Matemáticas I (Álgebra) Manual de bachillerato. Primera Edición, 2009 Compilación y Asesoría Pedagógica Erika Alejandra López Estrada

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Matemáticas I (Álgebra) Manual de bachillerato. Primera Edición, 2009 Compilación y Asesoría Pedagógica Erika Alejandra López Estrada"

Transcripción

1 Matemáticas I (Álgebra) Manual de bachillerato Primera Edición, 2009 Compilación y Asesoría Pedagógica Erika Alejandra López Estrada Coordinador editorial Alan Santacruz Farfán Revisión Alejandro Vázquez Zúñiga Diseño Gráfico de forros para la presente edición Diana Leticia Rebollo Jiménez Formación ************************** Universidad La Concordia Dirección de Educación a Distancia, Av Tecnológico 109 Col. Ejido de Ojocaliente, CP 20198, Aguascalientes, Ags. ISBN pendiente Prohibida la reproducción total o parcial de esta obra incluido el diseño por cualquier medio, electrónico o mecánico, sin el consentimiento por escrito del editor.

2 Presentación Apoyos didácticos Objetivo general Unidad 1. Expresiones algebraicas Introducción 1. Notación algebraica 1.1 Cómo escribir expresiones algebraicas 1.2 Orden de las operaciones 2. Polinomios 2.1 Clasificación de polinomios 2.2 Suma y resta de polinomios 2.3 Multiplicación de polinomios Multiplicación de monomios Multiplicación de un monomio por un polinomio Multiplicación de un polinomio por un polinomio 2.4 Productos notables 2.5 División de expresiones algebraicas División de monomios División de polinomios por monomios División de polinomio entre polinomio Resumen Autoevaluación Unidad 2. Factorización Introducción 1. Tipos de factorización 1.1 Factor común 1.2 Factorización por agrupamiento 1.3 Trinomio cuadrado perfecto 1.4 Diferencia de cuadrados 1.5 Factorización de trinomio cuadrado perfecto por adición y sustracción. 1.6 Trinomio de la forma x 2 + bx + c 2

3 Resumen Autoevaluación Unidad 3. Operaciones con expresiones racionales Introducción 1. Propiedades de las expresiones racionales 1.1 Estructura 1.2 Multiplicación de fracciones algebraicas 1.3 División de fracciones algebraicas 1.4 Suma y resta de fracciones algebraicas Resumen Autoevaluación Unidad 4. Ecuaciones de primer grado Introducción 1. Ecuaciones equivalentes 2. Definición y solución de ecuaciones de primer grado 2.1 Método de solución 2.2 Aplicaciones de ecuaciones de primer grado en una variable 3. Sistema de ecuaciones de primer grado con dos y tres incógnitas 3.1 Método de suma y resta 3.2 Método de sustitución 3.3 Método de igualación 3.4 Método gráfico 3.5 Determinantes 3.6 Ecuaciones de segundo orden (2x 2) 3.7 Solución de sistema de ecuaciones de primer grado con tres incógnitas 3.8 Ecuaciones de tercer orden (3 x 3) Resumen Autoevaluación Unidad 5. Ecuaciones de Segundo Grado Introducción 1. Raíces 1.1 Solución de ecuaciones cuadráticas con raíces complejas. 2. Definición de una ecuación de segundo grado con una incógnita 2.1 Representación gráfica 2.2 Solución para la forma incompleta ax 2 + bx = Solución para la forma completa ax 2 + bx + c 2.4 Ecuaciones irracionales Resumen 3

4 Autoevaluación Unidad 6. Desigualdades e Inecuaciones Introducción 1. Concepto de desigualdad 1.1 Símbolos de la desigualdad 1.2 Propiedades de las desigualdades 2. Concepto de inecuación 2.1 Solución de inecuaciones de primer grado con una incógnita Método gráfico 3. Graficar desigualdades con dos variables Resumen Autoevaluación Bibliografía 4

5 El propósito fundamental de este libro es que el alumno adquiera y construya con habilidad y destreza los diversos métodos para analizar, relacionar, comparar, diferenciar, sintetizar y valorar expresiones algebraicas por medio de teorías que dan respuesta a problemas clásicos de las matemáticas, los cuales favorecerán su desarrollo intelectual, además de su pensamiento organizado y sistemático para cursos posteriores de matemáticas, así como en las demás materias relacionadas con ella. A la par de esta enseñanza se incorporan los objetos de aprendizaje con el fin de ofrecer a los alumnos amplias gamas de aprendizaje significativo, esta práctica educativa requiere una evaluación cuidadosa de sus objetivos: en matemáticas se deben guiar procesos que apunten hacia formas de razonamiento, también se debe tener presente que el álgebra se ocupa, en su aspecto elemental, de la resolución de ecuaciones que surgen del quehacer de la actividad científica para la resolución de problemas. Se pretende desarrollar una enseñanza que logre encontrar en los aspectos específicos de la estructura cognoscitiva y las dimensiones abstractas del alumno, el establecimiento de vínculos entre lo particular y lo abstracto, debido a que las matemáticas son ciencias de lo abstracto. El contenido de este libro busca establecer una relación entre las matemáticas y el mundo material y social del alumno, ya que es realmente importante destacar que las formas de razonamiento y de creación intelectual del alumno, se mantienen estrechamente asociadas a otras partes del razonamiento humano. En la unidad I conocerá los signos del álgebra por medio de la identificación de elementos en expresiones y términos algebraicos, para que de esta manera el alumno desarrolle la notación algebraica, también identificará polinomios a través de ejercicios de suma, resta y multiplicación de polinomios con la finalidad de usar ejemplos para la resolución de expresiones algebraicas, y utilizará el concepto de álgebra por medio de ejemplos demostrativos de variables y constantes, con el fin de que traduzca expresiones del lenguaje común algebraico. En la unidad II realizará la factorización de diversas expresiones algebraicas por medio del uso y la propiedad distributiva para reducir expresiones en sus partes constituyentes, así como también establecerá el factor común de polinomios, binomios o trinomios, a través de métodos de factorización para fines de disminución de expresiones algebraicas. En la unidad III resolverá problemas que impliquen fracciones racionales a través de la utilización de reglas de simplificación, suma, resta, multiplicación y división, para presentar solución a diversas expresiones. En la unidad IV analizará problemas en donde se utilicen ecuaciones de primer grado con una, dos y tres incógnitas, mediante métodos algebraicos y su interpretación gráfica, a fin de emplear principios de solución a dichas ecuaciones. En la unidad V analizará situaciones en las que se apliquen ecuaciones de segundo grado, por medio de métodos algebraicos a fin de encontrar su solución e interpretación. En la unidad VI examinará problemas en donde intervengan desigualdades e inecuaciones, por medio de sus propiedades para encontrar solución a dichos problemas ayudándose de gráficas, valores absolutos y planos de coordenadas. 5

6 Son aquellas estrategias de instrucción que apoyan cada aspecto del contenido del programa y su principal objetivo es que el alumno se interese en la construcción de su propio conocimiento a través de actividades que le permitan la adquisición del aprendizaje significativo. Dichos apoyos facilitan la comprensión del contenido por medio de un soporte al desempeño escolar como profesional. Se busca tanto la adquisición de contenidos para el logro de objetivos como adquirir herramientas de apoyo para el aprendizaje. Icono Apoyos didácticos Definición Ejemplo Sesión teórica Ejercicios Ejemplos Contiene la información y desarrollo de cada uno de los temas que integran el programa de la asignatura. Plantea una serie de ejercicios que el estudiante debe resolver. Además de que permiten la integración, aplicación y repaso de los contenidos, su resolución sirve como verificador de la asimilación de los contenidos. Presentan una muestra en general de un modelo representativo de una variedad de alguna temática o contenido en general Problemas propuestos Problemas resueltos Buscan poner en práctica las habilidades del alumno para solución de problemas propuestos. Exponen la manera de resolver problemas propuestos, funcionando como una guía práctica para comparar y optimizar los métodos del alumno para solucionar otros problemas. 6

7 Contenido interactivo Autoevaluación Resolución de ejercicios Es un material de consulta que se utiliza para cualquier temática y a su vez sirve de apoyo para exponer cualquier tipo de contenido. Está enfocada a una serie de actividades en donde se pondrá a prueba lo que el alumno ha comprendido. Es una forma de regular el avance unidad a unidad, la correcta resolución es indicativo de del manejo adecuado de información requerido para la unidad siguiente. Son un recurso para la comparación de respuestas obtenidas, a manera que el alumno obtenga una retroalimentación de aprendizaje. 7

8 Al término del curso el alumno construirá con habilidad y destreza los diversos métodos para analizar, relacionar, comparar, diferenciar, sintetizar y valorar expresiones algebraicas por medio de teorías que dan respuesta a problemas algebraicos clásicos de las matemáticas, los cuales favorecerán su desarrollo intelectual, además de su pensamiento organizado y sistemático para cursos posteriores de matemáticas, así como en las demás materias relacionadas con ella. 8

9 EXPRESIONES ALGEBRAICAS Objetivos Al finalizar la unidad, el alumno: Conocerá los signos del álgebra por medio de la identificación de elementos en expresiones y términos algebraicos, para que de esta manera desarrolle la notación algebraica. Identificará polinomios a través de ejercicios de suma, resta y multiplicación de polinomios con la finalidad de usar ejemplos para la resolución de expresiones algebraicas. Utilizará el concepto de álgebra por medio de ejemplos demostrativos de variables y constantes, con el fin de que traduzca expresiones del lenguaje común algebraico. Introducción El concepto de la cantidad en álgebra es mucho más amplio que en aritmética. En aritmética las cantidades se representan por números y estos expresan valores determinados. Mientras que en álgebra se utilizan, además de números concretos, las letras del alfabeto para representar cantidades (números) conocidas o desconocidas; es decir, los símbolos que se utilizan en el álgebra para representar cantidades son los números concretos y las letras del alfabeto. Entonces podríamos decir que el álgebra presenta una estructura con las siguientes características: Consta de un conjunto de símbolos que expresan números más complejos. 9

10 Consta de las operaciones algebraicas (operaciones de adición (+), sustracción (-), multiplicación (x), división ( ), potenciación y radicación ( )) Las propiedades de las operaciones. 1. Notación algebraica Álgebra: Es una rama de las matemáticas que generaliza los métodos y procedimientos para efectuar cálculos y resolver problemas. Fórmulas algebraicas: Es la representación, por medio de letras, de una regla o de un principio general. Son una consecuencia de la generalización que implica la representación de las cantidades por medio de letras. Así la geometría enseña que el área de un rectángulo es igual al producto de su base por su altura, luego llamando al: A= área del rectángulo b= base h= altura Con estas letras equivale a formar la siguiente fórmula A= h x h Esto representará de un modo general el área de cualquier rectángulo, pues el área de un rectángulo dado se obtendrá con solo sustituir b y h en la formula anterior por sus valores en el caso dado. Ejemplo Haciendo alusión a la anterior formula se puede resolver el siguiente rectángulo aplicando la fórmula anterior. Altura: h=2 Base: b=3 Aplicación de la fórmula anterior: A= b x h = 3m x 2m = 6m En álgebra se trata de establecer un principio que generalizado puede aplicarse en otros problemas semejantes. Signos del álgebra Signos de operación Signos de relación Signos de agrupamiento 10

