Lección 2. Puntos, vectores y variedades lineales.
|
|
- Arturo Ortega Aguirre
- hace 2 años
- Vistas:
Transcripción
1 Página 1 de 11 Lección 2. Puntos, vectores y variedades lineales. Objectivos. En esta lección se repasan las nociones de punto y vector, y se identifican, via coordenadas, con los pares (ternas,...) de números reales. Esta identificación permite posteriormente representar entidades geométricas (variedades) mediante ecuaciones. Puntos y vectores. Reprentación de puntos y vectores via coordenadas Nociones métricas vía coordenadas. Representación paramétrica de variedades lineales y afines. Dimensión y base de una variedad lineal. Representación implícita de variedades lineales y afines. Problemas de paralelismo e incidencia. 2.1 Puntos y vectores. Puntos. La geometría considera el plano (recta, espacio,...) formado per puntos. Los puntos representan posiciones. El punto es un ente ideal, elemental e indivisible, sobre el que se fundamenta el lenguage geométrico. La noción de punto no es real en sentido empírico, sino que es un producto de la abstracción humana. Los puntos se agrupan para formar variedades (rectas, esferas...) y otros objetos geométricos (figuras, sólidos...) que representan formas y delimitan espacios. Los problemas clásicos de la geometría proponen cuestiones sobre puntos, varietadades y figuras, pero no proporcionan una forma de representarlos más allá de la pròpia imaginación o del dibujo. Vectores. Los vectores son pares ordenados de puntos, y representan direcciones. Dos vectores son equivalentes
2 Página 2 de 11 si tienen la misma dirección, el mismo sentdido y la misma longitud. En muchos casos, dos vectores hacen funciones equivalentes (aportan la misma información para un problema determinado) si tienen la misma dirección, prescindiendo de la longitud y/o del sentido. Operaciones gráficas con vectores. Los vectores se pueden sumar y multiplicar por escalares El conjunto de todos los vectores del plano (recta,espaci0,...) con origen común, dotado de las dos operaciones anteriores tiene estructura deespacio vectorial més informació? 2.2 Representación de puntos y vectores via coordenadas. Las coordenadas cartesianas introducen una via de representación de puntos y vectores que va más lejos de la imaginación o el dibujo. El procedimiento básico para asignar coordenadas se basa en la projección sobre unos ejes, en los que previamente se han introducido un origen, una unidad de medida y un sentido. De esta manera, cada punto del plano (espacio...) se identifica de forma única con un par (terna,...) ordenado de valores numéricos, y viceversa.
3 Página 3 de 11 Las variedades (rectas,...) se pueden representar mediante ecuaciones, y los problemas geométricos se transforman en problemas algebraicos con ecuaciones. Coordenadas de un vector. Las coordenadas de un vector anclado en el origen son las del punto extremo del mismo. En general, las coordenadas de un vector se obtienen restando las de sus puntos extremos. (extremo menos origen). Así, si un vector se obtiene como suma de otros dos, sus coordenadas también, y si se obtiene multiplicando un vector por un escalar, sus coordenadas también.
4 Página 4 de 11 El conjunto de todos los pares de coordenadas (x 1, x 2 ) es también un espacio vectorial, que designamos por R 2 (R 3 si se trata de ternas,...) 2.3 Producto escalar, norma y distancia. Las nociones de distancia y ángulo derivan de las de producto escalar y la norma (módulo) vectoriales cuando hacemos geometría con coordenadas. La orientación de los ángulos se relaciona con el producto vectorial. Producto escalar. El producto escalar de dos vectores se calcula multiplicando coordenada a coordenada y sumando. para vectores de dos componentes, y en general: Ejemplo 1 Para poder efectuar el product0 escalar las dimensiones de los vectores han de coincidir. El producto escalar es conmutativo, es decir El producto escalar es definido positivo, es decir Ejemplo 2
5 Página 5 de 11 Norma (módulo). La norma (o módulo) de un vector se obtiene a partir de sus coordenadas de acuerdo con: Distancia. La longitud de un vector es su norma (módulo). Por tanto, la distancia entre dos puntos A y B es la norma del vector. Ejemplo 3 Ángulo. El ángulo se relaciona con la norma y el producto escalar mediante la fórmula: Ejemplo 4 El ángulo de dosvetores se obtiene haciendo: Producto vectorial. Se define para dos vectores de R 3, y el resultado es un tercer vector, de dirección perpendicular al plano que determinan los dos primeros. El sentido se determina según la regla de la mano derecha, haciendo girar el primero sobre el segundo.
