería industrial de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Simulación Ingeniería Industrial INE-0405 2-2-6 2.- HISTORIA DEL PROGRAMA Lugar

Más detalles

PROGRAMA DE ESTUDIO. Horas de Práctica

PROGRAMA DE ESTUDIO. Horas de Práctica PROGRAMA DE ESTUDIO Nombre de la asignatura: MODELADO Y SIMULACIÓN DE PROCESOS Clave: IQM12 Ciclo Formativo: Básico ( ) Profesional (X) Especializado ( ) Fecha de elaboración: 7 DE MARZO DE 2015 Horas

Más detalles

Curso: Métodos de Monte Carlo. Unidad 1, Sesión 2: Conceptos básicos

Curso: Métodos de Monte Carlo. Unidad 1, Sesión 2: Conceptos básicos Curso: Métodos de Monte Carlo. Unidad 1, Sesión 2: Conceptos básicos Departamento de Investigación Operativa Instituto de Computación, Facultad de Ingeniería Universidad de la República, Montevideo, Uruguay

Más detalles

Métodos generales de generación de variables aleatorias

Métodos generales de generación de variables aleatorias Tema Métodos generales de generación de variables aleatorias.1. Generación de variables discretas A lo largo de esta sección, consideraremos una variable aleatoria X cuya función puntual es probabilidad

Más detalles

ESTADÍSTICA 2OO7/2OO8 TEMA 10: SIMULACIÓN DE VARIABLES ALEATORIAS

ESTADÍSTICA 2OO7/2OO8 TEMA 10: SIMULACIÓN DE VARIABLES ALEATORIAS ESTADÍSTICA 2OO7/2OO8 TEMA 10: SIMULACIÓN DE VARIABLES ALEATORIAS DESCRIPCIÓN DEL TEMA: 10.1. Introducción. 10.2. Método de las transformaciones. 10.3. Método de inversión. 10.4. Método de aceptación-rechazo.

Más detalles

Simulación. Carrera: SCD-1022 SATCA 1

Simulación. Carrera: SCD-1022 SATCA 1 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Simulación Ingeniería en Sistemas Computacionales Clave de la asignatura: SATCA 1 SCD-1022 2 3 5 2.- PRESENTACIÓN Caracterización de la asignatura.

Más detalles

CAPITULO 4 JUSTIFICACION DEL ESTUDIO. En este capítulo se presenta la justificación del estudio, supuestos y limitaciones de

CAPITULO 4 JUSTIFICACION DEL ESTUDIO. En este capítulo se presenta la justificación del estudio, supuestos y limitaciones de CAPITULO 4 JUSTIFICACION DEL ESTUDIO En este capítulo se presenta la justificación del estudio, supuestos y limitaciones de estudios previos y los alcances que justifican el presente estudio. 4.1. Justificación.

Más detalles

SIMULACION. Formulación de modelos: solución obtenida de manera analítica

SIMULACION. Formulación de modelos: solución obtenida de manera analítica SIMULACION Formulación de modelos: solución obtenida de manera analítica Modelos analíticos: suposiciones simplificatorias, sus soluciones son inadecuadas para ponerlas en práctica. Simulación: Imitar

Más detalles

Números aleatorios. Contenidos

Números aleatorios. Contenidos Números aleatorios. Contenidos 1. Descripción estadística de datos. 2. Generación de números aleatorios Números aleatorios con distribución uniforme. Números aleatorios con otras distribuciones. Método

Más detalles

Statgraphics Centurión

Statgraphics Centurión Facultad de Ciencias Económicas y Empresariales. Universidad de Valladolid 1 Statgraphics Centurión I.- Nociones básicas El paquete Statgraphics Centurión es un programa para el análisis estadístico que

Más detalles

Validación de Métodos

Validación de Métodos Validación de Métodos Francisco Rojo Callejas Validación de Métodos Definiciones Parámetros básicos Requisitos Validación de Métodos El proceso de definir las condiciones analíticas y confirmar que el

Más detalles

INDICE Prefacio 1 Introducción 2 Organizaciones de los datos para que transmitan un significado: tablas y graficas

INDICE Prefacio 1 Introducción 2 Organizaciones de los datos para que transmitan un significado: tablas y graficas INDICE Prefacio 1 Introducción 1-1 Preámbulo 1-2 Reseña histórica 1-3 Subdivisiones de la estadística 1-4 Estrategia, suposiciones y enfoque 2 Organizaciones de los datos para que transmitan un significado:

Más detalles

Prácticas de Simulación (Sistemas) Autor: M. en C. Luis Ignacio Sandoval Paéz

Prácticas de Simulación (Sistemas) Autor: M. en C. Luis Ignacio Sandoval Paéz 1 Prácticas de Simulación (Sistemas) Autor: M. en C. Luis Ignacio Sandoval Paéz 2 ÍNDICE Introducción 3 Aplicaciones de la Simulación 3 La Metodología de la Simulación por Computadora 5 Sistemas, modelos