11 Signos de operación: Las operaciones de adición, sustracción, multiplicación, división, potenciación y radicación se efectuarán en forma similar que en la aritmética; dichas operaciones las expresan los siguientes signos: a) El signo de la adición es: (+). Ejemplos 6 a + b b) El signo de sustracción es: (-). Ejemplos c d c) El signo de multiplicación es: (x), ejemplo a x b; también se usa un punto entre los factores. a b (k) (l) Ejemplos Al tener factores literales o un factor numérico y otra literal, el signo de la multiplicación, no es necesario que se escriba, es decir, uvw, 4cd, 2a. d) El signo de división es: ( ), ejemplo: x y; también se representa separando el dividendo y el divisor por una línea horizontal. Ejemplos x y e) El signo de la potenciación es el exponente, que es un número que se escribe en la parte superior derecha de una literal, número o expresión, indicando el número de veces que la literal, número de expresión que se denomina base, se toma como factor. Ejemplos m 4 = (m) (m) (m) (m) 2 3 = (2) (2) (2) (3 xy) 2 = (3 xy) (3 xy)= 9 x 2 y 2 Cuando una literal, número u expresión no tienen exponente indicado, se Se sobreentiende que su exponente es la unidad. 11

12 Ejemplos a b 1 3 = xy = 5 1 x 1 y 1 f) El signo de radicación es: ( ) llamado radical, dentro de este signo se coloca la expresión a la cual se le va a extraer la raíz. 2 a Extraer la raíz cuadrada de 2a Ejemplos 3 8 x 2 y Extraer la raíz cúbica de 8 x 2 y Signos de relación: Se emplean estos signos para indicar la relación que existe entre dos cantidades. Los principales son: = que se lee igual a > que se lee mayor que < que se lee menor que a = b se lee a igual a b x + y > m se lee x + y es mayor que m a < b + c se lee a menor que b + c Signos de Agrupación: Son los siguientes: Paréntesis Corchetes Llaves Coeficiente: Es el producto de dos factores, cualquiera de los factores es llamado coeficiente del otro factor. Así en el siguiente producto: 3a el factor 3 es coeficiente del factor e indica que el factor a se toma como sumando tres veces, o sea como sigue: 3a= a + a +a 5b= b + b+ b + b + b Estos son coeficientes numéricos En el producto ab, el factor a es el coeficiente del factor b, e indica que el factor b se toma como sumando a veces, o sea; Estos son coeficientes literales ab= b + b+ b + b a veces 12

13 Ejercicio 1. Desarrolle los siguientes coeficientes 8 a = 6 c = 9 b= 1.1 Cómo escribir expresiones algebraicas Para hacer más visual la escritura vamos a suponer que una barra de chocolate cuesta 5 pesos. Entonces 5 x 2 es el costo de dos barras de chocolate, 5 x 3 es el costo de tres y así sucesivamente. En general, para calcular el costo de cualquier cantidad de barras de chocolate se multiplica por 5 pesos por el número de barras de chocolate. Podemos representar esta situación con una expresión algebraica. Ejemplos 5 pesos Por Número de barras de chocolate 5 X n La letra n representa un número desconocido, en este caso las barras de chocolate. La incógnita n se denomina variable porque su valor varía. Una expresión algebraica contiene al menos una variable y al menos una operación matemática, como se muestra en los siguientes ejemplos: h 3 5n + 1 r 1 xy 4 x a t Una expresión numérica contiene sólo números y operaciones matemáticas. Por ejemplo es una expresión numérica. En una expresión en donde haya una multiplicación, las cantidades que se multiplican se llaman factores y el resultado es el producto. Ejemplos 9 x 3 x 7 = 189 Factores Producto 13

14 Para escribir una expresión de multiplicación, como 7 x b, se puede usar un punto o un paréntesis; mientras que para expresar una división se puede utilizar una línea. 7 b 7 (b) (7) (b) 7b Significa 7 X b t 2 Significa t 2 El resultado de una expresión de división se llama cociente. Para resolver problemas en matemáticas es importante que aprenda a convertir las palabras en expresiones algebraicas. El siguiente cuadro presenta algunas de las palabras y frases que se usan para indicar operaciones matemáticas. Suma Más la suma de aumentado en más que sumado a el total de Resta Diferencia de disminuido en restado de menor que sustraído de Álgebra División Dividido entre el cociente de la razón de por Multiplicación El producto de multiplicado por a de Ejemplos 1 La suma de k y 18 2 a dividido entre b m + 18 a b o a b 14

15 Ejercicio 2. Escribe la expresión algebraica para cada expresión verbal. a. 26 disminuido en w b. 4 más 8 por y c. La suma de a y b d. z dividido entre y Una ecuación es un enunciado matemático que contiene un signo de igual (=). Algunas palabras que se emplean para indicar los signos de igual son: Igual a Es Es equivalente a Igualdad Es igual a Es lo mismo que Es como Es idéntico a Una ecuación puede incluir números, variables o expresiones algebraicas. 1.2 Orden de las operaciones Algunas expresiones tienen más de una operación. El valor de la expresión depende del orden en el que se evalúan las operaciones Cuál es el valor de ? Método = = 35 Método = 8 7 Sumar 4 y 3 = 56 Multiplicar 8 y 7 La respuesta correcta es 35 y 56? Los valores son diferentes porque se multiplicó y se sumó en diferente orden. Para determinar el valor correcto de la expresión debe seguir el orden de la operación. Orden de las operaciones Encuentra los valores de las expresiones que estén dentro de los símbolos de agrupación; por ejemplo, paréntesis ( ), corchetes [ ] y las que estén indicadas en barras de cociente. Resuelve todas las multiplicaciones o divisiones de izquierda a derecha. Resuelve todas las sumas o restas de izquierda a derecha 15

16 Ejercicio 3. Encuentre el valor de las siguientes expresiones 1. 5 [3 (6 2)] (22-15) (5 4) 2. Polinomios Un polinomio es cualquier expresión algebraica constituida por un conjunto finito de términos, en cada uno de los cuales aparecen números y letras relacionadas solamente mediante productos y potencias de exponentes con números que son naturales. x 2 6x + 9 Ejemplos 5 x 2 y 3ab 6 + 7n 4 9 ab 2 14 ab 4 2 ab 5 En cambio la expresión 8 a x ⅓ y 16 x no son polinomios, porque contienen exponentes que no son números naturales. 2.2 Clasificación de polinomios Monomios: Es un polinomio que consta de un solo término. -6 Un número Monomios x a 2 Una variable El producto de variables 1 a 2 b 2 El producto de números y variables 16

17 Binomio: Es un polinomio que consta de dos términos. y + 4 Binomios 7a - 6 3y 2 - y Trinomio: Es un polinomio que consta de tres términos. a + b + c Trinomios x x - 5 2x 2 + 5xy + 4y Suma y resta de polinomios Suma o adición: Operación que consiste en reunir dos o más expresiones algebraicas en una sola. Para efectuar adiciones con polinomios, se realiza sumando sólo términos semejantes. Sumandos 6a 2 + 8a 2 +2a 2 = 16a 2 Suma Sumar las expresiones: 6a 2 + 8b +2a 2 3 ab + 3b + 8ab - b acomodando los términos semejantes tenemos: Ejemplos 6a 2 3 ab + 3b 2a 2 + 8ab + 8b -b 8a ab + 10b Acomodo de términos semejantes Solución 17

18 Ejercicio 4. Realice la suma de polinomios que se indican 1. 3x 2 7x + 5; x 5x a + 3b - 5c; -7a +12c - 7b x x; 10x 5 + 7x 2 ; -2x + 12 x 2 4. x 4 2x 3 + 7x x; -x 3 4x 2x 4 7x x 2-2xy + y 2 5; -2xy 3y x 2 ; 4xy + y 2 5x 2 6. x 4 x 2 + x; x 3 4x 2 + 5; 7x 2 4x a 4 + a 6 + 6; a 5 3a 3 + 8; a 3 a x 5 + x 9; 3x 4 7x 2 + 6; - 3x 3 4x a 3 + a; a 2 + 5; 7a 2 + 4a; - 8a x 4 x 2 y 2 ; - 5x 3 y + 6xy 3 ; - 4xy 3 + y 4 ; - 4x 2 y xy + x 2 ; - 7y 2 + 4xy x 2 ; 5y 2 x 2 + 6xy; - 6x 2 4xy + y a 3 8ax 2 + x 3 ; 5a 2 x 6ax 2 x 3 ; 3a 3 5a 2 x x 3 ; a ax 2 x 3 Resta o sustracción: Restar una cantidad x de una cantidad y, significa determinar la cantidad x que dé como resultado y. Es decir, para efectuar la resta de dos polinomios se suma el minuendo con el inverso aditivo del sustraendo. Se acostumbra escribir en un renglón los términos del minuendo, y por debajo de éste los que corresponden al inverso aditivo del sustraendo. Restar el polinomio 10y 4 + 8y 3 7y 4 + 5y 2 de 10y 2 6y 4 + y 10 y 3 Tenemos (10y 2 6y 4 + y 10 y 3 ) ( 10y 4 + 8y 3 7y 4 + 5y 2 ) 18

19 Ordenando los polinomios con respecto a y en forma descendente y aplicando la regla de la resta resulta: Ejemplos -6y 4 - y y 2 + y y 4-8y 3-5y 2 +7y +4 4y 4-9y 3 + 5y 2 +8y - 6 Acomodo de términos semejantes Solución Ejercicio 5. Reste el segundo polinomio del primero 1. 6x 2 + 3y 2 7x + 4y 2; 2x 2 y 2-7x a 3 6b 2 c 3 ; 3c 3 + 6b 2 2a 3 3. x 2 3x + y + 6; -12 6y + 2x + 2x x 1 y; -7x 3y x 4xy + 6y 8; -10 y + 7x + 2xy 6. x 3 6x 4 + 8x x ; 25x + 25x 3 18x 2 11x a 5 26a 3 b 2 + 8ab 4 b ; 8 a 4 b + a 3 b 2 15a 2 b 3 45 ab y 6 + y 3 + y ; 23 y 3 + 8y 4 15 y 5 8y 5 9. x 8 x 6 + 3x 4 5x 2 9 7x 7 + 5x 5 23x x x 7 3x 5 y x 4 y 3 8x 2 y ; y 7 60 x 4 y x 3 y 4 50xy 6 x 2 y a x-3 8a x+1 5; a x+2 5a x+1 6a x a n + 16a n a n-2 + a n-3 ; 8a n-1 + 5a n-2 +7a n + a n-3 19

20 2.4 Multiplicación de polinomios Es una operación en la que dos expresiones denominadas multiplicando y multiplicador dan como resultado un producto, a dicho multiplicando y multiplicador se les denomina factores. xz + yz (x + y) z Multiplicando Multiplicador Producto Se regula por las siguientes leyes. Conmutativa El orden de los factores no altera el producto. (a) (b) (c) = abc ó (c) (b) (a) = abc Asociativa Los factores de un producto pueden agruparse de cualquier modo. a (bc) = b (ac) = c(ab) = abc Distributiva Un producto es igual a una suma y la suma es igual a un producto. a (b + c) = ab + ac Ley de los signos: (+) (+) + (-) (-) + (+) (-) - (-) (+) - Ley de los exponentes: Para multiplicar potencias de la misma base se escribe la misma base y se le pone por exponente la suma de los exponentes de los factores. a 4 x a 3 x a 2 = a = a 9 20

21 Ley de los coeficientes: Utilizando la ley conmutativa de la multiplicación llegar a definir lo siguiente: 3a x 4b = Hay tres diferentes casos de multiplicación algebraica Multiplicación de monomios Multiplicación de un polinomio por un monomio Multiplicación de polinomios Multiplicación de monomios Para multiplicar dos o más monomios se utilizan las reglas de los signos para dicha operación y las leyes de los exponentes. Para multiplicar se pueden seguir los siguientes pasos: P A S O S 1. Determinar el signo del producto 2. Multiplicar los coeficientes numéricos. 3. Multiplica las partes literales realizando las leyes de los exponentes correspondientes. a) (3x 2 y)(7xy 4 )= (3) (7) x 2 +1 x 1+4 = 21 x 3 y 5 Ejemplos b) (-6x2y4 n)(-2xy2 n4) = (-6) (-2) x 2+1 y 4+2 n 1+4 = 12 x 3 y 6 n 5 21

