Divido la barra de helado en ocho partes iguales. De esas ocho partes tomo seis. Parte de la barra que reparto a mis amigos :

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Divido la barra de helado en ocho partes iguales. De esas ocho partes tomo seis. Parte de la barra que reparto a mis amigos :"

Transcripción

1 1.- NECESIDAD DE QUE EXISTAN LAS FRACCIONES. Imagina que tienes una barra de helado que quieres repartir entre tus ocho amigos que por la tarde van a ir a tu casa a merendar. Para ir adelantando trabajo cortas la barra de helado en ocho trozos iguales. Cuando llegan tus amigos por la tarde te comunican que dos de ellos no van a estar y como ya tienes cortada la barra de helado sirves un trozo a cada uno de ellos sobrándote dos. Si quieres representar con un número la parte de helado que das a tus amigos y la parte de helado que sobró no puedes hacerlo con los números que conocemos hasta ahora necesitamos otros números que nos indiquen al mismo tiempo las partes en que dividí la barra de helado y las partes que tomamos o dejamos. Esos números son los números fraccionarios o fracciones. Divido la barra de helado en ocho partes iguales. De esas ocho partes tomo seis. Parte de la barra que reparto a mis amigos : Parte de la barra que me sobra :.- CONCEPTO DE FRACCIÓN. Una fracción es un par de números a y b siendo b distinto de cero y escrita de la forma: a o también a/b b De donde a es el NUMERADOR y b es el DENOMINADOR. NUMERADOR DENOMINADOR

2 El DENOMINADOR de una fracción indica las partes en que se ha dividido la unidad. El NUMERADOR de una fracción indica las partes que tomamos de esa unidad. Una persona tiene que recorrer kilómetros y en el primer día recorre km quedándole km para el segundo día. Si queremos representar en forma de fracción tanto el camino recorrido como el que le queda por recorrer escribiremos: Km Km Lleva recorridos los Km del camino y le quedan por recorrer los Algunos ejemplos más: FRACCIÓN PROPIA Y FRACCIÓN IMPROPIA Fracción propia es la que tiene el numerador menor que el denominador. es una fracción propia. Fracción impropia es la que tiene el numerador mayor que el denominador. es una fracción impropia.

3 .- NÚMERO MIXTO Número mixto es la suma de un entero más una fracción propia. es un número mixto que se representa.1.- Conversión de número mixto en fracción impropia. Para convertir un número mixto en fracción impropia multiplicaremos el entero por el denominador de la fracción sumando al resultado de ese producto el numerador de la fracción y conservando el mismo denominador. x Conversión de una fracción impropia en número mixto. Para convertir una fracción impropia en número mixto dividiremos el numerador de la fracción entre su denominador. El cociente será el entero el resto el numerador del mixto y el divisor el denominador. 1 Convertir en número mixto. Numerador 1 Luego Denominador Entero 1.- LAS FRACCIONES COMO OPERADORES Operador es lo que nos indica una serie de operaciones a realizar. La fracción puede interpretarse como un operador que multiplica por su numerador y divide por su denominador. Así para calcular los de 0 multiplicaremos 0 por tres dividiendo el resultado entre. 0 0 de 0 1

4 .- FRACCIONES EQUIVALENTES Fracciones equivalentes son aquellas que al aplicarlas a un mismo número dan el mismo resultado. Las fracciones y son equivalentes ya que si las aplicamos a un mismo número por ejemplo el 1 nos dan el mismo resultado. x 1 de1 9 x 1 de1 9 También se dice que dos fracciones son equivalentes cuando al multiplicar sus términos en cruz dan el mismo resultado. y son equivalent es ya que x 0 x La equivalencia de fraccione se representa con el símbolo equivalente a. que se lee.1.- Obtención de fracciones equivalentes por amplificación. Si se multiplica el numerador y el denominador de una fracción por el mismo número obtenemos una fracción equivalente a la primera que se denomina fracción amplificada. x 1 y 1 x Obtención de fracciones equivalentes por simplificación. Si dividimos por el mismo número el numerador y el denominador de una fracción obtenemos otra fracción equivalente a la primera por simplificación. 1 1 : 1 y 1 1 : 1.- SIMPLIFICACIÓN DE FRACCIONES Simplificar una fracción es convertirla en otra que sea irreducible. Para ello descompondremos el numerador y el denominador en sus factores primos e iremos reduciendo aquellos factores que sean iguales.

5 Simplificar la fracción x x x x x 1 xxxxx1.- REDUCCIÓN DE FRACCIONES A COMÚN DENOMINADOR Para reducir fracciones a común denominador procederemos de la siguiente manera: 1.- Calcularemos el M.C.M. de los denominadores que será el denominador común..- Para calcular los numeradores dividiremos el M.C.M. entre cada denominador multiplicando el resultado por el numerador correspondiente. Ejemplo: Reducir a común denominador: y =x1 = x x 1 M.C.M. = x x 1 = 1 = x 1 x x x COMPARACIÓN DE FRACCIONES De dos fracciones que tienen igual denominador es mayor la de mayor numerador. 1 De dos fracciones de igual numerador es mayor la que tiene menor denominador. Si dos fracciones tienen distinto denominador para compararlas primeramente se reducen a común denominador siendo mayor la de mayor numerador.

