Capítulo 7 Riesgo Moral

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Capítulo 7 Riesgo Moral"

Transcripción

1 Capítulo 7 Riesgo Moral Introduction El problema de riesgo moral aparece cuando el comportamiento del agente no es verificable ó cuando el agente recibe información privada, una vez iniciado el contrato. Generalmente, el esfuerzo del agente se realiza después de firmar el contrato y no es verificable. Por lo tanto, el esfuerzo del agente no se puede incluir en el contrato. Otros tipo de problemas de riesgo moral ocurren cuando Antes de firmar el contrato la incertidumbre es la misma para los dos agentes. Después de firmar el contrato y antes de realizar su esfuerzo, el agente obtiene una ventaja informativa sobre una variable que es importante para el resultado final. P diseña el contrato A acepta el contrato A realiza un esfuerzo no verificable N juega Resultados y pagos P diseña el contrato A acepta el contrato N juega y sólo A observa A realiza un esfuerzo N juega Resultados y pagos

2 . Una editorial contrata a un vendedor de enciclopedias a domicilio. 2. Prestadores de servicios: mecánicos, médicos, vendedores de casas. 3. Centro de investigación que contrata a un investigador. 4. Profesores de universidad. 5. Seguro de saludo o seguro de coche a todo riesgo. En todos los casos,. El esfuerzo del agente no puede ser incluido en los términos del contrato. 2. El resultado del esfuerzo si es verificable y puede ser utilizado en el contrato entre el principal y el agente. 3. El principal tiene que dar incentivos al agente para elegir el esfuerzo que más conviene al principal. 4. Las restricciones del principal son, (a) La condición de participación. (b) La restricción de incentivos. 5. El concepto de solución: Equilibrio bayesiano perfecto en subjuegos. 2 El agente elige entre dos esfuerzos El agente elige entre dos esfuerzos El principal contrata a un agente para realizar un esfuerzo. El agente puede elegir entre dos esfuerzos e {e h, e l } (alto y bajo). Si el agente recibe el salario w y realiza el esfuerzo e su utilidad es con u > 0, u < 0. u(w) v(e) Suponemos que v(e h ) > v(e l ). La utilidad de reserva del agente es ū Hay n resultados posibles {x,..., x n }, ordenados de peor a mejor x < x 2 < < x n El esfuerzo del agente no determina directamente el resultado. El esfuerzo del agente determina la probabilidad de que ocurra cada resultado. Llamamos 2

3 . p l i = p i(e l ) a la probabilidad de que el resultado sea x i, cuando el esfuerzo del agente es e l 2. p h i = p i (e h ) a la probabilidad de que el resultado sea x i, cuando el esfuerzo del agente es e h La función de utilidad del principal depende del resultado x del esfuerzo que realice el agente y del salario w pagado a éste. B(x, w) = x w p l x p h x e l p 2 l x 2 e h p 2 h x 2 p n l x n p n h x n Suponemos cuanto mayor sea el esfuerzo del agente mejor será el resultado para el principal p h < p l p h + p h 2 < p l + p l 2. n p h i < p h i = n p l i p l i = Es decir, la probabilidad de obtener un resultado malo, inferior o igual a x i, es mayor con el esfuerzo bajo e l que con el esfuerzo alto e h. Ejemplo 2.. e l e h p (e) 2/3 /3 p 2 (e) /6 /6 p 2 (e) /6 /2 p h = /3 < p l = 2/3 p h + p h 2 = /2 < p l 2 + p l 2 = 5/6 p h + p h 2 + p h 3 = = p h + p h 2 + p h 3 3

4 El principal puede ofrecer un salario w(x i ) que depende del resultado obtenido w : {x,..., x n } IR Es decir, el principal ofrece los salarios {w(x ), w(x 2 ),..., w(x n )}, donde w(x i ) es el salario para el agente si el resultado es x i. p l w( x ) p h w( x ) e l p 2 l w( x ) 2 e h p 2 h w( x ) 2 p n l h p w( x ) n w( n x ) n Llamamos w i = w(x i ), i =, 2,..., n. Como el resultado es aleatorio, el principal y el agente utilizan utilidad esperada para evaluar los contratos. Si el agente realiza el esfuerzo e y recibe los pagos w = (w,..., w n ), la función de utilidad del principal es Π(w, e) = p i (e)b(x i, w i ) y la función de utilidad del agente es U(w, e) = p i (e) ( u(w i ) v(e) ) = p i (e)u(w i ) v(e) Observamos que si el principal ofrece un salario w = w = = w n que no depende del esfuerzo, entonces el agente elige e = e l ya que p i (e l )u(w) v(e l ) = u(w) p i (e) v(e l ) = u(w) v(e l ) > u(w) v(e h ) = u(w) p i (e) v(e h ) = p i (e l )u(w) v(e l ) 4

5 Para resolver el problema: Calculamos el contrato más favorable para el principal entre aquellos que incentivan un esfuerzo alto e h por parte del agente. Calculamos el contrato más favorable para el principal entre aquellos que incentivan un esfuerzo bajo e l por parte del agente. El principal elige aquel contrato que le proporciona un beneficio mayor. El principal incentiva un esfuerzo bajo El principal busca el contrato que resuelve el siguiente problema w,...,w n p l i(x i w i ) p l iu(w i ) v(e l ) ū p l iu(w i ) v(e l ) p h i u(w i ) v(e h ) La restricción que se satura es la de participación, ya que. El agente es averso al riesgo y prefiere el salario esperado seguro ( n ) p l iw i,..., p l iw i a que el salario dependa del resultado (w..., w n ) 2. Si el salario no depende del esfuerzo, el agente prefiere realizar el esfuerzo bajo e l al esfuerzo alto e h. Es decir, la restricción de incentivos no se satura. Por tanto, vamos a suponer que el problema es w,...,w n p l i(x i w i ) p l iu(w i ) v(e l ) = ū 5