6 Página 6 de 11 determinantes? Ejemplo 5 producto vectorial de los vectores El producto vectorial de dos vectores se relaciona con sus normas y con el ángulo que forman: 2.4 Representación paramétrica de variedades lineales y afines. La representación paramétrica se basa en la noción de combinación lineal de vectores. Combinación lineal de vectores. Se dice que es combinación lineal de un conjunto de vectores si para algunos escalares Las coordenadas de se obtienen efectuando las operaciones indicadas para los vectores coordenada a coordenada
7 Página 7 de 11 Ejemplo 2 Subespacio generado por un conjunto de vectores. El conjunto F de todas las posibles combinaciones lineales de una familia de vectores S se llama el subespacio generado por S. Los valores reciben el nombre de parámetros y las ecuaciones ecuaciones paramétricas. Las ecuaciones paramétricas proporcionan una representación mediante coordenadas explícita: para cada valor particular que asignemos a los parámetros se obtiene algun punto de la variedad. Algunos ejemplos importantes: el subespacio generado por un solo vector es una recta que pasa por el origen. el subespacio generado por dos vectores es (siempre?) un plano que pasa por el origen Ejemplo Las ecuaciones paramétricas del plano F que tiene como vectores directores son: o també:
8 Página 8 de 11 Si la recta, plano,... no pasa por el origen, no se habla de subespacios sino de variedades afines. La representación paramétrica de una variedad afín A se obtiene sumando (suma de vectores) a un punto de paso P un subespacio director F. A=P+F Ejemplo Las ecuaciones paramétricas del plano F que tiene como vectores directores y pasa por el punto P=(1,0,1) son: o también: 2.5 Dimensión y base. Un mismo subespacio admite muchos generadores diferentes y, por tanto, muchas ecuaciones paramétricas distintas. Ejemplo 6 El plano F de R 3 de ecuación x = 0 se puede obtener como
9 Página 9 de 11 Interesa hallar representaciones con el menor número posible de parámetros, o lo que es equivalente, familias de generadores con el mínimo número de vectores. Ejemplo Para hallar una familia generadora con el mínimo número posible de vectores de, observamos en primer lugar que. Esto nos indica que cualquier vector que se pueda obtener como combinación lineal de también será combinación lineal de los dos últimos. Por ejemplo, también., pero Por tanto, se puede prescindir de (1,1,-1), y resulta ejercicio 1 problema 2.1 Un conjunto de vectores tal que ninguno de ellos se puede escribir como combinación lineal de los otros se llama un conjunto linealmente independiente de vectores. El ejemplo anterior nos muestra que si, son equivalentes: 1. La familia de generadores tiene el mínimo número posible de elementos. 2. La familia de generadores es linealmente independiente. En la práctica, para obtener una familia generadora con el mínimo número posible de elementos, se utiliza el cálculo de rangos. Un conjunto de vectores que 1. genera un subespacio F 2. es linealmente independiente se llama una base de F. Todas las bases de un mismo subespacio F tienen el mismo número de vectores (Teorema de Steinitz). més informació? Este número común es la dimensión de F. ejercicio 2 problema 2.2
10 Página 10 de Representación implícita de variedades lineales y afines. La solución de un sistema de ecuaciones lineales es una variedad afín (p. ej. una recta, un plano...) Tiene la forma x = P + F, donde P es un punto de paso y F un subespacio vectorial que determina la dirección. Los vectores que generan F se llaman vectores directores de la variedad (recta, plano,...) F se llama subespacio director de la variedad. La dimensión de la variedad afín A coincide con la del subespacio director F. F es la solución del sistema homogéneo asociado, es decir, un sistema con la misma matriz de coeficientes, pero con el vector de términos independientes nulo. Ejemplo: Solución en función del parámetro x: Por tanto, una terna (x,y,z) es solución si:. para cualquier valor de x, O lo que es equivalente, Observamos que el subespacio director es la solución del sistema homogéneo asociado Dos sistemas de ecuaciones (compatibles) con la misma matriz de coeficientes, pero con téerminos independientes diferentes, representan dos variedades paralelas (igual subespacio director). El número de parámetros en la solución es la dimensión de la variedad representada por el sistema. Solución en función del parámetro x:
11 Página 11 de 11 Ejemplo: Por tanto, una terna (x,y,z) es solución si:. para cualquier valor de x y z, O lo que es equivalente, Fijémonos en que la solución depende de 2 parámetros, valor que coincide con la dimensión del subespacio director. ejercicio 1problema 2.4 d.
_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano
24 Unidad II Vectores 2.1 Magnitudes escalares y vectoriales Unidad II. VECTORES Para muchas magnitudes físicas basta con indicar su valor para que estén perfectamente definidas y estas son las denominadas
Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.
Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental
VECTORES EN EL PLANO
VECTORES EN EL PLANO VECTOR: vectores libres Segmento orientado, con un origen y extremo. Módulo: es la longitud del segmento orientado, es un número positivo y su símbolo es a Dirección: es la recta que
Definición de vectores
Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre
INTRODUCCIÓN A VECTORES Y MAGNITUDES
C U R S O: FÍSIC Mención MTERIL: FM-01 INTRODUCCIÓN VECTORES Y MGNITUDES La Física tiene por objetivo describir los fenómenos que ocurren en la naturaleza, a través de relaciones entre magnitudes físicas.
Te damos los elementos básicos de los vectores para que puedas entender las operaciones básicas.
4 año secundario Vectores, refrescando conceptos adquiridos Te damos los elementos básicos de los vectores para que puedas entender las operaciones básicas. El término vector puede referirse al: concepto
ESTÁTICA 2. VECTORES. Figura tomada de http://www.juntadeandalucia.es/averroes/~04001205/fisiqui/imagenes/vectores/473396841_e1de1dd225_o.
ESTÁTICA Sesión 2 2 VECTORES 2.1. Escalares y vectores 2.2. Cómo operar con vectores 2.2.1. Suma vectorial 2.2.2. Producto de un escalar y un vector 2.2.3. Resta vectorial 2.2.4. Vectores unitarios 2.2.5.
CURSO BÁSICO DE FÍSICA MECÁNICA PROYECTO UNICOMFACAUCA TU PROYECTO DE VIDA
UNICOMFACAUCA TU DE VIDA Tabla de contenido... 2 PARTES DE UN VECTOR... 3 Notación... 5 Tipos de vectores... 5 Componentes de un vector... 6 Operaciones con vectores... 7 Suma de vectores... 7 Resta de
Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8
Esta semana estudiaremos la definición de vectores y su aplicabilidad a muchas situaciones, particularmente a las relacionadas con el movimiento. Por otro lado, se podrán establecer las características
Definición operacional, independientemente de cualquier sistema de referencia
Carácter de las magnitudes físicas: Magnitudes escalares y vectoriales. Vectores unitarios, Operaciones con vectores. No todas las magnitudes físicas tienen las mismas características matemáticas El carácter
Valores propios y vectores propios
Capítulo 6 Valores propios y vectores propios En este capítulo investigaremos qué propiedades son intrínsecas a una matriz, o su aplicación lineal asociada. Como veremos, el hecho de que existen muchas
3.1 DEFINICIÓN. Figura Nº 1. Vector
3.1 DEFINICIÓN Un vector (A) una magnitud física caracterizable mediante un módulo y una dirección (u orientación) en el espacio. Todo vector debe tener un origen marcado (M) con un punto y un final marcado
Unidad I: Algebra de vectores
Unidad I: Algebra de vectores 1.1 Definición de un vector en R2, R3 y su Interpretación geométrica Ejemplo: El segmento dirigido, donde P(2,3) y Q(5,10), es equivalente al Vector, donde las componentes
VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define.
VECTORES El estudio de los vectores es uno de tantos conocimientos de las matemáticas que provienen de la física. En esta ciencia se distingue entre magnitudes escalares y magnitudes vectoriales. Se llaman
Tema 2. Espacios Vectoriales. 2.1. Introducción
Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por
BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.
BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades
1 Espacios y subespacios vectoriales.
UNIVERSIDAD POLITÉCNICA DE CARTAGENA Departamento de Matemática Aplicada y Estadística Espacios vectoriales y sistemas de ecuaciones 1 Espacios y subespacios vectoriales Definición 1 Sea V un conjunto
Subespacios vectoriales en R n
Subespacios vectoriales en R n Víctor Domínguez Octubre 2011 1. Introducción Con estas notas resumimos los conceptos fundamentales del tema 3 que, en pocas palabras, se puede resumir en técnicas de manejo
Tema 3. Espacios vectoriales
Tema 3. Espacios vectoriales Estructura del tema. Definición y propiedades. Ejemplos. Dependencia e independencia lineal. Conceptos de base y dimensión. Coordenadas Subespacios vectoriales. 0.1. Definición
Vectores: Producto escalar y vectorial
Nivelación de Matemática MTHA UNLP 1 Vectores: Producto escalar y vectorial Versores fundamentales Dado un sistema de coordenadas ortogonales, se considera sobre cada uno de los ejes y coincidiendo con
Vectores en el espacio
Vectores en el espacio Un sistema de coordenadas tridimensional se construye trazando un eje Z, perpendicular en el origen de coordenadas a los ejes X e Y. Cada punto viene determinado por tres coordenadas
OPERACIONES ELEMENTALES CON VECTORES
VECTORES EN 3D (O EN R 3) Presentación: este apunte te servirá para repasar y asimilar que son los vectores en un espacio tridimensional, sólo hablamos de los vectores como se utilizan en Álgebra, para
1. Vectores 1.1. Definición de un vector en R2, R3 (Interpretación geométrica), y su generalización en Rn.
1. VECTORES INDICE 1.1. Definición de un vector en R 2, R 3 (Interpretación geométrica), y su generalización en R n...2 1.2. Operaciones con vectores y sus propiedades...6 1.3. Producto escalar y vectorial
y λu = Idea. Podemos sumar vectores y multiplicar por un escalar. El resultado vuelve a ser un vector Definición de espacio vectorial.