22 Ejercicio 6. Efectúe las siguientes multiplicaciones a. 6a 3 b (2ab 5 )= b. (-8xy2) (3xy)= c. (-4m2b) (-5m3b)= d. (- 4m 2 ) (- 5mn 2 p) = e. (5a 2 y) (- 6x 2 ) = f. (- x 2 y 3 ) (- 4y 3 z 4 ) = g. (abc) (cd) = h. (- 15x 4 y 3 ) (- 16a 2 x 3 ) = i. (3a 2 b 3 ) (- 4x 2 y) = j. (- 8m 2 n 3 ) (- 9a 2 mx 4 ) = 22

23 2.4.2 Multiplicación de un monomio por un polinomio Para multiplicar un monomio por un polinomio se utiliza la propiedad distributiva de la multiplicación; o sea, se multiplica cada término del polinomio por el monomio. a. 3x 2 (2x 3 7x 2 x + 6) = (3x 2 )(2 x 3 ) + 3x 2 (-7x 2 ) + 3x 2 (-x) + 3x 2 (6) Solución = 6x 5 21x 4 3x x 2 b. -3a 2 b (5a 3 b 2 +4) = -3a 2 b (5a 3 ) - 3a 2 b (-b 2 ) - 3a 2 b (4) Solución =-15a 5 b + 3a 2 b 3-12a 2 b c. 8 x 5 + x +3 - x + 1 = 8 x x +3-8 x Solución = 4(x 5) + 2(x+3) (x+1) = 4x x + 6 x 1 = 5x - 15 Ejercicio 7. Efectúe las siguientes multiplicaciones a. 4y 2 (y 3 5y 2 + y 1) = b. m 4 (m 3 2m 2 n + 4mn 2 n 2 + 4)= c. 10 x 3 + x +1 = 5 2 d. 12 2x 1 - x -3 = 4 3 e. (m 4 3m 2 n 2 + 7n 4 ) (- 4m 3 x) = f. (x 3 4x 2 y + 6xy 2 ) (ax 3 y) = 23

24 g. (a 3 5a 2 b 8ab 2 ) (- 4a 4 m 2 ) = h. (a m a m-1 + a m-2 ) (- 2a) = i. (x m+1 + 3x m x m-1 ) ( 3x 2m ) = j. (a m b n + a m-1 b n+1 a m-2 b n+2 ) ( 3a 2 b) = Multiplicación de un polinomio por un polinomio La multiplicación de dos polinomios es igual a la suma de los resultados obtenidos de multiplicar cada término de un polinomio por cada término del otro polinomio. Ejemplos (7x - 5) (4x 3 5x 2 2x + 3)= 7x (4x 3 5x 2 2x + 3) 5 (4x 3 5x 2 2x + 3) = 28x 4 35x 3 14x x 20x x x 15 = 28x 4 55x x x 15 Ejercicio 8. Efectúe las siguientes multiplicaciones a. (x 2 3x + 4) (2x - 5) b. (4x 1) (9x - 2) c. (2x - 5y)2 d. (x + 3) (x 2 3x +9) e. (2a b) (4a 4 +2 ab + b 2 ) f. (x 3 + 2x 2 x) (x 2 2x +5) g. (m 3 3m 2 n + 2mn 2 ) (m 2 2mn 8n 2 ) h. (x x) (x 2 x 1) i. (2 3x 2 + x 4 ) (x 2 2x +3) j. (a 3 3a 2 b + 4ab 2 ) (a 2 b 2ab 2 10 b 3 ) 24

25 k. (8x 3 9y 3 + 6xy 2 12 x 2 y) (2x + 3y) l. (2y 3 +y 3y 2 4) (2y + 5) 2.5 Productos notables Son ciertos productos que se efectúan directamente, basándose en reglas notables que al memorizarse su aplicación, nos permiten llegar al resultado sin necesidad de realizar la multiplicación. Binomios al cuadrado: Elevar al cuadrado un binomio (x + y) ó (x y), equivale a multiplicarlo por sí mismo. a) (x + y) 2 = (x + y) (x + y)= x 2 + 2xy +y 2 Ejemplos b) (x - y) 2 = (x - y) (x - y)= x 2-2xy +y 2 Tenemos un terreno cuadrado como el de la siguiente figura 1. Vamos a ver que para sacar el área de un cuadrado multiplicamos lado por lado. 2. Enseguida vemos que en cada lado existe una suma de a + b, por lo que a la hora de calcular el área del cuadrado multiplicamos (a + b) (a + b) (a + b) (a + b) 25

26 Realizamos la multiplicación de la siguiente manera: a + b a + b a 2 + ab + ab + b 2 a 2 + 2ab + b 2 Binomios conjugados: Son aquellos binomios que se diferencian únicamente por el signo de uno de los términos y su solución se realiza elevando al cuadrado cada uno de ellos y colocando el signo negativo al término que cuenta con signos diferentes. (a + b) (a b) = a 2 b 2 (-x + y) (x - y)= -x 2 + y 2 Los binomios conjugados tienen como producto la diferencia de dos cuadrados, igual al cuadrado del primer término menos el cuadrado del segundo término. Para que quede claro lo que se ha estado viendo vamos a realizar los siguientes ejercicios. a 2 ab 2 a 2 b b 2 a) (3x + 5y) (3x + 5y) (3x) 2 (5y) 2 = 9x b) (4y + 8z) (4y + 8z) (4y) 2 (8z) 2 = 16y 2 64z 2 26

27 Binomio al cubo: Es igual al cubo del primer término, más el triple del cuadrado del primer término por el segundo, más el tiple del primer término por el cuadrado del segundo, más el cubo del segundo. 1. Primero elevamos a + b al cubo, esto quiere decir que desarrollamos el cubo de un binomio, como veremos a continuación. (a + b) 3 = (a + b) (a + b) (a + b) 2. Luego, realizando la primera de las multiplicaciones, nos da el ya conocido concepto de un binomio al cuadrado. El cual vamos a multiplicar por la última parte del trinomio. (a ab + b 2 ) (a + b) 3. Lo que hace que nos lleve a un resultado final, al cual vamos a llegar realizando la operación siguiente: a ab + b 2 a + b a 2 + 2a 2 b + ab 2 + a 2 b + 2ab 2 + b 3 a 2 + 3a 2 b +3ab 2 + b 3 Binomio con un término común: El producto de dos binomios del tipo (x + a) (x + b) es igual al cuadrado del primer término, más el producto de la suma de los dos segundos términos por el primer término, más el producto de los segundos términos. Tenemos que: (x + a) (x + b) = x 2 + (a + b) x + ab (x + a) (x + b) = x 2 + ax + bx + ab = x 2 + (a + b)x + ab 27

28 Ejercicio 9. Efectúe las siguientes multiplicaciones utilizando la regla del producto notable correspondiente. 1. (y 5) (y +5) 2. (x 4) (x - 7) 3. (a + 6) (a + 2) 4. (2y + 7) (2x 7) 5. (3x + 4) (3x + 10) 6. (9w - 2) (8w - 6) 7. (w + 7) 2 8. (a - 5) 2 9. (n + 2) (y - 9) (4m 5 + 5n 6 ) (7a 2 b 3 + 5x 4 ) (4ab 2 + 5xy 3 ) (8x 2 y + 9m 3 ) (a 3) (x 7) 2 28

29 17. (2a 3b) (3a 4 5b 2 ) (n 1) (n + 1) 20. (1 3ax) (3ax + 1) 21. (2m + 9) (2m 9) 22. (a 3 b 2 ) (a 3 + b 2 ) 23. (n 2 1) (n ) 24. (n 3 + 3) (n 3 6) 25. (a 4 + 8) (a 4 1) 26. (a 6 + 7) (a 6 9) 27. (2a 3 5b 4 ) (a ) (a 3 15) 29. (x 4 + 7) (x 4 11) 30. (2a + x) (1+b) (4n + 3) (a 2 + 2b) (1 a 2 ) 3 29

30 2.6 División de expresiones algebraicas La división es una operación que tiene por objeto, dado el producto de dos factores (dividendo) y uno de los factores (divisor), encontrar el otro factor (cociente). De esta definición se deduce que el cociente multiplicado por el divisor reproduce el dividendo. Es evidente que: Ejemplo 6a 2 2a = 6a 2 = 3a 2a Ley de los signos: Se puede utilizar como ya hemos visto en la multiplicación +ab +a +ab +a +b -ab -a -ab -a +b Porque (-a) x (+b)= -ab +ab -a +ab -a -b Porque (-a) x (-b)= +ab -ab +a -ab +a -b Porque (-ab) x (+a)= -ab Ley de los exponentes: Para dividir potencias de la misma base y se le pone de exponente la diferencia entre el exponente del dividendo y el exponente del divisor. Ejemplo a 6 a 4 = a 6 = a 6-4 = a 2 a 4 Ley de los coeficientes: El coeficiente del cociente es el cociente de dividir el coeficiente del dividendo entre el coeficiente del divisor. En efecto 20a 2 5a = 4a 4a es el cociente porque 4a x 5a= 20a 2 Y vemos que el coeficiente del cociente 4 Es cociente de dividir

31 2.6.1 División de monomios De acuerdo con los conceptos analizados anteriormente podemos definir este tema. 1. Dividir 4a 2 b 2-2ab Ejemplos 4a 2 b 2-2ab = 4a 2 b 2 = -2ab -2ab 2. Dividir -5a 4 b 3 c -a 2 b -5a 4 b 3 c -a 2 b = - 5ª 4 b 3 = 5a 2 b 2 c - a 2 b División de polinomios por monomios Sea (a + b c) m Aplicando la ley distributiva de la división realice lo siguiente: (a + b c) m = a + b c= a + b - c = m m m m División de polinomio entre polinomio Procedimiento Paso 1. Se ordena el dividendo y el divisor con respecto a una misma letra. Paso 2. Paso 3. Se divide el primer término del divisor, obteniéndose así el primer término cociente. Se multiplica el primer término del cociente por todo el divisor y el producto así obtenido se resta al dividendo, para lo cual se le cambia de signo y se escribe cada termino de su semejante. En el caso de que algún término de este producto no tenga ningún término semejante en el dividendo, se escribe dicho término en el lugar que le corresponda de acuerdo con la ordenación del dividendo y del divisor. Paso 4. Paso 5. Se divide el primer término del resto entre el primer término del divisor, obteniéndose de este modo el segundo término del cociente. El segundo término del cociente se multiplica por todo el divisor y el producto así obtenido se resta de dividendo, cambiando todos los signos. 31

32 Paso 6. Se divide el primer término del segundo resto entre el primer término del divisor y se repiten las operaciones anteriores, hasta obtener 0 como resto. a) (x 4 + 6x 2 5x 3 7x +4) (x 2 3x + 6) Ejemplo x 2-2x -6 x 2 3x + 6 x 4 + 6x 2 5x 3 7x +4 -x 4 + 3x 3 6x 2-2x 3 + 0x 2 7x +2x 3-6x x -6x 2 + 5x +4 +6x 2-18x x + 40 Ejercicio 10. Efectúe las siguientes divisiones 1. x 2 9x + 14 = x 2 2. x 2 4x - 12 = x (x ) (x + 3) = 4. (a 3 b 3 ) (a - b) = 5. (2x 4 + 3x 3 x 2 + 5x 1) (x - 2) = 6. (4x 3 + 5x 2 + 3x 2) (x + 2) = 7. (a m+3 ) (a m+2 ) = 32

