DEPARTAMENTO DE SEÑALES, SISTEMAS Y RADIOCOMUNICACIONES RADIACIÓN Y PROPAGACIÓN. EXAMEN FINAL 30 ENERO 2006 APELLIDOS:... NOMBRE: DNI:..

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DEPARTAMENTO DE SEÑALES, SISTEMAS Y RADIOCOMUNICACIONES RADIACIÓN Y PROPAGACIÓN. EXAMEN FINAL 30 ENERO 2006 APELLIDOS:... NOMBRE: DNI:.."

Transcripción

1 DPARTAMNTO D SÑALS, SISTMAS Y RADIOCOMUNICACIONS RADIACIÓN Y PROPAGACIÓN. XAMN FINAL 30 NRO 006 APLLIDOS:... VRSIÓN A: PROBLMA 1: Consiee un aioenlace sobe un lago e 30 km e vano que uiliza un ansmiso con una poencia isponible e 1W funcionano a.5 GHz. La anena ansmisoa es una bocina piamial aapaa e imensiones A = 36 x B = 4 cm e boca y eo e fase s = = 0.4. La bocina esá siuaa sobe un másil e 30 meos e alua especo al nivel el agua, con su eje siuao hoizonalmene. 1. Calcule las anchuas e haz a 3 B en los planos pincipales y, a pai e ellas, esime la iecivia e la bocina. (1p). Calcule el faco F p e poencia asociao a la eflexión, paa la isancia e 30 km a 30 meos sobe el agua (1p) 3. Como anena ecepoa se uiliza una hélice funcionano en el moo axial e 13 Bi e ganancia, cuál seá el nivel e poencia isponible en su coneco? (p) Solución: Diagamas univesales bocina piamial Plano y Plano H 1. Vamos a las gáficas e bocinas con s=0.4 y =0.4 paa el valo e oenaa =0.7 (-3B), con =1cm, A=36 cm y B=4cm B senθ = 0.6 BW = θ = 34.9º A senθh = 0.75 BWH = θh = 9º D = = Bi BW (a) BW (a) H

2 . Paa el cálculo el faco e poencia, consieamos la suma vecoial el ayo ieco y el ayo eflejao. = one: + = jk o ( 1+ ρ e ) = F = 0log = 6B ρ= -1 (eflexión en el agua) =0.06 meos (ifeencia e caminos ene ayo eflejao y ieco) =0.1m (longiu e ona) k o =π/ 3. Como la hélice en moo axial iene polaización cicula, y las bocinas polaización lineal, enemos unas péias po esacoplo e polaización e 3 B. Aplicano la fómula e Fiis enemos: P x (Bm) = Px (Bm) + G x (Bi) 0log + Fp (B) + G x (Bi) L pol (B) = = 30Bm Bi 19.9Bi + 6B + 13Bi 3B = 67.8Bm p

3 DPARTAMNTO D SÑALS, SISTMAS Y RADIOCOMUNICACIONS RADIACIÓN Y PROPAGACIÓN. XAMN FINAL 30 NRO 006 APLLIDOS:... VRSIÓN A: PROBLMA : Consiee el ipolo e la figua enfenao y paalelo al plano conuco que puee suponese inefinio, funcionano a 1 GHz. L=14 cm Sopoe 7.5 cm Línea Coaxial Zc=50Ω Plano Refleco kl/ Impeancia muua ene os ipolos iénicos, paalelos, enfenaos y sepaaos / 1. Si la auoimpeancia el ipolo aislao es e 68-j4 Ω, calcule la impeancia e enaa el ipolo enfenao al plano (impeancia visa po el cable coaxial e 50 ohm en su exemo supeio) aplicano imágenes. (1p). Calcule las péias po esaapación e impeancia cuano se alimena con un ansmiso aapao a la línea coaxial e 50 Ω que lo excia. (1p) Solución: 1. Vamos a la gáfica e impeancias muuas e os ipolos con un valo e abcisas: kl/ = 1.47, one: k=π/; =30 cm; L=14 cm n la gáfica obenemos: z 1 =-10-j4 Ω. l valo e la impeancia e enaa es enonces: Z in = z 11 z 1 = 78 Ω. Paa el cálculo e las péias po esaapación, calculamos el coeficiene e eflexión a la línea (Z o =50Ω): Zin Zo Γ = = 0. L es = 10log( 1 Γ ) = 0.43B Z + Z in o

4 DPARTAMNTO D SÑALS, SISTMAS Y RADIOCOMUNICACIONS RADIACIÓN Y PROPAGACIÓN. XAMN FINAL 30 NRO 006 APLLIDOS:... VRSIÓN A: TORÍA: 1. Una anena posee una impeancia e enaa e 75+j10Ω y un enimieno e aiación e 0.9. Sabieno que cuano se alimena con una coiene e A e pico genea a 1 km e isancia en la iección e máxima aiación una ensia e poencia e 1 mw/m, calcule la ganancia e la anena en Bi. (1p) one: PIR P 4 S x g π S = = g = = log83.8 = 19.Bi Px 1 Px = I R in = 150W. Una anena con un haz ipo pincel iene una ganancia e 11 Bi. Sabieno que el campo elécico en el lóbulo pincipal vaía como cos 4 θ, calcule la ganancia e poencia en Bi paa la iección θ=0º y φ=30º. (1p) 4 L es = 0log cos 0º =.16B G( θ = 0º ) = 11Bi.16B = 8.84B 3. Un efleco Cassegain cenao, e 1.5 meos e iámeo posee una ganancia e 46 Bi a 15 GHz, cuano se ilumina con una bocina cónica cougaa e 0 Bi e ganancia. Si se cambia la bocina e alimenación po oa e 15 Bi e ganancia, iga cómo vaían los isinos paámeos (ganancia, ancho e haz, lóbulos, eficiencias...) e la anena eflecoa. (1p) 4.6 Comenzamos calculano la eficiencia oal: G = ε A ap = 10 ε = 0. 7 Po lo ano, la siuación e paia es con anena ópimamene iluminaa. Al euci la ganancia el alimenao, su haz pincipal se ensancha, e moo que ilumina la apeua el efleco más unifomemene (C mayo en el boe). so se auce en un aumeno e la eficiencia e iluminación y ececimieno e la eficiencia e spillove. La ganancia oal y la eficiencia oal isminuyen al pasa e una siuación ópima a oa isina. La foma e iluminación más unifome se auce en una eucción (ligea) e la anchua el lóbulo pincipal y un aumeno e los lóbulos secunaios. 4. Qué alcance se puee consegui po popagación ionosféica a 100 MHz? xplique su espuesa. (1p) n esa fecuencia, la ensia e elecones e la ionosfea no es capaz e efleja el ayo hacia la Tiea, y la ona sale hacia el espacio exeio, con lo que no se puee esablece comunicaciones po popagación ionosféica a esas fecuencias.