6 Ejemplo de y Cuál es mayor? de las dos fracciones es mayor que es la fracción equivalente a Por lo tanto 10.- SUMA DE FRACCIONES Suma de fracciones que tienen el mismo denominador. Para sumar fracciones que tienen el mismo denominador bastará con sumar los numeradores conservando el mismo denominador y simplificando si es posible el resultado. 1 xx1 xx Suma de fracciones que tienen distinto denominador. Si las fracciones que queremos sumar tienen distinto denominador debemos reducirlas a común denominador para luego sumar los numeradores y conservar el mismo denominador simplificando si es posible el resultado =x1 10 = x x 1 M.C.M. = x x x 1 M.C.M = 0 =x1 1 = x x 1 x x 10x x xx x x 1

7 11.- RESTA DE FRACCIONES Resta de fracciones que tienen el mismo denominador. Para restar fracciones que tienen el mismo denominador bastará con restar los numeradores conservando el mismo denominador y simplificando si es posible el resultado. 9 9 xx1 xx Resta de fracciones que tienen distinto denominador. Si las fracciones que queremos restar tienen distinto denominador debemos reducirlas a común denominador para luego restar los numeradores y conservar el mismo denominador simplificando si es posible el resultado =x1 10 = x x 1 M.C.M. = x x 1 M.C.M = 10 1 x1 1x PRODUCTO DE FRACCIONES Para multiplicar varias fracciones no es necesario que tengan el mismo denominador. El resultado de multiplicar varias fracciones es otra fracción cuyo numerador es el resultado de multiplicar los numeradores y cuyo denominador es el resultado de multiplicar los denominadores. 9 9 x x x x x x x x x x x x xxx xxxxxx

8 1.- COCIENTE DE FRACCIONES Para dividir varias fracciones no es necesario que tengan el mismo denominador. El resultado de dividir varias fracciones es otra fracción cuyo numerador es el resultado de multiplicar el numerador de la fracción dividendo por el denominador de la fracción divisor y cuyo denominador es el resultado de multiplicar el denominador de la fracción dividendo por el numerador de la fracción divisor. 1 x xxxx 9 : x1 xxxx Otro ejemplo. x1 xxxx1 1 1 x1 xxxx1 1

FRACCIONES. Una fracción tiene dos términos, numerador y denominador, separados por una raya horizontal.

FRACCIONES. Una fracción tiene dos términos, numerador y denominador, separados por una raya horizontal. FRACCIONES Las fracciones representan números (son números, mucho más exactos que los enteros o los decimales), Representa una o varias partes de la unidad. Una fracción tiene dos términos, numerador y

Más detalles

El número de arriba de la fracción, el numerador, nos dice cuántas de las partes iguales están coloreadas.

El número de arriba de la fracción, el numerador, nos dice cuántas de las partes iguales están coloreadas. Qué es una fracción? Una fracción es un número que indica parte de un entero o parte de un grupo. El siguiente círculo está dividido en partes iguales de las cuales partes están coloreadas. El número de

Más detalles

EJERCICIOS SOBRE : FRACCIONES

EJERCICIOS SOBRE : FRACCIONES 1.- Introducción a las fracciones: Las fracciones representan siempre una cierta parte de algo. Ese algo es la unidad que elegimos. Ejemplo: _ Dos 1 / 2 litros de leche. _ Sólo tiene 1/ 2 pastilla 2.-

Más detalles

LAS FRACCIONES. Si queremos calcular la fracción de un número dividimos el número por el denominador y el resultado lo multiplicamos por el numerador.

LAS FRACCIONES. Si queremos calcular la fracción de un número dividimos el número por el denominador y el resultado lo multiplicamos por el numerador. LAS FRACCIONES LAS FRACCIONES Y SUS TÉRMINOS Los términos de una fracción se llaman numerador y denominador. El denominador indica el número de partes iguales en que se divide la unidad. El numerador indica

Más detalles

Una fracción es una expresión que nos indica que, de un total dividido en partes iguales, escogemos sólo algunas de esas partes.

Una fracción es una expresión que nos indica que, de un total dividido en partes iguales, escogemos sólo algunas de esas partes. FRACCIONES 1. LAS FRACCIONES. 1.1. CONCEPTO. Una fracción es una expresión que nos indica que, de un total dividido en partes iguales, escogemos sólo algunas de esas partes. Una fracción también es una

Más detalles

TEMA 4 FRACCIONES MATEMÁTICAS 1º ESO

TEMA 4 FRACCIONES MATEMÁTICAS 1º ESO TEMA 4 FRACCIONES Criterios De Evaluación de la Unidad 1 Utilizar de forma adecuada las fracciones para recibir y producir información en actividades relacionadas con la vida cotidiana. 2 Leer, escribir,

Más detalles

Una fracción puede interpretarse como parte de un total, como medida y como operador de OBJETIVOS CONTENIDOS PROCEDIMIENTOS

Una fracción puede interpretarse como parte de un total, como medida y como operador de OBJETIVOS CONTENIDOS PROCEDIMIENTOS _ 0-0.qxd //0 0: Página racciones INTRODUCCIÓN Con el empleo de las fracciones se observa la utilidad de los conceptos estudiados como, por ejemplo, las operaciones básicas con números naturales o el cálculo

Más detalles

Tema 04:Fracciones. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco.

Tema 04:Fracciones. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. 2010 Tema 04:Fracciones. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. Manuel González de León. mgdl 01/01/2010 . INDICE: 01. APARICIÓN DE LAS FRACCIONES. 02. CONCEPTO DE FRACCIÓN. 03.

