INSTITUTO VALLADOLID PREPARATORIA página 57

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "INSTITUTO VALLADOLID PREPARATORIA página 57"

Transcripción

1 INSTITUTO VALLADOLID PREPARATORIA página 57

2 página 58 RESTA DE FRACCIONES RESTA La resta de fracciones está basada, por ser el inverso de la operación suma, en las mismas reglas y leyes de la suma, es decir, que "solamente cosas iguales se pueden restar y el resultado debe ser de esas mismas cosas", por lo que el proceso conocido como "sacar común denominador" visto en el capítulo anterior vuelve a aplicarse en la resta. Desde el punto de vista algebraico, el signo menos tiene el significado, entre otras cosas, de "cambiar el signo a todo lo que afecta", por lo que debe tenerse cuidado en esa pequeña diferencia que existe entre la operación suma y la operación resta de fracciones. Todo lo demás es exactamente lo mismo que se analizó en el capítulo anterior. DENOMINADORES MONOMIOS La resta de fracciones algebraicas se realiza bajo las mismos principios que la suma, es decir, no hay diferencia realmente cuando los denominadores son monomios a cuando son polinomios. De todas maneras, para facilitar su comprensión y aprendizaje por comenzar así con ejercicios más simples y menos laboriosos, se hace en este libro una especie de separación de uno y otro caso. Ejemplo 1: Efectuar la resta de fracciones 5 7 4a 6ab Solución: * El mínimo común denominador de 4a y 6ab es 3 a b = 1a b. Se escribe: a ab a b * Dividiendo ese mínimo común denominador entre el primer denominador resulta 1a b 4a = 3b El 3b obtenido se multiplica por su numerador respectivo, es decir 3b 5. En ese momento se lleva escrito ( b) a ab a b * Dividiendo el mínimo común denominador entre el segundo denominador resulta 1a b 6ab = a.

3 INSTITUTO VALLADOLID PREPARATORIA página 5 El a obtenido se multiplica por su numerador respectivo, es decir a 7. En ese momento se lleva escrito ( b) - ( a) a 6ab 1a b * Efectuando las multiplicaciones que quedaron indicadas en el nuevo numerador resulta ( b) - ( a) a 6ab 1a b = 15b 14a 1ab * Como no aparecieron términos semejantes, no se puede efectuar la suma del numerador obtenido, de manera que la respuesta es lo escrito en el paso anterior, es decir: b 14a 4a 6ab 1a b Ejemplo : Efectuar la resta de fracciones b b 6a b Solución: * El mínimo común denominador de 8b y 6a b es 3 3 a b = 4a b. Se escribe: b b 6a b 4a b * Dividiendo ese mínimo común denominador entre el primer denominador resulta 4a b 8b = 3a. El 3a obtenido se multiplica por su numerador respectivo (por el primer numerador), es decir 3a (b + 1). En ese momento se lleva escrito ( b + ) a 3a 1 b b 6a b 4a b * Dividiendo el mínimo común denominador entre el segundo denominador resulta 4a b 6a b = 4b. El 4b obtenido se multiplica por su numerador respectivo (por el segundo numerador), es decir 4b( + ). En ese momento se lleva escrito

4 página 60 RESTA DE FRACCIONES ( + ) ( + ) b a b - b a 8b 6a b 4a b a * Efectuando las multiplicaciones que quedaron indicadas en el nuevo numerador resulta ( + ) ( + ) b a b - b a 8b 6a b 4a b = 6ab+ 3a 0ab8b 4ab a * Finalmente, efectuando la suma de términos semejantes que aparecieron en el nuevo numerador, la respuesta es: b + a + a b+ a b 8b 6a b 4a b Ejemplo 3: Efectuar la resta de fracciones a ab a b b 3 SOLUCIÓN: * El mínimo común denominador de 6a 3 y ab es 3 a 3 b = 18a 3 b. Se escribe: 3 3b b 6a ab 18a b 3 3 * Dividiendo ese mínimo común denominador entre el primer denominador resulta 18a 3 b 6a 3 = 3b. El 3b obtenido se multiplica por su numerador respectivo (por el primer numerador), es decir 3b ( - 3). En ese momento se lleva escrito ( a ) 3b b b 6a ab 18a b * Dividiendo el mínimo común denominador entre el segundo denominador resulta 18a 3 b ab = a. El a obtenido se multiplica por su numerador respectivo (por el segundo numerador), es decir a (3b - b). En ese momento se lleva escrito

5 INSTITUTO VALLADOLID PREPARATORIA página 61 ( ) ( ) b a - a b b 3 3b b a ab 18a b * Efectuando las multiplicaciones que quedaron indicadas en el nuevo numerador resulta ( ) ( ) b a - a b b 3 3b b a ab 18a b = ab ab b ab + ab * Finalmente, efectuando la suma de términos semejantes que aparecieron en el nuevo numerador, la respuesta es: a ab 18a b a b b a b b + a b

6 página 6 RESTA DE FRACCIONES EJERCICIO 16 Efectuar la resta de las siguientes fracciones: 1) 1a 5b 4 6ab b ) 3) 3 x 7y 4 4x y 18y 4) 5) 3 a 4b + 3ax a 6ab x 6) 7) bc c 3abc 11abc 3 3 5bc 3bc 8) ) ab + ab abc a b 1abc 10) a 17b a 3 4b c 7a 3 4 ac 1a c 3 x 3ab 3ab 3 60b x 1b xy 1ax 5 7xy 6ax 3 ax + 6 y axy + y 3 50x 0xy 3 ab + ab c + c 11) 1) 4ab 14bc 6x + 5y 4y x 15x y 10xy DENOMINADORES POLINOMIOS Como se dijo en páginas anteriores respecto del proceso para sumar fracciones, es el mismo para las fracciones aritméticas que para las algebraicas y en éstas últimas también es el mismo para aquellas que contienen denominadores monomios que para las que contienen denominadores polinomios. Como la resta es simplemente la operación inversa a la suma, se cumple también todo lo dicho. Así que para efectuar una resta de fracciones algebraicas con denominadores polinomios, se siguen entonces exactamente los mismos procedimientos aplicados a los denominadores monomios. Significa que cuando se trate de denominadores polinomios, éstos deben factorizarse primero para poder aplicar el proceso. Ejemplo 1: Efectuar la resta de fracciones a a b a b