5 DPARTAMNTO D SÑALS, SISTMAS Y RADIOCOMUNICACIONS RADIACIÓN Y PROPAGACIÓN. XAMN FINAL 30 NRO 006 APLLIDOS:... VRSIÓN B: PROBLMA 1: Consiee un aioenlace sobe un lago e 15 km e vano que uiliza un ansmiso con una poencia isponible e 1W funcionano a 3.75 GHz. La anena ansmisoa es una bocina piamial aapaa e imensiones A = 4 x B = 0 cm e boca y bajo eo e fase. La bocina esá siuaa sobe un másil e 30 meos e alua especo al nivel el agua, con su eje siuao hoizonalmene. 1. Calcule las anchuas e haz a 3 B en los planos pincipales y, a pai e ellas, esime la iecivia e la bocina. (1p). Calcule el faco F p e poencia asociao a la eflexión, paa la isancia e 15 km a 30 meos sobe el agua (1p) 3. Como anena ecepoa se uiliza una hélice funcionano en el moo axial e 10 Bi e ganancia, cuál seá el nivel e poencia isponible en su coneco? (p) Solución: Diagamas univesales bocina piamial Plano y Plano H 1. Vamos a las gáficas e bocinas con s=0 y =0 paa el valo e oenaa =0.7 (-3B), con =8cm, A=4 cm y B=0cm B senθ = 0.5 BW = θ = 3.1º A senθh = 0.7 BWH = θh = 7º D = = Bi BW (a) BW (a) H

6 . Paa el cálculo el faco e poencia, consieamos la suma vecoial el ayo ieco y el ayo eflejao. = one: + = jk o ( 1+ ρ e ) = F = 0log = 6B ρ= -1 (eflexión en el agua) =0.1 meos (ifeencia e caminos ene ayo eflejao y ieco) =0.08m (longiu e ona) k o =π/ 3. Como la hélice en moo axial iene polaización cicula, y las bocinas polaización lineal, enemos unas péias po esacoplo e polaización e 3 B. Aplicano la fómula e Fiis enemos: P x (Bm) = Px (Bm) + G x (Bi) 0log + Fp (B) + G x (Bi) L pol (B) = = 30Bm + 18.Bi 17.4Bi + 6B + 10Bi 3B = 66.Bm p

7 DPARTAMNTO D SÑALS, SISTMAS Y RADIOCOMUNICACIONS RADIACIÓN Y PROPAGACIÓN. XAMN FINAL 30 NRO 006 APLLIDOS:... VRSIÓN B: PROBLMA : Consiee el ipolo e la figua enfenao y paalelo al plano conuco que puee suponese inefinio, funcionano a 500 MHz. L=8 cm Sopoe 15 cm Línea Coaxial Zc=75Ω Plano Refleco kl/ Impeancia muua ene os ipolos iénicos, paalelos, enfenaos y sepaaos / 1. Si la auoimpeancia el ipolo aislao es e 68-j4 Ω, calcule la impeancia e enaa el ipolo enfenao al plano (impeancia visa po el cable coaxial e 75 ohm en su exemo supeio) aplicano imágenes. (1p). Calcule las péias po esaapación e impeancia cuano se alimena con un ansmiso aapao a la línea coaxial e 75 Ω que lo excia. (1p) Solución: 1. Vamos a la gáfica e impeancias muuas e os ipolos con un valo e abcisas: kl/ = 1.47, one: k=π/; =60 cm; L=8 cm n la gáfica obenemos: z 1 =-10-j4 Ω. l valo e la impeancia e enaa es enonces: Z in = z 11 z 1 = 78 Ω. Paa el cálculo e las péias po esaapación, calculamos el coeficiene e eflexión a la línea (Z o =75Ω): Zin Zo Γ = = 0.0 L es = 10log( 1 Γ ) 0B Z + Z in o

8 DPARTAMNTO D SÑALS, SISTMAS Y RADIOCOMUNICACIONS RADIACIÓN Y PROPAGACIÓN. XAMN FINAL 30 NRO 006 APLLIDOS:... VRSIÓN B: TORÍA: 1. Una anena alimenaa po una coiene e A e pico, posee una impeancia e enaa e 75+j10Ω y un enimieno e aiación e 0.8. Calcule la ensia e poencia aiaa a 10 km e isancia, paa la iección e máxima aiación, paa la que posee una iecivia e 10 Bi. (1p) PIR P S = µ 1 one: Pa = I R in ηa = 10W a = = 0.96 W / m. Un aay lineal boasie e elemenos isóopos posee una iecivia e 10 Bi. sime la anchua el haz e aiación ene punos e poencia mia en un plano que coniene el aay. (1p) D = = 10 BW = 0.a = 11.5º π BW 3. Un efleco paabólico simple cenao, e 1.5 meos e iámeo posee una ganancia e 45. Bi a 15 GHz, cuano se ilumina con una bocina cónica cougaa e 11 Bi e ganancia. Si se cambia la bocina e alimenación po oa e 15 Bi e ganancia, iga cómo vaían los isinos paámeos (ganancia, ancho e haz, lóbulos, eficiencias...) e la anena eflecoa. (1p) 4.5 Comenzamos calculano la eficiencia oal: G = ε A ap = 10 ε = 0. 6 Po lo ano, la siuación e paia es con anena ópimamene iluminaa. Al aumena la ganancia el alimenao, su haz pincipal se esecha, e moo que ilumina la apeua el efleco menos unifome (C meno en el boe). so se auce en una isminución e la eficiencia e iluminación y aumeno e la eficiencia e spillove. La ganancia oal y la eficiencia oal isminuyen al pasa e una siuación ópima a oa isina. La foma e iluminación menos unifome se auce en un aumeno (ligeo) e la anchua el lóbulo pincipal y una eucción el nivel e los lóbulos secunaios. 4. Qué alcance se puee consegui po popagación ionosféica a 00 MHz? xplique su espuesa. (1p) n esa fecuencia, la ensia e elecones e la ionosfea no es capaz e efleja el ayo hacia la Tiea, y la ona sale hacia el espacio exeio, con lo que no se puee esablece comunicaciones po popagación ionosféica a esas fecuencias.

Puntos, rectas y planos en el espacio

Puntos, rectas y planos en el espacio Maemáicas II Geomeía del espacio Punos, ecas planos en el espacio Obsevación: La maoía de los poblemas esuelos a coninuación se han popueso en los eámenes de Selecividad.. La eca coa a los es planos coodenados

Más detalles

Tema 1, 2 y 3. Magnitudes. Cinemática.