33 8. (2x a+4 ) ( x a+2 ) = 9. (-3a m-2 ) ( 5a m-5 ) = 10. (x 2n+3 ) ( 4x n+4 ) = 11. (8m 9 n 2-10m 7 n 4-20m 5 n 6 ) (2m 2 ) = 12. (a x + a m-1 ) (a 2 ) = 13. (2a m 3a m+2 + 6a m+4 ) ( 3a 3 ) = 14. (a m b n +a m-1 b n+2 a m-2 b n+4 ) (a 2 b 3 ) = 15. (a 2 + 2a 3) (a + 3) = 16. (a2 2a 3) (a + 1) = 17. (5n2 11mn +6m2) (m n) = 18. (32n2 54m2 +12mn) (8n 9m) = 19. ( 14y y) ( 3 7y) = 20. (x 3 y 3 ) (x y) = 21. (a 2 + b 2 ) (a 2 ) = 22. (9x 3 + 6x 2 + 7) (3x 2 ) = 23. (16a 4 20a 3 b + 8a 2 b 2 + 7ab 3 ) (4a 2 ) = 33

34 24. (x 2 + 7x + 10) (x + 6) 25. (x 2 5x + 7) (x 4) 26. (m 4 11m ) (m 2 3) Resumen Álgebra: Es una rama de las matemáticas que generaliza los métodos y procedimientos para efectuar cálculos y resolver problemas. Signos del álgebra Signos de operación: Las operaciones de adición (+), sustracción (-), multiplicación (x), división ( ), potenciación y radicación ( ) se efectuarán en forma similar que en la aritmética; dichas operaciones las expresan los siguientes signos: Signos de relación: Se emplean estos signos para indicar la relación que existe entre dos cantidades. = que se lee igual a, > que se lee mayor que, < que se lee menor que. Signos de Agrupación: Son los siguientes: Paréntesis ( ), corchetes [ ] y llaves { } Polinomios: Un polinomio es cualquier expresión algebraica constituida por un conjunto finito de términos, en cada uno de los cuales aparecen números y letras relacionadas solamente mediante productos y potencias de exponentes con números que son naturales. Se clasifican en: Monomios: Es un polinomio que consta de un solo término. Binomio: Es un polinomio que consta de dos términos. Trinomio: Es un polinomio que consta de tres términos. Multiplicación de polinomios: Es una operación en la que dos expresiones denominadas multiplicando y multiplicador dan como resultado un producto, a dicho multiplicando y multiplicador se les denomina factores. Multiplicación de monomios: Para multiplicar dos o más monomios se utilizan las reglas de los signos para dicha operación y las leyes de los exponentes. Multiplicación de un monomio por un polinomio: Para multiplicar un monomio por un polinomio se utiliza la propiedad distributiva de la multiplicación; o sea, se multiplica cada término del polinomio por el monomio. Multiplicación de un polinomio por un polinomio: La multiplicación de dos polinomios es igual a la suma de los resultados obtenidos de multiplicar cada término de un polinomio por cada término del otro polinomio. 34

35 Productos notables: Son ciertos productos que se efectúan directamente, basándose en reglas notables que al memorizarse su aplicación, nos permiten llegar al resultado sin necesidad de realizar la multiplicación. Binomios al cuadrado Binomios conjugados Binomio al cubo Binomio con un término común División de expresiones algebraicas: La división es una operación que tiene por objeto, dado el producto de dos factores (dividendo) y uno de los factores (divisor), encontrar el otro factor (cociente). Autoevaluación 1. Dados los siguientes términos, identifique sus elementos. Término Signo Coeficiente Parte literal a) 7x 2 b) 5 (a 2 + b 2 ) c) mx d) 2 ab 2 c e) -3 x 2 y 3 2. Por medio de los siguientes textos identifique los principales componentes de la fórmula y escríbalos en orden. Área de un rectángulo es la multiplicación de la base por la altura. El área de un triángulo es un medio de su base por la altura. El área de un cilindro recto es la multiplicación de 2 por π, por el radio y por la altura. 3. Monomio por monomio 5a 2 y * 6x 2 = -4m 2 * 5mn 2 p = 3a 2 b 3 * 7b 3 x 5 = -8mn 4 * -9a 2 mx 4 = a m b n * ab = 35

36 4. Monomio por polinomio a 2-2ab + b 2 * - ab = x 5-6x 3-8x * 3a 2 x 2 = x 3-4x 2 y + 6xy 2 * ax 3 y = x 3-3x 2 + 5x -6 * -4x 2 = 5. Polinomio por polinomio m - 6 * m-5 = a 3-4a 2 + 6a * 3ab = a 2-2ab + b 2 * -ab = a 3-5a 2 b - 8ab 2 * -4a 4 m 2 = 6. Productos notables (4x 2 +3y 3 ) 2 = (8-4xy) 2 = (3ab 2-5) 2 = (2b 3 c+9x 4 ) = 7. Efectúa las siguientes multiplicaciones algebraicas y subraya la respuesta correcta. (2x 4 ) (3x 3 y) (-4x 3 y) a) 24x 10 y b) 24x 10 y 2 c) -24x 10 y d) -24x 9 y 2 e) -24x 10 y 2 (-2x 2 y) 3 (3x 2 y 2 ) 3 a) -54x 12 y 9 b) 54x 12 y 9 c) -216x 12 y 9 d) -216x 9 y 15 e) 216x 12 y 9 (-8x 2 y) (-3x 4 y 5 ) 4 a) 648 x 10 y 10 b) -648 x 10 y 10 c) 648 x 18 y 21 d) -648 x 20 y 19 e) -648 x 18 y 21 (5x 3 + 3x 2 2x + 1) (4x - 5) a) 20x x x x - 5 b) 20x 4-11x x x + 5 c) 20x 4-15x x x - 5 d) 20x 4-13x 3-23x x - 5 e) 20x 4-13x x x

37 FACTORIZACIÓN Objetivos Al finalizar la unidad, el alumno: Realizará la factorización de diversas expresiones algebraicas por medio del uso y la propiedad distributiva para reducir expresiones en sus partes constituyentes. Establecerá el factor común de polinomios, binomios o trinomios, a través de métodos de factorización para fines de disminución de expresiones algebraicas. Introducción En matemáticas, la factorización es la descomposición de un objeto en el producto de otros objetos más pequeños, que, al multiplicarlos todos, resulta el objeto original. La factorización se utiliza normalmente para reducir algo en sus partes constituyentes. Factorizar enteros en números primos se describe en el Teorema fundamental de la aritmética, y Factorizar polinomios en el Teorema fundamental del álgebra. Factorizar una expresión algebraica es reescribirla como el producto de sus factores. Por ejemplo, a 2 b 2 se puede expresar como: (a + b) (a - b) La multiplicación algebraica consiste en encontrar el producto de dos o más factores. Es importante tener presente que no todo polinomio se puede factorizar, es decir, así como en la aritmética hay número primos, también en álgebra hay polinomios primos, y son aquellos cuyas expresiones algebraicas sólo son divisibles entre ellas mismas y la unidad; es decir, no se pueden expresar como el producto de otras expresiones algebraicas. 37

38 1. Factorizar un polinomio Binomios Existen algunos métodos de factorización, para algunos casos especiales. 1.- Diferencia de cuadrados. 2.- Suma o diferencia de cubos. 3.- Suma o diferencia de potencias impares iguales. Trinomios 1.- Trinomio al cuadrado perfecto Polinomios 1.- Factor común. 1.1 Factor común Caso I: Factor común Sacar el factor común es extraer la literal común de un polinomio, binomio o trinomio, con el menor exponente y el divisor común de sus coeficientes. Factor común de un monomio: Factor común por agrupación de términos Ejemplo ab + ac + ad = a (b + c + d) ax + bx + ay + by = (a + b) (x + y) Factor común polinomio: Primero hay que sacar el factor común de los coeficientes junto con el de las variables (la que tenga menos exponente) para luego operar. Ejemplo ab bc = b (a -c) 38

39 Ejercicio 1. Determine el máximo factor común de los siguientes polinomios y factorícelos. a. ax - ay = b. 20 ab 2 15a 3 b = c. m 5 2m 2 + 6m = d. 25y 3 15y 2 10 y = 1.2 Factorización por agrupamiento Caso II: Factor común por agrupación de términos Para trabajar un polinomio por agrupación de términos, se debe tener en cuenta que son dos características las que se repiten. Se identifica porque es un número par de términos. Para resolverlo, se agrupan cada una de las características, y se le aplica el primer caso: ab + ac + bd + dc = (ab + ac) + (bd + dc) = a (b + c) + d (b + c) = (a + d) (b + c) Ejemplo 39

40 Ejercicio 2. Factorice completamente las siguientes expresiones algebraicas. a. bx + by + 3x + 3y= b. 5x 2 30x x + 6 = c. x 2 + 6x + 9 y 2 = 1.3 Trinomio cuadrado perfecto Caso III: Trinomio al cuadrado perfecto Se identifica por tener tres términos, de los cuales dos tienen raíces exactas, y el restante equivale al doble producto de las raíces. Para solucionar un T.C.P debemos organizar los términos dejando de primero y de tercero los términos que tengan raíz cuadrada, luego extraemos la raíz cuadrada del primer y tercer término y lo escribimos en un paréntesis, separándolos por el signo que acompaña al segundo término, al cerrar el paréntesis elevamos todo el binomio al cuadrado. (45x 37y) = 25x 2 30xy + 9y 2 (67x + 25y) = 9x xy + 4y 2 Ejemplos (5x + 7y) 2 56 = x 2 + 2xy + y 2 867x y xy Organizando los términos que tenemos: 467x xy + 567y 2 Extrayendo la raíz cuadrada del primer y último término y agrupándolos en un paréntesis separado por el signo del segundo término y elevando al cuadrado nos queda: (2x 5y) 2 40

41 Ejercicio 3. Verifique cuáles de los trinomios cuadráticos siguientes son perfectos y factorice los que sean de este tipo. a. 5a 2 8a + 3 b. 14n 2-41 n + 15 c. y 2 10y 25 d. 36a 2 30ab + 25b 2 e. x 2 12xy + 36y Diferencia de cuadrados CASO IV: Diferencia de cuadrados. Se identifica por tener dos términos elevados al cuadrado y unidos por el signo menos. Se resuelve por medio de los dos paréntesis, (parecido a los productos de la forma), uno positivo y otro negativo. En los paréntesis deben colocarse las raíces. Ejemplo (9y 2 ) (4x 2 ) = (3y 2x) (3y + 2x) 41

42 Ejercicio 4. Factorice completamente las siguientes expresiones algebraicas a. x = b. x = c. 8x 3 + 1= d. 27a 3 8 = e. 125y b 3 = 1.5 Factorización de trinomio cuadrado perfecto por adición y sustracción. Caso V: Trinomio al cuadrado perfecto por adición y sustracción Se identifica por tener tres términos, de los cuales dos de ellos son cuadrados perfectos, pero el restante hay que complementarlo mediante la suma para que sea el doble producto de sus raíces, el valor que se suma es el mismo que se resta para que el ejercicio original no cambie. Para solucionarlo, se usan como ayuda los casos número III y IV. Para moldar debe de saber el coseno de la raíz de la suma de dos polinomios que multiplicado sale igual a la raíz de 2. Ejemplo ab + ac + ad = a (b + c + d) ax + bx + ay + by = (a + b) (x + y) 42