7 INSTITUTO VALLADOLID PREPARATORIA página 63 Solución: * Factorizando el primer denominador a - b (diferencia de cuadrados, página 16): a - b = (a )(a - b). * Entonces, como el segundo denominador no se puede ya factorizar: a a ( )( ) a b a b a b a b a b * El mínimo común denominador de los dos denominadores, es decir de (a )(a - b) y (a - b) es (a )(a - b). Se escribe: a ( a )( a b) a b ( a )( a b) * Dividiendo ese mínimo común denominador entre el primer denominador se obtiene (a )(a - b) (a )(a - b) = 1. El 1 obtenido se multiplica por su numerador respectivo (por el primer numerador), es decir 1(a + 7). En ese momento se lleva escrito ( )( ) ( + ) ( )( ) a a 7 a a b a b a a b * Dividiendo el mínimo común denominador entre el segundo denominador se obtiene (a )(a - b) (a - b) = a. El (a ) obtenido se multiplica por su numerador respectivo (por el segundo numerador), es decir (a )(8). En ese momento se lleva escrito ( )( ) ( + ) ( + ) ( )( ) a a 7-8a b a a b a b a a b * Realizando las multiplicaciones indicadas en el nuevo numerador resulta a a + 7 8a 8b ( a )( a b) a b ( a )( a b) * Finalmente, efectuando la suma de términos semejantes que aparecieron en el nuevo numerador, la respuesta es:

8 página 64 RESTA DE FRACCIONES a a 8b + 7 ( a )( a b) a b ( a )( a b) Ejemplo : Efectuar la resta de fracciones a ab b 3a 3ab + 5b Solución: * Factorizando el primer denominador a - ab - b, (pertenece a los trinomios de la forma ax xy + cy, página 6) : a - ab - b = (a - b)(a ). * Factorizando el segundo denominador 3a - 3ab - + 5b, (por agrupación, página 13): * Entonces: 3a - 3ab - + 5b = 3a(a - b) - 5(a - b) = (a - b)(3a - 5). a ab b a ab a = ( a-b)( a) ( ab)( 3a5) * El mínimo común denominador de los denominadores (a - b)(a ) y (a - b)(3a - 5) es (a - b)(a )(3a - 5). Se escribe: ( a-b)( a) ( ab)( 3a5) ( a b)( a)( 3a5) * Dividiendo ese mínimo común denominador entre el primer denominador se obtiene (a - b)(a )(3a - 5) (a - b)(a ) = 3a - 5. El (3a - 5) obtenido se multiplica por su numerador respectivo (por el primer numerador), es decir (3a - 5)( ). En ese momento se lleva escrito ( )( ) ( )( ) ( 3a-5) ( + b) ( )( )( ) a-b a ab 3a5 a b a 3a5

9 INSTITUTO VALLADOLID PREPARATORIA página 65 * Dividiendo el mínimo común denominador entre el segundo denominador se obtiene (a - b)(a )(3a - 5) (a - b)(3a - 5) = a El (a ) obtenido se multiplica por su numerador respectivo (por el segundo numerador), es decir (a ). En ese momento se lleva escrito ( )( ) ( )( ) ( 3a-5) ( ) -( a+ b) ( )( )( ) a-b a ab 3a5 a b a 3a5 * Efectuando las multiplicaciones que quedaron indicadas en el nuevo numerador resulta ( )( ) ( )( ) ( 3a-5) ( ) -( a+ b) ( )( )( ) a-b a ab 3a5 a b a 3a5 = a a ab b a b ( a b)( a )( 3a 5) * Finalmente, realizando la suma de términos semejantes que aparecieron en el nuevo numerador, la respuesta es: a b a a ab b ( a b)( a ) ( a b)( 3a 5) ( a b)( a )( 3a 5)

10 página 66 RESTA DE FRACCIONES EJERCICIO 17 Efectuar la resta de las siguientes fracciones: 7 x 1) ) x 3x 4 x y y y y 1 x 17 3) 4) 4x + 1x + x a 1 3a ) 6) 4a + 1a + a + 3 b + 13 ab b 1b 30ab 6ab 3 1 3x + 1 7) 8) x 5bx 10ax 10bx y 15 x xy abxy x y abx y 3x 4 17 ) 10) 6ax 3x ax x 7 10x 35 30x ax + 3 7a ) 1) 7ax x 8a + 4 7a 1 x + ax 4x ax + 4x 6x a 43 13) 14) a + a a + 4 8x x 3 x + 3x + x b ) 4b + 1b 6b + 18

INSTITUTO VALLADOLID PREPARATORIA página 37

INSTITUTO VALLADOLID PREPARATORIA página 37 INSTITUTO VALLADOLID PREPARATORIA página 37 página 38 SUMA DE FRACCIONES CONCEPTO Las cuatro operaciones fundamentales, suma, resta, multiplicación y división, con fracciones algebraicas se realizan bajo

Más detalles

INSTITUTO VALLADOLID PREPARATORIA página 9

INSTITUTO VALLADOLID PREPARATORIA página 9 INSTITUTO VALLADOLID PREPARATORIA página 9 página 10 FACTORIZACIÓN CONCEPTO Para entender el concepto teórico de este tema, es necesario recordar lo que se mencionó en la página referente al nombre que

Más detalles

PROBLEMAS RESUELTOS. CASO I cuando todos los términos de un polinomio tienen un factor común. Algebra Baldor

PROBLEMAS RESUELTOS. CASO I cuando todos los términos de un polinomio tienen un factor común. Algebra Baldor PROBLEMAS RESUELTOS CASO I cuando todos los términos de un polinomio tienen un factor común CASO II factor comun por agrupación de terminos CASO III trinomio cuadrado perfecto CASO IV Diferencia de cuadrados