6 El Lagrangiano es ( n ) L = p l i(x i w i ) + λ p l iu(w i ) v(e l ) ū y las condiciones de primer orden son p l i + λp l iu (w i ) = 0 i =,..., n Obtenemos que u (w i ) = u (w j ) para todo i, j =,..., n, por lo que w i = w j = w para todo i, j =,..., n La ecuación de participación u(w) v(e l ) = ū determina el salario, w. El principal incentiva un esfuerzo alto El principal busca el contrato que resuelve el siguiente problema w,...,w n p h i (x i w i ) p h i u(w i ) v(e h ) ū (2.) p h i u(w i ) v(e h ) p l iu(w i ) v(e l ) (2.2) La ecuación 2. es la condición de participación y la ecuación 2.2 es la condición de incentivos. El Lagrangiano es L = p h i (x i w i ) + ( n ) + λ p h i u(w i ) v(e h ) ū + ( n ) + µ (p h i p l i)u(w i ) v(e h ) + v(e l ) Las ecuaciones de Kuhn-Tucker son p h i + λp h i u (w i ) + µ(p h i p l i)u (w i ) = 0 i =,..., n 6

7 Obtenemos que p h i u (w i ) = λph i + µ(p h i p l i) i =,..., n (2.3) Dividiendo por p h i obtenemos que ( ) u (w i ) = λ + µ pl i p h i i =,..., n (2.4) por lo que si µ = 0 tendríamos que w i = w j para todo i, j =,..., n y la restricción de incentivos no se satisface. Por tanto µ 0. Sumando las ecuaciones 2.3 y teniendo en cuenta que obtenemos que p h i = λ = p l i = p h i u (w i ) > 0 Concluimos que λ, µ > 0 por lo que que las dos restricciones 2. y 2.2 se satisfacen con igualdad. w,...,w n p h i (x i w i ) p h i u(w i ) v(e h ) = ū p h i u(w i ) v(e h ) = p l iu(w i ) v(e l ) Propiedades del contrato con esfuerzo alto La condición µ > 0 significa que el un problema de riesgo moral tiene un coste estrictamente positivo para el principal:los beneficios del principal son estrictamente mayores cuando hay información simétrica que cuando la información es asimétrica. De la ecuación 2.4 obtenemos que u (w i ) = λ + µ ( ) p l i =,..., n i /ph i Esta ecuación determina implícitamente w i i =,..., n. 7

8 Como u es decreciente, los pagos w i son mayores cuando más pequeño es el segundo término de la ecuación, es decir cuando mayor es su denominador. El denominador es mayor cuando más pequeño es p l i p h i Este cociente se denomina el coeficiente de verosimilitud. Si el resultado es x i, el coeficiente de verosimilitud p l i p h i El coeficiente de verosimilitud es una medida de la fiabilidad con la que podemos inferir si el esfuerzo del agente ha sido e h ó e l. Por ejemplo, para aquellos índices i 0 tales que p l i 0 = p h i 0, se verifica que u (w i0 )) = λ Para aquellos i =,..., n tales que tenemos que por lo que w i < w i0. u (w i ) = Para aquellos i 2 =,..., n tales que p l i p h i > λ + µ ( p l i /p h i ) > λ tenemos que por lo que w i2 > w i0. Ejemplo 2.2. u (w i2 ) = p l i 2 p h i 2 < λ + µ ( p l i 2 /p h i 2 ) < λ Comparemos las dos situaciones siguientes. Situación A e l e h p l i /ph i p (e) 2/3 /3 2 p 2 (e) /3 2/3 /2 Situación B e l e h p l i /ph i p (e) 4/5 /5 4 p 2 (e) /5 4/5 /4 8

9 Vemos que por lo que p l (B) p h (B) > pl (A) p h (A) > pl 2(A) p h 2 (A) > pl 2(B) p h 2 (B) w (B) < w (A) < w 2 (A) < w 2 (B) Ejemplo 2.3. Situación A e l e h p l i /ph i p (e) 2/3 /3 2 p 2 (e) /3 2/3 /2 Situación B e l e h p l i /ph i p (e) 4/5 /5 4 p 2 (e) /5 4/5 /4 En ambas situaciones, el salario del agente en el mejor resultado es más alto: w (A) < w 2 (A), w (B) < w 2 (B). Pero si, por ejemplo, el resultado es x 2, en la situación B podemos estar más seguros de que se debe al esfuerzo del agente que en la situación A. Por eso tenemos que w (B) < w (A) y < w 2 (A) < w 2 (B). El resultado es más atribuible al esfuerzo del agente en la situación B que en la A y los salarios reflejan la fiabilidad de la información derivada del resultado. Ejemplo 2.4. Un principal contrata a un agente. El principal paga un salario w {w, w 2 } al agente. El valor x {x = 6.000, x 2 = } del resultado obtenido depende del esfuerzo e {e, e 2 } del agente, que puede ser alto e o bajo e 2. El principal puede condicionar el salario w {w, w 2 } al resultado x {x, x 2 } w : {x, x 2 } {w, w 2 } La utilidad de reserva del agente es ū = 80. La función de utilidad del principal es B(w, x) = x w. La función de utilidad del agente es u(w, e) = w v(e). La tabla siguiente resume los valores de e, v(e) y las probabilidades de obtener x = x, x 2. Ejemplo 2.5. e v(e) x = x 2 = e 0 /4 3/4 e 2 0 3/4 /4 9

10 Información simétrica Con información simétrica, el principal imiza su beneficio sujeto a la restricción de participación del agente. Como el principal es neutral al riesgo y el agente es averso al riesgo, el agente se asegura completamente. Si el principal incentiva e = e, entonces w = w = w 2 verifica que Obtenemos w = 800 y 80 = w v(e ) = w 0 B(w, e ) = 4 ( ) + 3 ( ) = Si el principal incentiva e = e 2, entonces w = w = w 2 verifica que Obtenemos w = 6400 y 80 = w v(e 2 ) = w B(w, e 2 ) = 3 4 ( ) + ( ) = El principal incentiva el esfuerzo e = e. Información asimétrica Si el principal incentiva e = e 2, la situación es como en el caso de información simétrica. Si el principal incentiva e = e, el programa del principal es 4 (6000 w ) (40000 w 2) w w w w w Las dos restricciones se saturan w w2 4 = 90 w w2 0 4 = 3 w Obtenemos w = 5625, w 2 = 9025 y w2 w2 B(w, e ) = 4 ( ) + 3 ( ) = El principal incentiva el esfuerzo e = e. 0