43 Ejercicio 5. Verifique cuáles de los trinomios cuadráticos siguientes son perfectos y factorice los que sean de este tipo. a. 4x 2 4xy + y 2 b. 49x 2 42xy + 9 y 2 c. 36a 2 30ab + 25b 2 d. y 2-10y Trinomio de la forma x 2 + bx + c Se identifica por tener tres términos, hay una literal con exponente al cuadrado y uno de ellos es el término independiente. Se resuelve por medio de dos paréntesis, en los cuales se colocan la raíz cuadrada de la variable, buscando dos números que multiplicados den como resultado el término independiente y sumados o restados den como resultado el término del medio. Ejemplo a 2 + 2a 15 = (a + 5) (a - 3) Ejercicio 6. Factorice las siguientes expresiones algebraicas. a. x 2 + 7x + 10 b. x 2 x 12 c. x 2 + 9x 22 d. x 2 7x 30 43

44 Resumen Existen algunos métodos de factorización, para algunos casos especiales. Binomios 1.- Diferencia de cuadrados: se identifica por tener dos términos elevados al cuadrado y unidos por el signo menos. Se resuelve por medio de los dos paréntesis, (parecido a los productos de la forma), uno positivo y otro negativo. En los paréntesis deben colocarse las raíces. Trinomios 1.- Trinomio al cuadrado perfecto: se identifica por tener tres términos, de los cuales dos tienen raíces exactas, y el restante equivale al doble producto de las raíces. 2.- Por adición y sustracción: se identifica por tener tres términos, de los cuales dos de ellos son cuadrados perfectos, pero el restante hay que complementarlo mediante la suma para que sea el doble producto de sus raíces, el valor que se suma es el mismo que se resta para que el ejercicio original no cambie. 3.- Trinomio de la forma x 2 + bx + c: se identifica por tener tres términos, hay una literal con exponente al cuadrado y uno de ellos es el término independiente. Polinomios 1.- Factor común: a) Factor común de un monomio: Factor común por agrupación de términos b) Factor común polinomio: Primero hay que sacar el factor común de los coeficientes junto con el de las variables (la que tenga menos exponente) para luego operar. 44

45 Autoevaluación 1. Factor común de un monomio: a. 18ab = b. 20xy = c. 30cd = d. 40mn = 2. Factor común de polinomio (Factorice los siguientes polinomios): a. 18mxy 2-54m 2 x 2 y 2 +36my 2 = b. 6xy 3-9nx 2 y 3 +12nx 3 y 3 +12nx 3 y 3-3n 2 x 4 y 3 = 3. Factor común por agrupación de términos: a. 4x 2-3xy-8x+6y = b. 2x+z 2-2ax-2az 2 = c. x 2 +3x- 28 = d. am-bm+an-bn = 4. Trinomio cuadrado perfecto: a. 1-16ax 2 +64a 2 x 4 = b. a 2 +2ab+b 2 = c. 9-6x+x 2 = d m 2 +m 4 = 5. Diferencia de cuadrados (Factorice lo siguiente): a. x 2 -y 2 = b. 9-b 2 = c. 36x 2 y 6 z 10 -a 12 = d. a 2n -9b 4m = 45

46 6. Trinomio cuadrado perfecto por adición y sustracción: a. 4a 4 +8a 2 b 2 +9b 4 = b. a 4-16a 2 b 2 +36b 4 = c. 49m 4-151m 2 n 4 +81n 8 = 7. Trinomio de la forma x 2 +bx+c: a. x 2 + 5x+6 = b. x 2-8x+12 = c. x 2 +2x-15 = d. x 2-6x-16 = 46

47 OPERACIONES CON EXPRESIONES RACIONALES Objetivos Al finalizar la unidad, el alumno: Resolverá problemas que impliquen fracciones racionales a través de la utilización de reglas de simplificación, suma, resta, multiplicación y división, para presentar solución a diversas expresiones. Introducción Una expresión racional, llamada también fracción algebraica, es aquella que puede expresarse en la forma, donde y son polinomios y es diferente de cero. 4a 8; a 3 6, etcétera a 2 3 a 2 5a + 6 Al escribir este tipo de expresiones supondremos que su denominadores no son nulos, es decir que las literales que aparecen en un denominador no podrán tomar valores que al sustituirse en una expresión hagan que su valor sea cero. 1. Fracciones algebraicas Los términos de la fracción algebraica, se denominan numerador al que ocupa la parte superior y denominador al que ocupa la parte inferior. Numerador ay + bx 2y + 2x Denominador 47

48 Si una fracción algebraica se multiplica y se divide por una misma cantidad, la facción no se altera. ( ) ( ) = Principios Si el numerador de una fracción algebraica se multiplica o divide por una cantidad, la facción queda multiplicada y dividida respectivamente, por dicha cantidad. ( ) ( ) = ; ( ) ( )= = Si el numerador de una fracción algebraica se multiplica o divide por una cantidad, la facción queda dividida y multiplicada respectivamente por dicha cantidad. ( ) ( ) = ; ( ) ( )= = El signo de la fracción es el símbolo + ó que le precede a la raya de la facción. Cuando delante de ésta no aparece ningún signo de éstos, se sobreentiende que es positivo (+). Así, en la fracción numerador es + y el de la fracción es -. Asimismo, en la fracción negativos y el de la fracción es +; es decir, ) =. Por último, en la fracción fracción -. el signo del denominador es -, el del numerador es + y el del los signos del numerador y del denominador son el signo del numerador es -, el del denominador + y el de la En general, si c representa el cociente que resulta al dividir a entre y, entonces tenemos las siguientes reglas de los signos. 48

49 4. = - c 1. = c 5. = c 6. = c 2. = c 3. = - c 1.1 Simplificación de facciones algebraicas Reducir una fracción a sus términos mínimos es alterar su forma sin alterar su valor. Simplificar una fracción algebraica es transformarla en una fracción donde el numerador y el denominador ya no tienen ningún factor común, excepto la unidad. Factorizando en el numerador y denominador se procede a la simplificación por división o eliminación de términos comunes. a. = Ejemplos b. = c. = 49

50 Ejercicio 1. Simplifique si es posible, las siguientes fracciones algebraicas racionales. a. (m 2) 2 = m 2 4 b. a = a 4 a 3 + a 1 c. x 2 + x - 6 = (2x 7) Multiplicación de fracciones algebraicas El producto de dos o más fracciones algebraicas es otro cuyo numerador es el producto de los numeradores y cuyo denominador es el producto de los denominadores. A (x) C (x) = A (x) C (x) B (x) D (x) B (x) D (x) x 2 + 5x + 6 x 2 + 2x - 3 = x 2 1 3x + 6 Ejemplo = (x 2 + 5x + 6) (x 2 + 2x 3) (x 2 1) (3x + 6) = (x + 2) (x + 3) (x 1) (x + 3) (x + 1) (x 1) 3 (x + 2) = (x + 3) (x + 3) 3 (x + 1) = (x + 3) 2 3 (x+1) Se factorizan los términos de las fracciones Se eliminan términos comunes Resultado 50

51 Ejercicio 2. Efectúe las siguientes multiplicaciones de fracciones algebraicas y simplifique el resultado. a. 2x + 4 x 2 y 2 = x + y 4x + 8 b. y 2 + 8y y 20 = y 2 25 y 2 + 3y c. y 2-9y + 20 y 2 + 5y = 25 - y 2 y 2 4y d. 7a + 7b a 2 - ab = 14a 2 a 2 b 2 e. y 3 + y 2 4y 2 4y = y 2-1 y División de fracciones algebraicas Para dividir dos fracciones, es necesario factorizar primeramente los términos de las fracciones dadas; sin olvidar que al igual que en la aritmética se invierte el divisor y luego se eliminan los términos comunes del numerador con los del denominador; la fracción resultante se obtiene al multiplicar los numeradores y dividirlos por el producto de los denominadores. A (x) A (x) C (x) = B (x) = A (x) D (x) B (x) D (x) C (x) B (x) C (x) D (x) x 2 + 5x + 6 x 2 + 2x - 3 = x 2 1 3x + 6 Ejemplo = [(x + 3) (x + 2)] 3 (x + 2) (x 2 1) (x 2 + 2x - 3) = (x + 3) (x + 2) 3(x + 2) (x - 1) (x + 1) (x + 2) (x - 1) = 3 (x + 2) (x + 2) (x - 1) (x + 1) (x - 1) = 3(x + 2) 2 (x+1) (x - 1) 2 Se factorizan los términos de las fracciones dadas Se invierte el divisor y elimino términos comunes Resultado 51

52 Ejercicio 3. Efectúe las siguientes divisiones de fracciones algebraicas y simplifique el resultado. a. 2y y 30 = y 2 2y - 35 y 2-25 b. 9x x 2 18x = 15x x c. x 2 + 7x + 10 x 2 4 = x 2 + 5x 2x d. a 2 + 6a a 2 = a 2 + 4a 2a e. b 2 2b b 2 = 4b - b 2 5b Suma y resta de fracciones algebraicas El procedimiento para sumar y restar fracciones algebraicas es igual al que se emplea en la aritmética. En álgebra la suma y la resta de fracciones suele combinarse en una sola operación, denominada suma algebraica de fracciones. Para sumar algebraicamente dos o más fracciones se aplican los siguientes pasos que nos permiten llegar a su resultado. 1. Si las fracciones tienen diferentes denominadores, es necesario factorizar cada denominador y determinar el mínimo común denominador (M.C.D). 2. El cociente obtenido de dividir el MCD entre cada denominador de las fracciones, se multiplica por el numerador de cada fracción. 3. Se suman los numeradores resultantes, teniendo cuidado con los signos; de esta manera se obtiene el numerador de la suma algebraica de fracciones, cuyo denominador es el MCD. 4. No se debe olvidar el simplificar a sus términos mínimos los resultados. A (x) + C (x) = A (x) D (x) + C (x) B(x) B (x) D (x) B (x) D (x) 52

53 Ejemplo 8x + -6x + 4 = x + 2 x + 2 = 8x + (-6x) + 4 x + 2 = 2x + 4 x + 2 = 2 (x + 2) x + 2 = 2 Se determina el MCD Se simplifica Resultado Ejercicio 4. Resuelva las siguientes sumas y restas de fracciones, simplificando el resultado. a. 2x + 8 = x 2-16 x 2-16 b. 6n - 30 = n - 5 n - 5 c. 9b - 5-7b - 3 = b - 1 b - 1 d a = a a e. 2y y - 2 =

54 Resumen Principios: 1. Si una fracción algebraica se multiplica y se divide por una misma cantidad, la facción no se altera. 2. Si el numerador de una fracción algebraica se multiplica o divide por una cantidad, la facción queda multiplicada y dividida respectivamente, por dicha cantidad. 3. Si el numerador de una fracción algebraica se multiplica o divide por una cantidad, la facción queda dividida y multiplicada respectivamente por dicha cantidad. Simplificación de facciones algebraicas: Se factoriza el numerador y denominador se procede a la simplificación por división o eliminación de términos comunes. Multiplicación de fracciones algebraicas: El producto de dos o más fracciones algebraicas es otro cuyo numerador es el producto de los numeradores y cuyo denominador es el producto de los denominadores. División de fracciones algebraicas: Es necesario factorizar primeramente los términos de las fracciones dadas; se eliminan los términos comunes del numerador con los del denominador; la fracción resultante se obtiene al multiplicar los numeradores y dividirlos por el producto de los denominadores. Suma y resta de fracciones algebraicas: Necesitamos lo siguiente; 5. Si las fracciones tienen diferentes se factoriza y se saca el MCD. 6. El cociente obtenido de dividir el MCD entre cada denominador de las fracciones, se multiplica por el numerador de cada fracción. 7. Se suman los numeradores resultantes, teniendo cuidado con los signos. 8. No se debe olvidar el simplificar a sus términos mínimos los resultados. 54

martilloatomico@gmail.com

martilloatomico@gmail.com Titulo: OPERACIONES CON POLINOMIOS (Reducción de términos semejantes, suma y resta de polinomios, signos de agrupación, multiplicación y división de polinomios) Año escolar: 2do: año de bachillerato Autor:

Más detalles

Programa de Algebra Superior Caracterización de la asignatura: Esta materia se agregó al plan de estudios de las ingenierías como reforzamiento de

Programa de Algebra Superior Caracterización de la asignatura: Esta materia se agregó al plan de estudios de las ingenierías como reforzamiento de Programa de Algebra Superior Caracterización de la asignatura: Esta materia se agregó al plan de estudios de las ingenierías como reforzamiento de las bases matemáticas para mejorar el aprendizaje de los

Más detalles

Biblioteca Virtual Ejercicios Resueltos

Biblioteca Virtual Ejercicios Resueltos EJERCICIO 13 13 V a l o r n u m é r i c o Valor numérico de expresiones compuestas P r o c e d i m i e n t o 1. Se reemplaza cada letra por su valor numérico 2. Se efectúan las operaciones indicadas Hallar

Más detalles

CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS

CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS Guía de Estudio para examen de Admisión de Matemáticas CONTENIDO PRESENTACIÓN... 3 I. ARITMÉTICA... 4 1. OPERACIONES CON FRACCIONES...