Más detalles

Operatoria algebraica

Operatoria algebraica Eje temático: Algebra y funciones Contenidos: Operatoria algebraica Ecuaciones de primer grado Nivel: 1 Medio Operatoria algebraica 1. Operatoria algebraica 1.1. Términos semejantes Un término algebraico

Más detalles

Material N 15 GUÍA TEÓRICO PRÁCTICA Nº 12

Material N 15 GUÍA TEÓRICO PRÁCTICA Nº 12 C u r s o : Matemática Material N 5 GUÍA TEÓRICO PRÁCTICA Nº UNIDAD: ÁLGEBRA Y FUNCIONES ÁLGEBRA DE POLINOMIOS EVALUACIÓN DE EXPRESIONES ALGEBRAICAS Evaluar una epresión algebraica consiste en sustituir

Más detalles

DEL LENGUAJE DE LOS NÚMEROS AL LEGUAJE ALGEBRAICO.

DEL LENGUAJE DE LOS NÚMEROS AL LEGUAJE ALGEBRAICO. DEL LENGUAJE DE LOS NÚMEROS AL LEGUAJE ALGEBRAICO. En ocasiones, en matemáticas, necesitamos operar con números desconocidos. Para ello, se toman letras para representar esas cantidades desconocidas o

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS EXPRESIONES ALGEBRAICAS. POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Estas expresiones del área son expresiones algebraicas, ya que además de números aparecen letras. Son también expresiones algebraicas: bac,

Más detalles

Factorización. Ejercicios de factorización. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx

Factorización. Ejercicios de factorización. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx Factorización Ejercicios de factorización www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 2007-2008 Contenido 1. Introducción 2 1.1. Notación...........................................

Más detalles

José de Jesús Ángel Ángel, c 2010. Factorización

José de Jesús Ángel Ángel, c 2010. Factorización José de Jesús Ángel Ángel, c 2010. Factorización Contenido 1. Introducción 2 1.1. Notación.................................. 2 2. Factor común 4 2.1. Ejercicios: factor común......................... 4

Más detalles

Colegio Hermanos Carrrera. Departamento de Matemática Prof. Roberto Medina

Colegio Hermanos Carrrera. Departamento de Matemática Prof. Roberto Medina Colegio Hermanos Carrrera Departamento de Matemática Prof. Roberto Medina Unidad 2 Objetivos: - Conceptos algebraicos básicos - Valoración de expresiones algebraicas - Reducción de términos semejantes

Más detalles

POLINOMIOS OPERACIONES CON MONOMIOS

POLINOMIOS OPERACIONES CON MONOMIOS POLINOMIOS Una expresión algebraica es una combinación de letras y números, ligados por los signos de las operaciones: adición, sustracción, multiplicación, división y potenciación. Las expresiones algebraicas

Más detalles

UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS

UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS Unidad 6: Polinomios con coeficientes enteros. Al final deberás haber aprendido... Expresar algebraicamente enunciados sencillos. Extraer enunciados razonables

Más detalles

POLINOMIOS. División. Regla de Ruffini.

POLINOMIOS. División. Regla de Ruffini. POLINOMIOS. División. Regla de Ruffini. Recuerda: Un monomio en x es una expresión algebraica de la forma a x tal que a es un número real y n es un número natural. El real a se llama coeficiente y n se

Más detalles

Qué son los monomios?

Qué son los monomios? Qué son los monomios? Recordemos qué es una expresión algebraica. Definición Una expresión algebraica es aquella en la que se utilizan letras, números y signos de operaciones. Si se observan las siguientes

Más detalles

CONCEPTOS ALGEBRAICOS BASICOS

CONCEPTOS ALGEBRAICOS BASICOS CONCEPTOS ALGEBRAICOS BASICOS OBJETIVOS: 1.- Expresar relaciones numéricas mediante símbolos numéricos y literales. 2.- Reconocer las expresiones algebraicas y sus elementos. 3.- Reducir y evaluar expresiones

Más detalles

Módulo 2: Expresiones polinómicas. Factorización

Módulo 2: Expresiones polinómicas. Factorización CURSO DE NIVELACIÓN Apunte teórico - práctico Módulo 2: Expresiones polinómicas. Factorización 1 FACTORIZACIÓN Una expresión polinómica es (justamente) una expresión formada por sumas y restas de términos,

Más detalles

Lección 9: Polinomios

Lección 9: Polinomios LECCIÓN 9 c) (8 + ) j) [ 9.56 ( 9.56)] 8 q) (a x b) d) ( 5) 4 k) (6z) r) [k 0 (k 5 k )] e) (. 0.) l) (y z) s) (v u ) 4 f) ( 5) + ( 4) m) (c d) 7 t) (p + q) g) (0 x 0.) n) (g 7 g ) Lección 9: Polinomios

Más detalles

Multiplicación. Adición. Sustracción

Multiplicación. Adición. Sustracción bernardsanz TERMINOLOGÍA ALGEBRAICA Algebra: generalización de la aritmética, la cual representa cantidades por medio de símbolos en lugar de números concretos, estos símbolos representan números cualesquiera.

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas 829566 _ 0249-008.qxd 27/6/08 09:21 Página 27 Polinomios y fracciones algebraicas INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de

Más detalles

EL GRADO Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO

EL GRADO Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO RECONOCER OBJETIVO EL GRADO Y LOS ELEMENTOS QUE ORMAN UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma algebraica de monomios, que son los términos del polinomio.

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas UNIDAD Polinomios y fracciones algebraicas U n polinomio es una expresión algebraica en la que las letras y los números están sometidos a las operaciones de sumar, restar y multiplicar. Los polinomios,

Más detalles

CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS

CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS Guía de Estudio para examen de Admisión de Matemáticas CONTENIDO PRESENTACIÓN... 3 I. ARITMÉTICA... 4 1. OPERACIONES CON FRACCIONES...