Más detalles

Distribuciones de Probabilidad en Arena

Distribuciones de Probabilidad en Arena Distribuciones de Probabilidad en Arena Arena posee una amplia gama de funciones o distribuciones estadísticas incorporadas para la generación de números aleatorios. Estas distribuciones aparecen cuando,

Más detalles

5. DISTRIBUCIONES DE PROBABILIDADES

5. DISTRIBUCIONES DE PROBABILIDADES 5. DISTRIBUCIONES DE PROBABILIDADES Dr. http://academic.uprm.edu/eacunaf UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ DISTRIBUCIONES DE PROBABILIDADES Se introducirá el concepto de variable

Más detalles

Experimentos con un solo factor: El análisis de varianza. Jhon Jairo Padilla Aguilar, PhD.

Experimentos con un solo factor: El análisis de varianza. Jhon Jairo Padilla Aguilar, PhD. Experimentos con un solo factor: El análisis de varianza Jhon Jairo Padilla Aguilar, PhD. Experimentación en sistemas aleatorios: Factores Controlables Entradas proceso Salidas Factores No controlables

Más detalles

UNIVERSIDAD AUTÓNOMA DE TAMAULIPAS UNIDAD ACADÉMICA MULTIDISCIPLINARIA REYNOSA-RODHE SIMULACIÓN DE SISTEMAS

UNIVERSIDAD AUTÓNOMA DE TAMAULIPAS UNIDAD ACADÉMICA MULTIDISCIPLINARIA REYNOSA-RODHE SIMULACIÓN DE SISTEMAS UNIDAD MÉTODOS DE MONTECARLO II 2.1 Definición Los métodos de Montecarlo abarcan una colección de técnicas que permiten obtener soluciones de problemas matemáticos o físicos por medio de pruebas aleatorias

Más detalles

Capítulo 7: Distribuciones muestrales

Capítulo 7: Distribuciones muestrales Capítulo 7: Distribuciones muestrales Recordemos: Parámetro es una medida de resumen numérica que se calcularía usando todas las unidades de la población. Es un número fijo. Generalmente no lo conocemos.

Más detalles

MATEMÁTICA NM4 4º EM

MATEMÁTICA NM4 4º EM MATEMÁTICA NM4 4º EM UNIDADES TEMÁTICAS UNIDAD Nº 01: ESTADÍSTICA Y PROBABILIDAD Conceptos generales : Población, muestra, parámetro y estadístico Variables y su clasificación Medición y escalas Organización

Más detalles

MEDICIÓN BILATERAL DE LA VARIABILIDAD DE LA LONGITUD

MEDICIÓN BILATERAL DE LA VARIABILIDAD DE LA LONGITUD MEDICIÓN BILATERAL DE LA VARIABILIDAD DE LA LONGITUD DE CORRIDA DE UNA CARTA DE CONTROL ESTADÍSTICO DE PROCESOS SU APLICACIÓN PARA DETERMINAR LA SENSIBILIDAD DE LA CARTA CUSUM NORMAL ANTE LA PRESENCIA

Más detalles

Generación de Números Aleatorios Uniformes

Generación de Números Aleatorios Uniformes Capítulo 5 Generación de Números Aleatorios Uniformes Vimos en el capítulo sobre repaso de distribuciones de probabilidad, lo que es una distribución uniforme. Pero podemos encontrar un método o experimento

Más detalles

Medidas de tendencia central o de posición: situación de los valores alrededor

Medidas de tendencia central o de posición: situación de los valores alrededor Tema 10: Medidas de posición y dispersión Una vez agrupados los datos en distribuciones de frecuencias, se calculan unos valores que sintetizan la información. Estudiaremos dos grandes secciones: Medidas

Más detalles

SÍLABO. VIII Ciclo 3 Teoría y 2 Práctica

SÍLABO. VIII Ciclo 3 Teoría y 2 Práctica SÍLABO I. DATOS GENERALES 1.1. Nombre de la Asignatura 1.2. Carácter 1.3. Carrera Profesional 1.4. Código 1.5. Semestre Académico 1.6. Ciclo Académico 1.7. Horas de Clase 1.8. Créditos 1.9. Pre Requisito

Más detalles

ESTIMACIÓN. puntual y por intervalo

ESTIMACIÓN. puntual y por intervalo ESTIMACIÓN puntual y por intervalo ( ) Podemos conocer el comportamiento del ser humano? Podemos usar la información contenida en la muestra para tratar de adivinar algún aspecto de la población bajo estudio

Más detalles

Probabilidades y Estadística (Computación) Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Ana M. Bianco y Elena J.