11 3 El agente elige entre un continuo esfuerzos Supongamos que el agente puede elegir entre un continuo de esfuerzos. Ahora el problema del principal es e,w(x ),...,w(x n) p i (e)(x i w i ) e arg e p i (e)u(w i ) v(e) p i (e)u(w i ) v(e) ū Para resolver este problema sustituimos las condiciones de primer orden del problema e p i (e)u(w i ) v(e) en las restricciones del problema del principal. La condición de primer orden es p i(e)u(w i ) v (e) = 0 Por tanto, estudiamos el problema e,w(x ),...,w(x n) p i (e)(x i w i ) p i (e)u(w i ) v(e) ū p i(e)u(w i ) v (e) = 0 El Lagrangiano es L = p i (e)(x i w i ) [ n ] + λ p i (e)u(w i ) v(e) ū [ n ] + µ p i(e)u(w i ) v (e)

12 Condiciones de primer orden Las condiciones de primer orden respecto a los salarios son De esta expresión obtenemos que p i (e) + λp i (e)u (w i ) + µp i(e)u (w i ) = 0 u (w i ) = p i (e) λp i (e) + µp i (e) = λ + µ p i (e) p i(e) La condición de primer orden respecto al esfuerzo es 0 = = [ n ] [ n ] p i(e)(x i w i ) + λ p i(e)u(w i ) v (e) + µ p i (e)u(w i ) v (e) [ n ] p i(e)(x i w i ) + µ p i (e)u(w i ) v (e) De aquí obtenemos que [ n ] p i(e)x i = p i(e)w i µ p i (e)u(w i ) v (e) 2

Universitat Autònoma de Barcelona Curs 2002-2003. Breviario de Economía de la Información 1

Universitat Autònoma de Barcelona Curs 2002-2003. Breviario de Economía de la Información 1 Universitat Autònoma de Barcelona Curs 2002-2003 Breviario de Economía de la Información 1 Introducción La economía de la información es la teoría de los contratos en información asimétrica. Su propósito

Más detalles

Tema 4. Organización y problemas de asimetría de Información

Tema 4. Organización y problemas de asimetría de Información Tema 4. Organización y problemas de asimetría de Información 4.1. Información privada, incompleta y asimétrica 4.2. Selección adversa y el cierre de los mercados: el modelo de Akerlof 4.3. Respuestas a

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES INECUACIONES NOTA IMPORTANTE: El signo de desigualdad de una inecuación puede ser,, < o >. Para las cuestiones teóricas que se desarrollan en esta unidad únicamente se utilizará la desigualdad >, siendo

Más detalles

que tan buen predictor

que tan buen predictor Introducción Las Teorías de Finanzas y las de Economía tratan de describir lo mejor posible situaciones que ocurren en la vida real, como cualquier teoría su fortaleza radica en que tan buen predictor

Más detalles

Tema 1: La conducta del consumidor

Tema 1: La conducta del consumidor Tema 1: La conducta del consumidor 1.1. Las preferencias del consumidor. Concepto de utilidad. 1.2. La restricción presupuestaria. 1.3. La elección del consumidor. 1.4. Los índices del coste de la vida.

Más detalles

TEMA 8: MODELOS CON INFORMACION ASIMÉTRICA: RISCO MORAL E ACCIONS NON OBSERVABLES

TEMA 8: MODELOS CON INFORMACION ASIMÉTRICA: RISCO MORAL E ACCIONS NON OBSERVABLES TEMA 8: MODELOS CO IFORMACIO ASIMÉTRICA: RISCO MORAL E ACCIOS O OBSERVABLES 1 TEMA 8: MODELOS CO IFORMACIO ASIMÉTRICA: MODELOS DE AGECIA, RIESGO MORAL Y ACCIOES O OBSERVABLES E IFORMACIO OCULTA (*) 1.

Más detalles

3.2 Agencia y medición de las prestaciones. Referencias: Besanko et al. 14, 15 M&R:. 6 (hasta pág. 226) y 7

3.2 Agencia y medición de las prestaciones. Referencias: Besanko et al. 14, 15 M&R:. 6 (hasta pág. 226) y 7 3.2 Agencia y medición de las prestaciones Referencias: Besanko et al. 14, 15 M&R:. 6 (hasta pág. 226) y 7 Agencia y medición de las prestaciones Principal/agente Salarios de incentivos Incentivos en las

Más detalles

DECISIONES DE CONSUMO EN CONDICIONES DE INCERTIDUMBRE

DECISIONES DE CONSUMO EN CONDICIONES DE INCERTIDUMBRE DECISIONES DE CONSUMO EN CONDICIONES DE INCERTIDUMBRE APLICACIÓN: MODELO DEL SEGURO Y DE CARTERA Contacto: Mª Covadonga De la Iglesia Villasol Departamento de Fundamentos del Análisis Económico I Universidad

Más detalles

Economía de la información y la incertidumbre 3er curso (1º Semestre) Grado en Economía

Economía de la información y la incertidumbre 3er curso (1º Semestre) Grado en Economía Economía de la información y la incertidumbre 3er curso (1º Semestre) Grado en Economía Parte I. Tema II: TEORÍA DE LA DECISIÓN CON INCERTIDUMBRE: UTILIDAD ESPERADA Bibliografía recomendada: Para el punto

Más detalles

Notas en Eonomía de la Información *

Notas en Eonomía de la Información * Notas en Eonomía de la Información * Alvaro J. Riascos Villegas Universidad de los Andes Octubre de 2014 (segunda versión) Índice 1. Introducción 2 2. Selección adversa 4 2.1. Información simétrica........................

Más detalles

Economía de la información y la incertidumbre 3er curso (1º Semestre) Grado en Economía

Economía de la información y la incertidumbre 3er curso (1º Semestre) Grado en Economía Economía de la información y la incertidumbre 3er curso (1º Semestre) Grado en Economía Parte II. Tema IV: APLICACIONES DE LA TEORIA DE JUEGOS Bibliografía recomendada: Nicholson, capítulo 9; Varian, capítulo

Más detalles

Teoría Microeconómica I

Teoría Microeconómica I Contenido Tema 1. conomía de la Información Profesor Asociado Departamento de conomía ITS, Campus onterrey. Objetivo del Tema Asimetrías de Información y el ercado de Seguros odelos con Riesgo oral (oral

Más detalles

ax + b < 0, ax + b > 0, ax + b 0 o ax + b 0, multiplicamos ambos miembros de la inecuación por 6 para quitar denominadores. De esta forma se tiene

ax + b < 0, ax + b > 0, ax + b 0 o ax + b 0, multiplicamos ambos miembros de la inecuación por 6 para quitar denominadores. De esta forma se tiene 8 UNIDAD I. A modo de repaso. Preliminares Inecuaciones Una inecuación es una desigualdad en la que el criterio de comparación es la relación de orden inherente al conjunto de los números reales. Hay que

Más detalles

Aplicación 1: Asegurarse contra los malos resultados (contra la incertidumbre)

Aplicación 1: Asegurarse contra los malos resultados (contra la incertidumbre) 4. Aplicaciones Aplicación 1: Asegurarse contra los malos resultados (contra la incertidumbre) En general, gente es aversa al riesgo. Sufre desutilidad del riesgo un individuo tal vez estaría dispuesto

Más detalles

Tema III. Capítulo 2. Sistemas generadores. Sistemas libres. Bases.