Más detalles

PRODUCTOS NOTABLES: son aquellas multiplicaciones algebraicas

PRODUCTOS NOTABLES: son aquellas multiplicaciones algebraicas PRODUCTOS NOTABLES: son aquellas multiplicaciones algebraicas que se resuelven siguiendo Reglas y Fórmulas específicas para cada caso y cuyo resultado puede ser escrito por simple inspección, es decir

Más detalles

REGLA DE RUFFINI. FACTORIZACIÓN DE POLINOMIOS

REGLA DE RUFFINI. FACTORIZACIÓN DE POLINOMIOS REGLA DE RUFFINI. FACTORIZACIÓN DE POLINOMIOS Si en una división de polinomios el divisor es de la forma (x - a) se puede aplicar la regla de Ruffini para obtener el cociente y el resto de la división.

Más detalles

Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x

Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Los polinomios Los polinomios Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Elementos de un polinomio Los términos: cada

Más detalles

Biblioteca Virtual Ejercicios Resueltos

Biblioteca Virtual Ejercicios Resueltos EJERCICIO 13 13 V a l o r n u m é r i c o Valor numérico de expresiones compuestas P r o c e d i m i e n t o 1. Se reemplaza cada letra por su valor numérico 2. Se efectúan las operaciones indicadas Hallar

Más detalles

Matemáticas. para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul

Matemáticas. para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul Matemáticas para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul Curso Propedéutico de Matemáticas Unidad IV Secciones 6 y 8) 0.6 Operaciones con epresiones algebraicas. 0.8 fracciones

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS

OBJETIVOS CONTENIDOS PROCEDIMIENTOS 82652 _ 0275-0286.qxd 27/4/07 1:20 Página 275 Polinomios INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de ahí la importancia de comprender

Más detalles

NÚMEROS NATURALES Y NÚMEROS ENTEROS

NÚMEROS NATURALES Y NÚMEROS ENTEROS NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de un rebaño) y de

Más detalles

EXPRESIONES ALGEBRAICAS Y POLINOMIOS

EXPRESIONES ALGEBRAICAS Y POLINOMIOS EXPRESIONES ALGEBRAICAS Y POLINOMIOS 1. Dado el polinomio A(x)=x +3. Halla: a) (B(x)) y b)(b(x)) 3. a) Define valor numérico de un polinomio P(x) en x=a. b) Halla el valor numérico del polinomio P(x) =

Más detalles

martilloatomico@gmail.com

martilloatomico@gmail.com Titulo: OPERACIONES CON POLINOMIOS (Reducción de términos semejantes, suma y resta de polinomios, signos de agrupación, multiplicación y división de polinomios) Año escolar: 2do: año de bachillerato Autor:

Más detalles

Operaciones con polinomios

Operaciones con polinomios Operaciones con polinomios Los polinomios son una generalización de nuestro sistema de numeración. Cuando escribimos un número, por ejemplo, 2 354, queremos decir: 2 354 = 2 000 + 300 + 50 + 4 = 2)1 000)

Más detalles

Polinomios y Fracciones Algebraicas

Polinomios y Fracciones Algebraicas Tema 4 Polinomios y Fracciones Algebraicas En general, a lo largo de este tema trabajaremos con el conjunto de los números reales y, en casos concretos nos referiremos al conjunto de los números complejos.

Más detalles

Guía 4 Formalizando conceptos y procedimientos algebraicos

Guía 4 Formalizando conceptos y procedimientos algebraicos 1 Guía 4 Formalizando conceptos y procedimientos algebraicos Nombre Curso Capacidad Destreza Valor Actitud 1 Año Medio A B C D Resolver Problemas Analizar Colaboración Constancia Aprendizajes Esperados

Más detalles

FACTORIZACIÓN DE POLINOMIOS GUIA DE NIVELACION 3 PERIODO

FACTORIZACIÓN DE POLINOMIOS GUIA DE NIVELACION 3 PERIODO FACTORIZACIÓN DE POLINOMIOS GUIA DE NIVELACION 3 PERIODO Recuerde que: 1. Factorizar una expresión algebraica consiste en escribirla como un producto. 2. Existen varios casos de factorización. Revisemos

Más detalles

TEMA 2 POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 2 POLINOMIOS Y FRACCIONES ALGEBRAICAS Matemáticas B 4º E.S.O. Tema : Polinomios y fracciones algebraicas. 1 TEMA POLINOMIOS Y FRACCIONES ALGEBRAICAS.1 COCIENTE DE POLINOMIOS 4º.1.1 COCIENTE DE MONOMIOS 4º El cociente de un monomio entre otro

Más detalles

3 POLINOMIOS Y FRACCIONES ALGEBRAICAS

3 POLINOMIOS Y FRACCIONES ALGEBRAICAS POLINOMIOS Y FRACCIONES ALGEBRAICAS PARA EMPEZAR Un cuadrado tiene 5 centímetros de lado. Escribe la epresión algebraica que da el área cuando el lado aumenta centímetros. A ( 5) Señala cuáles de las siguientes

Más detalles

Contenido Nº1 Factor Común Monomio

Contenido Nº1 Factor Común Monomio GUIA PREPARATORIA MATEMATICA UNIDAD : ALGEBRA. CONTENIDOS : Factorizaciones. NOMBRE: Fecha:.. Contenido Nº1 Factor Común Monomio I. EJERCICIOS. Halla el factor común de los siguientes ejercicios: 1) 6x

Más detalles

Matemáticas I (Álgebra) Manual de bachillerato. Primera Edición, 2009 Compilación y Asesoría Pedagógica Erika Alejandra López Estrada

Matemáticas I (Álgebra) Manual de bachillerato. Primera Edición, 2009 Compilación y Asesoría Pedagógica Erika Alejandra López Estrada Matemáticas I (Álgebra) Manual de bachillerato Primera Edición, 2009 Compilación y Asesoría Pedagógica Erika Alejandra López Estrada Coordinador editorial Alan Santacruz Farfán Revisión Alejandro Vázquez

Más detalles

1. División de polinomios por monomios

1. División de polinomios por monomios 1. División de polinomios por monomios El cociente de dos monomios (si es posible) es igual a otro monomio que tiene: como coeficiente, el cociente de los coeficientes; como parte literal, las letras que