Probabilidades y Estadística (Computación) Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Ana M. Bianco y Elena J. Generación de Números Aleatorios Números elegidos al azar son útiles en diversas aplicaciones, entre las cuáles podemos mencionar: Simulación o métodos de Monte Carlo: se simula un proceso natural en forma

Más detalles

Las Matemáticas En Ingeniería

Las Matemáticas En Ingeniería Las Matemáticas En Ingeniería 1.1. Referentes Nacionales A nivel nacional se considera que el conocimiento matemático y de ciencias naturales, sus conceptos y estructuras, constituyen una herramienta para

Más detalles

Pruebas de Hipótesis de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Pruebas de Hipótesis de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Pruebas de ipótesis de Una y Dos Muestras UCR ECCI CI-35 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides ipótesis Estadísticas Conceptos Generales En algunos casos el científico

Más detalles

Unidad II: Números pseudoalealeatorios

Unidad II: Números pseudoalealeatorios 1 Unidad II: Números pseudoalealeatorios Generación de números aleatorios Un Número Aleatorio se define como un número al azar comprendido entre cero y uno. Su característica principal es que puede suceder

Más detalles

Técnicas de análisis para el uso de resultados de encuestas y estudios aplicados al VIH/sida. Por: Prof. Elena del C. Coba

Técnicas de análisis para el uso de resultados de encuestas y estudios aplicados al VIH/sida. Por: Prof. Elena del C. Coba Técnicas de análisis para el uso de resultados de encuestas y estudios aplicados al VIH/sida Por: Prof. Elena del C. Coba Encuestas y estudios aplicados al VIH/sida Definir la fuente de los datos: Datos

Más detalles

CARTAS DE CONTROL: SU EFECTIVIDAD PARA DETECTAR CAMBIOS

CARTAS DE CONTROL: SU EFECTIVIDAD PARA DETECTAR CAMBIOS CARTAS DE CONTROL: SU EFECTIVIDAD PARA DETECTAR CAMBIOS MEDIANTE UN ENFOQUE POR CADENAS DE MARKOV ABSORBENTES Lidia Toscana - Nélida Moretto - Fernanda Villarreal Universidad Nacional del Sur, ltoscana@criba.edu.ar

Más detalles

UNIVERSIDAD DEL TOLIMA FACULTAD DE CIENCIAS PROGRAMA MATEMÁTICAS CON ÉNFASIS EN ESTADÍSTICA RUBEN DARIO GUEVARA, FERNANDO ALONSO VELEZ

UNIVERSIDAD DEL TOLIMA FACULTAD DE CIENCIAS PROGRAMA MATEMÁTICAS CON ÉNFASIS EN ESTADÍSTICA RUBEN DARIO GUEVARA, FERNANDO ALONSO VELEZ UNIVERSIDAD DEL TOLIMA FACULTAD DE CIENCIAS PROGRAMA MATEMÁTICAS CON ÉNFASIS EN ESTADÍSTICA 1. IDENTIFICACIÓN ASIGNATURA: SIMULACIÓN ESTADÍSTICA CODIGO: 070110 NIVEL: VI CREDITOS: 3 DESCRIPCIÓN: DOCENTES:

Más detalles

Curso de Estadística no-paramétrica

Curso de Estadística no-paramétrica Curso de Estadística no-paramétrica Sesión 1: Introducción Inferencia no Paramétrica David Conesa Grup d Estadística espacial i Temporal Departament d Estadística en Epidemiologia i Medi Ambient i Investigació

Más detalles

IDENTIFICACIÓN DE SISTEMAS ASPECTOS PRÁCTICOS EN IDENTIFICACIÓN

IDENTIFICACIÓN DE SISTEMAS ASPECTOS PRÁCTICOS EN IDENTIFICACIÓN IDENTIFICACIÓN DE SISTEMAS ASPECTOS PRÁCTICOS EN IDENTIFICACIÓN Ing. Fredy Ruiz Ph.D. ruizf@javeriana.edu.co Maestría en Ingeniería Electrónica Pontificia Universidad Javeriana 2013 CONSIDERACIONES PRÁCTICAS

Más detalles

Curso Comparabilidad de resultados

Curso Comparabilidad de resultados Curso Comparabilidad de resultados Director: Gabriel A. Migliarino. Docente: Evangelina Hernández. Agenda Introducción. n. Protocolos iniciales de comparación de métodos. m * EP9-A2. CLSI. * Comparación

Más detalles

ÍNDICE DE CONTENIDOS. Capítulo 1 Presentación

ÍNDICE DE CONTENIDOS. Capítulo 1 Presentación ÍNDICE DE CONTENIDOS Capítulo 1 Presentación Capítulo 2 Introducción al proceso de decisión bajo riesgo e incertidumbre 2.1. Resumen del capítulo 2.2. Introducción 2.3. El concepto de riesgo e incertidumbre