Tema III. Capítulo 2. Sistemas generadores. Sistemas libres. Bases. Tema III Capítulo 2 Sistemas generadores Sistemas libres Bases Álgebra Lineal I Departamento de Métodos Matemáticos y de Representación UDC 2 Sistemas generadores Sistemas libres Bases 1 Combinación lineal

Más detalles

Aversión al riesgo y mercados de seguros

Aversión al riesgo y mercados de seguros Aversión al riesgo y mercados de seguros Ricard Torres CIE ITAM Microeconomía Aplicada II, Verano-Otoño 2015 Ricard Torres (CIE ITAM) Aversión al riesgo y mercados de seguros Microeconomía Aplicada II

Más detalles

MATEMÁTICAS III. RESTRICCIONES DE IGUALDAD

MATEMÁTICAS III. RESTRICCIONES DE IGUALDAD MATEMÁTICAS III. PROBLEMAS Y CUESTIONES TEMA 4: RESTRICCIONES DE IGUALDAD OPTIMIZACIÓN CON Problema 1: Una empresa calcula que puede alcanzar unos beneficios anuales (en miles de euros) dados por la función:

Más detalles

1 El problema del agente y el principal

1 El problema del agente y el principal El problema del agente y el principal **ver multitasking de Holmstrom y Milgrom del bolton y dewatripont** Muchas situaciones de interés para la economía se pueden analizar utilizando el siguiente marco

Más detalles

Tema 7: Capital, inversión y ciclos reales

Tema 7: Capital, inversión y ciclos reales Tema 7: Capital, inversión y ciclos reales Macroeconomía 2014 Universidad Torcuato di Tella Constantino Hevia En la nota pasada analizamos el modelo de equilibrio general de dos períodos con producción

Más detalles

Prof. José L. Zofío. Grupos 14/15 MICROECON0MÍA II. Licenciatura: Dirección y Administración de Empresas Curso 2007-08 (2º semestre) Código 14474

Prof. José L. Zofío. Grupos 14/15 MICROECON0MÍA II. Licenciatura: Dirección y Administración de Empresas Curso 2007-08 (2º semestre) Código 14474 Prof. José L. Zofío Grupos 14/15 MICROECON0MÍA II Licenciatura: Dirección y Administración de Empresas Curso 2007-08 (2º semestre) Código 14474 Curso 2007/2008 Parte III: Información y Externalidades Tema

Más detalles

Universidad Diego Portales Facultad de Economía y Empresa. 1. Reputación. Apuntes de Teoría de Juegos Profesor: Carlos R. Pitta

Universidad Diego Portales Facultad de Economía y Empresa. 1. Reputación. Apuntes de Teoría de Juegos Profesor: Carlos R. Pitta En estas notas revisaremos los conceptos de reputación desde la perspectiva de información incompleta. Para ello usaremos el juego del ciempiés. Además, introduciremos los conceptos de juegos de señales,

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES )

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS SOLUCIONES HOJA 5: Optimización 5-1. Hallar los puntos críticos de las siguiente funciones y clasificarlos: a fx, y = x y + xy.

Más detalles

Aversión al riesgo y demanda de seguros

Aversión al riesgo y demanda de seguros Aversión al riesgo y demanda de seguros Ricard Torres ITAM Economía Financiera, 2015 Ricard Torres (ITAM) Aversión al riesgo y demanda de seguros Economía Financiera 1 / 23 Índice 1 Mercados de seguros

Más detalles

Programación Lineal Entera

Programación Lineal Entera Programación Lineal Entera P.M. Mateo y David Lahoz 2 de julio de 2009 En este tema se presenta un tipo de problemas formalmente similares a los problemas de programación lineal, ya que en su descripción

Más detalles

Resumen de técnicas para resolver problemas de programación entera. 15.053 Martes, 9 de abril. Enumeración. Un árbol de enumeración

Resumen de técnicas para resolver problemas de programación entera. 15.053 Martes, 9 de abril. Enumeración. Un árbol de enumeración 5053 Martes, 9 de abril Ramificación y acotamiento () Entregas: material de clase Resumen de técnicas para resolver problemas de programación entera Técnicas de enumeración Enumeración completa hace una

Más detalles

La Teoría del Consumidor: Incertidumbre

La Teoría del Consumidor: Incertidumbre La Teoría del Consumidor: Incertidumbre Incertidumbre y Riesgo La presencia de incertidumbre supone que las consecuencias que se derivan de cada alternativa disponible no se conocen de antemano, sino que

Más detalles

UNIDAD 12. Incertidumbre y riesgo

UNIDAD 12. Incertidumbre y riesgo UNIDAD 12 Incertidumbre y riesgo La incertidumbre es una situación en la que puede ocurrir mas de un acontecimiento pero no conocemos cual.(ejm el agricultor esta incierto cuando siembra) El riesgo es

Más detalles

Segundo de Bachillerato Geometría en el espacio

Segundo de Bachillerato Geometría en el espacio Segundo de Bachillerato Geometría en el espacio Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid 204-205. Coordenadas de un vector En el conjunto de los vectores libres del espacio el concepto

Más detalles

Tema 9: Relaciones laborales: Producción en equipo y agencia

Tema 9: Relaciones laborales: Producción en equipo y agencia Tema 9: Relaciones laborales: Producción en equipo y agencia Introducción 9.1 Producción en equipo, acción colectiva y control especializado 9.1.1 Minimización de los costes contractuales de la producción

Más detalles

Tema 3: Producto escalar

Tema 3: Producto escalar Tema 3: Producto escalar 1 Definición de producto escalar Un producto escalar en un R-espacio vectorial V es una operación en la que se operan vectores y el resultado es un número real, y que verifica

Más detalles

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre CURSO CERO Departamento de Matemáticas Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre Capítulo 1 La demostración matemática Demostración por inducción El razonamiento por inducción es una

Más detalles

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas.