Más detalles

Área: Matemática ÁLGEBRA

Área: Matemática ÁLGEBRA Área: Matemática ÁLGEBRA Prof. HENRY AYTE MORALES FICHA DE TRABAJO RECUPERACIÓN 1ro SEC A, B y C I. TEORÍA DE EXPONENTES 1. DEFINICIÓN Es un conjunto de fórmulas que relaciona a los exponentes de las expresiones

Más detalles

PENDIENTES 2º ESO. Segundo examen DEPARTAMENTO DE MATEMÁTICAS. Preparación del segundo examen de recuperación de MATEMÁTICAS DE 2º ESO Curso 2013-2014

PENDIENTES 2º ESO. Segundo examen DEPARTAMENTO DE MATEMÁTICAS. Preparación del segundo examen de recuperación de MATEMÁTICAS DE 2º ESO Curso 2013-2014 014 015 Preparación del segundo examen de recuperación de MATEMÁTICAS DE º ESO Curso 013-014 PENDIENTES º ESO Segundo examen DEPARTAMENTO DE MATEMÁTICAS Preparación del segundo examen de recuperación de

Más detalles

1º) Siempre que se pueda, hay que sacar factor común: :a b ± a c ± a d ± = a (b ± c ± d ± ):

1º) Siempre que se pueda, hay que sacar factor común: :a b ± a c ± a d ± = a (b ± c ± d ± ): Pág. 1 de 7 FAC T O R I Z AC I Ó N D E P O L I N O M I O S Factorizar (o descomponer en factores) un polinomio consiste en sustituirlo por un producto indicado de otros de menor grado tales que si se multiplicasen

Más detalles

UNIDAD I NÚMEROS REALES

UNIDAD I NÚMEROS REALES UNIDAD I NÚMEROS REALES Los números que se utilizan en el álgebra son los números reales. Hay un número real en cada punto de la recta numérica. Los números reales se dividen en números racionales y números

Más detalles

. Definición: Dos o más términos son semejantes cuando tienen las mismas letras y afectadas por el mismo exponente.

. Definición: Dos o más términos son semejantes cuando tienen las mismas letras y afectadas por el mismo exponente. Ejercicios Resueltos del Algebra de Baldor. Consultado en la siguiente dirección electrónica http://www.quizma.cl/matematicas/recursos/algebradebaldor/index.htm. Definición: Dos o más términos son semejantes

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman V A R I A B L ES, I N C Ó G N I T A S o

Más detalles

Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios. Dra. Noemí L. Ruiz Limardo 2009

Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios. Dra. Noemí L. Ruiz Limardo 2009 Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios Dra. Noemí L. Ruiz Limardo 2009 Objetivos de la Lección Al finalizar esta lección los estudiantes: Identificarán, de una lista de expresiones

Más detalles

A L G E B R A. Ejercicio Signo C. numérico F. literal Grado 5,9a 2 b 3 c menos 5,9 a 2 b 3 c 2+3+1=6

A L G E B R A. Ejercicio Signo C. numérico F. literal Grado 5,9a 2 b 3 c menos 5,9 a 2 b 3 c 2+3+1=6 CONCEPTOS BÁSICOS: A L G E B R A. Término algebraico: Un término algebraico es el producto de una o más variables y una constante literal o numérica. Ejemplos: x y ; ; m En todo término algebraico podemos

Más detalles

Repasando lo aprendido...con una propuesta autoinstruccional

Repasando lo aprendido...con una propuesta autoinstruccional Repasando lo aprendido......con una propuesta autoinstruccional Te propongo un rápido repaso en matemática básica, que te será de suma utilidad para fijar los conocimientos dados. Sólo te brindo una guía

Más detalles

Nivel Medio I-104 Provincia del Neuquén Patagonia Argentina

Nivel Medio I-104 Provincia del Neuquén Patagonia Argentina Nivel Medio I-104 Provincia del Neuquén Patagonia Argentina www.faena.edu.ar info@faena.edu.ar TERCER BLOQUE MATEMATICA Está permitida la reproducción total o parcial de parte de cualquier persona o institución

Más detalles

Multiplicación de Polinomios. Ejercicios de multiplicación de polinomios. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.

Multiplicación de Polinomios. Ejercicios de multiplicación de polinomios. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com. Multiplicación de Polinomios Ejercicios de multiplicación de polinomios www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 2007-2008 Contenido 1. Antecedentes 2 2. Multiplicación de monomios

Más detalles

Álgebra Bloque 1. Aritmética y operaciones con polinomios Actividad 4: Lenguaje algebraico y operaciones con polinomios Competencias a desarrollar

Álgebra Bloque 1. Aritmética y operaciones con polinomios Actividad 4: Lenguaje algebraico y operaciones con polinomios Competencias a desarrollar Álgebra Bloque 1. Aritmética y operaciones con polinomios Actividad 4: Lenguaje algebraico y operaciones con polinomios Competencias a desarrollar Disciplinares básicas: 3. Explica e interpreta los resultados

Más detalles

Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo

Polinomios: Definición: Se llama polinomio en x de grado n a una expresión del tipo Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo P (x) = a 0 x n + a 1 x n 1 +... + a n Donde n N (número natural) ; a 0, a 1, a 2,..., a n son coeficientes reales

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Un grupo de variables representadas por letras junto con un conjunto de números combinados con operaciones de suma, resta, multiplicación, división, potencia o etracción de raíces

Más detalles

Operaciones Fundamentales del Álgebra. Operaciones con Fracciones Algebraicas.. E xponentes y Radicales 99. Ecuaciones Lineales o de Primer Grado

Operaciones Fundamentales del Álgebra. Operaciones con Fracciones Algebraicas.. E xponentes y Radicales 99. Ecuaciones Lineales o de Primer Grado ÍNDICE COMPETENCIA Operaciones Fundamentales del Álgebra 5 COMPETENCIA Operaciones con Fracciones Algebraicas.. 7 COMPETENCIA E ponentes y Radicales 99 COMPETENCIA Ecuaciones Lineales o de Primer Grado

Más detalles

Recuerdas qué es? Expresión algebraica. Es una combinación de números y letras relacionados mediante operaciones aritméticas.