Tema 1, 2 y 3. Magnitudes. Cinemática. IES Pedo de Tolosa. SM de Valdeiglesias. 1 Tema 1, y 3. Magniudes. Cinemáica. MAGNITUDES FÍSICAS. LIBRO Pág. 1 Y 13. Recueda: magniud es cualquie popiedad de un cuepo o de un fenómeno físico que se pueda

Más detalles

una y en dos dimensiones http://www.walter-fendt.de/ph14s/ 1

una y en dos dimensiones http://www.walter-fendt.de/ph14s/ 1 Bolilla : Movimieno en una y en dos dimensiones hp://www.wale-fend.de/ph4s/ Bolilla : Movimieno en una y endos dimensiones - El esudio del movimieno se basa en medidas de Posición, Velocidad, y Aceleación.

Más detalles

UNIVERSIDAD NACIONAL DEL SUR - DEPARTAMENTO DE INGENIERÍA ELECTRICA Y DE COMPUTADORAS - AREA 4 CONVERSIÓN ELECTROMECÁNICA DE LA ENERGÍA (Cod.

UNIVERSIDAD NACIONAL DEL SUR - DEPARTAMENTO DE INGENIERÍA ELECTRICA Y DE COMPUTADORAS - AREA 4 CONVERSIÓN ELECTROMECÁNICA DE LA ENERGÍA (Cod. UIVEIDAD ACIOAL DEL U - DEPAAMEO DE IGEIEÍA ELECICA Y DE COMPUADOA - AEA 4 COVEIÓ ELECOMECÁICA DE LA EEGÍA (Cod.55) GUIA DE ABAJO PACICO DE LABOAOIO P Enayo de un AFOMADO IFAICO. Objeivo Idenifica bobinado

Más detalles

Estos rodamientos no son desmontables ni autoalineables, por lo que requieren una perfecta alineación del asiento del soporte.

Estos rodamientos no son desmontables ni autoalineables, por lo que requieren una perfecta alineación del asiento del soporte. ROAMIENOS RIGIOS E OLAS Este tipo e oamientos son e uso geneal, ya que pueen absobe caga aial y axial en ambos sentios, así como las fuezas esultantes e estas cagas combinaas; a su vez, pueen opea a elevaas

Más detalles

Transistores de Efecto de Campo

Transistores de Efecto de Campo 1 Tansistoes e Efecto e Campo El fenómeno e moula la conuctancia e un semiconucto po un campo eléctico aplicao pepenicula a la supeficie el semiconucto se enomina "efecto e campo". Los tansistoes basaos

Más detalles

Instrumentación Nuclear Conf. # 2 Tema I. Procesamiento y Conformación de Pulsos.

Instrumentación Nuclear Conf. # 2 Tema I. Procesamiento y Conformación de Pulsos. Instumentación Nuclea onf. # 2 Tema I. Pocesamiento y onfomación de Pulsos. Sumaio: aacteísticas geneales de los pulsos. oncepto de Ancho de Banda y su elación con el tiempo de subida de un pulso. Objetivo

Más detalles

Apéndice D. Estimación de los efectos capacitivos e inductivos entre el inyector y el detector

Apéndice D. Estimación de los efectos capacitivos e inductivos entre el inyector y el detector Apénice D D-1 Apénice D. Estimación e os efectos capacitivos e inuctivos ente e inyecto y e etecto E acopamiento capacitivo e inuctivo ente e sistema inyecto y e etecto puee povoca eoes en a tensión etectaa.

Más detalles

Geometría Analítica. Ejercicio nº 1.-

Geometría Analítica. Ejercicio nº 1.- Geomeía Analíica Ejecicio nº.- a Aveigua el puno iméico de A ) con epeco a B ). b Halla el puno medio del egmeno de eemo A ) B ). Ejecicio nº.- a Halla el puno medio del egmeno cuo eemo on A( ) con epeco

Más detalles

VALORACION DE ACCIONES. (1) El valor presente de la suma del dividendo de finales de período más el precio de la acción a finales de período, o

VALORACION DE ACCIONES. (1) El valor presente de la suma del dividendo de finales de período más el precio de la acción a finales de período, o U N I V E R S I D A D D E C H I L E Faculad de Ciencias Físicas y Maemáicas Depaameno de Ingenieía Indusial IN56A 0 of: Viviana Fenández VALORACION DE ACCIONES El valo de una acción se puede calcula como:

Más detalles

Tema 2. Ondas electromagnéticas.

Tema 2. Ondas electromagnéticas. Tema. Ondas elecomagnéicas..1. Inoducción. l campo elécico l eoema de Gauss elécico.3 l campo magnéico l eoema de Gauss elécico.4 La le de inducción magnéica o le de Faada.5 La le de Ampèe.6 Las ecuaciones

Más detalles

Posiciones relativas entre rectas y planos

Posiciones relativas entre rectas y planos Maemáicas II Geomeía del espacio Posiciones elaivas ene ecas planos Obsevación: La maoía de los poblemas esuelos a coninuación se han popueso en los eámenes de Selecividad.. Discui según los valoes del

Más detalles

CALCULO DE FACTORES DE EXPANSIÓN ENCUESTA NACIONAL SOBRE NIVELES DE VIDA EN LOS HOGARES

CALCULO DE FACTORES DE EXPANSIÓN ENCUESTA NACIONAL SOBRE NIVELES DE VIDA EN LOS HOGARES CALCULO DE ACTORES DE EXPANSIÓN ENCUESTA NACIONAL SOBRE NIELES DE IDA EN LOS HOGARES Ínice Página 1. aco e expansión 2002 1 1.1 aco e expansión a niel iiena 1 1.1.1 Ajuse a los facoes e expansión 3 1.2

Más detalles

6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS

6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS 6.. Gáficas de ectas usando m b Po ejemplo, paa gafica la ecta Maca el valo de b (odenada al oigen) sobe el eje, es deci el punto (0,). A pati de ese punto, como la pendiente es, se toma una unidad a la

Más detalles

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID DTA MAST FOMAÓN UNSTAA / Gal Ampudia, 6 Tléf: 9 5 8-9 55 9 8 MADD XÁMN FUNDAMNTOS FÍSOS D A NFOMÁTA UM SPTMB 7 POBMA S disibuy una caga d mana unifom n l volumn d una sfa huca d adio inno y adio xno l

Más detalles

Tema 4 FENOMENOS DE TRANSPORTE Y CONDUCTIVIDAD ELECTROLITICA. Departamento de Química Física. Universidad de Valencia.

Tema 4 FENOMENOS DE TRANSPORTE Y CONDUCTIVIDAD ELECTROLITICA. Departamento de Química Física. Universidad de Valencia. Tema 4 FENOMENOS DE TRANSPORTE Y CONDUCTIVIDAD ELECTROLITICA Depaameno de Química Física Univesidad de Valencia. QF III Tema 4 Índice: 4.. Inoducción 4... Descipción macoscópica de esados de no equilibio.