Más detalles

Los números racionales son todos aquellos números de la forma a con a y b números enteros y b

Los números racionales son todos aquellos números de la forma a con a y b números enteros y b Números racionales NÚMEROS RACIONALES Los números racionales son todos aquellos números de la forma a con a y b números enteros y b b distinto de cero. El conjunto de los números racionales se representa

Más detalles

Operaciones con Fracciones Aritméticas

Operaciones con Fracciones Aritméticas Aritméticas Carlos A. Rivera-Morales Álgebra Tabla de Contenido Contenido : Contenido Discutiremos: el mínimo común múltiplo de dos o más números enteros : Contenido Discutiremos: el mínimo común múltiplo

Más detalles

Matemáticas Propedéutico para Bachillerato. Introducción

Matemáticas Propedéutico para Bachillerato. Introducción Actividad. Fracciones simples. Introducción En las actividades anteriores vimos las operaciones básicas de suma, resta, multiplicación y división, así como la jerarquía de ellas entre números enteros,

Más detalles

GUIA DE MATERIAL BASICO PARA TRABAJAR CON DECIMALES.

GUIA DE MATERIAL BASICO PARA TRABAJAR CON DECIMALES. GUIA DE MATERIAL BASICO PARA TRABAJAR CON DECIMALES. D E C I M A L E S MARÍA LUCÍA BRIONES PODADERA PROFESORA DE MATEMÁTICAS UNIVERSIDAD DE CHILE. 38 Si tenemos el número 4,762135 la ubicación de cada

Más detalles

NÚMEROS RACIONALES Y DECIMALES

NÚMEROS RACIONALES Y DECIMALES NÚMEROS RACIONALES Y DECIMALES Unidad didáctica. Números racionales y decimales CONTENIDOS Fracciones Fracciones equivalentes Amplificar fracciones Simplificar fracciones Representación en la recta numérica.

Más detalles

REPASO NÚMEROS NATURALES Y NÚMEROS ENTEROS

REPASO NÚMEROS NATURALES Y NÚMEROS ENTEROS SUMA REPASO NÚMEROS NATURALES Y NÚMEROS ENTEROS NÚMEROS NATURALES (N) 1. Características: Axiomas de Giuseppe Peano (*): El 1 es un número natural. Si n es un número natural, entonces el sucesor (el siguiente

Más detalles

Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte

Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte En esta unidad vamos a estudiar los números racionales, esto es, los que se pueden expresar en

Más detalles

REPUBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACION ESCUELA BASICA NACIONAL BOLIVARIANA 19 DE ABRIL

REPUBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACION ESCUELA BASICA NACIONAL BOLIVARIANA 19 DE ABRIL REPUBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACION ESCUELA BASICA NACIONAL BOLIVARIANA 19 DE ABRIL SAN FRANCISCO ESTADO ZULIA DISEÑO DE UN MANUAL DIRIGIDO AL USO DE LAS TIC

Más detalles

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite

Más detalles

Enunciado unidades fraccionarias fracción fracciones equivalentes comparar operaciones aritméticas fracciones propias Qué hacer deslizador vertical

Enunciado unidades fraccionarias fracción fracciones equivalentes comparar operaciones aritméticas fracciones propias Qué hacer deslizador vertical Enunciado Si la unidad la dividimos en varias partes iguales, podemos tomar como nueva unidad de medida una de estas partes más pequeñas. Las unidades fraccionarias son necesarias cuando lo que queremos

Más detalles

SUMA Y RESTA DE FRACCIONES

SUMA Y RESTA DE FRACCIONES SUMA Y RESTA DE FRACCIONES CONCEPTOS IMPORTANTES FRACCIÓN: Es la simbología que se utiliza para indicar que un todo será dividido en varias partes (se fraccionará). Toda fracción tiene dos partes básicas:

Más detalles

Guía 1: Concepto de fracción

Guía 1: Concepto de fracción . Pinta según la fracción correspondiente: Guía : Concepto de fracción Una fracción es una representación de una o varias partes de la unidad. Sus términos son numerador denominador. Numerador Denominador.

Más detalles

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones Fracciones. Las fracciones y los números Racionales Las fracciones se utilizan cotidianamente en contextos relacionados con la medida, el reparto o como forma de relacionar dos cantidades. Tenemos entonces

Más detalles

Los números racionales

Los números racionales Los números racionales Los números racionales Los números fraccionarios o fracciones permiten representar aquellas situaciones en las que se obtiene o se debe una parte de un objeto. Todas las fracciones

Más detalles

Unidad 1 números enteros 2º ESO

Unidad 1 números enteros 2º ESO Unidad 1 números enteros 2º ESO 1 2 Conceptos 1. Concepto de número entero: diferenciación entre número entero, natural y fraccionario. 2. Representación gráfica y ordenación. 3. Valor absoluto de un número

Más detalles

Wise Up Kids! En matemáticas, a la división de un objeto o unidad en varias partes iguales o a un grupo de esas divisiones se les denomina fracción.