Recuerdas qué es? Expresión algebraica. Es una combinación de números y letras relacionados mediante operaciones aritméticas. Recuerdas qué es? Expresión algebraica Es una combinación de números y letras relacionados mediante operaciones aritméticas. Propiedad distributiva de la multiplicación respecto de la suma Si a, b y c

Más detalles

MATEMATICAS I SESIÓN 1 DEFINICIONES FUNDAMENTALES (REDUCCIÓN DE TERMINOS SEMEJANTES)

MATEMATICAS I SESIÓN 1 DEFINICIONES FUNDAMENTALES (REDUCCIÓN DE TERMINOS SEMEJANTES) MATEMATICAS I SESIÓN 1 DEFINICIONES FUNDAMENTALES (REDUCCIÓN DE TERMINOS SEMEJANTES) Introducción: El alumno comprenderá qué estudia el algebra, así como algunas definiciones importantes como son: expresión

Más detalles

4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN

4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN 4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN Bloque 2. POLINOMIOS. (En el libro Tema 3, página 47) 1. Definiciones. 2. Valor numérico de una expresión algebraica. 3. Operaciones con polinomios: 3.1. Suma,

Más detalles

UNIDAD DE APRENDIZAJE IV

UNIDAD DE APRENDIZAJE IV UNIDAD DE APRENDIZAJE IV Saberes procedimentales 1. Interpreta y utiliza correctamente el lenguaje simbólico ara el manejo de expresiones algebraicas. 2. Identifica operaciones básicas con expresiones

Más detalles

Sumario... 5. Presentación... 7. Capítulo 1. Divisibilidad... 9

Sumario... 5. Presentación... 7. Capítulo 1. Divisibilidad... 9 ÍNDICE SISTEMÁTICO PÁGINA Sumario... 5 Presentación... 7 Capítulo 1. Divisibilidad... 9 1. Múltiplos de un número... 10 2. Divisores de un número... 11 2.1. Cuándo un número es divisor de otro?... 11 2.2.

Más detalles

Factorización de Polinomios

Factorización de Polinomios www.matebrunca.com Prof. Waldo Márquez González Factorización 1 Factorización de Polinomios TEMAS A EVALUAR 1. Factor Común Monomio. 2. Factor Común Polinomio. 3. Factor Común por Agrupación. 4. Diferencia

Más detalles

Tema 3. Polinomios y fracciones algebraicas

Tema 3. Polinomios y fracciones algebraicas Tema. Polinomios y fracciones algebraicas. Monomios.. Definiciones.. Operaciones con monomios. Polinomios.. Definiciones.. Operaciones con polinomios. Factorización de un polinomio.. Teorema del resto.

Más detalles

14 Expresiones algebraicas. Polinomios

14 Expresiones algebraicas. Polinomios PARADA TeÓRICA 14 Expresiones algebraicas. Polinomios Una expresión algebraica es una combinación cualquiera y finita de números, de letras, o de números, letras, ligados entre sí con la adición, sustracción,

Más detalles

Profr. Efraín Soto Apolinar. Factorización

Profr. Efraín Soto Apolinar. Factorización Factorización La factorización es la otra parte de la historia de los productos notables. Esto es, ambas cosas se refieren a las mismas fórmulas, pero en los productos notables se nos daba una operación

Más detalles

5 Expresiones algebraicas

5 Expresiones algebraicas 8948 _ 04-008.qxd /9/07 :0 Página 9 Expresiones algebraicas INTRODUCCIÓN RESUMEN DE LA UNIDAD El lenguaje algebraico sirve para expresar situaciones relacionadas con la vida cotidiana, utilizando letras

Más detalles

Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos

Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos MATEMÁTICAS BÁSICAS DESIGUALDADES DESIGUALDADES DE PRIMER GRADO EN UNA VARIABLE La epresión a b significa que "a" no es igual a "b ". Según los valores particulares de a de b, puede tenerse a > b, que

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 2 Polinomios y fracciones algebraicas Elaborado por la Profesora Doctora

Más detalles

Aquí van cada uno de los casos de factorización que conviene tener presente:

Aquí van cada uno de los casos de factorización que conviene tener presente: Se puede decir que la factorización algebraica es el proceso inverso de La multiplicación del mismo tipo. Existen diversos tipos de factorización, cuyas reglas y algoritmos dependen de la forma de la expresión.

Más detalles

VII INTEGRALES TRIGONOMÉTRICAS

VII INTEGRALES TRIGONOMÉTRICAS VII INTEGRALES TRIGONOMÉTRICAS Diez fórmulas más habrán de agregarse al formulario actual de integrales del estudiante. Son seis correspondientes a las seis funciones trigonométricas seno, coseno, tangente,

Más detalles

FACTORIZACIÓN 1. FACTOR COMUN:

FACTORIZACIÓN 1. FACTOR COMUN: FACTORIZACIÓN Factorizar una expresión algebraica consiste en escribirla como un producto. Cuando realizamos las multiplicaciones: a) 2x (x 2 3x + 2) = 2x 3 6x 2 + 4x b) (x + 7)(x + 5) = x 2 + 12x + 35

Más detalles

DESARROLLO. a r a s = ar s

DESARROLLO. a r a s = ar s ENCUENTRO # 11 TEMA:Operaciones con polinomios CONTENIDOS: 1. División de polinomios. DESARROLLO Ejercicio Reto 1. El resultado de n 4 n 1 es: A) 1 B) 1 n 1 B)4 n 1 D) 4 E) 1 4 4 4 4 4 n 1 4 2. Si para

Más detalles

TEMA 3 POLINOMIOS NOMBRE Y APELLIDOS... HOJA 1 - FECHA...