Más detalles

COMO CALCULAR VALORES PRESENTES ( Brealey & Myers )

COMO CALCULAR VALORES PRESENTES ( Brealey & Myers ) APÍTULO OMO ALULAR VALORES PRESENTES ( Bealey & Myes ) Hasa el oeno heos calculado valoes pesenes de acivos que poducen dineo exacaene al cabo de un año, peo no heos explicado aquellos que lo poducen a

Más detalles

Fotodetectores y fotoemisores

Fotodetectores y fotoemisores 5. Opoelecrónica 5.1. Inroducción 5.2. Nauraleza ondulaoria de la luz 5.3. Elemenos de la física de esado sólido 5.4. Modulación de la luz 5.5. Disposiivos de visualización 5.6. Lasers 5.7. Foodeecores

Más detalles

1/8 LA ESTRUCTURA TEMPORAL DE LOS TIPOS DE INTERES. 1.- Introducción

1/8 LA ESTRUCTURA TEMPORAL DE LOS TIPOS DE INTERES. 1.- Introducción LA ESTRUCTURA TEMORAL DE LOS TIOS DE INTERES.- Inoducción La esucua empoal de ipos de ineés o simplemene cuva de ipos ecoge la evolución de los ipos de ineés en función de su vencimieno, consideando po

Más detalles

La Arquitectura OSI TRANSMISIÓN DE DATOS. La Arquitectura OSI y TCP/IP. Conceptos Básicos. Medio de Transmisión Guiados Punto a punto Multipunto

La Arquitectura OSI TRANSMISIÓN DE DATOS. La Arquitectura OSI y TCP/IP. Conceptos Básicos. Medio de Transmisión Guiados Punto a punto Multipunto La Arquiecura OSI TRANSMISIÓN DE DATOS Ing. Alvaro E. Chavez Zubiea La Arquiecura OSI y TCP/IP Concepos Básicos Facores que condicionan la ransmisión: La calidad de la señal que se ransmie Las caracerísicas

Más detalles

CARACTERIZACIÓN Y DISEÑO DE BOBINAS Y TRANSFORMADORES

CARACTERIZACIÓN Y DISEÑO DE BOBINAS Y TRANSFORMADORES CARACTERIZACIÓN Y DISEÑO DE BOBINAS Y TRANSFORMADORES EFECTOS CAPACITIOS CONCEPTOS BÁSICOS DE ELECTROSTÁTICA Cagas puntuales F a,b Q a Q b Fueza ente os cagas F a, b 4 π o Q Q a b [ N] Intensia e campo

Más detalles

7. INTERFERENCIA Y DIFRACCIÓN

7. INTERFERENCIA Y DIFRACCIÓN 7. INTERFERENCIA Y DIFRACCIÓN Fenómenos de singula impotancia que distinguen las ondas de las patículas son la intefeencia y la difacción. La intefeencia es la combinación po supeposición de dos ó más

Más detalles

MATEMATICAS I FUNCIONES ELEMENTALES. PROBLEMAS

MATEMATICAS I FUNCIONES ELEMENTALES. PROBLEMAS 1º) La facura del gas se calcula a parir de una canidad fija y de un canidad variable que se calcula según los m 3 consumidos (el precio de cada m 3 es consane). El impore de la facura de una familia,

Más detalles

CAPITULO 2 TABLAS DE PROPIEDADES DE PERFILES

CAPITULO 2 TABLAS DE PROPIEDADES DE PERFILES CAPITULO 2 TABLAS E POPIEAES E PEFILES TABLAS E PEFILES CAPITULO 2 TABLAS E PEFILES I N I C E Pág. 2.0 GENEALIAES... 2-1 2.1 TABLAS E PEFILES NACIONALES... 2-6 2.2 TABLAS E PEFILES AISC... 2-76 2.3 TABLAS

Más detalles

Test. Cada pregunta correcta está valorada con 0.5 puntos y cada incorrecta resta 0.25 puntos

Test. Cada pregunta correcta está valorada con 0.5 puntos y cada incorrecta resta 0.25 puntos Teléf.: 91 533 38 4-91 535 19 3 8003 MADRID EXAMEN DE ECONOMETRÍA (enero 010) 1h 15 Apellidos: Nombre: Tes. Cada preguna correca esá valorada con 0.5 punos y cada incorreca resa 0.5 punos 1.- Al conrasar

Más detalles

Tema 4: Fuentes y generadores

Tema 4: Fuentes y generadores Tema 4: Fuenes y generadores Fuenes de alimenación: : convieren ensión ac en ensión dc E. Mandado, e al. 995 Generadores de funciones: Fuene de señal calibrada y esable Aplicaciones: obención de respuesa

Más detalles

C. VALENCIANA / SEPTIEMBRE 04. LOGSE / FÍSICA / EXAMEN COMPLETO

C. VALENCIANA / SEPTIEMBRE 04. LOGSE / FÍSICA / EXAMEN COMPLETO . VALENANA / SEPEMBRE 04. LOGSE / FÍSA / EXAMEN EXAMEN El alumno ealizaá una opción de cada uno de los bloques La puntuación máxima de cada poblema es de puntos, y la de cada cuestión es de,5 puntos. BLOQUE

Más detalles

UD: 3. ENERGÍA Y POTENCIA ELÉCTRICA.

UD: 3. ENERGÍA Y POTENCIA ELÉCTRICA. D: 3. ENEGÍA Y OENCA ELÉCCA. La energía es definida como la capacidad de realizar rabajo y relacionada con el calor (ransferencia de energía), se percibe fundamenalmene en forma de energía cinéica, asociada

Más detalles

Olimpiada de Física de la Región de Murcia 2011. (tiempo: 1 hora)

Olimpiada de Física de la Región de Murcia 2011. (tiempo: 1 hora) limpiaa e Física e la Región e Mucia 011 ARTE I (tiempo: 1 hoa) 1. Tio e tes! Vamos a escibi los tios a canasta meiante la cinemática el tio paabólico. Despeciaemos la esistencia con el aie. α h Situamos

Más detalles

Flotamiento de esferas

Flotamiento de esferas Flotamiento e esfeas M. C. José Antonio Meina Henánez Depatamento e Matemáticas y Física Univesia Autónoma e Aguascalientes Aquímies fue un científico giego nacio el año 287 a.c. en Siacusa (Sicilia),

Más detalles

PROBLEMAS DE ELECTROESTÁTICA

PROBLEMAS DE ELECTROESTÁTICA PBLMAS D LCTSTÁTICA I CAMP LCTIC N L VACI. Cagas puntuales. Cagas lineales. Cagas supeficiales 4. Flujo le de Gauss 5. Distibuciones cúbicas de caga 6. Tabajo enegía electostática 7. Poblemas Pof. J. Matín

Más detalles

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES.- Halla dos númeos que sumados den cuo poducto sea máimo. Sean e los númeos buscados. El poblema a esolve es el siguiente: máimo Llamamos p al poducto de los dos

Más detalles

Tema 5: Diferenciabilidad: Aplicaciones

Tema 5: Diferenciabilidad: Aplicaciones Prof. Susana López 1 UniversidadAuónomadeMadrid Tema 5: Diferenciabilidad: Aplicaciones 1 Funciones compuesas y Regla de la cadena Recordemos que la regla de la cadena para funciones de una sola variable