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas. Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Septiembre 2012 - Propuesta A 1. Queremos realizar una inversión en dos tipos

Más detalles

MÉTODOS MATEMÁTICOS DE LA ECONOMÍA

MÉTODOS MATEMÁTICOS DE LA ECONOMÍA UNIVERSIDAD DE VALLADOLID DEPARTAMENTO DE ECONOMÍA APLICADA SUBSECCIÓN DE MATEMÁTICAS MÉTODOS MATEMÁTICOS DE LA ECONOMÍA Economía Derecho Administración y Dirección de Empresas RELACIÓN DE PROBLEMAS DE

Más detalles

EJERCICIOS RESUELTOS DE LOS TEOREMAS DEL VALOR MEDIO

EJERCICIOS RESUELTOS DE LOS TEOREMAS DEL VALOR MEDIO MATEMÁTICAS EJERCICIOS RESUELTOS DE LOS TEOREMAS DEL VALOR MEDIO Juan Jesús Pascual TEOREMAS DEL VALOR MEDIO. Es aplicable el teorema de Rolle a la función f( x) = x 5x 6 en [ 0, 5 ]? El teorema de Rolle

Más detalles

FUNCIÓN CUADRÁTICA. Tres formas para identificar una parábola según los datos:

FUNCIÓN CUADRÁTICA. Tres formas para identificar una parábola según los datos: FUNCIÓN CUADRÁTICA Una función cuadrática es una función polinómica de segundo grado de la forma y=ax +bx+c, cuya gráfica es una parábola de eje vertical, donde a representa la abertura de la parábola.

Más detalles

Ecuaciones de primer grado con dos incógnitas

Ecuaciones de primer grado con dos incógnitas Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad

Más detalles

Tema 3. La elección en condiciones de incertidumbre

Tema 3. La elección en condiciones de incertidumbre Tema 3 La elección en condiciones de incertidumbre Epígrafes El valor esperado La hipótesis de la utilidad esperada La aversión al riesgo La compra de un seguro Cap. 5 P-R 2 Introducción Cómo escogemos

Más detalles

CAPITULO 4: OPTIMIZACIÓN

CAPITULO 4: OPTIMIZACIÓN CAPITULO 4: OPTIMIZACIÓN Optimización es el proceso de hallar el máimo o mínimo relativo de una función, generalmente sin la auda de gráficos. 4.1 Conceptos claves A continuación se describirá brevemente

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD 1 PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD CURSO 009-010 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumno debe elegir sólo una de las pruebas (A o

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

Hasta el momento hemos analizado como los agentes económicos toman sus decisiones de consumo o producción en condiciones de certeza total.

Hasta el momento hemos analizado como los agentes económicos toman sus decisiones de consumo o producción en condiciones de certeza total. III. Elección en condiciones de incertidumbre Hasta el momento hemos analizado como los agentes económicos toman sus decisiones de consumo o producción en condiciones de certeza total. Es decir, cuando

Más detalles

Unidad III: Programación no lineal

Unidad III: Programación no lineal Unidad III: Programación no lineal 3.1 Conceptos básicos de problemas de programación no lineal Programación no lineal (PNL) es el proceso de resolución de un sistema de igualdades y desigualdades sujetas

Más detalles

La Función Exponencial y la Función Logarítmica

La Función Exponencial y la Función Logarítmica 1 Capítulo 7 La Función Exponencial y la Función Logarítmica M.Sc. Alcides Astorga M., Lic. Julio Rodríguez S. Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación

Más detalles

Definición 2.1.1. Se llama suceso aleatorio a cualquier subconjunto del espacio muestral.

Definición 2.1.1. Se llama suceso aleatorio a cualquier subconjunto del espacio muestral. Capítulo 2 Probabilidades 2. Definición y propiedades Al realizar un experimento aleatorio nuestro interés es obtener información sobre las leyes que rigen el fenómeno sometido a estudio. El punto de partida

Más detalles

INFERENCIA ESTADÍSTICA

INFERENCIA ESTADÍSTICA Capítulo 4 INFERENCIA ESTADÍSTICA 4.1. Introducción Inferir: Sacar una consecuencia de una cosa. Sacar consecuencia o deducir una cosa de otra. La estadística, ciencia o rama de las Matemáticas que se

Más detalles

Microeconomía Intermedia

Microeconomía Intermedia Microeconomía Intermedia Colección de preguntas tipo test y ejercicios numéricos, agrupados por temas y resueltos por Eduardo Morera Cid, Economista Colegiado. Tema 09 La estructura de costes de la empresa

Más detalles

Polinomios y Fracciones Algebraicas

Polinomios y Fracciones Algebraicas Tema 4 Polinomios y Fracciones Algebraicas En general, a lo largo de este tema trabajaremos con el conjunto de los números reales y, en casos concretos nos referiremos al conjunto de los números complejos.

Más detalles

Diseños en cuadrados latinos

Diseños en cuadrados latinos Capítulo 7 Diseños en cuadrados latinos 7.1. Introducción En el modelo en bloques aleatorizados, que estudiamos en el capítulo anterior, considerábamos un factor principal y un factor de control o variable

Más detalles

Aplicaciones de vectores

Aplicaciones de vectores Aplicaciones de vectores Coordenadas del punto medio de un segmento Las coordenadas del punto medio de un segmento son la semisuma de las coordenadas de los extremos. Ejemplo: Hallar las coordenadas del

Más detalles

LA DISTRIBUCIÓN TRAPEZOIDAL COMO MODELO PROBABILÍSTICO PARA LA METODOLOGÍA PERT

LA DISTRIBUCIÓN TRAPEZOIDAL COMO MODELO PROBABILÍSTICO PARA LA METODOLOGÍA PERT LA DISTRIBUCIÓN TRAPEZOIDAL COMO MODELO PROBABILÍSTICO PARA LA METODOLOGÍA PERT JOSÉ CALLEJÓN CÉSPEDES EDUARDO PÉREZ RODRÍGUEZ ANTONIO RAMOS RODRÍGUEZ Facultad de Ciencias Económicas y Empresariales Universidad

Más detalles

Funciones hiperbólicas inversas (19.09.2012)

Funciones hiperbólicas inversas (19.09.2012) Funciones hiperbólicas inversas 9.09.0 a Argumento seno hiperbólico. y = arg shx = x = senh y = ey e y = x = e y e y. Multiplicando por e y, xe y = e y = e y xe y = 0, de donde e y = x ± x +. Para el signo

Más detalles

CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS

CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS Guía de Estudio para examen de Admisión de Matemáticas CONTENIDO PRESENTACIÓN... 3 I. ARITMÉTICA... 4 1. OPERACIONES CON FRACCIONES...