TEMA 3 POLINOMIOS NOMBRE Y APELLIDOS... HOJA 1 - FECHA... TEMA 3 POLINOMIOS NOMBRE Y APELLIDOS... HOJA 1 - FECHA... TEMA 3 EXPRESIONES ENTERAS Y POLINOMIOS Una expresión algebraica es una combinación de letras y números con operaciones matemáticas que las unen,

Más detalles

Factorización de polinomios

Factorización de polinomios Factorización de polinomios Polinomios Un polinomio p en la variable x es una expresión de la forma: px a 0 a 1 x a x a n1 x n1 a n x n donde a 0, a 1, a,, a n1, a n son unos números, llamados coeficientes

Más detalles

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2 SISTEMA DE ACCESO COMÚN A LAS CARRERAS DE INGENIERÍA DE LA UNaM III. UNIDAD : FUNCIONES POLINÓMICAS III..1 POLINOMIOS La expresión 5x + 7 x + 4x 1 recibe el nombre de polinomio en la variable x. Es de

Más detalles

OPERACIONES CON POLINOMIOS

OPERACIONES CON POLINOMIOS OPERACIONES CON POLINOMIOS. SUMA ALGEBRAICA DE POLINOMIOS. En la práctica para sumar dos o más polinomios suelen colocarse unos deajo de los otros, de tal modo que los términos semejantes queden en columna,

Más detalles

Capítulo 4. Productos notables y factorización

Capítulo 4. Productos notables y factorización Capítulo 4 Productos notables y factorización Las siguientes fórmulas de multiplicación de expresiones algebraicas ayudan a factorizar muchas expresiones, sin embargo se debe aprender a reconocer cuál

Más detalles

Cómo desarrollar y factorizar expresiones algebraicas?

Cómo desarrollar y factorizar expresiones algebraicas? 1 Cómo desarrollar y factorizar expresiones algebraicas? Prof. Jean-Pierre Marcaillou OBJETIVOS: La calculadora CASIO ClassPad 330 dispone de los comandos [expand], [factor], [rfactor], [factorout] y [collect]

Más detalles

Operaciones combinadas con polinomios

Operaciones combinadas con polinomios ExMa-MA05. Operaciones combinadas W. Poveda Operaciones combinadas con polinomios Objetivos. Aplicar las leyes de potencias.. Aplicar las propiedades de la suma y el producto.. Aplicar los productos notables

Más detalles

INSTITUTO UNIVERSITARIO DE TECNOLOGÍA VENEZUELA CURSO PROPEDÉUTICO TALLER DE MATEMÁTICA

INSTITUTO UNIVERSITARIO DE TECNOLOGÍA VENEZUELA CURSO PROPEDÉUTICO TALLER DE MATEMÁTICA INSTITUTO UNIVERSITARIO DE TECNOLOGÍA VENEZUELA CURSO PROPEDÉUTICO TALLER DE MATEMÁTICA CARACAS, MARZO DE 2013 ESTUDIO DEL SISTEMA DECIMAL CONTENIDO Base del sistema decimal Nomenclatura Ordenes Subordenes

Más detalles

Conectados con el pasado, proyectados hacia el futuro Plan Anual de Matemática III Año PAI VIIIGrado

Conectados con el pasado, proyectados hacia el futuro Plan Anual de Matemática III Año PAI VIIIGrado Actualizado en febrero del 2013 Conectados con el pasado, proyectados hacia el futuro Plan Anual de Matemática III Año PAI VIIIGrado CONTENIDOS OBJETIVOS ESPECÍFICOS HABILIDADES CRITERIOS DE EVALUACIÓN

Más detalles

Desarrollar los puntos anteriores en hojas cuadriculadas examen.

Desarrollar los puntos anteriores en hojas cuadriculadas examen. DEPARTAMENTO DE MATEMÁTICAS TERCER PERIODO - 2014 NOMBRE DEL ESTUDIANTE: GRADO: OCTAVO CURSO: ASIGNATURA: MATEMÁTICAS PROFESOR (A): INDICADORES DE DESEMPEÑO 301. Comunicación Matemática: Utiliza lenguaje

Más detalles

Propiedades de les desigualdades.

Propiedades de les desigualdades. Desigualdades Inecuaciones Diremos que a < b a es menor que b si b a es un número positivo. Gráficamente, a queda a l esquerra de b. Diremos que a > b a mayor que b si a b es un número positivo. Gráficamente,

Más detalles

Fundación Uno A)2011 B)2012 B)2013 D)2014 E)2015. es equivalente a 12 b 7 + a 7 b 12 a 19 a 19 a 13 a 6 b 7 + a 7 b 6 b13 a: D) a8 +a 3 b 5 +b 8

Fundación Uno A)2011 B)2012 B)2013 D)2014 E)2015. es equivalente a 12 b 7 + a 7 b 12 a 19 a 19 a 13 a 6 b 7 + a 7 b 6 b13 a: D) a8 +a 3 b 5 +b 8 ENCUENTRO # 6 TEMA:Fracciones Algebraicas CONTENIDOS:. Máximo Común Divisor 2. Mínimo Común Múltiplo 3. Simplificación de Fraciones Algebraicas 4. Suma de Fracciones Algebraicas 5. Resta de Fracciones

Más detalles

INSTITUTO VALLADOLID PREPARATORIA página 67

INSTITUTO VALLADOLID PREPARATORIA página 67 INSTITUTO VALLADOLID PREPARATORIA página 67 página 68 MULTIPLICACIÓN La multiplicación, a partir de su definición original, representa o es una suma abreviada. Por ejemplo, + + + +, se abrevia con 5. De

Más detalles

Factor común x de menor exponente y divide cada monomio para el factor común y el resultado se coloca entre paréntesis.