Más detalles

Tema 6. Seminario de Electrónica Instalaciones de Telecomunicaciones. Antenas y Líneas L Satélite de RTV. Infraestructuras

Tema 6. Seminario de Electrónica Instalaciones de Telecomunicaciones. Antenas y Líneas L Satélite de RTV. Infraestructuras Seminario de Electrónica 1º GM Técnico T Instalaciones de Telecomunicaciones Infraestructuras Comunes de Telecomunicación n en Viviendas y Edificios Satélite de RTV Generalidades La emisión y recepción

Más detalles

Fundamentos de Electrónica - Análisis de Circuitos en Corriente Alterna 2

Fundamentos de Electrónica - Análisis de Circuitos en Corriente Alterna 2 Fundamenos de Elecrónica - Análisis de Circuios en Corriene Alerna 1 Análisis de Circuios en Corriene Alerna 1. Inroducción: Coninuando con el esudio de los principios básicos que rigen el comporamieno

Más detalles

DERECHOS BÁSICOS DE APRENDIZAJE matemáticas - grado 9

DERECHOS BÁSICOS DE APRENDIZAJE matemáticas - grado 9 4 Reconoce el significado de los eponenes racionales posiivos negaivos uiliza las lees de los eponenes. Por ejemplo: 7 7 7 + 7 4 7 7 7 7 40 ( 7 / ) / 7 / / 7 /0 0 7,... Uiliza la noación cienífica para

Más detalles

Adaptación de impedancias

Adaptación de impedancias .- El tansfomado ideal Adaptación de impedancias I +V +V TI Tansfomado ideal V elaciones V-I: V = I = a. I, válidas paa cualquie fecuencia. a Si se conecta una esistencia al secundaio, ente el nodo +V

Más detalles

Parametrizando la epicicloide

Parametrizando la epicicloide 1 Paametizando la epicicloide De la figua se obseva que cos(θ) = x 0 + ( 0 + ) cos(θ) = x sen(θ) = y 0 + ( 0 + ) sen(θ) = y po tanto las coodenadas del punto A son: A = (( 0 + ) cos(θ), ( 0 + ) sen(θ))

Más detalles

a = G m T r T + h 2 a = G r T

a = G m T r T + h 2 a = G r T www.clasesalacata.com Ley de la Gavitación Univesal 0.- Gavitación Univesal y Campo Gavitatoio Esta ley fomulada po Newton, afima que la fueza de atacción que expeimentan dos cuepos dotados de masa es

Más detalles

D.1.- Considere el movimiento de una partícula de masa m bajo la acción de una fuerza central del tipo. n ˆ

D.1.- Considere el movimiento de una partícula de masa m bajo la acción de una fuerza central del tipo. n ˆ Cuso Mecánica (FI-1A), Listado de ejecicios. Edito: P. Aceituno 34 Escuela de Ingenieía. Facultad de Ciencias Físicas y Matemáticas. Univesidad de Chile. D: FUERZAS CENTRALES Y MOVIMIENTOS PLANETARIOS

Más detalles

UNIDAD 11. ESPACIOS VECTORIALES.

UNIDAD 11. ESPACIOS VECTORIALES. Unidad. Espacios vecoiales UNIDAD. ESPACIOS VECTORIALES.. Espacios vecoiales.. Definición.. Ejemplos. Subespacio Vecoial.. Definición.. Condición necesaia y suficiene.. Combinación Lineal. Sisema Geneado.

Más detalles

TEMA: FUNCIONES: Cuadrantes 3 er cuadrante, x 0, 4º cuadrante, x 0,

TEMA: FUNCIONES: Cuadrantes 3 er cuadrante, x 0, 4º cuadrante, x 0, TEMA: FUNCIONES: ÍNDICE:. Inroducción.. Dominio y recorrido.. Gráficas de funciones elemenales. Funciones definidas a rozos. 4. Coninuidad.. Crecimieno y decrecimieno, máimos y mínimos. 6. Concavidad y

Más detalles

INDUCCIÓN ELECTROMAGNÉTCA Y ENERGÍA DEL CAMPO MAGNÉTICO

INDUCCIÓN ELECTROMAGNÉTCA Y ENERGÍA DEL CAMPO MAGNÉTICO NDUCCÓN EECTROMAGNÉTCA Y ENERGÍA 1. ey de inducción de Faaday. ey de enz.. Ejemplos: fem de movimiento y po vaiación tempoal de. 3. Autoinductancia. 4. Enegía magnética. OGRAFÍA:. DE CAMPO MAGNÉTCO -Tiple-Mosca.

Más detalles

MECÁNICA CUÁNTICA. GOD DOES NOT PLAY DICES WITH THE UNIVERSE (Albert Einstein. 1879 1955)

MECÁNICA CUÁNTICA. GOD DOES NOT PLAY DICES WITH THE UNIVERSE (Albert Einstein. 1879 1955) MECÁNICA CUÁNTICA GOD DOES NOT PLAY DICES WITH THE UNIVERSE Albe Einsein. 1879 1955 NOT ONLY DOES GOD PLAY DICES BUT HE SOMETIMES THROWS THEM WHERE THEY CAN T BE SEEN Seen Hawking. 194 Mecánica CUÁNTICA

Más detalles

Práctica 2: Análisis en el tiempo de circuitos RL y RC

Práctica 2: Análisis en el tiempo de circuitos RL y RC Prácica 2: Análisis en el iempo de circuios RL y RC Objeivo Esudiar la respuesa ransioria en circuios serie RL y RC. Se preende ambién que el alumno comprenda el concepo de filro y su uilidad. 1.- INTRODUCCIÓN

Más detalles

2.7 Cilindros, conos, esferas y pirámides

2.7 Cilindros, conos, esferas y pirámides UNIDAD Geometía.7 Cilindos, conos, esfeas y piámides 58.7 Cilindos, conos, esfeas y piámides OBJETIVOS Calcula el áea y el volumen de cilindos, conos, esfeas y piámides egulaes Resolve poblemas de solidos

Más detalles

Es el producto escalar de la fuerza aplicada al cuerpo por el vector r r Por lo tanto es una magnitud escalar.