Espacios vectoriales Espacios y subespacios R n es el conjunto de todos los vectores columna con n componentes. Además R n es un espacio vectorial. Ejemplo Dados dos vectores de R por ejemplo u = 5 v =
Espacios vectoriales. Bases. Coordenadas
Capítulo 5 Espacios vectoriales. Bases. Coordenadas OPERACIONES ENR n Recordemos que el producto cartesiano de dos conjuntos A y B consiste en los pares ordenados (a,b) tales que a A y b B. Cuando consideramos
Nota 1. Los determinantes de orden superior a 3 se calculan aplicando las siguientes propiedades:
Capítulo 1 DETERMINANTES Definición 1 (Matriz traspuesta) Llamaremos matriz traspuesta de A = (a ij ) a la matriz A t = (a ji ); es decir la matriz que consiste en poner las filas de A como columnas Definición
Fundamentos matemáticos de la ingeniería
Fundamentos matemáticos de la ingeniería Pura Vindel Departament de Matemàtiques Codi assignatura 8 Pura Vindel - ISBN: 978-84-69-98-4 Edita: Publicacions de la Universitat Jaume I. Servei de Comunicació
RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES
RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES 1 La ecuación 2x - 3 = 0 se llama ecuación lineal de una variable. Obviamente sólo tiene una solución. La ecuación -3x + 2y = 7 se llama ecuación lineal de
Aplicaciones Lineales
Aplicaciones Lineales Ejercicio Dada la matriz A = 0 2 0 a) Escribir explícitamente la aplicación lineal f : 2 cuya matriz asociada con respecto a las bases canónicas es A. En primer lugar definimos las
Nivelación de Matemática MTHA UNLP 1. Vectores
Nivelación de Matemática MTHA UNLP 1 1. Definiciones básicas Vectores 1.1. Magnitudes escalares y vectoriales. Hay magnitudes que quedan determinadas dando un solo número real: su medida. Por ejemplo:
Tema 7: ESPACIOS VECTORIALES AFINES
Tema 7: ESPACIOS VECTORIALES AFINES Prof. Rafael López Camino Departamento de Geometría y Topología Universidad de Granada Material docente para el alumno Asignatura: Geometría I. Curso 2003/04 Licenciatura:
Geometría Tridimensional
Capítulo 4 Geometría Tridimensional En dos dimensiones trabajamos en el plano mientras que en tres dimensiones trabajaremos en el espacio, también provisto de un sistema de coordenadas. En el espacio,
5.1Definición transformación lineal de núcleo ó kernel, e imagen de una transformación lineal y sus propiedades
5- ransformaciones Lineales 5Definición transformación lineal de núcleo ó kernel, e imagen de una transformación lineal sus propiedades Se denomina transformación lineal a toda función,, cuo dominio codominio
Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES. ÁLGEBRA PARA INGENIEROS (Solucionario)
Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS (Solucionario) 2 Í N D I C E CAPÍTULO : MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES CAPÍTULO 2: ESPACIOS VECTORIALES
Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores
Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Universidad Politécnica de Madrid 5 de marzo de 2010 2 4.1. Planificación
1. ESPACIOS VECTORIALES
1 1. ESPACIOS VECTORIALES 1.1. ESPACIOS VECTORIALES. SUBESPACIOS VECTORIALES Denición 1. (Espacio vectorial) Decimos que un conjunto no vacío V es un espacio vectorial sobre un cuerpo K, o K-espacio vectorial,
Tema 1. VECTORES (EN EL PLANO Y EN EL ESPACIO)
Vectores Tema. VECTORES (EN EL PLANO Y EN EL ESPACIO Definición de espacio vectorial Un conjunto E es un espacio vectorial si en él se definen dos operaciones, una interna (suma y otra externa (producto
Geometría analítica. Impreso por Juan Carlos Vila Vilariño Centro I.E.S. PASTORIZA
Conoce los vectores, sus componentes y las operaciones que se pueden realizar con ellos. Aprende cómo se representan las rectas y sus posiciones relativas. Impreso por Juan Carlos Vila Vilariño Centro
1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva:
1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: a) x = senθ, y = cosθ, 0 θ π t b), t x = e y = e + 1 c) x = senθ, y =
Espacios vectoriales y aplicaciones lineales
Capítulo 3 Espacios vectoriales y aplicaciones lineales 3.1 Espacios vectoriales. Aplicaciones lineales Definición 3.1 Sea V un conjunto dotado de una operación interna + que llamaremos suma, y sea K un
Sistemas de Ecuaciones Lineales y Matrices
Sistemas de Ecuaciones Lineales y Matrices Oscar G Ibarra-Manzano, DSc Departamento de Area Básica - Tronco Común DES de Ingenierías Facultad de Ingeniería, Mecánica, Eléctrica y Electrónica Trimestre
VECTORES EN EL ESPACIO. 1. Determina el valor de t para que los vectores de coordenadas sean linealmente dependientes.