Más detalles

Random Forests. Felipe Parra

Random Forests. Felipe Parra Applied Mathematics Random Forests Abril 2014 Felipe Parra Por que Arboles para Clasificación PERFIL DE RIESGO: definir con qué nivel de aversión al riesgo se toman decisiones Interpretación intuitiva

Más detalles

Tema 9 Estadística Matemáticas B 4º E.S.O. 1 TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS

Tema 9 Estadística Matemáticas B 4º E.S.O. 1 TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS Tema 9 Estadística Matemáticas B º E.S.O. TEMA 9 ESTADÍSTICA TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS EJERCICIO : En un grupo de personas hemos preguntado por el número

Más detalles

SEMESTRE: CREDITOS: 3 HORAS PRESENCIALES: 3 Horas de Acompañamiento: 1 TOTAL HORAS/ Semana: 4 CODIGO: 612007954 PROBLEMA

SEMESTRE: CREDITOS: 3 HORAS PRESENCIALES: 3 Horas de Acompañamiento: 1 TOTAL HORAS/ Semana: 4 CODIGO: 612007954 PROBLEMA FACULTAD DE INGENIERÍA Programa de Ingeniería de Sistemas NUCLEO DE CONTENIDO: Básicas de Ingeniería NUCLEO DE CONOCIMIENTO: Investigación de Operaciones. NUCLEO TEMÀTICO: Modelación (Simulación) SEMESTRE:

Más detalles

Diagnosis y Crítica del modelo -Ajuste de distribuciones con Statgraphics-

Diagnosis y Crítica del modelo -Ajuste de distribuciones con Statgraphics- Diagnosis y Crítica del modelo -Ajuste de distribuciones con Statgraphics- 1. Introducción Ficheros de datos: TiempoaccesoWeb.sf3 ; AlumnosIndustriales.sf3 El objetivo de esta práctica es asignar un modelo

Más detalles

SEÑALES Y SISTEMAS - AÑO 2015 Práctica 1: Señales Determinísticas e Introducción a las Señales Aleatorias

SEÑALES Y SISTEMAS - AÑO 2015 Práctica 1: Señales Determinísticas e Introducción a las Señales Aleatorias SEÑALES Y SISTEMAS - AÑO 2015 Práctica 1: Señales Determinísticas e Introducción a las Señales Aleatorias 1. Impulsos continuos y discretos a) Enuncie la propiedad de extracción de la delta de Dirac. b)

Más detalles

PRACTICA 2: Distribuciones de probabilidad discretas

PRACTICA 2: Distribuciones de probabilidad discretas Fn(x) 0.0 0.2 0.4 0.6 0.8 1.0 1 0 1 2 3 4 5 x PRACTICA 2: Distribuciones de probabilidad discretas 1. Clasi que las siguientes variables como discretas o continuas: (a) Número de crías (b) Peso del contenido

Más detalles

LAS ENCUESTAS DE PANEL FERNANDO MEDINA CEPAL

LAS ENCUESTAS DE PANEL FERNANDO MEDINA CEPAL 19 LAS ENCUESTAS DE PANEL FERNANDO MEDINA CEPAL 10 Las Encuestas de Panel Qué es una encuesta de panel? Es una muestra que se sigue y hace mediciones sucesivas sobre un mismo grupo de observaciones en

Más detalles

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL Objetivo terminal: Calcular e interpretar medidas de tendencia central para un conjunto de datos estadísticos. Objetivos específicos: 1. Mencionar las características

Más detalles

IES CANARIAS CABRERA PINTO DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS 1º ESO SEPTIEMBRE 2015

IES CANARIAS CABRERA PINTO DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS 1º ESO SEPTIEMBRE 2015 CONTENIDOS MÍNIMOS 1º ESO SEPTIEMBRE 2015 UNIDAD 1: LOS NÚMEROS NATURALES. OPERACIONES Y RELACIONES El sistema de numeración decimal Estimación y redondeo de un número natural Las operaciones con números

Más detalles

Simulación. Carrera: INE-0405 2-2-6. Participantes Representante de las academias de ingeniería industrial de Institutos Tecnológicos.

Simulación. Carrera: INE-0405 2-2-6. Participantes Representante de las academias de ingeniería industrial de Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Simulación Ingeniería Industrial INE-0405 2-2-6 2.- HISTORIA DEL PROGRAMA Lugar

Más detalles

Carta de control CEV X para distribuciones Weibull con datos censurados

Carta de control CEV X para distribuciones Weibull con datos censurados Revista Colombiana de Estadística Volumen 28 N o 2. pp. 125 a 139. Diciembre 2005 Carta de control CEV X para distribuciones Weibull con datos censurados CEV X Control Chart for Weibull Distributions with

Más detalles

Tema 4:Segmentación de imágenes

Tema 4:Segmentación de imágenes Tema 4:Segmentación de imágenes La segmentación de imágenes divide la imagen en sus partes constituyentes hasta un nivel de subdivisión en el que se aíslen las regiones u objetos de interés. Los algoritmos