Es el producto escalar de la fuerza aplicada al cuerpo por el vector r r Por lo tanto es una magnitud escalar. TRABAJO Y ENERGÍA TRABAJO Es el poducto escala de la fueza aplicada al cuepo po el vecto desplazamiento. Po lo tanto es una magnitud escala. W = F.D = F.D. cos a Su unidad en el sistema intenacional es

Más detalles

01 Ejercicios de Selectividad Matrices y Sistemas de Ecuaciones

01 Ejercicios de Selectividad Matrices y Sistemas de Ecuaciones 01 Ejercicios de Selecividad Marices y Sisemas de Ecuaciones Ejercicios propuesos en 009 1- [009-1-A-1] a) [1 5] En un comercio de bricolaje se venden lisones de madera de res longiudes: 090 m, 150 m y

Más detalles

Modelo de regresión lineal simple

Modelo de regresión lineal simple Modelo de regresión lineal simple Inroducción Con frecuencia, nos enconramos en economía con modelos en los que el comporamieno de una variable,, se puede explicar a ravés de una variable X; lo que represenamos

Más detalles

b) ; como el trabajo no conservativo es nulo, la energía mecánica se conserva, es igual en el perihelio y en el afelio.

b) ; como el trabajo no conservativo es nulo, la energía mecánica se conserva, es igual en el perihelio y en el afelio. Depataento de ísica y Quíica 1 PAU ísica, septiebe 2010. ase específica. OPCIÓN A Cuestión 1. - Un coeta se ueve en una óbita elíptica alededo del Sol. Explique en qué punto de su óbita, afelio (punto

Más detalles

Campo eléctrico. Introducción a la Física Ambiental. Tema 7. Tema 7.- Campo eléctrico.

Campo eléctrico. Introducción a la Física Ambiental. Tema 7. Tema 7.- Campo eléctrico. Campo eléctico. Intoducción a la Física Ambiental. Tema 7. Tema7. IFA (Pof. RAMOS) 1 Tema 7.- Campo eléctico. El campo eléctico: unidades. Líneas del campo eléctico. Potencial eléctico: unidades. Fueza

Más detalles

Control Digital. Práctica de Regulación Automática I. Abel Alberto Cuadrado Vega 24 de mayo de 2004

Control Digital. Práctica de Regulación Automática I. Abel Alberto Cuadrado Vega 24 de mayo de 2004 Conrol Digial Prácica e Regulación Auomáica I Abel Albero Cuarao Vega 24 e mao e 2004 1. Esquema e conrol igial El esquema básico el conrol igial figura 2) es semejane al el conrol analógico figura 1)

Más detalles

10 El campo eléctrico

10 El campo eléctrico Solucionaio 0 l capo eléctico JRCICIOS PROPUSTOS 0. A cuántos electones euivale una caga eléctica negativa e os icoculobios? La caga inicaa es: μc 0 C uivale a: electón C,, 0 C 3 electones 0. Po ué se

Más detalles

Tablas y formulas prácticas

Tablas y formulas prácticas Tablas y fomulas pácticas ECCÓN Automation Technology Poducts Tablas y fómulas pácticas NDCE Tabla de esquemas típicos en sistemas de conmutación (tansfeencias)... Tabla de potencias y coientes nominales...

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad. Indica cuál de las siguientes afimaciones es falsa: a) En la época de Aistóteles ya se aceptaba que la iea ea esféica. b) La estimación del adio teeste que llevó a cabo

Más detalles

TRABAJO DE LABORATORIO Nº 2: Potencial Eléctrico Mapa de Campo Eléctrico

TRABAJO DE LABORATORIO Nº 2: Potencial Eléctrico Mapa de Campo Eléctrico Univesidad Nacional del Nodeste Facultad de Ingenieía Cáteda: Física III Pofeso Adjunto: Ing. Atuo Castaño Jefe de Tabajos Pácticos: Ing. Cesa Rey Auiliaes: Ing. Andés Mendivil, Ing. José Epucci, Ing.

Más detalles

Aplicaciones del Ampli cador Operacional

Aplicaciones del Ampli cador Operacional Aplicaciones del Ampli cador Operacional J.I.Huircan Universidad de La Fronera January 6, 202 Absrac Exisen muchas aplicaciones con el Ampli cador Operacional (AO). El análisis en aplicaciones lineales

Más detalles

Dpto. de Electrónica 2º GM E. Imagen. Tema 7 Antenas Parabólicas Conceptos y Componentes

Dpto. de Electrónica 2º GM E. Imagen. Tema 7 Antenas Parabólicas Conceptos y Componentes Dpto. de Electrónica 2º GM E. Imagen Tema 7 Antenas Parabólicas Conceptos y Componentes Generalidades La emisión y recepción por satélite recibe el nombre de TVSAT. Un satélite de comunicaciones es un

Más detalles

Las derivadas de los instrumentos de renta fija

Las derivadas de los instrumentos de renta fija Las derivadas de los insrumenos de rena fija Esrella Peroi, MBA Ejecuivo a cargo Capaciación & Desarrollo Bolsa de Comercio de Rosario eperoi@bcr.com.ar Como viéramos en el arículo el dilema enre la asa

Más detalles

Tema 3. Campo eléctrico

Tema 3. Campo eléctrico Tema 3 Campo eléctico Pogama 1. Inteacción eléctica. Campo eléctico.. Repesentación mediante líneas de campo. Flujo eléctico: Ley de Gauss. 3. Enegía y potencial elécticos. Supeficies equipotenciales.

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejecicios esueltos Boletín 2 Campo gavitatoio y movimiento de satélites Ejecicio 1 En el punto A(2,0) se sitúa una masa de 2 kg y en el punto B(5,0) se coloca ota masa de 4 kg. Calcula la fueza esultante

Más detalles

PROBLEMAS RESUELTOS DE ONDAS y SONIDO

PROBLEMAS RESUELTOS DE ONDAS y SONIDO PROBLEMAS RESUELTOS DE ONDAS y SONDO CURSO - Anonio J. Babeo, Maiano Henández, Alfonso Calea, José González Deaaeno Física Alicada. UCLM Pobleas esuelos ondas y sonido PROBLEMA. Una onda se oaga o una

Más detalles

VECTORES, DERIVADAS, INTEGRALES

VECTORES, DERIVADAS, INTEGRALES Física Tema 0-1 º Bachilleato Vectoes, deivadas, integales Tema 0 VECTORES, DERIVADAS, INTEGRALES 1.- Vectoes. Componentes de un vecto.- Suma y difeencia de vectoes 3.- Poducto de un vecto po un númeo

Más detalles

UNIVERSIDAD DE ZARAGOZA

UNIVERSIDAD DE ZARAGOZA Reflectometía en el dominio del tiempo UNIERIDAD DE ZARAGOZA FACUTAD DE CIENCIA DEPARTAMENTO DE FIICA APICADA AREA DE EECTROMAGNETIMO CARACTERIZACIÓN DIEÉCTRICA POR T. D. R. DE UNA MEZCA REINA EPOXY TITANATO

Más detalles

3 Aplicaciones de primer orden

3 Aplicaciones de primer orden CAÍTULO 3 Aplicaciones de primer orden 3.2. Modelo logísico El modelo de Malhus iene muchas limiaciones. or ejemplo, predice que una población crecerá exponencialmene con el iempo, que no ocurre en la