Wise Up Kids! En matemáticas, a la división de un objeto o unidad en varias partes iguales o a un grupo de esas divisiones se les denomina fracción. Fracciones o Quebrados En matemáticas, a la división de un objeto o unidad en varias partes iguales o a un grupo de esas divisiones se les denomina fracción. Las fracciones pueden ser representadas de

Más detalles

TEMA 2 POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 2 POLINOMIOS Y FRACCIONES ALGEBRAICAS Matemáticas B 4º E.S.O. Tema : Polinomios y fracciones algebraicas. 1 TEMA POLINOMIOS Y FRACCIONES ALGEBRAICAS.1 COCIENTE DE POLINOMIOS 4º.1.1 COCIENTE DE MONOMIOS 4º El cociente de un monomio entre otro

Más detalles

Contenido. Conoce los contenidos 1 Fracciones equivalentes 2. Suma de fracciones 5

Contenido. Conoce los contenidos 1 Fracciones equivalentes 2. Suma de fracciones 5 Contenido Unidad Conoce los contenidos Fracciones equivalentes Simplificación de fracciones Suma de fracciones 5 Resta de fracciones 6 Números mixtos y fracciones 7 Comparar y ordenar fracciones y números

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS

OBJETIVOS CONTENIDOS PROCEDIMIENTOS _ 0-00.qxd //0 : Página racciones INTRODUCCIÓN En esta unidad se presenta el concepto de fracción como resultado de varios significados: como parte de un todo o unidad, como valor decimal (cociente) y

Más detalles

mcd y mcm Máximo Común Divisor y Mínimo Común múltiplo www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx

mcd y mcm Máximo Común Divisor y Mínimo Común múltiplo www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx mcd y mcm Máximo Común Divisor y Mínimo Común múltiplo www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 2007-2008 Contenido 1. Divisores de un número entero 2 2. Máximo común divisor

Más detalles

Guía 1: Tablas de multiplicar

Guía 1: Tablas de multiplicar Guía 1: Tablas de multiplicar Una tabla es una forma de organizar la información en filas y columnas, por lo tanto, las tablas de multiplicar muestran los resultados de la multiplicación de dos números.

Más detalles

Máximo común divisor (páginas 177 180)

Máximo común divisor (páginas 177 180) A NOMRE FECHA PERÍODO Máximo común divisor (páginas 77 0) Dos o más números pueden tener el mismo factor, llamado factor común. El mayor de los factores comunes de dos o más números se llama máximo común

Más detalles

MATEMÁTICAS CONTENIDOS MÍNIMOS DE 1º E.S.O.

MATEMÁTICAS CONTENIDOS MÍNIMOS DE 1º E.S.O. MATEMÁTICAS CONTENIDOS MÍNIMOS DE 1º E.S.O. Calcular el valor de posición de cualquier cifra en cualquier número natural. Aplicar las propiedades fundamentales de la suma, resta, multiplicación y división

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Un grupo de variables representadas por letras junto con un conjunto de números combinados con operaciones de suma, resta, multiplicación, división, potencia o etracción de raíces

Más detalles

Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x

Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Los polinomios Los polinomios Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Elementos de un polinomio Los términos: cada

Más detalles

TALLER DE MATEMATICAS 4º

TALLER DE MATEMATICAS 4º FORMACIÓN ACADÉMICA TALLER DE MATEMATICAS º PFA-0-R0 Versión 0 PERIODO 0 NOMBRE: CURSO:0 CAPACIDADES Solución de problemas Razonamiento Representación gráfica EJE: NUMERICO VARIACIONAL TEMA DESTREZAS Comprender

Más detalles

Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-)

Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-) CÁLCULO MATEMÁTICO BÁSICO LOS NUMEROS ENTEROS Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-) Si un número aparece entre barras /5/, significa que su

Más detalles

2. Números enteros, fracciones y decimales

2. Números enteros, fracciones y decimales Matemáticas de NIVEL I Números enteros, fracciones y decimales - 1 2. Números enteros, fracciones y decimales 1. Números enteros En la vida cotidiana surgen situaciones numéricas que no se pueden expresar

Más detalles

4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN

4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN 4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN Bloque 2. POLINOMIOS. (En el libro Tema 3, página 47) 1. Definiciones. 2. Valor numérico de una expresión algebraica. 3. Operaciones con polinomios: 3.1. Suma,

Más detalles

LOS NÚMEROS. Naturales, Divisibilidad Enteros. Fracciones, Decimales. Sistema Métrico Decimal

LOS NÚMEROS. Naturales, Divisibilidad Enteros. Fracciones, Decimales. Sistema Métrico Decimal LOS NÚMEROS Naturales, Divisibilidad Enteros Fracciones, Decimales Sistema Métrico Decimal 1 Los números naturales permiten cuantificar y reflejar ciertas magnitudes. El número de personas, el número de

Más detalles

Fracciones. Objetivos. Antes de empezar

Fracciones. Objetivos. Antes de empezar Fracciones Objetivos En esta quincena aprenderás a: Conocer el valor de una fracción. Identificar las fracciones equivalentes. Simplificar una fracción hasta la fracción irreducible. Pasar fracciones a

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas 0 Polinomios y fracciones algebraicas En esta Unidad aprenderás a: d Trabajar con epresiones polinómicas. d Factorizar polinomios. d Operar con fracciones algebraicas. d Descomponer una fracción algebraica

Más detalles

Qué son los monomios?