VECTORES EN EL ESPACIO. Determina el valor de t para que los vectores de coordenadas (,, t), 0, t, t) y(, 2, t) sean linealmente dependientes. Si son linealmente dependientes, uno de ellos, se podrá expresar
MATEMÁTICAS I TEMA 1: Espacios Vectoriales. 1 Definición de espacio vectorial. Subespacios
Sonia L. Rueda ETS Arquitectura. UPM Curso 2007-2008. 1 MATEMÁTICAS I TEMA 1: Espacios Vectoriales 1 Definición de espacio vectorial. Subespacios Dados dos conjuntos V y K se llama ley de composición externa
Opción A Ejercicio 1 opción A, modelo 4 Septiembre 2014
IES Fco Ayala de Granada Septiembre de 014 (Modelo 4) Soluciones Germán-Jesús Rubio Luna [ 5 puntos] Sabiendo que Sabiendo que 0 0 cos(3) - e + a sen() Opción A Ejercicio 1 opción A, modelo 4 Septiembre
VECTORES: VOCABULARIO 1. Abscisa de un punto. 2. Ordenada de un punto. 3. Concepto de vector. 4. Coordenadas o componentes de un vector. 5.
VECTORES: VOCABULARIO 1. Abscisa de un punto. 2. Ordenada de un punto. 3. Concepto de vector. 4. Coordenadas o componentes de un vector. 5. Elementos de un vector. 6. Concepto de origen de un vector. 7.
APUNTES DE MATEMÁTICAS TEMA 4: VECTORES 1º BACHILLERATO
APUNTES DE MATEMÁTICAS TEMA 4: VECTORES 1º BACHILLERATO ÍNDICE VECTORES EN EL PLANO... 3 Vector Fijo... 3 VECTOR LIBRE... 3 Operaciones con Vectores... 3 Suma de vectores... 3 Producto de un número por
Funciones definidas a trozos
Concepto de función Dominio de una función Características de las funciones Intersecciones con los ejes Crecimiento y decrecimiento Máximos y mínimos Continuidad y discontinuidad Simetrías Periodicidad
TEMA 1. VECTORES Y MATRICES
TEMA 1. VECTORES Y MATRICES 1.1. Definición de vector. Operaciones elementales 1.2. Matrices. Operaciones elementales 1.3. Traza y Determinante 1.4. Aplicaciones 1.1. DEFINICIÓN DE VECTOR. OPERACIONES
MATEMÁTICAS CONTENIDOS MÍNIMOS DE 1º E.S.O.
MATEMÁTICAS CONTENIDOS MÍNIMOS DE 1º E.S.O. Calcular el valor de posición de cualquier cifra en cualquier número natural. Aplicar las propiedades fundamentales de la suma, resta, multiplicación y división
Recuerdas qué es? Constante de proporcionalidad Es el cociente de cualquiera de las razones que intervienen en una proporción.
Recuerdas qué es? Coordenadas de un punto Un punto del plano viene definido por un par ordenado de números. La primera coordenada es la abscisa del punto, la segunda coordenada es la ordenada del punto.
21.1.2. TEOREMA DE DETERMINACIÓN DE APLICACIONES LINEALES
Aplicaciones lineales. Matriz de una aplicación lineal 2 2. APLICACIONES LINEALES. MATRIZ DE UNA APLICACIÓN LINEAL El efecto que produce el cambio de coordenadas sobre una imagen situada en el plano sugiere
Representación de un Vector
VECTORES Vectores Los vectores se caracterizan por tener una magnitud, expresable por un número real, una dirección y un sentido. Un ejemplo de vectores son los desplazamientos. Otro ejemplo de vectores
Capítulo 1. Vectores en el plano. 1.1. Introducción
Índice general 1. Vectores en el plano 2 1.1. Introducción.................................... 2 1.2. Qué es un vector?................................ 3 1.2.1. Dirección y sentido............................