Más detalles

FÍSICA. PRUEBA ACCESO A UNIVERSIDAD +25 TEMA 8. Corriente eléctrica

FÍSICA. PRUEBA ACCESO A UNIVERSIDAD +25 TEMA 8. Corriente eléctrica FÍSC. PUEB CCESO UNESDD +5 TEM 8. Corriene elécrica Una corriene elécrica es el desplazamieno de las cargas elécricas. La eoría aómica acual supone ue la carga elécrica posiiva esá asociada a los proones

Más detalles

INTERACCIÓN ELECTROMAGNÉTICA ELECTROMAGNETISMO. Campo magnético creado por un conductor

INTERACCIÓN ELECTROMAGNÉTICA ELECTROMAGNETISMO. Campo magnético creado por un conductor TERACCÓ ELECTROMAGÉTCA ELECTROMAGETSMO ES La Magdalena. Avilés. Astuias La unión electicidad-magnetismo tiene una fecha: 180. Ese año Oested ealizó su famoso expeimento (ve figua) en el cual hacía cicula

Más detalles

Leyes de Kepler. Ley de Gravitación Universal

Leyes de Kepler. Ley de Gravitación Universal Leyes de Keple y Ley de Gavitación Univesal J. Eduado Mendoza oes Instituto Nacional de Astofísica Óptica y Electónica, México Pimea Edición onantzintla, Puebla, México 009 ÍNDICE 1.- PRIMERA LEY DE KEPLER

Más detalles

Ejercicios típicos de Señales

Ejercicios típicos de Señales Ejercicios típicos de Señales 1- Calcular el voltaje eficaz de la onda senoidal. 3V 2V V PP = 6V 1V V P = V PP /2 = 6/2 = 3V -1V V ef = V P * 0.707 = 3V* 0.707 = 2.12V -2V -3V 2- Calcular el valor pico

Más detalles

C. E. C. y T. No. 11 WILFRIDO MASSIEU PÉREZ

C. E. C. y T. No. 11 WILFRIDO MASSIEU PÉREZ C E C T No WILFRIDO MASSIEU PÉREZ Altua A Recta paalela a BC C Distancia (0, 0) Bisectiz B Ing J Ventua Ángel Felícitos Academia de Matemáticas C E C T No WILFRIDO MASSIEU PÉREZ La unidad de Apendizaje

Más detalles

100 Cuestiones de Selectividad

100 Cuestiones de Selectividad Física de º Bachilleato 100 Cuestiones de Selectividad 1.- a) Explique qué se entiende po velocidad de escape y deduzca azonadamente su expesión. (And-010-P1) La velocidad de escape es la mínima velocidad

Más detalles

Primer Periodo ELEMENTOS DE TRIGONOMETRIA

Primer Periodo ELEMENTOS DE TRIGONOMETRIA Matemática 10 Gado. I.E. Doloes Maía Ucós de Soledad. INSEDOMAU Pime Peíodo Pofeso: Blas Toes Suáez. Vesión.0 Pime Peiodo ELEMENTOS DE TRIGONOMETRIA Indicadoes de logos: Conveti medidas de ángulos en adianes

Más detalles

PROBLEMAS CAPÍTULO 5 V I = R = X 1 X

PROBLEMAS CAPÍTULO 5 V I = R = X 1 X PROBLEMAS APÍULO 5.- En el cicuito de la figua, la esistencia consume 300 W, los dos condensadoes 300 VAR cada uno y la bobina.000 VAR. Se pide, calcula: a) El valo de R,, y L. b) La potencia disipada

Más detalles

DEPARTAMENTO DE QUÍMICA ANALÍTICA Y TECNOLOGÍA DE ALIMENTOS

DEPARTAMENTO DE QUÍMICA ANALÍTICA Y TECNOLOGÍA DE ALIMENTOS DEPARTAMETO DE QUÍMICA AALÍTICA Y TECOLOGÍA DE ALIMETOS FUDAMETOS DE AÁLISIS ISTRUMETAL. 7º RELACIÓ DE PROBLEMAS..- Las susancias A y B ienen iempos de reención de 6.4 y 7.63 min, respecivamene, en una

Más detalles

2 Matemáticas financieras

2 Matemáticas financieras Solucionaio Maemáicas financieas ACTIVIDADES INICIALES.I. Indica el émino geneal de las siguienes sucesiones y halla el valo del émino que ocupa el décimo luga. a), 4, 6, 8 e), 4, 7, 0 b), 4, 8, 6 f),

Más detalles

Almacenan energía magnética generada como consecuencia de las variaciones de corriente. Suelen ser fabricados a medida por el propio diseñador.

Almacenan energía magnética generada como consecuencia de las variaciones de corriente. Suelen ser fabricados a medida por el propio diseñador. 6. nductancias Almacenan enegía magnética geneada como consecuencia de las vaiaciones de coiente. Suelen se fabicados a medida po el popio diseñado. Pincipios de la teoía electomagnética Magnitudes a utiliza:

Más detalles

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el /5 Conceptos pevios PRODUCTO VECTORIAL DE DO VECTORE. Es oto vecto cuyo módulo viene dado po: a b a b senα. u diección es pependicula al plano en el ue se encuentan los dos vectoes y su sentido viene dado

Más detalles

Examen de Selectividad de Física. Junio 2009. Soluciones.

Examen de Selectividad de Física. Junio 2009. Soluciones. Depatamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madid) Examen de Selectividad de Física. Junio 009. Soluciones. Pimea pate Cuestión 1.- Un satélite atificial de 500 kg que descibe una óbita

Más detalles

Funciones exponenciales y logarítmicas

Funciones exponenciales y logarítmicas 89566 _ 0363-00.qd 7/6/08 09:30 Página 363 Funciones eponenciales y logarímicas INTRODUCCIÓN En esa unidad se esudian dos funciones que se aplican a numerosas siuaciones coidianas y, sobre odo, a fenómenos

Más detalles

PROBLEMAS RESUELTOS 1 (continuidad, derivabilidad y diferenciabilidad de funciones de varias variables)

PROBLEMAS RESUELTOS 1 (continuidad, derivabilidad y diferenciabilidad de funciones de varias variables) Funciones de varias variables. PROBLEMAS RESUELTOS 1 (coninuidad, derivabilidad y diferenciabilidad de funciones de varias variables) PROBLEMA 1 Esudiar la coninuidad de la función: xy ( xy, ) (,) x +

Más detalles

Comportamiento Acústico

Comportamiento Acústico Compotamiento Acústico 10.1 Intoducción La contaminación acústica es un facto deteminante duante la definición de la calidad ambiental. De hecho, no sólo epesenta una gave amenaza paa la salud y el bienesta

Más detalles

rad/s EXAMEN FÍSICA PAEG UCLM. JUNIO 2013. SOLUCIONARIO

rad/s EXAMEN FÍSICA PAEG UCLM. JUNIO 2013. SOLUCIONARIO EXAMEN FÍSICA PAEG UCLM. JUNIO 01. SOLUCIONARIO OPCIÓN A. PROBLEMA 1 Una onda tansvesal se popaga po una cueda tensa fija po sus extemos con una velocidad de 80 m/s, y al eflejase se foma el cuato amónico