Factor común x de menor exponente y divide cada monomio para el factor común y el resultado se coloca entre paréntesis. COLEGIO GONZALO CORDERO CRESPO CIENCIAS EXACTAS MATEMÁTICAS TALLER SOBRE CASO I FACTOR COMÚN 9NO Se divide cada monomio para el factor común, pero esto se lo hace directamente en la mente o si lo desea

Más detalles

La suma se realiza miembro a miembro. La suma de polinomios goza de las mismas propiedades que la suma de números. Ejemplo:

La suma se realiza miembro a miembro. La suma de polinomios goza de las mismas propiedades que la suma de números. Ejemplo: Tema 4. Polinomios 1. Definición Un polinomio es una expresión hecha con constantes, variables y exponentes, que están combinados. Los exponentes sólo pueden ser 0, 1, 2, 3,... etc. No puede tener un número

Más detalles

GUÍA Nº 02 GRADO: 8 ESTUDIANTE: PERÍODO:2 DURACIÓN:

GUÍA Nº 02 GRADO: 8 ESTUDIANTE: PERÍODO:2 DURACIÓN: AREA MATEMATICAS PROFESORA: Eblin Martínez M. GUÍA Nº 02 GRADO: 8 ESTUDIANTE: PERÍODO:2 DURACIÓN: 24 horas LOGRO: Identifico y realizo operaciones con expresiones algebraicas. INDICADORES DE LOGRO: Reconozco

Más detalles

Guía 3: Factorización

Guía 3: Factorización Departamento de Matemática Guía 3: Factorización Definición: Factorizar una expresión algebraica (o suma de términos algebraicos) consiste en escribirla en forma de multiplicación. Veremos los siguientes

Más detalles

Coeficientes 43 X = 43 X partes literales - 7 a 3 = - 7 a 3

Coeficientes 43 X = 43 X partes literales - 7 a 3 = - 7 a 3 APUNTES Y EJERCICIOS DEL TEMA 3 1-T 3--2ºESO EXPRESIONES ALGEBRAICAS: Son combinaciones de n os y letras unidos con operaciones matemáticas (aritméticas), que generalmente suelen ser sumas, restas, multiplicaciones

Más detalles

Operatoria con Expresiones Algebraicas

Operatoria con Expresiones Algebraicas PreUnAB Clase # 5 Julio 2014 Expresiones Algebraicas Definición Se llama expresión algebraica a un conjunto de valores constantes (2. 3, 7, etc) y valores variables (x, a, y, etc), relacionados entre sí

Más detalles

INSTITUTO TECNOLÓGICO DE CHETUMAL

INSTITUTO TECNOLÓGICO DE CHETUMAL INSTITUTO TECNOLÓGICO DE CHETUMAL CUADERNILLO DEL CURSO DE NIVELACIÓN 014 PARA LAS CARRERAS DE: INGENIERÍA CIVIL INGENIERÍA ELÉCTIRCA INGENIERÍA EN SISTEMAS COMPUTACIONALES INGENIERÍA EN TECNOLOGIAS DE

Más detalles

A)2011 B)2012 B)2013 D)2014 E)2015. C) a5 +b 5

A)2011 B)2012 B)2013 D)2014 E)2015. C) a5 +b 5 ENCUENTRO # 6 TEMA: Fracciones algebraicas CONTENIDOS:. Máximo común divisor 2. Mínimo común múltiplo 3. Simplificación de fracciones algebraicas 4. Suma de fracciones algebraicas 5. Resta de fracciones

Más detalles

POLINOMIOS Y FRACCIONES ALGEBRAICAS

POLINOMIOS Y FRACCIONES ALGEBRAICAS POLINOMIOS Y FRACCIONES ALGEBRAICAS Página 66 PARA EMPEZAR, REFLEXIONA Y RESUELVE Múltiplos y divisores. Haz la división: 4 + 5 0 + 5 A la vista del resultado, di dos divisores del polinomio 4 + 5 0. (

Más detalles

DESIGUALDADES página 1

DESIGUALDADES página 1 DESIGUALDADES página 1 1.1 CONCEPTOS Y DEFINICIONES Una igualdad en Álgebra es aquella relación que establece equivalencia entre dos entes matemáticos. Es una afirmación, a través del signo =, de que dos

Más detalles

GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO OCTAVO

GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO OCTAVO GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO OCTAVO IDENTIFICACIÓN AREA: Matemáticas. ASIGNATURA: Matemáticas. DOCENTE. Juan Gabriel Chacón c. GRADO. Octavo. PERIODO: Segundo UNIDAD: Polinomios TEMA: Expresiones

Más detalles

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA CASOS DE FACTORIZACIÓN El futuro tiene muchos nombres. Para los débiles es lo inalcanzable. Para los temerosos, lo desconocido.

Más detalles

PARÁBOLA. 1) para la parte positiva: 2) para la parte negativa: 3) para la parte positiva: 4) para la parte negativa:

PARÁBOLA. 1) para la parte positiva: 2) para la parte negativa: 3) para la parte positiva: 4) para la parte negativa: Página 90 5 LA PARÁBOLA 5.1 DEFINICIONES La parábola es el lugar geométrico 4 de todos los puntos cuyas distancias a una recta fija, llamada, y a un punto fijo, llamado foco, son iguales entre sí. Hay

Más detalles

FACTORIZACION FACTORIZACIÓN. Factorizar un número consiste en expresarlo como producto de dos de sus divisores.

FACTORIZACION FACTORIZACIÓN. Factorizar un número consiste en expresarlo como producto de dos de sus divisores. -PA-0 FACTORIZACION V0 Página de 9 NOCION: FACTORIZACIÓN Factorizar un número consiste en epresarlo como producto de dos de sus divisores. Ejemplo: Factoriza 0 en dos de sus divisores :, es decir 0 = Y

Más detalles

Matemática I. Descomposición en factores. Ing. Santiago Figueroa Lorenzo Correo electrónico:

Matemática I. Descomposición en factores. Ing. Santiago Figueroa Lorenzo Correo electrónico: Matemática I Descomposición en factores Ing. Santiago Figueroa Lorenzo Correo electrónico: santiagofigueroalorenzo@gmail.com Temas Primera Unidad: Elementos Algebraicos Tema 1: Principales casos de factorización

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas 0 Polinomios y fracciones algebraicas En esta Unidad aprenderás a: d Trabajar con epresiones polinómicas. d Factorizar polinomios. d Operar con fracciones algebraicas. d Descomponer una fracción algebraica

Más detalles