Qué son los monomios? Qué son los monomios? Recordemos qué es una expresión algebraica. Definición Una expresión algebraica es aquella en la que se utilizan letras, números y signos de operaciones. Si se observan las siguientes

Más detalles

Divisibilidad y números primos

Divisibilidad y números primos Divisibilidad y números primos Divisibilidad En muchos problemas es necesario saber si el reparto de varios elementos en diferentes grupos se puede hacer equitativamente, es decir, si el número de elementos

Más detalles

martilloatomico@gmail.com

martilloatomico@gmail.com Titulo: OPERACIONES CON POLINOMIOS (Reducción de términos semejantes, suma y resta de polinomios, signos de agrupación, multiplicación y división de polinomios) Año escolar: 2do: año de bachillerato Autor:

Más detalles

Clases de apoyo de matemáticas Fracciones y decimales Escuela 765 Lago Puelo Provincia de Chubut

Clases de apoyo de matemáticas Fracciones y decimales Escuela 765 Lago Puelo Provincia de Chubut Clases de apoyo de matemáticas Fracciones y decimales Escuela 765 Lago Puelo Provincia de Chubut Este texto intenta ser un complemento de las clases de apoyo de matemáticas que se están realizando en la

Más detalles

INSTITUTO VALLADOLID PREPARATORIA página 37

INSTITUTO VALLADOLID PREPARATORIA página 37 INSTITUTO VALLADOLID PREPARATORIA página 37 página 38 SUMA DE FRACCIONES CONCEPTO Las cuatro operaciones fundamentales, suma, resta, multiplicación y división, con fracciones algebraicas se realizan bajo

Más detalles

NÚMEROS NATURALES Y NÚMEROS ENTEROS

NÚMEROS NATURALES Y NÚMEROS ENTEROS NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de un rebaño) y de

Más detalles

Lección 7. Números mixtos. Objectivos

Lección 7. Números mixtos. Objectivos Nombre de estudiante: Fecha: Nombre de la persona de contacto: Número de teléfono: Lección 7 Números mixtos Objectivos Entender las relaciones entre fracciones y números mixtos Convertir entre números

Más detalles

POLINOMIOS Y FRACCIONES ALGEBRAICAS

POLINOMIOS Y FRACCIONES ALGEBRAICAS POLINOMIOS Y FRACCIONES ALGEBRAICAS Página 66 PARA EMPEZAR, REFLEXIONA Y RESUELVE Múltiplos y divisores. Haz la división: 4 + 5 0 + 5 A la vista del resultado, di dos divisores del polinomio 4 + 5 0. (

Más detalles

Tema 2: Fracciones y proporciones

Tema 2: Fracciones y proporciones Tema 2: Fracciones y proporciones Fracciones Números racionales Números decimales Razones y proporciones Porcentajes 1 2 Las fracciones: un objeto, varias interpretaciones (1) Parte de un todo (2) Un reparto

Más detalles

Lección 12: Suma y resta de fracciones

Lección 12: Suma y resta de fracciones Lección : Suma y resta de fracciones Suma y resta de fracciones con el mismo denominador Para sumar o restar quebrados con el mismo denominador, sumamos o restamos los numeradores y, si queremos, simplificamos

Más detalles

Profr. Efraín Soto Apolinar. Números reales

Profr. Efraín Soto Apolinar. Números reales úmeros reales En esta sección vamos a estudiar primero los distintos conjuntos de números que se definen en matemáticas. Después, al conocerlos mejor, podremos resolver distintos problemas aritméticos.

Más detalles

LAS FRACCIONES. Qué significan?

LAS FRACCIONES. Qué significan? LAS FRACCIONES Parte de una unidad: NUMERADOR DENOMINADOR Qué significan? La unidad se divide en cinco partes y cogemos División: = 0 Operador: de 0= 0 =0 =1 Leer y escribir fracciones Para leer fracciones

Más detalles

Lección 9: Polinomios

Lección 9: Polinomios LECCIÓN 9 c) (8 + ) j) [ 9.56 ( 9.56)] 8 q) (a x b) d) ( 5) 4 k) (6z) r) [k 0 (k 5 k )] e) (. 0.) l) (y z) s) (v u ) 4 f) ( 5) + ( 4) m) (c d) 7 t) (p + q) g) (0 x 0.) n) (g 7 g ) Lección 9: Polinomios

Más detalles

Operaciones con polinomios

Operaciones con polinomios Operaciones con polinomios Los polinomios son una generalización de nuestro sistema de numeración. Cuando escribimos un número, por ejemplo, 2 354, queremos decir: 2 354 = 2 000 + 300 + 50 + 4 = 2)1 000)

Más detalles

Tema 3. Polinomios y fracciones algebraicas

Tema 3. Polinomios y fracciones algebraicas Tema. Polinomios y fracciones algebraicas. Monomios.. Definiciones.. Operaciones con monomios. Polinomios.. Definiciones.. Operaciones con polinomios. Factorización de un polinomio.. Teorema del resto.

Más detalles

Polinomios y Fracciones Algebraicas

Polinomios y Fracciones Algebraicas Tema 4 Polinomios y Fracciones Algebraicas En general, a lo largo de este tema trabajaremos con el conjunto de los números reales y, en casos concretos nos referiremos al conjunto de los números complejos.

Más detalles

DEPARTAMENTO DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICAS UNIDAD 1 Números racionales e irracionales 2º ESO Contenidos, objetivos y criterios de evaluación ÍNDICE DE LA UNIDAD 1. El conjunto de los números racionales. 1.1. Operaciones con fracciones. 1.1.1 Suma

Más detalles

1.3 Números racionales

1.3 Números racionales 1.3 1.3.1 El concepto de número racional Figura 1.2: Un reparto no equitativo: 12 5 =?. Figura 1.3: Un quinto de la unidad. Con los números naturales y enteros es imposible resolver cuestiones tan simples

Más detalles

PARA EMPEZAR. Arquímedes nació en el año 287 a. C. en Siracusa (Sicilia). Cuántos años han transcurrido desde su nacimiento?