Más detalles

1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B(1, p), donde

1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B(1, p), donde Soluciones de la relación del Tema 6. 1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B1, p), donde p = P X = 1) = P la persona presente síntomas)

Más detalles

Guía de trabajos prácticos

Guía de trabajos prácticos Guía de trabajos prácticos Curso: Darío Miras Autor: Pedro Baroni Material de distribución gratuita Esta es una versión preliminar por lo que se agradecen los Comentarios y sugerencias vía E-mail a pedrohbaroni@gmail.com.

Más detalles

Sistemas de ayuda a la decisión Tema 5. Análisis de Sensibilidad Análisis Cualitivo y Análisis Paramétrico

Sistemas de ayuda a la decisión Tema 5. Análisis de Sensibilidad Análisis Cualitivo y Análisis Paramétrico Tema 5. Análisis de Sensibilidad Análisis Cualitivo y Análisis Paramétrico Indice 1) Motivavión, Identifición y Estructuración del problema 2) Análisis Paramétrico: Medidas basadas en distancias de umbral

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Un grupo de variables representadas por letras junto con un conjunto de números combinados con operaciones de suma, resta, multiplicación, división, potencia o etracción de raíces

Más detalles

ESTIMACIÓN. puntual y por intervalo

ESTIMACIÓN. puntual y por intervalo ESTIMACIÓN puntual y por intervalo ( ) Podemos conocer el comportamiento del ser humano? Podemos usar la información contenida en la muestra para tratar de adivinar algún aspecto de la población bajo estudio

Más detalles

Área: Matemática ÁLGEBRA

Área: Matemática ÁLGEBRA Área: Matemática ÁLGEBRA Prof. HENRY AYTE MORALES FICHA DE TRABAJO RECUPERACIÓN 1ro SEC A, B y C I. TEORÍA DE EXPONENTES 1. DEFINICIÓN Es un conjunto de fórmulas que relaciona a los exponentes de las expresiones

Más detalles

Tema 3: El modelo de regresión lineal múltiple

Tema 3: El modelo de regresión lineal múltiple Econometría 1 curso 2009-2010 Tema 3: El modelo de regresión lineal múltiple Genaro Sucarrat (Departamento de Economía, UC3M) http://www.eco.uc3m.es/sucarrat/ Recordamos: El modelo de regresión lineal

Más detalles

EQUILIBRIO EN MERCADOS COMPETITIVOS SEGUROS: UN ENSAYO SOBRE ECONOMÍA A DE LA INFORMACIÓN IMPERFECTA

EQUILIBRIO EN MERCADOS COMPETITIVOS SEGUROS: UN ENSAYO SOBRE ECONOMÍA A DE LA INFORMACIÓN IMPERFECTA EQUILIBRIO EN MERCADOS COMPETITIVOS SEGUROS: UN ENSAYO SOBRE ECONOMÍA A DE LA INFORMACIÓN IMPERFECTA I. MODELO BÁSICOB (W): ingreso si no tiene un accidente. (W-d): ingreso si tiene un accidente. α 1 :

Más detalles

Anexo 1: Demostraciones

Anexo 1: Demostraciones 75 Matemáticas I : Álgebra Lineal Anexo 1: Demostraciones Espacios vectoriales Demostración de: Propiedades 89 de la página 41 Propiedades 89- Algunas propiedades que se deducen de las anteriores son:

Más detalles

1 El problema del agente y el principal

1 El problema del agente y el principal El problema del agente y el principal Muchas situaciones de interés para la economía se pueden analizar utilizando el siguiente marco teórico. Hay un principal, que en la mayoría de los casos que analizaremos

Más detalles

Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo

Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo POLINOMIOS 1.1. DEFINICIONES Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo p(x) = a i x i = a 0 + a 1 x + a 2 x 2 + + a n x n + ; a i, x K; n N

Más detalles

Desempleo. Economía Laboral LIE UCEMA Prof. Julio Elías

Desempleo. Economía Laboral LIE UCEMA Prof. Julio Elías Desempleo Economía Laboral LIE UCEMA Prof. Julio Elías Introducción En un mercado competitivo la demanda iguala a la oferta de trabajadores. El salario de equilibrio limpia el mercado, y todas las personas

Más detalles

FUNCIONES TRIGONOMÉTRICAS

FUNCIONES TRIGONOMÉTRICAS UNIDAD 3 FUNCIONES TRIGONOMÉTRICAS Concepto clave: 1. Razones trigonométricas Si A es un ángulo interior agudo de un triángulo rectángulo y su medida es, entonces: sen longitud del cateto opuesto al A

Más detalles

Congruencias de Grado Superior

Congruencias de Grado Superior Congruencias de Grado Superior Capítulo 3 3.1 Introdución En el capítulo anterior vimos cómo resolver congruencias del tipo ax b mod m donde a, b y m son enteros m > 1, y (a, b) = 1. En este capítulo discutiremos

Más detalles

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 1 de agosto de 2003 1. Introducción Cualquier modelo de una situación es una simplificación de la situación real. Por lo tanto,

Más detalles

Universidad Diego Portales Facultad de Economía y Empresa

Universidad Diego Portales Facultad de Economía y Empresa Suponga que, conversando con su cuate, surge la idea de hacer una apuesta simple. Cada uno escoge decir cara ó sello. Se lanza una moneda al aire, y si sale cara, quien dijo sello le paga a quien dijo

Más detalles

Espacios vectoriales. Bases. Coordenadas

Espacios vectoriales. Bases. Coordenadas Capítulo 5 Espacios vectoriales. Bases. Coordenadas OPERACIONES ENR n Recordemos que el producto cartesiano de dos conjuntos A y B consiste en los pares ordenados (a,b) tales que a A y b B. Cuando consideramos

Más detalles

PROBLEMAS ECONOMÍA DEL SECTOR PÚBLICO TEMA II y TEMA III Grupos 24 y 25.