Más detalles

% PRODUCTOS NO CONFORMES 10% 5%

% PRODUCTOS NO CONFORMES 10% 5% Departamento de Ingeniería Mecánica Tecnología Mecánica I 67.15 Unidad 13: Control de Calidad Ing. Sergio Laguzzi 1 TEMARIO - Definición de Calidad. Costos de la no Calidad. Estrategia de detección (Planes

Más detalles

9. INTRODUCCIÓN A DISTRIBU- CIONES MULTIVARIANTES

9. INTRODUCCIÓN A DISTRIBU- CIONES MULTIVARIANTES 9. INTRODUCCIÓN A DISTRIBU- CIONES MULTIVARIANTES Objetivo Introducir la idea de la distribución conjunta de dos variables discretas. Generalizar las ideas del tema 2. Introducir la distribución normal

Más detalles

FACULTAD DE INGENIERÍA Programa de Ingeniería de Sistemas Syllabus

FACULTAD DE INGENIERÍA Programa de Ingeniería de Sistemas Syllabus INFORMACIÓN GENERAL Área de formación Núcleo de Contenido Núcleo de Conocimiento Núcleo Temático Profesional Especifica Ingeniería Aplicada Operativa Modelación Semestre IX Número de Créditos Académicos

Más detalles

5.4 Una flecha será ensamblada en un cojinete como se muestra a continuación.

5.4 Una flecha será ensamblada en un cojinete como se muestra a continuación. PROBLEMAS 5.1. El famoso juego 7-11, requiere que el jugador lance dos dados una v. más veces hasta tomar la decisión de que se gana o se pierde el juego. El juego se gana si en el primer lanzamiento los

Más detalles

Tema 7: Estadística y probabilidad

Tema 7: Estadística y probabilidad Tema 7: Estadística y probabilidad En este tema revisaremos: 1. Representación de datos e interpretación de gráficas. 2. Estadística descriptiva. 3. Probabilidad elemental. Representaciones de datos Cuatro

Más detalles

CARTAS DE CONTROL. FeGoSa

CARTAS DE CONTROL. FeGoSa Las empresas en general, ante la apertura comercial han venido reaccionando ante los cambios y situaciones adversas, reaccionan por ejemplo ante: Disminución de ventas Cancelación de pedidos Deterioro

Más detalles

Universidad del CEMA Prof. José P Dapena Métodos Cuantitativos V - ESTIMACION PUNTUAL E INTERVALOS DE CONFIANZA. 5.1 Introducción

Universidad del CEMA Prof. José P Dapena Métodos Cuantitativos V - ESTIMACION PUNTUAL E INTERVALOS DE CONFIANZA. 5.1 Introducción V - ESTIMACION PUNTUAL E INTERVALOS DE CONFIANZA 5.1 Introducción En este capítulo nos ocuparemos de la estimación de caracteristicas de la población a partir de datos. Las caracteristicas poblacionales

Más detalles

ESTADÍSTICA APLICADA A LA INVESTIGACIÓN EN SALUD Medidas de Tendencia Central y Dispersión

ESTADÍSTICA APLICADA A LA INVESTIGACIÓN EN SALUD Medidas de Tendencia Central y Dispersión Descargado desde www.medwave.cl el 13 Junio 2011 por iriabeth villanueva Medwave. Año XI, No. 3, Marzo 2011. ESTADÍSTICA APLICADA A LA INVESTIGACIÓN EN SALUD Medidas de Tendencia Central y Dispersión Autor:

Más detalles

CAPITULO 8. INTRODUCCION AL MÉTODO DE SIMULACIÓN MONTE CARLO

CAPITULO 8. INTRODUCCION AL MÉTODO DE SIMULACIÓN MONTE CARLO CAPITULO 8. INTRODUCCION AL MÉTODO DE SIMULACIÓN MONTE CARLO Objetivos del Capítulo Introducir los conceptos e ideas clave de la simulación Monte Carlo. Introducirse en las capacidades que ofrece Excel

Más detalles

TEMA 6: Gráficos de Control por Variables

TEMA 6: Gráficos de Control por Variables TEMA 6: Gráficos de Control por Variables 1 Introducción 2 Gráficos de control de la media y el rango Función característica de operación 3 Gráficos de control de la media y la desviación típica 4 Gráficos

Más detalles

Teoría de Colas. TC: Parte de la Investigación Operativa que estudia el comportamiento de sistemas cuyos elementos incluyen líneas de espera (colas).