PARA EMPEZAR. Arquímedes nació en el año 287 a. C. en Siracusa (Sicilia). Cuántos años han transcurrido desde su nacimiento? NÚMEROS RACIONALES PARA EMPEZAR.. Arquímedes nació en el año a. C. en Siracusa (Sicilia). Cuántos años han transcurrido desde su nacimiento? x Han transcurrido años, siendo x el número de día del año actual.

Más detalles

REGLA DE RUFFINI. FACTORIZACIÓN DE POLINOMIOS

REGLA DE RUFFINI. FACTORIZACIÓN DE POLINOMIOS REGLA DE RUFFINI. FACTORIZACIÓN DE POLINOMIOS Si en una división de polinomios el divisor es de la forma (x - a) se puede aplicar la regla de Ruffini para obtener el cociente y el resto de la división.

Más detalles

Unidad 1. Las fracciones.

Unidad 1. Las fracciones. Unidad 1. Las fracciones. Ubicación Curricular en España: 4º, 5º y 6º Primaria, 1º, 2º y 3º ESO. Objetos de aprendizaje. 1.1. Concepto de fracción. Identificar los términos de una fracción. Escribir y

Más detalles

NÚMEROS REALES MÓDULO I

NÚMEROS REALES MÓDULO I MÓDULO I NÚMEROS REALES NUEVE planetas principales constituyen el sistema solar. Si los ordenamos de acuerdo a su distancia al Sol Mercurio es el que está más cerca (58 millones de Km ) Plutón el más lejano

Más detalles

Cualquier número de cualquier base se puede representar mediante la siguiente ecuación polinómica:

Cualquier número de cualquier base se puede representar mediante la siguiente ecuación polinómica: SISTEMAS DE NUMERACIÓN Los números se pueden representar en distintos sistemas de numeración que se diferencian entre si por su base. Así el sistema de numeración decimal es de base 10, el binario de base

Más detalles

3 POLINOMIOS Y FRACCIONES ALGEBRAICAS

3 POLINOMIOS Y FRACCIONES ALGEBRAICAS POLINOMIOS Y FRACCIONES ALGEBRAICAS PARA EMPEZAR Un cuadrado tiene 5 centímetros de lado. Escribe la epresión algebraica que da el área cuando el lado aumenta centímetros. A ( 5) Señala cuáles de las siguientes

Más detalles

UNIVERSIDAD NACIONAL DE VILLA MERCEDES. Curso de Formación en Matemáticas

UNIVERSIDAD NACIONAL DE VILLA MERCEDES. Curso de Formación en Matemáticas UNIVERSIDAD NACIONAL DE VILLA MERCEDES Curso de Formación en Matemáticas - 06 - Autor: Lic. Esp. Fernando Javier Quiroga Villegas OBJETIVOS DEL CURSO Objetivo General: Afianzar los conocimientos adquiridos

Más detalles

Natural por decimal Decimal por natural Decimal por decimal 2764 x 2,9 24876. 89,26 x 24 35704 2142,24

Natural por decimal Decimal por natural Decimal por decimal 2764 x 2,9 24876. 89,26 x 24 35704 2142,24 1.- SUMA Y RESTA DE NÚMEROS DECIMALES Para sumar o restar números con decimales se suman o restan siempre unidades del mismo orden. 342,51 + 8,1 + 9.627,329 350 18,436 342,51 8,1 9.629,329 9.979,939 350,000

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas Polinomios y fracciones algebraicas POLINOMIOS SUMA, RESTA Y MULTIPLICACIÓN POTENCIAS DIVISIÓN REGLA DE RUFFINI DIVISORES DE UN POLINOMIO FACTORIZACIÓN DE UN POLINOMIO VALOR NUMÉRICO DE UN POLINOMIO TEOREMA

Más detalles

a) Un número par I) 2n 1 b) Un número impar II) x, x 1 c) Un número y el que le sigue III) 3a d) El triple de un número IV) 2z x 6 b) e)

a) Un número par I) 2n 1 b) Un número impar II) x, x 1 c) Un número y el que le sigue III) 3a d) El triple de un número IV) 2z x 6 b) e) Polinomios El 6 de septiembre del 00 se celebró el gran Premio de Singapur, la 5.ª prueba del mundial de Fórmula. La carrera constaba de 6 vueltas a un circuito de 5 067 m de longitud. Fernando Alonso,

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Cálculo de los múltiplos y divisores de un número. Criterios de divisibilidad por 2, 3, 5 y 10.

OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Cálculo de los múltiplos y divisores de un número. Criterios de divisibilidad por 2, 3, 5 y 10. _ 9-.qxd //7 9:7 Página 9 Divisibilidad INTRODUCCIÓN El concepto de divisibilidad requiere dominar la multiplicación, división y potenciación de números naturales. Es fundamental dedicar el tiempo necesario

Más detalles

UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS

UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS Unidad 6: Polinomios con coeficientes enteros. Al final deberás haber aprendido... Expresar algebraicamente enunciados sencillos. Extraer enunciados razonables

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas UNIDAD Polinomios y fracciones algebraicas U n polinomio es una expresión algebraica en la que las letras y los números están sometidos a las operaciones de sumar, restar y multiplicar. Los polinomios,

Más detalles

Biblioteca Virtual Ejercicios Resueltos

Biblioteca Virtual Ejercicios Resueltos EJERCICIO 13 13 V a l o r n u m é r i c o Valor numérico de expresiones compuestas P r o c e d i m i e n t o 1. Se reemplaza cada letra por su valor numérico 2. Se efectúan las operaciones indicadas Hallar