PROBLEMAS ECONOMÍA DEL SECTOR PÚBLICO TEMA II y TEMA III Grupos 24 y 25. Universitat de les Illes Baleras. Departament d Economia Aplicada. Professor: Jenny De Freitas Fernandes. (http://dea.uib.es/webpersonal/jdefreitas) PROBLEMAS ECONOMÍA DEL SECTOR PÚBLICO TEMA II y TEMA

Más detalles

C B. a) Qué velocidad lleva cada uno? b) Escribe la expresión analítica de estas funciones. Velocidad = 33, ) 3 m/min.

C B. a) Qué velocidad lleva cada uno? b) Escribe la expresión analítica de estas funciones. Velocidad = 33, ) 3 m/min. PÁGINA 161 Pág. 1 29 Esta es la gráfica del espacio que recorren tres montañeros que van a velocidad constante: 1 000 ESPACIO (m) C B 0 A TIEMPO (min) 10 1 a) Qué velocidad lleva cada uno? b) Escribe la

Más detalles

Ya sabes resolver (x+3) 2 =4?

Ya sabes resolver (x+3) 2 =4? Ya sabes resolver (+) =? Copyright 01, MatematicaTuya Derechos reservados 1 Tomar raíz a ambos miembros de la ecuación 1 Se despeja Sabiendo que la raíz negativa aporta otra solución Se tiene dos soluciones

Más detalles

La suma se realiza miembro a miembro. La suma de polinomios goza de las mismas propiedades que la suma de números. Ejemplo:

La suma se realiza miembro a miembro. La suma de polinomios goza de las mismas propiedades que la suma de números. Ejemplo: Tema 4. Polinomios 1. Definición Un polinomio es una expresión hecha con constantes, variables y exponentes, que están combinados. Los exponentes sólo pueden ser 0, 1, 2, 3,... etc. No puede tener un número

Más detalles

Tema 7: Juegos con información incompleta

Tema 7: Juegos con información incompleta Tema 7: Juegos con información incompleta Microeconomía Avanzada II Iñigo Iturbe-Ormaeche U. de Alicante 2008-09 Modelo de Spence Introducción y ejemplos Equilibrio Bayesiano de Nash Aplicaciones Señales

Más detalles

a < b y se lee "a es menor que b" (desigualdad estricta) a > b y se lee "a es mayor que b" (desigualdad estricta)

a < b y se lee a es menor que b (desigualdad estricta) a > b y se lee a es mayor que b (desigualdad estricta) Desigualdades Dadas dos rectas que se cortan, llamadas ejes (rectangulares si son perpendiculares, y oblicuos en caso contrario), un punto puede situarse conociendo las distancias del mismo a los ejes,

Más detalles

Coeficientes 43 X = 43 X partes literales - 7 a 3 = - 7 a 3

Coeficientes 43 X = 43 X partes literales - 7 a 3 = - 7 a 3 APUNTES Y EJERCICIOS DEL TEMA 3 1-T 3--2ºESO EXPRESIONES ALGEBRAICAS: Son combinaciones de n os y letras unidos con operaciones matemáticas (aritméticas), que generalmente suelen ser sumas, restas, multiplicaciones

Más detalles

Parte III RIESGO Y SELECCIÓN ÓPTIMA DE CARTERA 61

Parte III RIESGO Y SELECCIÓN ÓPTIMA DE CARTERA 61 Parte III RIESGOY SELECCIÓN ÓPTIMA DE CARTERA 61 Capítulo 6 Utilidad Esperada 6.1 Introducción Hasta ahora hemos analizado la determinación de precios de equilibrio en modelos con ausencia de incertidumbre.

Más detalles

Reduce expresiones algebraicas (páginas 469 473)

Reduce expresiones algebraicas (páginas 469 473) A NOMRE FECHA PERÍODO Reduce expresiones algebraicas (páginas 469 473) Reduce expresiones algebraicas Los expresiones 3(x 4) 3x 2 son expresiones equivalentes, porque tienen el mismo valor sin importar

Más detalles

Tema 6 FUNDAMENTOS ECONÓMICOS DEL ESTADO DE BIENESTAR (III): ASEGURAMIENTO

Tema 6 FUNDAMENTOS ECONÓMICOS DEL ESTADO DE BIENESTAR (III): ASEGURAMIENTO Tema 6 FUNDAMENTOS ECONÓMICOS DEL ESTADO DE BIENESTAR (III): ASEGURAMIENTO 6.1. La demanda de aseguramiento 6.2. La oferta de aseguramiento 6.3. La eficiencia en los mercados de seguros 6.4. El aseguramiento

Más detalles

Análisis de una variable real I. Tijani Pakhrou

Análisis de una variable real I. Tijani Pakhrou Análisis de una variable real I Tijani Pakhrou Índice general 1. Introducción axiomática de los números 1 1.1. Números naturales............................ 1 1.1.1. Axiomas de Peano........................

Más detalles

Nota sobre un modelo de J. D. Hey para una empresa bajo incertidumbre en el precio que no busca necesariamente maximizar el beneficio

Nota sobre un modelo de J. D. Hey para una empresa bajo incertidumbre en el precio que no busca necesariamente maximizar el beneficio Nota sobre un modelo de J. D. Hey para una empresa bajo incertidumbre en el precio que no busca necesariamente maximizar el beneficio Alberto A. Álvarez López Departamento de Economía Aplicada Cuantitativa.

Más detalles

Capítulo 3: APLICACIONES DE LAS DERIVADAS

Capítulo 3: APLICACIONES DE LAS DERIVADAS Capítulo : Aplicaciones de la derivada 1 Capítulo : APLICACIONES DE LAS DERIVADAS Dentro de las aplicaciones de las derivadas quizás una de las más importantes es la de conseguir los valores máimos y mínimos

Más detalles

Producto Interno y Ortogonalidad

Producto Interno y Ortogonalidad Producto Interno y Ortogonalidad Departamento de Matemáticas, CSI/ITESM 15 de octubre de 2009 Índice 8.1. Contexto................................................ 1 8.2. Introducción...............................................

Más detalles

Tema 10. Estimación Puntual.