Problemas de Álgebra Lineal Espacios Vectoriales
Problemas de Álgebra Lineal Espacios Vectoriales 1. Estudia cuáles de los siguientes subconjuntos son subespacios de R n para el n que corresponda: i) S 1 = {(x, y, z, t) R 4 x + y + z + t = b} siendo
Espacios vectoriales
Espacios vectoriales Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza 1 Concepto de espacio vectorial y propiedades 1.1 Definición Se llama espacio vectorial sobre K (IR o C a toda terna
MÉTODOS DE ELIMINACIÓN Son tres los métodos de eliminación más utilizados: Método de igualación, de sustitución y de suma o resta.
ECUACIONES SIMULTÁNEAS DE PRIMER GRADO CON DOS INCÓGNITAS. Dos o más ecuaciones con dos incógnitas son simultáneas cuando satisfacen iguales valores de las incógnitas. Para resolver ecuaciones de esta
ESTATICA. Componentes ortogonales de una fuerza. Seminario Universitario Física
ESTATICA Es la parte de la física que estudia las fuerzas en equilibrio. Si sobre un cuerpo no actúan fuerzas o actúan varias fuerzas cuya resultante es cero, decimos que el cuerpo está en equilibrio.
UNIDAD 8 Geometría analítica
UNIDD Geometría analítica. Un enfoque distinto: Pág. de VECTRES EN EL PLN En un sistema de ejes cartesianos, cada punto se describe mediante sus coordenadas: (, 4), (6, 6). La flecha que a de a se llama
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 4 La recta en el plano Elaborado por la Profesora Doctora María Teresa
VECTORES COORDENADOS (R n )
VECTORES COORDENADOS (R n ) Cómo puede ser representado un número Real? Un número real puede ser representado como: Un punto de una línea recta. Una pareja de números reales puede ser representado por
Tema 2. Aplicaciones lineales y matrices.
Tema 2 Aplicaciones lineales y matrices. 1 Índice general 2. Aplicaciones lineales y matrices. 1 2.1. Introducción....................................... 2 2.2. Espacio Vectorial.....................................
8. ESPACIOS VECTORIALES Y APLICACIONES LINEALES.
Prácticas de Matemáticas I y Matemáticas II con DERIVE 8. ESPACIOS VECTORIALES Y APLICACIONES LINEALES. 8.. DEPENDENCIA E INDEPENDENCIA LINEAL DE VECTORES. COMBINACIÓN LINEAL. EJEMPLO 8.. Estudiar si el
requerido). vectoriales, y operan según el Álgebra a continuación. 2.1.2 Vector. dirección. representados.
2.1 Vectores. 2.1.1 Introducción. Cuando queremos referirnos al tiempo que demanda un suceso determinado, nos basta con una magnitud (se demoró 3 segundos, saltó durante 1 minuto, volverá el próximo año,
Objetivos: Al inalizar la unidad, el alumno:
Unidad 3 espacios vectoriales Objetivos: Al inalizar la unidad, el alumno: Describirá las características de un espacio vectorial. Identiicará las propiedades de los subespacios vectoriales. Ejempliicará
A.2. Notación y representación gráfica de vectores. Tipos de vectores.
Apéndice A: Vectores A.1. Magnitudes escalares y vectoriales Las magnitudes escalares son aquellas magnitudes físicas que quedan completamente definidas por un módulo (valor numérico) y la unidad de medida
Tema III. Capítulo 2. Sistemas generadores. Sistemas libres. Bases.
Tema III Capítulo 2 Sistemas generadores Sistemas libres Bases Álgebra Lineal I Departamento de Métodos Matemáticos y de Representación UDC 2 Sistemas generadores Sistemas libres Bases 1 Combinación lineal
Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.
Tema 1 Matrices Estructura del tema. Conceptos básicos y ejemplos Operaciones básicas con matrices Método de Gauss Rango de una matriz Concepto de matriz regular y propiedades Determinante asociado a una
Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2
SISTEMA DE ACCESO COMÚN A LAS CARRERAS DE INGENIERÍA DE LA UNaM III. UNIDAD : FUNCIONES POLINÓMICAS III..1 POLINOMIOS La expresión 5x + 7 x + 4x 1 recibe el nombre de polinomio en la variable x. Es de
M a t e m á t i c a s I I 1
Matemáticas II Matemáticas II ANDALUCÍA CNVCATRIA JUNI 009 SLUCIÓN DE LA PRUEBA DE ACCES AUTR: José Luis Pérez Sanz pción A Ejercicio En este límite nos encontramos ante la indeterminación. Agrupemos la
Aplicaciones Lineales
Aplicaciones Lineales Concepto de aplicación lineal T : V W Definición: Si V y W son espacios vectoriales con los mismos escalares (por ejemplo, ambos espacios vectoriales reales o ambos espacios vectoriales
Apuntes de Mecánica Newtoniana Cinemática de la Partícula
Apuntes de Mecánica Newtoniana Cinemática de la Partícula Ariel Fernández Daniel Marta Introducción. En este capítulo se introducirán los elementos necesarios para la descripción del movimiento de una