Más detalles

Polinomios y Ecuaciones

Polinomios y Ecuaciones Ejercicios de Cálculo 0 Prof. María D. Ferrer G. Polinomios y Ecuaciones.. Polinomios: Un polinomio o función polinómica es una epresión de la forma: n n n P a a a a a a = n + n + n + + + + 0 () Los números

Más detalles

1º) Siempre que se pueda, hay que sacar factor común: :a b ± a c ± a d ± = a (b ± c ± d ± ):

1º) Siempre que se pueda, hay que sacar factor común: :a b ± a c ± a d ± = a (b ± c ± d ± ): Pág. 1 de 7 FAC T O R I Z AC I Ó N D E P O L I N O M I O S Factorizar (o descomponer en factores) un polinomio consiste en sustituirlo por un producto indicado de otros de menor grado tales que si se multiplicasen

Más detalles

Si los términos no son semejantes no se pueden reducir a un total. Cuando los elementos son de la misma especie se dice que son semejantes.

Si los términos no son semejantes no se pueden reducir a un total. Cuando los elementos son de la misma especie se dice que son semejantes. Operaciones básicas con Expresiones Algebraicas (adición, sustracción, multiplicación y división) y redacta un informe Teórico práctico donde describas el procedimiento para realizar cada operación y al

Más detalles

PROGRAMACIÓN DE AULA MATEMÁTICAS 6º DE PRIMARIA

PROGRAMACIÓN DE AULA MATEMÁTICAS 6º DE PRIMARIA PROGRAMACIÓN DE AULA MATEMÁTICAS 6º DE PRIMARIA UNIDAD 1: NÚMEROS NATURALES. OPERACIONES Conocer los nueve primeros órdenes de unidades y sus equivalencias. Leer, escribir y descomponer números de hasta

Más detalles

Programa de Algebra Superior Caracterización de la asignatura: Esta materia se agregó al plan de estudios de las ingenierías como reforzamiento de

Programa de Algebra Superior Caracterización de la asignatura: Esta materia se agregó al plan de estudios de las ingenierías como reforzamiento de Programa de Algebra Superior Caracterización de la asignatura: Esta materia se agregó al plan de estudios de las ingenierías como reforzamiento de las bases matemáticas para mejorar el aprendizaje de los

Más detalles

CAPÍTULO I MATEMÁTICAS

CAPÍTULO I MATEMÁTICAS CAPÍTULO I MATEMÁTICAS 1. CONJUNTOS En el lenguaje común, conjunto es, hasta cierto punto, sinónimo de colección, clase o grupo. Sin embargo, en el desarrollo de este estudio, veremos que la noción matemática

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS EXPRESIONES ALGEBRAICAS. POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Estas expresiones del área son expresiones algebraicas, ya que además de números aparecen letras. Son también expresiones algebraicas: bac,

Más detalles

Ejercicios Resueltos del Tema 4

Ejercicios Resueltos del Tema 4 70 Ejercicios Resueltos del Tema 4 1. Traduce al lenguaje algebraico utilizando, para ello, una o más incógnitas: La suma de tres números consecutivos Un número más la mitad de otro c) El cuadrado de la

Más detalles

Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos

Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos MATEMÁTICAS BÁSICAS DESIGUALDADES DESIGUALDADES DE PRIMER GRADO EN UNA VARIABLE La epresión a b significa que "a" no es igual a "b ". Según los valores particulares de a de b, puede tenerse a > b, que

Más detalles

Operaciones Aritméticas en Números con Signo

Operaciones Aritméticas en Números con Signo Operaciones Aritméticas en Números con Signo M. en C. Erika Vilches Parte 3 Multiplicación sin Signo Reglas básicas para multiplicar bits: 0x0 = 0 0x1 = 0 1x0 = 0 1x1 = 1 Ejemplos en números sin signo:

Más detalles

Fracciones. Contenidos

Fracciones. Contenidos Fracciones La fotografía nos permite captar imágenes de fenómenos que el ojo humano es incapaz de ver por la rapidez con que se suceden. Conseguimos captar estos momentos mediante el obturador, que es

Más detalles

EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS/AS CON LAS MATEMÁTICAS DE 3º ESO PENDIENTES PRIMER PARCIAL

EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS/AS CON LAS MATEMÁTICAS DE 3º ESO PENDIENTES PRIMER PARCIAL de º de E.S.O. EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS/AS CON LAS MATEMÁTICAS DE º ESO PENDIENTES PRIMER PARCIAL Fecha tope para entregarlos de enero de 0 Examen de enero de 0 I.E.S. SERPIS DEPARTAMENTO

Más detalles

FRACCIONES. Es un decimal exacto: los únicos factores primos que aparecen en el denominador son el dos y el cinco.

FRACCIONES. Es un decimal exacto: los únicos factores primos que aparecen en el denominador son el dos y el cinco. Estudiar en el libro de Texto: Pág. 24, 25, 26 FRACCIONES Cómo reconocer las que dan lugar a decimales exactos? Una fracción irreducible da lugar a un número decimal exacto si el denominador, descompuesto

Más detalles

Lección 4: Suma y resta de números racionales

Lección 4: Suma y resta de números racionales GUÍA DE MATEMÁTICAS II Lección : Suma y resta de números racionales En esta lección recordaremos cómo sumar y restar números racionales. Como los racionales pueden estar representados como fracción o decimal,

Más detalles

Coeficientes 43 X = 43 X partes literales - 7 a 3 = - 7 a 3

Coeficientes 43 X = 43 X partes literales - 7 a 3 = - 7 a 3 APUNTES Y EJERCICIOS DEL TEMA 3 1-T 3--2ºESO EXPRESIONES ALGEBRAICAS: Son combinaciones de n os y letras unidos con operaciones matemáticas (aritméticas), que generalmente suelen ser sumas, restas, multiplicaciones