Más detalles

. Definición: Dos o más términos son semejantes cuando tienen las mismas letras y afectadas por el mismo exponente.

. Definición: Dos o más términos son semejantes cuando tienen las mismas letras y afectadas por el mismo exponente. Ejercicios Resueltos del Algebra de Baldor. Consultado en la siguiente dirección electrónica http://www.quizma.cl/matematicas/recursos/algebradebaldor/index.htm. Definición: Dos o más términos son semejantes

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS EXPRESIONES ALGEBRAICAS. POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Estas expresiones del área son expresiones algebraicas, ya que además de números aparecen letras. Son también expresiones algebraicas: bac,

Más detalles

Multiplicación. Adición. Sustracción

Multiplicación. Adición. Sustracción bernardsanz TERMINOLOGÍA ALGEBRAICA Algebra: generalización de la aritmética, la cual representa cantidades por medio de símbolos en lugar de números concretos, estos símbolos representan números cualesquiera.

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas UNIDAD Polinomios y fracciones algebraicas U n polinomio es una expresión algebraica en la que las letras y los números están sometidos a las operaciones de sumar, restar y multiplicar. Los polinomios,

Más detalles

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2 SISTEMA DE ACCESO COMÚN A LAS CARRERAS DE INGENIERÍA DE LA UNaM III. UNIDAD : FUNCIONES POLINÓMICAS III..1 POLINOMIOS La expresión 5x + 7 x + 4x 1 recibe el nombre de polinomio en la variable x. Es de

Más detalles

Lección 9: Polinomios

Lección 9: Polinomios LECCIÓN 9 c) (8 + ) j) [ 9.56 ( 9.56)] 8 q) (a x b) d) ( 5) 4 k) (6z) r) [k 0 (k 5 k )] e) (. 0.) l) (y z) s) (v u ) 4 f) ( 5) + ( 4) m) (c d) 7 t) (p + q) g) (0 x 0.) n) (g 7 g ) Lección 9: Polinomios

Más detalles

UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS

UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS Unidad 6: Polinomios con coeficientes enteros. Al final deberás haber aprendido... Expresar algebraicamente enunciados sencillos. Extraer enunciados razonables

Más detalles

UNIDAD I NÚMEROS REALES

UNIDAD I NÚMEROS REALES UNIDAD I NÚMEROS REALES Los números que se utilizan en el álgebra son los números reales. Hay un número real en cada punto de la recta numérica. Los números reales se dividen en números racionales y números

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Un grupo de variables representadas por letras junto con un conjunto de números combinados con operaciones de suma, resta, multiplicación, división, potencia o etracción de raíces

Más detalles

POLINOMIOS OPERACIONES CON MONOMIOS

POLINOMIOS OPERACIONES CON MONOMIOS POLINOMIOS Una expresión algebraica es una combinación de letras y números, ligados por los signos de las operaciones: adición, sustracción, multiplicación, división y potenciación. Las expresiones algebraicas

Más detalles

INSTITUTO UNIVERSITARIO DE TECNOLOGÍA VENEZUELA CURSO PROPEDÉUTICO TALLER DE MATEMÁTICA

INSTITUTO UNIVERSITARIO DE TECNOLOGÍA VENEZUELA CURSO PROPEDÉUTICO TALLER DE MATEMÁTICA INSTITUTO UNIVERSITARIO DE TECNOLOGÍA VENEZUELA CURSO PROPEDÉUTICO TALLER DE MATEMÁTICA CARACAS, MARZO DE 2013 ESTUDIO DEL SISTEMA DECIMAL CONTENIDO Base del sistema decimal Nomenclatura Ordenes Subordenes

Más detalles

MATEMATICAS I SESIÓN 1 DEFINICIONES FUNDAMENTALES (REDUCCIÓN DE TERMINOS SEMEJANTES)

MATEMATICAS I SESIÓN 1 DEFINICIONES FUNDAMENTALES (REDUCCIÓN DE TERMINOS SEMEJANTES) MATEMATICAS I SESIÓN 1 DEFINICIONES FUNDAMENTALES (REDUCCIÓN DE TERMINOS SEMEJANTES) Introducción: El alumno comprenderá qué estudia el algebra, así como algunas definiciones importantes como son: expresión

Más detalles

Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios. Dra. Noemí L. Ruiz Limardo 2009

Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios. Dra. Noemí L. Ruiz Limardo 2009 Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios Dra. Noemí L. Ruiz Limardo 2009 Objetivos de la Lección Al finalizar esta lección los estudiantes: Identificarán, de una lista de expresiones

Más detalles

Profesoresdematemáticaswww.institu teofmathematics.webs.comprofesores dematemáticaswww.instituteofmathe. matics.webs.comprofesoresdematemá

Profesoresdematemáticaswww.institu teofmathematics.webs.comprofesores dematemáticaswww.instituteofmathe. matics.webs.comprofesoresdematemá Profesoresdematemáticaswww.institu teofmathematics.webs.comprofesores dematemáticaswww.instituteofmathe Matemáticas IV matics.webs.comprofesoresdematemá ENP ticaswww.instituteofmathematics.web s.comprofesoresdematematicaswww.i

Más detalles

Las expresiones algebraicas se clasifican en racionales e irracionales.

Las expresiones algebraicas se clasifican en racionales e irracionales. 1. 1.1 Epresiones algebraicas 1.1 Epresión algebraica. En matemáticas una epresión algebraica es un conjunto de letras y números, ligados por los signos de adición, sustracción, multiplicación, división,

Más detalles

Qué son los monomios?

Qué son los monomios? Qué son los monomios? Recordemos qué es una expresión algebraica. Definición Una expresión algebraica es aquella en la que se utilizan letras, números y signos de operaciones. Si se observan las siguientes

Más detalles

INSTITUTO VALLADOLID PREPARATORIA página 9

INSTITUTO VALLADOLID PREPARATORIA página 9 INSTITUTO VALLADOLID PREPARATORIA página 9 página 10 FACTORIZACIÓN CONCEPTO Para entender el concepto teórico de este tema, es necesario recordar lo que se mencionó en la página referente al nombre que

Más detalles

Operaciones Fundamentales del Álgebra. Operaciones con Fracciones Algebraicas.. E xponentes y Radicales 99. Ecuaciones Lineales o de Primer Grado

Operaciones Fundamentales del Álgebra. Operaciones con Fracciones Algebraicas.. E xponentes y Radicales 99. Ecuaciones Lineales o de Primer Grado ÍNDICE COMPETENCIA Operaciones Fundamentales del Álgebra 5 COMPETENCIA Operaciones con Fracciones Algebraicas.. 7 COMPETENCIA E ponentes y Radicales 99 COMPETENCIA Ecuaciones Lineales o de Primer Grado

Más detalles

Área: Matemática ÁLGEBRA

Área: Matemática ÁLGEBRA Área: Matemática ÁLGEBRA Prof. HENRY AYTE MORALES FICHA DE TRABAJO RECUPERACIÓN 1ro SEC A, B y C I. TEORÍA DE EXPONENTES 1. DEFINICIÓN Es un conjunto de fórmulas que relaciona a los exponentes de las expresiones

Más detalles

4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN

4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN 4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN Bloque 2. POLINOMIOS. (En el libro Tema 3, página 47) 1. Definiciones. 2. Valor numérico de una expresión algebraica. 3. Operaciones con polinomios: 3.1. Suma,

Más detalles

Polinomios y Ecuaciones

Polinomios y Ecuaciones Ejercicios de Cálculo 0 Prof. María D. Ferrer G. Polinomios y Ecuaciones.. Polinomios: Un polinomio o función polinómica es una epresión de la forma: n n n P a a a a a a = n + n + n + + + + 0 () Los números

Más detalles

Material N 15 GUÍA TEÓRICO PRÁCTICA Nº 12

Material N 15 GUÍA TEÓRICO PRÁCTICA Nº 12 C u r s o : Matemática Material N 5 GUÍA TEÓRICO PRÁCTICA Nº UNIDAD: ÁLGEBRA Y FUNCIONES ÁLGEBRA DE POLINOMIOS EVALUACIÓN DE EXPRESIONES ALGEBRAICAS Evaluar una epresión algebraica consiste en sustituir

Más detalles

Operatoria algebraica

Operatoria algebraica Eje temático: Algebra y funciones Contenidos: Operatoria algebraica Ecuaciones de primer grado Nivel: 1 Medio Operatoria algebraica 1. Operatoria algebraica 1.1. Términos semejantes Un término algebraico

Más detalles

Nivel Medio I-104 Provincia del Neuquén Patagonia Argentina

Nivel Medio I-104 Provincia del Neuquén Patagonia Argentina Nivel Medio I-104 Provincia del Neuquén Patagonia Argentina www.faena.edu.ar info@faena.edu.ar TERCER BLOQUE MATEMATICA Está permitida la reproducción total o parcial de parte de cualquier persona o institución

Más detalles

Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x

Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Los polinomios Los polinomios Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Elementos de un polinomio Los términos: cada

Más detalles

Recuerdas qué es? Expresión algebraica. Es una combinación de números y letras relacionados mediante operaciones aritméticas.