Teoría de Colas. TC: Parte de la Investigación Operativa que estudia el comportamiento de sistemas cuyos elementos incluyen líneas de espera (colas). Teoría de Colas TC: Parte de la Investigación Operativa que estudia el comportamiento de sistemas cuyos elementos incluyen líneas de espera (colas). IO 07/08 - Teoría de Colas 1 Teoría de Colas: ejemplos

Más detalles

Generación de valores de las variables aleatorias

Generación de valores de las variables aleatorias Generación de valores de las variables aleatorias Juan F. Olivares-Pacheco * 14 de junio de 007 Resumen En todo modelo de simulación estocástico, existen una o varias variables aleatorias interactuando.

Más detalles

CAPITULO 4 GENERACION DE VARIABLES ALEATORIAS

CAPITULO 4 GENERACION DE VARIABLES ALEATORIAS CAPITULO 4 GENERACION DE VARIABLES ALEATORIAS En esta sección se trataran procedimientos para muestrear una variedad de distribuciones de probabilidad discretas y continuas ampliamente usadas. En el capítulo,

Más detalles

8. Estimación puntual

8. Estimación puntual 8. Estimación puntual Estadística Ingeniería Informática Curso 2009-2010 Estadística (Aurora Torrente) 8. Estimación puntual Curso 2009-2010 1 / 30 Contenidos 1 Introducción 2 Construcción de estimadores

Más detalles

3.1 INGENIERIA DE SOFTWARE ORIENTADO A OBJETOS OOSE (IVAR JACOBSON)

3.1 INGENIERIA DE SOFTWARE ORIENTADO A OBJETOS OOSE (IVAR JACOBSON) 3.1 INGENIERIA DE SOFTWARE ORIENTADO A OBJETOS OOSE (IVAR JACOBSON) 3.1.1 Introducción Este método proporciona un soporte para el diseño creativo de productos de software, inclusive a escala industrial.

Más detalles

Precio del alquiler de pisos durante una serie de meses. Evolución del índice del precio del trigo con mediciones anuales.

Precio del alquiler de pisos durante una serie de meses. Evolución del índice del precio del trigo con mediciones anuales. Series Temporales Introducción Una serie temporal se define como una colección de observaciones de una variable recogidas secuencialmente en el tiempo. Estas observaciones se suelen recoger en instantes

Más detalles

CURSO HERRAMIENTAS ESTADISTICAS PARA IMPLEMENTACION DE SIX SIGMA EN EMPRESAS DE PRODUCCION, LOGISTICA Y SERVICIOS

CURSO HERRAMIENTAS ESTADISTICAS PARA IMPLEMENTACION DE SIX SIGMA EN EMPRESAS DE PRODUCCION, LOGISTICA Y SERVICIOS CURSO HERRAMIENTAS ESTADISTICAS PARA IMPLEMENTACION DE SIX SIGMA EN EMPRESAS DE PRODUCCION, LOGISTICA Y SERVICIOS Cnel. R.L. Falcón 1435 C1406GNC 35 Buenos Aires, Argentina Tel.: 054-15-4492-6252 Fax:

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA MISIÓN Formar profesionales altamente capacitados, desarrollar investigación y realizar actividades de extensión en Matemáticas y Computación, así como en sus diversas aplicaciones. PROBABILIDAD Y ESTADÍSTICA

Más detalles

La distribución normal o de Gauss

La distribución normal o de Gauss La distribución normal o de Gauss Distribución límite La distribución Normal o de Gauss La distribución de Gauss tipificada La función integral. Cálculo de la función integral La desviación estándar de

Más detalles

Programa de la asignatura: Estadística para Finanzas y Seguros, I (3 de FBS)

Programa de la asignatura: Estadística para Finanzas y Seguros, I (3 de FBS) Universidad de Valladolid Facultad de Ciencias Económicas y Empresariales Departamento de Estadística-Econometría Grado en Finanzas, Banca y Seguros Curso 2013-2014 Programa de la asignatura: Estadística

Más detalles

Detergente Lavad.1 Lavad.2 Lavad.3 Media A 45 43 51 46.3 B 47 44 52 47.6 C 50 49 57 52 D 42 37 49 42.6. Media 46 43.2 52.2 47.16

Detergente Lavad.1 Lavad.2 Lavad.3 Media A 45 43 51 46.3 B 47 44 52 47.6 C 50 49 57 52 D 42 37 49 42.6. Media 46 43.2 52.2 47.16 3. DISEÑO EN BLOQUES ALEATORIZADOS En muchos experimentos además de que interesa investigar la influencia de un factor controlado sobre la variable de respuesta, como en la sección anterior, existe una

Más detalles

1. IDENTIFICACION DE LA ASIGNATURA

1. IDENTIFICACION DE LA ASIGNATURA UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE ADMINISTRACION Y ECONOMIA DEPARTAMENTO DE CONTABILIDAD Y AUDITORIA PROGRAMA DE ESTUDIO ESTADISTICAS APLICADA I 1. IDENTIFICACION DE LA ASIGNATURA 2. OBJETIVOS

Más detalles

Introducción a la Teoría de Probabilidad

Introducción a la Teoría de Probabilidad Capítulo 1 Introducción a la Teoría de Probabilidad Para la mayoría de la gente, probabilidad es un término vago utilizado en el lenguaje cotidiano para indicar la posibilidad de ocurrencia de un evento

Más detalles

METODOS ESTADISTICOS.