Más detalles

HIgualdades y ecuacionesh. HElementos de una ecuaciónh. HEcuaciones equivalentes. HSin denominadoresh. HCon denominadoresh

HIgualdades y ecuacionesh. HElementos de una ecuaciónh. HEcuaciones equivalentes. HSin denominadoresh. HCon denominadoresh 6 Ecuaciones Objetivos En esta quincena aprenderás a: Reconocer situaciones que pueden resolverse con ecuaciones Traducir al lenguaje matemático enunciados del lenguaje ordinario. Conocer los elementos

Más detalles

-3 es un número entero y racional porque se puede poner en forma de fracción así: es un número racional porque ya está expresado en forma de

-3 es un número entero y racional porque se puede poner en forma de fracción así: es un número racional porque ya está expresado en forma de Definición Número racional es todo valor que puede ser expresado mediante una fracción. Todas las fracciones equivalentes entre sí expresan el mismo número racional. Es decir, todo número que se pueda

Más detalles

CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS

CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS Guía de Estudio para examen de Admisión de Matemáticas CONTENIDO PRESENTACIÓN... 3 I. ARITMÉTICA... 4 1. OPERACIONES CON FRACCIONES...

Más detalles

Calcular con fracciones para todos

Calcular con fracciones para todos Calcular con fracciones para todos 1 Calcular con fracciones para todos M. Riat riat@pobox.com Versión 1.0 Burriana, 2014 Calcular con fracciones para todos 2 ÍNDICE DE CAPÍTULOS Índice de capítulos...

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman V A R I A B L ES, I N C Ó G N I T A S o

Más detalles

Redondea fracciones y números mixtos (páginas 219 222) La siguiente guía te ayudará a redondear fracciones y números mixtos.

Redondea fracciones y números mixtos (páginas 219 222) La siguiente guía te ayudará a redondear fracciones y números mixtos. A NOMRE FECHA PERÍODO Redondea fracciones y números mixtos (páginas ) La siguiente guía te ayudará a redondear fracciones y números mixtos Si el numerador es casi tan grande como el denominador, redondea

Más detalles

OPERADORES LÓGICOS Y DE COMPARACIÓN EN PHP. PRIORIDADES. EJEMPLOS. EJERCICIOS RESUELTOS. (CU00818B)

OPERADORES LÓGICOS Y DE COMPARACIÓN EN PHP. PRIORIDADES. EJEMPLOS. EJERCICIOS RESUELTOS. (CU00818B) APRENDERAPROGRAMAR.COM OPERADORES LÓGICOS Y DE COMPARACIÓN EN PHP. PRIORIDADES. EJEMPLOS. EJERCICIOS RESUELTOS. (CU00818B) Sección: Cursos Categoría: Tutorial básico del programador web: PHP desde cero

Más detalles

CONTENIDO: Operaciones algebraicas con polinomios. División sintética. Operaciones con exponentes racionales.

CONTENIDO: Operaciones algebraicas con polinomios. División sintética. Operaciones con exponentes racionales. CONTENIDO: Operaciones algebraicas con polinomios. División sintética. Operaciones con exponentes racionales. Definir los conceptos básicos del Algebra Elemental. Conocer los procedimientos para sumar,

Más detalles

Tema 6: Fracciones. Fracciones

Tema 6: Fracciones. Fracciones Fracciones Un quebrado o número fraccionario se expresa por dos números naturales, el denominador que indica en cuántas partes se ha dividido la unidad y el numerador, que indica cuántas partes de esta

Más detalles

UNIDAD I OPERACIONES CON MONOMIOS Y POLINOMIOS. I.S.C. Alejandro de Fuentes Martínez

UNIDAD I OPERACIONES CON MONOMIOS Y POLINOMIOS. I.S.C. Alejandro de Fuentes Martínez UNIDAD I OPERACIONES CON MONOMIOS Y POLINOMIOS I.S.C. Alejandro de Fuentes Martínez 1 ESQUEMA ESQUEMA-RESUMEN RESUMEN DE LA UNIDAD Álgebra (Concepstos básicos) Suma Resta Multiplicación División OPERACIONES

Más detalles

secundaria Solucionario desarrollado

secundaria Solucionario desarrollado secundaria FUNDAMENTAL Solucionario desarrollado Presentación Estimado maestro: En la búsqueda de facilitar la labor docente, Ediciones Castillo pone a su alcance el presente Solucionario desarrollado

Más detalles

UNIDAD 1. NÚMEROS NATURALES Y OPERACIONES

UNIDAD 1. NÚMEROS NATURALES Y OPERACIONES UNIDAD 1. NÚMEROS NATURALES Y OPERACIONES 1. SISTEMA DE NUMERACIÓN DECIMAL.. LECTURA, ESCRITURA, DESCOMPOSICIÓN Y ORDENACIÓN DE NÚMEROS NATURALES. 3. SUMA DE NÚMEROS NATURALES. PROPIEDADES. 4. RESTA DE

Más detalles

Sistemas de numeración y aritmética binaria

Sistemas de numeración y aritmética binaria Sistemas de numeración y aritmética binaria Héctor Antonio Villa Martínez Programa de Ciencias de la Computación Universidad de Sonora Este reporte consta de tres secciones. Primero, la Sección 1 presenta

Más detalles