Recuerdas qué es? Expresión algebraica. Es una combinación de números y letras relacionados mediante operaciones aritméticas. Recuerdas qué es? Expresión algebraica Es una combinación de números y letras relacionados mediante operaciones aritméticas. Propiedad distributiva de la multiplicación respecto de la suma Si a, b y c

Más detalles

MANEJO DE EXPRESIONES ALGEBRAICAS. Al finalizar el capítulo el alumno manejará expresiones algebraicas para la solución de problemas

MANEJO DE EXPRESIONES ALGEBRAICAS. Al finalizar el capítulo el alumno manejará expresiones algebraicas para la solución de problemas MANEJO DE EXPRESIONES ALGEBRAICAS Al finalizar el capítulo el alumno manejará expresiones algebraicas para la solución de problemas 34 Reforma académica 003 MAPA CURRICULAR Matemáticas I Aritmética y Álgebra

Más detalles

Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo

Polinomios: Definición: Se llama polinomio en x de grado n a una expresión del tipo Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo P (x) = a 0 x n + a 1 x n 1 +... + a n Donde n N (número natural) ; a 0, a 1, a 2,..., a n son coeficientes reales

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman V A R I A B L ES, I N C Ó G N I T A S o

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas 829566 _ 0249-008.qxd 27/6/08 09:21 Página 27 Polinomios y fracciones algebraicas INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de

Más detalles

PROBLEMAS RESUELTOS. CASO I cuando todos los términos de un polinomio tienen un factor común. Algebra Baldor

PROBLEMAS RESUELTOS. CASO I cuando todos los términos de un polinomio tienen un factor común. Algebra Baldor PROBLEMAS RESUELTOS CASO I cuando todos los términos de un polinomio tienen un factor común CASO II factor comun por agrupación de terminos CASO III trinomio cuadrado perfecto CASO IV Diferencia de cuadrados

Más detalles

Los números racionales

Los números racionales Los números racionales Los números racionales Los números fraccionarios o fracciones permiten representar aquellas situaciones en las que se obtiene o se debe una parte de un objeto. Todas las fracciones

Más detalles

NÚMEROS NATURALES Y NÚMEROS ENTEROS

NÚMEROS NATURALES Y NÚMEROS ENTEROS NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de un rebaño) y de

Más detalles

Matemáticas. para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul

Matemáticas. para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul Matemáticas para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul Curso Propedéutico de Matemáticas Unidad IV Secciones 6 y 8) 0.6 Operaciones con epresiones algebraicas. 0.8 fracciones

Más detalles

3 POLINOMIOS Y FRACCIONES ALGEBRAICAS

3 POLINOMIOS Y FRACCIONES ALGEBRAICAS POLINOMIOS Y FRACCIONES ALGEBRAICAS PARA EMPEZAR Un cuadrado tiene 5 centímetros de lado. Escribe la epresión algebraica que da el área cuando el lado aumenta centímetros. A ( 5) Señala cuáles de las siguientes

Más detalles

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite

Más detalles

CONTENIDO: Operaciones algebraicas con polinomios. División sintética. Operaciones con exponentes racionales.

CONTENIDO: Operaciones algebraicas con polinomios. División sintética. Operaciones con exponentes racionales. CONTENIDO: Operaciones algebraicas con polinomios. División sintética. Operaciones con exponentes racionales. Definir los conceptos básicos del Algebra Elemental. Conocer los procedimientos para sumar,

Más detalles

Iniciación a las Matemáticas para la ingenieria

Iniciación a las Matemáticas para la ingenieria Iniciación a las Matemáticas para la ingenieria Los números naturales 8 Qué es un número natural? 11 Cuáles son las operaciones básicas entre números naturales? 11 Qué son y para qué sirven los paréntesis?

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas 0 Polinomios y fracciones algebraicas En esta Unidad aprenderás a: d Trabajar con epresiones polinómicas. d Factorizar polinomios. d Operar con fracciones algebraicas. d Descomponer una fracción algebraica

Más detalles

REPASO NÚMEROS NATURALES Y NÚMEROS ENTEROS

REPASO NÚMEROS NATURALES Y NÚMEROS ENTEROS SUMA REPASO NÚMEROS NATURALES Y NÚMEROS ENTEROS NÚMEROS NATURALES (N) 1. Características: Axiomas de Giuseppe Peano (*): El 1 es un número natural. Si n es un número natural, entonces el sucesor (el siguiente

Más detalles

Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-)

Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-) CÁLCULO MATEMÁTICO BÁSICO LOS NUMEROS ENTEROS Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-) Si un número aparece entre barras /5/, significa que su

Más detalles

Operaciones con polinomios

Operaciones con polinomios Operaciones con polinomios Los polinomios son una generalización de nuestro sistema de numeración. Cuando escribimos un número, por ejemplo, 2 354, queremos decir: 2 354 = 2 000 + 300 + 50 + 4 = 2)1 000)

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS

OBJETIVOS CONTENIDOS PROCEDIMIENTOS 82652 _ 0275-0286.qxd 27/4/07 1:20 Página 275 Polinomios INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de ahí la importancia de comprender

Más detalles

5 Expresiones algebraicas

5 Expresiones algebraicas 8948 _ 04-008.qxd /9/07 :0 Página 9 Expresiones algebraicas INTRODUCCIÓN RESUMEN DE LA UNIDAD El lenguaje algebraico sirve para expresar situaciones relacionadas con la vida cotidiana, utilizando letras

Más detalles

Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos

Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos MATEMÁTICAS BÁSICAS DESIGUALDADES DESIGUALDADES DE PRIMER GRADO EN UNA VARIABLE La epresión a b significa que "a" no es igual a "b ". Según los valores particulares de a de b, puede tenerse a > b, que

Más detalles

UNEFA CURSO INTEGRAL DE NIVELACIÓN UNIVERSITARIA (CINU)- MATEMÁTICA Página 1

UNEFA CURSO INTEGRAL DE NIVELACIÓN UNIVERSITARIA (CINU)- MATEMÁTICA Página 1 Unidad 1: Epresiones Algebraicas UNEFA CURSO INTEGRAL DE NIVELACIÓN UNIVERSITARIA (CINU)- MATEMÁTICA Página 1 UNEFA CURSO INTEGRAL DE NIVELACIÓN UNIVERSITARIA (CINU)- MATEMÁTICA Página Matemática Unidad

Más detalles

Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice

Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice 1 Polinomios Dedicaremos este apartado al repaso de los polinomios. Se define R[x] ={a 0 + a 1 x + a 2 x 2 +... +

Más detalles

TEMA 2 POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 2 POLINOMIOS Y FRACCIONES ALGEBRAICAS Matemáticas B 4º E.S.O. Tema : Polinomios y fracciones algebraicas. 1 TEMA POLINOMIOS Y FRACCIONES ALGEBRAICAS.1 COCIENTE DE POLINOMIOS 4º.1.1 COCIENTE DE MONOMIOS 4º El cociente de un monomio entre otro

Más detalles

(a+b) (a b)=a 2 b 2 OBJETIVOS CONTENIDOS PROCEDIMIENTOS

(a+b) (a b)=a 2 b 2 OBJETIVOS CONTENIDOS PROCEDIMIENTOS Polinomios INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de ahí la importancia de comprender el concepto de polinomio y otros asociados

Más detalles

CONCEPTOS ALGEBRAICOS BASICOS

CONCEPTOS ALGEBRAICOS BASICOS CONCEPTOS ALGEBRAICOS BASICOS OBJETIVOS: 1.- Expresar relaciones numéricas mediante símbolos numéricos y literales. 2.- Reconocer las expresiones algebraicas y sus elementos. 3.- Reducir y evaluar expresiones

Más detalles

Cómo desarrollar y factorizar expresiones algebraicas?

Cómo desarrollar y factorizar expresiones algebraicas? 1 Cómo desarrollar y factorizar expresiones algebraicas? Prof. Jean-Pierre Marcaillou OBJETIVOS: La calculadora CASIO ClassPad 330 dispone de los comandos [expand], [factor], [rfactor], [factorout] y [collect]

Más detalles

1º) Siempre que se pueda, hay que sacar factor común: :a b ± a c ± a d ± = a (b ± c ± d ± ):

1º) Siempre que se pueda, hay que sacar factor común: :a b ± a c ± a d ± = a (b ± c ± d ± ): Pág. 1 de 7 FAC T O R I Z AC I Ó N D E P O L I N O M I O S Factorizar (o descomponer en factores) un polinomio consiste en sustituirlo por un producto indicado de otros de menor grado tales que si se multiplicasen

Más detalles

Si los términos no son semejantes no se pueden reducir a un total. Cuando los elementos son de la misma especie se dice que son semejantes.

Si los términos no son semejantes no se pueden reducir a un total. Cuando los elementos son de la misma especie se dice que son semejantes. Operaciones básicas con Expresiones Algebraicas (adición, sustracción, multiplicación y división) y redacta un informe Teórico práctico donde describas el procedimiento para realizar cada operación y al

Más detalles

CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA

CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA http:/// CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA DESARROLLA EN FORMA RESUMIDA CADA UNIDAD CON: I. GUIONES DE CONFERENCIAS II. FICHAS DE ESTUDIO III. LABORATORIOS DE EJERCICIOS Trata las unidades siguientes:

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

Números Reales y Fundamentos de Álgebra

Números Reales y Fundamentos de Álgebra CONARE Proyecto RAMA Números Reales y Fundamentos de Álgebra Master Pedro Díaz Navarro Temas de pre-cálculo Enero 2007 Master. Pedro Díaz Navarro 31 de julio de 2007 Índice 1. Los Números Reales 1 1.1.

Más detalles

UNIVERSIDAD NACIONAL DE VILLA MERCEDES. Curso de Formación en Matemáticas

UNIVERSIDAD NACIONAL DE VILLA MERCEDES. Curso de Formación en Matemáticas UNIVERSIDAD NACIONAL DE VILLA MERCEDES Curso de Formación en Matemáticas - 06 - Autor: Lic. Esp. Fernando Javier Quiroga Villegas OBJETIVOS DEL CURSO Objetivo General: Afianzar los conocimientos adquiridos

Más detalles

Guía 4 Formalizando conceptos y procedimientos algebraicos

Guía 4 Formalizando conceptos y procedimientos algebraicos 1 Guía 4 Formalizando conceptos y procedimientos algebraicos Nombre Curso Capacidad Destreza Valor Actitud 1 Año Medio A B C D Resolver Problemas Analizar Colaboración Constancia Aprendizajes Esperados

Más detalles

a) Un número par I) 2n 1 b) Un número impar II) x, x 1 c) Un número y el que le sigue III) 3a d) El triple de un número IV) 2z x 6 b) e)

a) Un número par I) 2n 1 b) Un número impar II) x, x 1 c) Un número y el que le sigue III) 3a d) El triple de un número IV) 2z x 6 b) e) Polinomios El 6 de septiembre del 00 se celebró el gran Premio de Singapur, la 5.ª prueba del mundial de Fórmula. La carrera constaba de 6 vueltas a un circuito de 5 067 m de longitud. Fernando Alonso,

Más detalles

Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo

Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo POLINOMIOS 1.1. DEFINICIONES Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo p(x) = a i x i = a 0 + a 1 x + a 2 x 2 + + a n x n + ; a i, x K; n N

Más detalles

INSTITUTO TECNOLÓGICO DE CHETUMAL

INSTITUTO TECNOLÓGICO DE CHETUMAL INSTITUTO TECNOLÓGICO DE CHETUMAL CUADERNILLO DEL CURSO DE NIVELACIÓN 014 PARA LAS CARRERAS DE: INGENIERÍA CIVIL INGENIERÍA ELÉCTIRCA INGENIERÍA EN SISTEMAS COMPUTACIONALES INGENIERÍA EN TECNOLOGIAS DE

Más detalles

Polinomios. Objetivos. Antes de empezar. 1.Expresiones algebraicas pág. 64 De expresiones a ecuaciones Valor numérico Expresión en coeficientes

Polinomios. Objetivos. Antes de empezar. 1.Expresiones algebraicas pág. 64 De expresiones a ecuaciones Valor numérico Expresión en coeficientes 4 Polinomios Objetivos En esta quincena aprenderás: A trabajar con expresiones literales para la obtención de valores concretos en fórmulas y ecuaciones en diferentes contextos. La regla de Ruffini. El

Más detalles

Coeficientes 43 X = 43 X partes literales - 7 a 3 = - 7 a 3

Coeficientes 43 X = 43 X partes literales - 7 a 3 = - 7 a 3 APUNTES Y EJERCICIOS DEL TEMA 3 1-T 3--2ºESO EXPRESIONES ALGEBRAICAS: Son combinaciones de n os y letras unidos con operaciones matemáticas (aritméticas), que generalmente suelen ser sumas, restas, multiplicaciones

Más detalles

3 Polinomios y fracciones algebráicas

3 Polinomios y fracciones algebráicas Solucionario 3 Polinomios y fracciones algebráicas ACTIVIDADES INICIALES 3.I. Para cada uno de los siguientes monomios, indica las variables, el grado y el coeficiente, y calcula el valor numérico de los

Más detalles

GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO OCTAVO

GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO OCTAVO GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO OCTAVO IDENTIFICACIÓN AREA: Matemáticas. ASIGNATURA: Matemáticas. DOCENTE. Juan Gabriel Chacón c. GRADO. Octavo. PERIODO: Segundo UNIDAD: Polinomios TEMA: Expresiones

Más detalles

EL GRADO Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO

EL GRADO Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO RECONOCER OBJETIVO EL GRADO Y LOS ELEMENTOS QUE ORMAN UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma algebraica de monomios, que son los términos del polinomio.