METODOS ESTADISTICOS. AREA DE ESTADISTICA E INVESTIGACION DE OPERACIONES PROGRAMA: METODOS ESTADISTICOS. PROYECTO: SERVICIO DE CONSULTORIA ESTADISTICA. SERVICIO DE CONSULTORIA ESTADISTICA. Diseño con propósitos de un posterior

Más detalles

Que el estudiante sepa aplicar las principales técnicas que sirven para resaltar características en imágenes

Que el estudiante sepa aplicar las principales técnicas que sirven para resaltar características en imágenes 1 Facultad: Ingeniería. Escuela: Biomédica Asignatura: Imágenes Médicas Realce de Características Objetivos Que el estudiante sepa aplicar las principales técnicas que sirven para resaltar características

Más detalles

Métodos y Diseños utilizados en Psicología

Métodos y Diseños utilizados en Psicología Métodos y Diseños utilizados en Psicología El presente documento pretende realizar una introducción al método científico utilizado en Psicología para recoger información acerca de situaciones o aspectos

Más detalles

FILTRADO DE IMÁGENES

FILTRADO DE IMÁGENES FILTRADO DE IMÁGENES 1 INDICE RUIDO Qué es el ruido? Tipos de ruido TECNICAS DE FILTRADO EN DOMINIO ESPACIAL Promediado de imágenes Filtros de orden Filtros de medias DOMINIO FRECUENCIAL FUNCIONES EN MATLAB

Más detalles

Contraste de Independencia entre Variables Cualitativas

Contraste de Independencia entre Variables Cualitativas Contraste de Independencia entre Variables Cualitativas Grado en NHD. Grupos C y E Ejemplo I Ejemplo: Supóngase que se desea estudiar la posible relación entre dos variables de tipo cualitativo (tipo de

Más detalles

Sistemas de Generación de Energía Eléctrica HIDROLOGÍA BÁSICA. Universidad Tecnológica De Pereira

Sistemas de Generación de Energía Eléctrica HIDROLOGÍA BÁSICA. Universidad Tecnológica De Pereira 2010 Sistemas de Generación de Energía Eléctrica HIDROLOGÍA BÁSICA Universidad Tecnológica De Pereira Conceptos Básicos de Hidrología La hidrología es una ciencia clave en el estudio de los sistemas de

Más detalles

Simulación, Método de Montecarlo

Simulación, Método de Montecarlo Simulación, Método de Montecarlo Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Marzo 2011 Introducción 2 Introducción............................................................

Más detalles

MÓDULO 9 DISTRIBUCIÓN DE PROBABILIDAD NORMAL

MÓDULO 9 DISTRIBUCIÓN DE PROBABILIDAD NORMAL MÓDULO 9 DISTRIBUCIÓN DE PROBABILIDAD NORMAL INTRODUCCIÓN En este módulo se continúa con el estudio de las distribuciones de probabilidad, examinando una distribución de probabilidad continua muy importante:

Más detalles

ANÁLISIS DE SERIE DE TIEMPO DE CAUDALES DEL RÍO EL TALA PERIODO 1937-1960

ANÁLISIS DE SERIE DE TIEMPO DE CAUDALES DEL RÍO EL TALA PERIODO 1937-1960 ANÁLISIS DE SERIE DE TIEMPO DE CAUDALES DEL RÍO EL TALA PERIODO 1937-1960 Verón, Juan Antonio* ; Herrera, Carlos Gabriel*; Rodríguez, Norma Leonor** * Facultad de Tecnología y Ciencias Aplicada de la UNCa.

Más detalles

Teoría de Probabilidad

Teoría de Probabilidad Matemáticas Discretas L. Enrique Sucar INAOE Teoría de Probabilidad Considero que la probabilidad representa el estado de la mente con respecto a una afirmación, evento u otra cosa para las que no existe

Más detalles

ANÁLISIS DINÁMICO DEL RIESGO DE UN PROYECTO

ANÁLISIS DINÁMICO DEL RIESGO DE UN PROYECTO ANÁLISIS DINÁMICO DEL RIESGO DE UN PROYECTO Por: Pablo Lledó Master of Science en Evaluación de Proyectos (University of York) Project Management Professional (PMP) Profesor de Project Management y Evaluación

Más detalles

Packet Trains-Measurements and a New Model for Computer Network Traffic

Packet Trains-Measurements and a New Model for Computer Network Traffic Packet Trains-Measurements and a New Model for Computer Network Traffic RAJ JAIN, SENIOR MEMBER, IEEE, AND SHAWN A. ROUTHIER IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. SAC-4, NO. 6, SEPTEMBER