1 El espacio vectorial R n.
Manuel Gutiérrez Departamento de Álgebra, Geometría y Topología Universidad de Málaga February 26, 2009 1 El espacio vectorial R n. La estructura de espacio vectorial es posiblemente la estructura más
Matemáticas II para Alumnos de Bachillerato
Matemáticas II para Alumnos de Bachillerato ESTRUCTURA DE LOS EXÁMENES El examen constará de dos opciones (A y B) con cuatro cuestiones cada una. El alumno deberá elegir una opción (A o B) y resolver las
Cambio de representaciones para variedades lineales.
Cambio de representaciones para variedades lineales 18 de marzo de 2015 ALN IS 5 Una variedad lineal en R n admite dos tipos de representaciones: por un sistema de ecuaciones implícitas por una familia
INTRODUCCIÓN ESCUELA DE INGENIERÍA CIVIL Parte de la matemática útil para físicos, matemáticos, ingenieros y técnicos. Permite presentar mediante las ecuaciones de modelo matemático diversas situaciones
Cinemática en una Dimensión. Posición, velocidad. Cantidades vectoriales: operación de suma y diferencia.
Cinemática en una Dimensión. Posición, velocidad. Cantidades vectoriales: operación de suma y diferencia. Resumen Para cualquier numero que resulte de una medición es importante especificar su incertidumbre
Anexo a la guía 4 Geometría: ejemplos y comentarios
Anexo a la guía 4 Geometría: ejemplos y comentarios Sergio Dain 26 de mayo de 2014 En las guías 1 y 2 discutimos vectores, covectores y tensores de manera puramente algebraica, sin hacer referencia a la
Vectores. Las cantidades físicas que estudiaremos en los cursos de física son escalares o vectoriales.
Cantidades vectoriales escalares Vectores Las cantidades físicas que estudiaremos en los cursos de física son escalares o vectoriales. Una cantidad escalar es la que está especificada completamente por
4. FUNCIONES DE VARIAS VARIABLES
4. FUNCIONES DE VARIAS VARIABLES INDICE 4 4.1. Definición de una función de dos variables...2 4.2. Gráfica de una función de dos variables..2 4.3. Curvas y superficies de nivel....3 4.4. Límites y continuidad....6
Espacios vectoriales y aplicaciones lineales.
Práctica 2 Espacios vectoriales y aplicaciones lineales. Contenido: Localizar bases de espacios vectoriales. Suma directa. Bases y dimensiones. Cambio de base. Aplicaciones lineales. Matriz asociada en
3 Espacios Vectoriales
Prof. Susana López 31 3 Espacios Vectoriales 3.1 Introducción Un ector fijo en el plano no es más que un segmento orientado en el que hay que distinguir tres características: -dirección: la de la recta
Álgebra Vectorial. Principios de Mecánica. Licenciatura de Física. Curso 2007-2008. 1
Álgebra Vectorial Principios de Mecánica. Licenciatura de Física. Curso 2007-2008. 1 Indice. 1. Magnitudes Escalares y Vectoriales. 2. Vectores. 3. Suma de Vectores. Producto de un vector por un escalar.
4.- Para los siguientes conjuntos de vectores, probar si son o no subespacios vectoriales de R 4 : 2d + 1 : b, d reales. d
GRADO EN I. TELEMÁTICA. HOJA : ESPACIOS VECTORIALES. ESPACIOS NULO Y COLUMNA.- Sea W el conjunto de todos los vectores de R de la forma subespacio de R. s + t s t s t t, con s, t R. Probar que W es un.-
De acuerdo con sus características podemos considerar tres tipos de vectores:
CÁLCULO VECTORIAL 1. ESCALARES Y VECTORES 1.1.-MAGNITUDES ESCALARES Y VECTORIALES Existen magnitudes físicas cuyas cantidades pueden ser expresadas mediante un número y una unidad. Otras, en cambio, requieren
TEMA II ÁLGEBRA VECTORIAL; FUNDAMENTOS. 2.1.- Definicion, notacion y clasificacion de los vectores.