Tema 10. Estimación Puntual. Tema 10. Estimación Puntual. Presentación y Objetivos. 1. Comprender el concepto de estimador y su distribución. 2. Conocer y saber aplicar el método de los momentos y el de máxima verosimilitud para obtener

Más detalles

ECONOMIA DE LA INFORMACION Y DE LA INCERTIDUMBRE EJERCICIOS (TEORIA DE JUEGOS)

ECONOMIA DE LA INFORMACION Y DE LA INCERTIDUMBRE EJERCICIOS (TEORIA DE JUEGOS) ECONOMIA DE LA INFORMACION Y DE LA INCERTIDUMBRE EJERCICIOS (TEORIA DE JUEGOS) Ejercicio 1. Aplicando el concepto de estrategias estrictamente dominadas al siguiente juego, qué estrategias podemos estar

Más detalles

Negociación y Cooperación en Juegos con Dos Agentes

Negociación y Cooperación en Juegos con Dos Agentes Motivación Modelo de Negociación de Nash Modelo Básico: Ofertas simultáneas Modelo de Ofertas Alternantes de Rubinstein Negociación y Cooperación en Juegos con Dos Agentes Alvaro J. Riascos Villegas Abril

Más detalles

Universidad Carlos III de Madrid Junio de 2014. Microeconomía. 1 2 3 4 5 Calif.

Universidad Carlos III de Madrid Junio de 2014. Microeconomía. 1 2 3 4 5 Calif. Universidad Carlos III de Madrid Junio de 01 Microeconomía Nombre: Grupo: 1 3 5 Calif. Dispone de horas y 5 minutos. La puntuación de cada apartado se indica entre paréntesis. Administre su tiempo teniendo

Más detalles

Función Cuadrática *

Función Cuadrática * Función Cuadrática * Edward Parra Salazar Colegio Madre del Divino Pastor 10-1 Una función f : A B, f(x) = ax 2 + bx + c, donde A y B son subconjuntos de R, a, b, c R, a 0, se llama una función cuadrática.

Más detalles

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2 SISTEMA DE ACCESO COMÚN A LAS CARRERAS DE INGENIERÍA DE LA UNaM III. UNIDAD : FUNCIONES POLINÓMICAS III..1 POLINOMIOS La expresión 5x + 7 x + 4x 1 recibe el nombre de polinomio en la variable x. Es de

Más detalles

1. Interpreten y representen, gráfica y algebraicamente, relaciones lineales y no lineales.

1. Interpreten y representen, gráfica y algebraicamente, relaciones lineales y no lineales. bloque 3 Las matemáticas nos auxilian en el estudio de los fenómenos físicos y de otras disciplinas, muchos de los cuales pueden ser modelados con ecuaciones no lineales. A la par se han podido diseñar

Más detalles

Espacios vectoriales con producto interno

Espacios vectoriales con producto interno Capítulo 8 Espacios vectoriales con producto interno En este capítulo, se generalizarán las nociones geométricas de distancia y perpendicularidad, conocidas en R y en R 3, a otros espacios vectoriales.

Más detalles

AXIOMAS DE CUERPO (CAMPO) DE LOS NÚMEROS REALES

AXIOMAS DE CUERPO (CAMPO) DE LOS NÚMEROS REALES AXIOMASDECUERPO(CAMPO) DELOSNÚMEROSREALES Ejemplo: 6 INECUACIONES 15 VA11) x y x y. VA12) x y x y. Las demostraciones de muchas de estas propiedades son evidentes de la definición. Otras se demostrarán

Más detalles

FUNCIONES CUADRÁTICAS Y RACIONALES

FUNCIONES CUADRÁTICAS Y RACIONALES www.matesronda.net José A. Jiménez Nieto FUNCIONES CUADRÁTICAS Y RACIONALES 1. FUNCIONES CUADRÁTICAS. Representemos, en función de la longitud de la base (), el área (y) de todos los rectángulos de perímetro

Más detalles

3. Operaciones con funciones.

3. Operaciones con funciones. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lección. Funciones derivada. 3. Operaciones con funciones. En esta sección veremos cómo podemos combinar funciones para construir otras nuevas. Especialmente

Más detalles

Capítulo 12. Análisis de variables categóricas: El procedimiento Tablas de contingencia. Tablas de contingencia

Capítulo 12. Análisis de variables categóricas: El procedimiento Tablas de contingencia. Tablas de contingencia Capítulo 12 Análisis de variables categóricas: El procedimiento Tablas de contingencia En las ciencias sociales, de la salud y del comportamiento es muy frecuente encontrarse con variables categóricas.

Más detalles

Teoría del Consumidor. El Problema del Consumidor

Teoría del Consumidor. El Problema del Consumidor Teoría del Consumidor El Problema del Consumidor Preferencias y funciones de utilidad Los axiomas A1, A2 y A4 implican que existe una función de utilidad continua u: R 2 + R que representa las preferencias

Más detalles

x ln x dx Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = xdx, entonces u =ln x du = 1 x dx x 2 dx = 1 2 x2 ln x x2

x ln x dx Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = xdx, entonces u =ln x du = 1 x dx x 2 dx = 1 2 x2 ln x x2 Tema 5 Integración Indefinida Ejercicios resueltos Ejercicio Calcular la integral x ln x dx Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = xdx, entonces u =ln x du = x dx dv =

Más detalles

Álgebra y Trigonometría CNM-108

Álgebra y Trigonometría CNM-108 Álgebra y Trigonometría CNM-108 Clase 2 Ecuaciones, desigualdades y funciones Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

EJERCICIOS RESUELTOS DE CÓNICAS

EJERCICIOS RESUELTOS DE CÓNICAS EJERCICIOS RESUELTOS DE CÓNICAS 1. Hallar la ecuación de la circunferencia que tiene: a) el centro en el punto (, 5) y el radio es igual a 7. b) un diámetro con extremos los puntos (8, -) y (, 6). a) La

Más detalles

Capítulo 14. Análisis de varianza de un factor: El procedimiento ANOVA de un factor

Capítulo 14. Análisis de varianza de un factor: El procedimiento ANOVA de un factor Capítulo 14 Análisis de varianza de un factor: El procedimiento ANOVA de un factor El análisis de varianza (ANOVA) de un factor sirve para comparar varios grupos en una variable cuantitativa. Se trata,

Más detalles