Más detalles

Curso. Análisis Estadístico de Datos Climáticos

Curso. Análisis Estadístico de Datos Climáticos Curso I-1 Análisis Estadístico de Datos Climáticos Distribuciones de Probabilidad Mario Bidegain (FC) Alvaro Diaz (FI) Universidad de la República Montevideo, Uruguay 2011 I-2 DISTRIBUCIONES DE PROBABILIDAD

Más detalles

Matrices: Conceptos y Operaciones Básicas

Matrices: Conceptos y Operaciones Básicas Matrices: Conceptos y Operaciones Básicas Departamento de Matemáticas, CCIR/ITESM 8 de septiembre de 010 Índice 111 Introducción 1 11 Matriz 1 113 Igualdad entre matrices 11 Matrices especiales 3 115 Suma

Más detalles

LICENCIADO EN CIENCIAS AMBIENTALES PROGRAMA DE ESTADÍSTICA

LICENCIADO EN CIENCIAS AMBIENTALES PROGRAMA DE ESTADÍSTICA LICENCIADO EN CIENCIAS AMBIENTALES PROGRAMA DE ESTADÍSTICA CURSO 2010-2011 TITULACIÓN: CIENCIAS AMBIENTALES ASIGNATURA: ESTADISTICA ÁREA DE CONOCIMIENTO: Estadística e Investigación Operativa Número de

Más detalles

Análisis de dominancia usando ruby-statsample. Introducción. Instalación de Ruby y gemas. Windows

Análisis de dominancia usando ruby-statsample. Introducción. Instalación de Ruby y gemas. Windows Análisis de dominancia usando ruby-statsample Introducción El análisis de dominancia(azen y Bodescu, 2003), es un método para determinar la importancia relativa de uno o más predictores en comparación

Más detalles

Carrera: MCM - 0531. Participantes. Representantes de las academias de Ingeniería Mecánica de Institutos Tecnológicos.

Carrera: MCM - 0531. Participantes. Representantes de las academias de Ingeniería Mecánica de Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Probabilidad y Estadística Ingeniería Mecánica MCM - 0531 3 2 8 2.- HISTORIA DEL

Más detalles

Hay diferencias en la media del HOMA entre los diabéticos y los no diabéticos? Resumen del procesamiento de los casos

Hay diferencias en la media del HOMA entre los diabéticos y los no diabéticos? Resumen del procesamiento de los casos Test de hipótesis t de Student Hay diferencias en la media del HOMA entre los diabéticos y los no diabéticos? Resumen del procesamiento de los casos HOMA Casos Válidos Perdidos Total N Porcentaje N Porcentaje

Más detalles

VICERRECTORADO DE CALIDAD E INNOVACIÓN EDUCATIVA

VICERRECTORADO DE CALIDAD E INNOVACIÓN EDUCATIVA VICERRECTORADO DE CALIDAD E INNOVACIÓN EDUCATIVA Título del Informe: Análisis de validez y fiabilidad del cuestionario de encuesta a los estudiantes para la evaluación de la calidad de la docencia Fecha:

Más detalles

FECHA DE ENTREGA DE LAS ESPECIFICACIONES AL ESTUDIANTE: Adjunto a la primera parcial

FECHA DE ENTREGA DE LAS ESPECIFICACIONES AL ESTUDIANTE: Adjunto a la primera parcial 348 -TP Lapso 2009/2 1/7 TRABAJO PRÁCTICO ASIGNATURA: INVESTIGACIÓN DE OPERACIONES III CÓDIGO: 348 FECHA DE ENTREGA DE LAS ESPECIFICACIONES AL ESTUDIANTE: Adjunto a la primera parcial FECHA DE DEVOLUCIÓN

Más detalles

CAPÍTULO 5. 5.3 La Distribución Normal

CAPÍTULO 5. 5.3 La Distribución Normal CAPÍTULO 5 5.3 La Distribución Normal Si una variable aleatoria X tiene una distribución Normal y queremos calcular la probabilidad de que X caiga entre dos valores a y b entonces, debemos hallar el área

Más detalles

Explicación de la tarea 3 Felipe Guerra

Explicación de la tarea 3 Felipe Guerra Explicación de la tarea 3 Felipe Guerra 1. Una ruleta legal tiene los números del 1 al 15. Este problema corresponde a una variable aleatoria discreta. La lectura de la semana menciona lo siguiente: La

Más detalles

GRÁFICOS DE CONTROL DE SHEWHART

GRÁFICOS DE CONTROL DE SHEWHART GRÁFICOS DE CONTROL DE SHEWHART Jordi Riu Grupo de Quimiometría, Cualimetría y Nanosensores Universitat Rovira i Virgili Campus Sescelades C/ Marcel lí Domingo s/n 43007-Tarragona Introducción Uno de los

Más detalles