Más detalles

OPERACIONES CON POLINOMIOS

OPERACIONES CON POLINOMIOS OPERACIONES CON POLINOMIOS. SUMA ALGEBRAICA DE POLINOMIOS. En la práctica para sumar dos o más polinomios suelen colocarse unos deajo de los otros, de tal modo que los términos semejantes queden en columna,

Más detalles

14 Expresiones algebraicas. Polinomios

14 Expresiones algebraicas. Polinomios PARADA TeÓRICA 14 Expresiones algebraicas. Polinomios Una expresión algebraica es una combinación cualquiera y finita de números, de letras, o de números, letras, ligados entre sí con la adición, sustracción,

Más detalles

POLINOMIOS. División. Regla de Ruffini.

POLINOMIOS. División. Regla de Ruffini. POLINOMIOS. División. Regla de Ruffini. Recuerda: Un monomio en x es una expresión algebraica de la forma a x tal que a es un número real y n es un número natural. El real a se llama coeficiente y n se

Más detalles

SOLUCIÓN DE INECUACIONES DE UNA VARIABLE

SOLUCIÓN DE INECUACIONES DE UNA VARIABLE SOLUCIÓN DE INECUACIONES DE UNA VARIABLE Resolver una inecuación es hallar el conjunto de soluciones de las incógnitas que satisfacen la inecuación. Terminología: ax + b > cx + d Primer miembro Segundo

Más detalles

José de Jesús Ángel Ángel, c 2010. Factorización

José de Jesús Ángel Ángel, c 2010. Factorización José de Jesús Ángel Ángel, c 2010. Factorización Contenido 1. Introducción 2 1.1. Notación.................................. 2 2. Factor común 4 2.1. Ejercicios: factor común......................... 4

Más detalles

1.3 Números racionales

1.3 Números racionales 1.3 1.3.1 El concepto de número racional Figura 1.2: Un reparto no equitativo: 12 5 =?. Figura 1.3: Un quinto de la unidad. Con los números naturales y enteros es imposible resolver cuestiones tan simples

Más detalles

Polinomios y Fracciones Algebraicas

Polinomios y Fracciones Algebraicas Tema 4 Polinomios y Fracciones Algebraicas En general, a lo largo de este tema trabajaremos con el conjunto de los números reales y, en casos concretos nos referiremos al conjunto de los números complejos.

Más detalles

UNIDAD I OPERACIONES CON MONOMIOS Y POLINOMIOS. I.S.C. Alejandro de Fuentes Martínez

UNIDAD I OPERACIONES CON MONOMIOS Y POLINOMIOS. I.S.C. Alejandro de Fuentes Martínez UNIDAD I OPERACIONES CON MONOMIOS Y POLINOMIOS I.S.C. Alejandro de Fuentes Martínez 1 ESQUEMA ESQUEMA-RESUMEN RESUMEN DE LA UNIDAD Álgebra (Concepstos básicos) Suma Resta Multiplicación División OPERACIONES

Más detalles

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones Fracciones. Las fracciones y los números Racionales Las fracciones se utilizan cotidianamente en contextos relacionados con la medida, el reparto o como forma de relacionar dos cantidades. Tenemos entonces

Más detalles

Módulo 2: Expresiones polinómicas. Factorización

Módulo 2: Expresiones polinómicas. Factorización CURSO DE NIVELACIÓN Apunte teórico - práctico Módulo 2: Expresiones polinómicas. Factorización 1 FACTORIZACIÓN Una expresión polinómica es (justamente) una expresión formada por sumas y restas de términos,

Más detalles

DEL LENGUAJE DE LOS NÚMEROS AL LEGUAJE ALGEBRAICO.

DEL LENGUAJE DE LOS NÚMEROS AL LEGUAJE ALGEBRAICO. DEL LENGUAJE DE LOS NÚMEROS AL LEGUAJE ALGEBRAICO. En ocasiones, en matemáticas, necesitamos operar con números desconocidos. Para ello, se toman letras para representar esas cantidades desconocidas o

Más detalles

CÁLCULO ALGEBRAICO. Dra. Patricia Kisbye Dr. David Merlo

CÁLCULO ALGEBRAICO. Dra. Patricia Kisbye Dr. David Merlo CÁLCULO ALGEBRAICO Dra. Patricia Kisbye Dr. David Merlo INTRODUCCIÓN Estas notas han sido elaboradas con el fin de ofrecer al ingresante a las carreras de la FaMAF herramientas elementales del cálculo

Más detalles

OPERATORIA CON NUMEROS NEGATIVOS

OPERATORIA CON NUMEROS NEGATIVOS OPERATORIA CON NUMEROS NEGATIVOS Conjunto Z de los N os Enteros María Lucía Briones Podadera Profesora de Matemáticas Universidad de Chile. 34 CONJUNTO Z DE LOS NUMEROS ENTEROS.- Representación gráfica

Más detalles

INSTITUTO VALLADOLID PREPARATORIA página 57

INSTITUTO VALLADOLID PREPARATORIA página 57 INSTITUTO VALLADOLID PREPARATORIA página 57 página 58 RESTA DE FRACCIONES RESTA La resta de fracciones está basada, por ser el inverso de la operación suma, en las mismas reglas y leyes de la suma, es

Más detalles

Factorización de polinomios

Factorización de polinomios Factorización de polinomios Polinomios Un polinomio p en la variable x es una expresión de la forma: px a 0 a 1 x a x a n1 x n1 a n x n donde a 0, a 1, a,, a n1, a n son unos números, llamados coeficientes

Más detalles

resolución de problemas en cuanto a originalidad, ingenio y versatilidad de los métodos usados.

resolución de problemas en cuanto a originalidad, ingenio y versatilidad de los métodos usados. i PRESENTACIÓN Este teto tiene la intención de asistir como un importante material de apoyo en el área de matemática a los estudiantes que participan en el curso propedéutico que dicta la Facultad de Agronomía

Más detalles

Propiedades de les desigualdades.

Propiedades de les desigualdades. Desigualdades Inecuaciones Diremos que a < b a es menor que b si b a es un número positivo. Gráficamente, a queda a l esquerra de b. Diremos que a > b a mayor que b si a b es un número positivo. Gráficamente,

Más detalles

Tema 2 Límites de Funciones

Tema 2 Límites de Funciones Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos

Más detalles

Profr. Efraín Soto Apolinar. Factorización

Profr. Efraín Soto Apolinar. Factorización Factorización La factorización es la otra parte de la historia de los productos notables. Esto es, ambas cosas se refieren a las mismas fórmulas, pero en los productos notables se nos daba una operación

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 2 Polinomios y fracciones algebraicas Elaborado por la Profesora Doctora

Más detalles

Polinomios. Antes de empezar

Polinomios. Antes de empezar Antes de empezar Utilidad de los polinomios Los polinomios no solo están en la base de la informática, en economía los cálculos de intereses y duración de las hipotecas se realizan con expresiones polinómicas,

Más detalles

Matemática SECRETARÍA ACADÉMICA AREA INGRESO. - Septiembre de 2010 -

Matemática SECRETARÍA ACADÉMICA AREA INGRESO. - Septiembre de 2010 - SECRETARÍA ACADÉMICA AREA INGRESO - Septiembre de 00 - SECRETARÍA ACADÉMICA ÁREA INGRESO UNIVERSIDAD TECNOLÓGICA NACIONAL Zeballos 000 Rosario - Argentina www.frro.utn.edu.ar e-mail: ingreso@frro.utn.edu.ar

Más detalles

modulodematematica@gmail.com https://www.facebook.com/groups/modulomat

modulodematematica@gmail.com https://www.facebook.com/groups/modulomat modulodematematica@gmail.com https://www.facebook.com/groups/modulomat Matemática Ingreso 0 UADER Facultad de Ciencias de la Gestión Estimado Estudiante: El material que presentamos a continuación es un

Más detalles

Lenguaje Algebraico Ing. Gerardo Sarmiento

Lenguaje Algebraico Ing. Gerardo Sarmiento Agosto 2009 Unidad 1 LENGUAJE ALGEBRAICO 1.1.1 DEFINICION DE ALGEBRA 1.1.2 SIMBOLOS Y LENGUAJE 1.1.3 EXPRESIONES ALGEBRAICAS Lenguaje Común y Lenguaje Algebráico 1.1.4 NOTACION ALGEBRAICA Elementos de

Más detalles

NÚMEROS RACIONALES Y DECIMALES

NÚMEROS RACIONALES Y DECIMALES NÚMEROS RACIONALES Y DECIMALES Unidad didáctica. Números racionales y decimales CONTENIDOS Fracciones Fracciones equivalentes Amplificar fracciones Simplificar fracciones Representación en la recta numérica.

Más detalles

Repasando lo aprendido...con una propuesta autoinstruccional

Repasando lo aprendido...con una propuesta autoinstruccional Repasando lo aprendido......con una propuesta autoinstruccional Te propongo un rápido repaso en matemática básica, que te será de suma utilidad para fijar los conocimientos dados. Sólo te brindo una guía

Más detalles

MATERIAL DIDACTICO DE MATEMÁTICAS

MATERIAL DIDACTICO DE MATEMÁTICAS MATERIAL DIDACTICO DE MATEMÁTICAS Matemáticas 1 INSTITUTO TECNOLÓGICO DE ROQUE MATERIAL DIDACTICO DE MATEMÁTICAS DEPARTAMENTO CIENCIAS BÁSICAS ELABORARON: ERIKA RAMOS OJEDA RAQUEL ALDACO SEGOVIANO JORGE

Más detalles

a < b y se lee "a es menor que b" (desigualdad estricta) a > b y se lee "a es mayor que b" (desigualdad estricta)

a < b y se lee a es menor que b (desigualdad estricta) a > b y se lee a es mayor que b (desigualdad estricta) Desigualdades Dadas dos rectas que se cortan, llamadas ejes (rectangulares si son perpendiculares, y oblicuos en caso contrario), un punto puede situarse conociendo las distancias del mismo a los ejes,

Más detalles

Conectados con el pasado, proyectados hacia el futuro Plan Anual de Matemática III Año PAI VIIIGrado

Conectados con el pasado, proyectados hacia el futuro Plan Anual de Matemática III Año PAI VIIIGrado Actualizado en febrero del 2013 Conectados con el pasado, proyectados hacia el futuro Plan Anual de Matemática III Año PAI VIIIGrado CONTENIDOS OBJETIVOS ESPECÍFICOS HABILIDADES CRITERIOS DE EVALUACIÓN

Más detalles

IES MARIA INMACULADA MATEMÁTICAS 2º E.S.O. Curso 2010-2011 TEMA : LENGUAJE ALGEBRÁICO

IES MARIA INMACULADA MATEMÁTICAS 2º E.S.O. Curso 2010-2011 TEMA : LENGUAJE ALGEBRÁICO IES MARIA INMACULADA MATEMÁTICAS º E.S.O. Curso 010-011 GUIÓN DEL TEMA 1. Lenguaje numérico y lenguaje algebraico.. Epresión algebraica.. Valor numérico de una epresión algebraica.. Monomios. 5. Grado

Más detalles