J.A DÁVILA BAZ - J. PAJÓN PERMUY CÁLCULO VECTORIAL 29 UNIDAD DIDÁCTICA I: CÁLCULO VECTORIAL. TEMA II ÁLGEBRA VECTORIAL; FUNDAMENTOS 2.1.- Definicion, notacion y clasificacion de los vectores. Un vector
MATEMÁTICAS 3º E.S.O
MATEMÁTICAS 3º E.S.O Desarrollado en DECRETO 48/2015, de 14 de mayo (B.O.C.M. Núm. 118; 20 de mayo de 2015) PROGRAMACIÓN DIDÁCTICA I.E.S. JOSÉ HIERRO (GETAFE) CURSO: 2015-16 Pág 1 de 11 1. CONTENIDOS Y
Estructuras algebraicas
Tema 2 Estructuras algebraicas básicas 2.1. Operación interna Definición 29. Dados tres conjuntos A, B y C, se llama ley de composición en los conjuntos A y B y resultado en el conjunto C, y se denota
GEOMETRÍA ANALÍTICA 2º Curso de Bachillerato 22 de mayo de 2008
1. Sean los puntos A (1, 0,-1) y B (,-1, 3). Calcular la distancia del origen de coordenadas a la recta que pasa por A y B. Calculemos la recta que pasa por A y B. El vector AB es (1,-1,4) y por tanto
Usamos que f( p) = q y que, por tanto, g( q) = g(f( p)) = h( p) para simplificar esta expresión:
Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Propiedades de las funciones diferenciables. 1. Regla de la cadena Después de la generalización que hemos
Espacios vectoriales y Aplicaciones lineales
Espacios vectoriales y Aplicaciones lineales Espacios vectoriales. Subespacios vectoriales Espacios vectoriales Definición Sea V un conjunto dotado de una operación interna + que llamaremos suma, y sea
elemento neutro y elemento unidad: inversa aditiva (opuesto): para todo λ K 0, existe un único µ K tal que λµ = 1;
3. Espacios Vectoriales 3.1. Definición de espacio vectorial Un cuerpo es una estructura algebraica (K, +, ) formada por un conjunto K no vacio y dos operaciones internas + y que verifican las siguientes
Alternativamente, los vectores también se pueden poner en función de los vectores unitarios:
1. Nociones fundamentales de cálculo vectorial Un vector es un segmento orientado que está caracterizado por tres parámetros: Módulo: indica la longitud del vector Dirección: indica la recta de soporte
EXAMEN DE MATEMÁTICAS 2º BACHILLERATO CCNN BLOQUE : GEOMETRÍA
EXAMEN DE MATEMÁTICAS 2º BACHILLERATO CCNN BLOQUE : GEOMETRÍA OPCIÓN A EJERCICIO 1 Halle el punto P simétrico del punto P ( 3, 4, 0) respecto del plano Л que contiene a la recta s : x = y 2 = z 1 y al
1.1 CANTIDADES VECTORIALES Y ESCALARES. Definición de Magnitud
1.1 CANTIDADES VECTORIALES Y ESCALARES Definición de Magnitud Atributo de un fenómeno, cuerpo o sustancia que puede ser distinguido cualitativamente y determinado cuantitativamente. También se entiende
Potencial eléctrico. du = - F dl
Introducción Como la fuerza gravitatoria, la fuerza eléctrica es conservativa. Existe una función energía potencial asociada con la fuerza eléctrica. Como veremos, la energía potencial asociada a una partícula
TEMA 1. MAGNITUDES Y UNIDADES
TEMA 1. MAGNITUDES Y UNIDADES 1.1 Unidades Toda magnitud física debe llevar asociadas sus unidades. Es fundamental para el método científico que las medidas sean reproducibles y, para que esto sea posible,
ELEMENTOS DEL MOVIMIENTO
ELEMENTOS DEL MOVIMIENTO Unidad 10 CONTENIDOS.- 1.- Introducción..- Magnitudes escalares vectoriales. 3.- Sistemas de referencia. Concepto de movimiento. 4.- Operaciones con vectores. 5.- Traectoria, posición
CAPÍTULO II. 4 El grupo afín
CAPÍTULO II 4 El grupo afín En geometría clásica, antes de la aparición de los espacios vectoriales, se hablaba de puntos en lugar de vectores. Para nosotros serán términos sinónimos salvo que, cuando
35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico
q 1 q 2 Prof. Félix Aguirre 35 Energía Electrostática Potencial Eléctrico La interacción electrostática es representada muy bien a través de la ley de Coulomb, esto es: mediante fuerzas. Existen, sin embargo,
Papá, Has conseguido multiplicar las ternas? (A Hamilton de sus hijos) La justificación de la unidad la podemos hacer desde dos puntos de vista:
TEMA 9: VECTORES Papá, Has conseguido multiplicar las ternas? (A Hamilton de sus hijos) 1. Justificación La justificación de la unidad la podemos hacer desde dos puntos de vista: Desde la propia estructura