Más detalles

Tema 2. Sistemas conservativos

Tema 2. Sistemas conservativos Tema. Sistemas consevativos Tecea pate: Fueza gavitatoia A Campo gavitatoio Una masa M cea en su vecindad un campo de fuezas, el campo gavitatoio E, dado po E u siendo u el vecto unitaio adial que sale

Más detalles

Víctor Lituma Silva Rafael Pérez Ordóñez Marcos Guerrero Zambrano ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL GUAYAQUIL-ECUADOR 2009

Víctor Lituma Silva Rafael Pérez Ordóñez Marcos Guerrero Zambrano ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL GUAYAQUIL-ECUADOR 2009 1 DEÑO E MPLEMENACÓN DE UN COMPENADOR EÁCO DE POENCA REACA (D-ACOM); BAADO EN UN CONERDOR RFÁCO CON MODULACÓN NUODAL DE ANCHO DE PULO (PWM), CONROLADO POR UN PROCEADOR DGAL DE EÑALE (DP M30C000) ícto Lituma

Más detalles

3 TEORÍA DE LA CODA. 3.1 Introducción TEORÍA DE LA CODA 39

3 TEORÍA DE LA CODA. 3.1 Introducción TEORÍA DE LA CODA 39 TEORÍA DE LA CODA 39 3 TEORÍA DE LA CODA 3. Inoducción Las heeogeneidades de la liosfea eese acúan como elemenos dispesoes de las ondas pimaias paa poduci ondas secundaias y son las causanes de las anomalías

Más detalles

El OSCILOSCOPIO * X V d

El OSCILOSCOPIO * X V d UNIVERSIDAD NACIONAL DE COLOMBIA Deparameno de Física Fundamenos de Elecricidad y Magneismo Guía de laboraorio N o 10 Objeivos 1. Conocer y aprender a usar el osciloscopio. 2. Aprender a medir volajes

Más detalles

UNA APROXIMACION A LA SOSTENIBILIDAD FISCAL EN REPUBLICA DOMINICANA Juan Temístocles Montás

UNA APROXIMACION A LA SOSTENIBILIDAD FISCAL EN REPUBLICA DOMINICANA Juan Temístocles Montás UNA APROXIMACION A LA SOSTENIBILIDAD FISCAL EN REPUBLICA DOMINICANA Juan Temísocles Monás Puede el comporamieno acual de la políica fiscal sosenerse sin generar una deuda pública que crezca sin límie?

Más detalles

2.4 La circunferencia y el círculo

2.4 La circunferencia y el círculo UNI Geometía. La cicunfeencia y el cículo. La cicunfeencia y el cículo JTIVS alcula el áea del cículo y el peímeto de la cicunfeencia. alcula el áea y el peímeto de sectoes y segmentos ciculaes. alcula

Más detalles

Tema 1: La autofinanciación

Tema 1: La autofinanciación Tema : La auofinanciación.. Concepo y ipos de auofinanciación..2. La amorización de los elemenos parimoniales.3. Los beneficios reenidos.4. Venajas e inconvenienes de la auofinanciación irección Financiera

Más detalles

Mtro. Horacio Catalán Alonso

Mtro. Horacio Catalán Alonso ECONOMETRIA TEORÍA DE LA COINTEGRACIÓN Mro. I. REGRESIÓN ESPURÍA Y X Dos series que presenan camino aleaorio. Si ambas series se consideran en una modelo economérico. Y = Y -1 + u u N(0,s 2 u) X =X -1

Más detalles

UNIDAD Nº 2 VECTORES Y FUERZAS

UNIDAD Nº 2 VECTORES Y FUERZAS UNIVERSIDAD DE SANTIAGO DE CHILE DEPARTAMENTO DE FISICA FISICA EXPERIMENTAL PLAN ANUAL INGENIERIA FISICA 1 e SEMESTRE 2012 UNIDAD Nº 2 VECTORES Y FUERZAS OBJETIVOS Medi el módulo de un vecto fueza usando

Más detalles

[ ] [ m] [ ] [ ] [ ] [ ]

[ ] [ m] [ ] [ ] [ ] [ ] Ejercicio: Ona. El eiicio Sear, ubicao en Chicago, e ece con una recuencia aproxiaa a 0,0 Hz. Cuál e el perioo e la ibración? Dao: 0, [Hz]? 0,Hz 0. Una ola en el océano iene una longiu e 0. Una ona paa

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS.

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS. CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS. Una parícula se muee en la dirección posiia del eje X, de modo que su elocidad aría según la ley = α donde α es una consane. Teniendo en cuena que en el

Más detalles

INSTITUTO NACIONAL DE PESCA

INSTITUTO NACIONAL DE PESCA INSTITUTO NACIONAL DE PESCA Dirección General de Invesigación Pesquera en el Pacífico Nore Subdirección de Tecnología en el Pacífico Nore. Indicadores económico-financieros para la capura de camarón y

Más detalles

Servicio de Estudios Económicos. Serie de Estudios Especiales 1. N 16 Mayo 2006. Creación de dinero en el Sistema de Encaje Fraccionario

Servicio de Estudios Económicos. Serie de Estudios Especiales 1. N 16 Mayo 2006. Creación de dinero en el Sistema de Encaje Fraccionario Servicio e Esuios Económicos Serie e Esuios Especiales N 6 Mayo 2006 Creación e inero en el Sisema e Encaje Fraccionario Elaborao por: Erneso Gaba INDICE PREFACIO...2. Inroucción... 2 2. Creación e M analizaa

Más detalles

Práctica 20. CARGA Y DESCARGA DE UN CONDENSADOR ELÉCTRICO

Práctica 20. CARGA Y DESCARGA DE UN CONDENSADOR ELÉCTRICO Prácica 20. CARGA Y DESCARGA DE UN CONDENSADOR ELÉCTRICO OBJETIVOS Esudiar los procesos de carga y de descarga de un condensador. Medida de capacidades por el méodo de la consane de iempo. MATERIAL Generador

Más detalles

FORMACIÓN DE IMÁGENES EN ÓPTICA ADAPTATIVA

FORMACIÓN DE IMÁGENES EN ÓPTICA ADAPTATIVA Univesidad de Cantabia Tesis Doctoal FORMACIÓN DE IMÁGENES EN ÓPTICA ADAPTATIVA Vidal Fenández Canales Capítulo 1 LA TURBULENCIA ATMOSFÉRICA La atmósfea no se compota como un medio homogéneo paa la popagación

Más detalles

A r. 1.5 Tipos de magnitudes

A r. 1.5 Tipos de magnitudes 1.5 Tipos de magnitudes Ente las distintas popiedades medibles puede establecese una clasificación básica. Un gupo impotante de ellas quedan pefectamente deteminadas cuando se expesa su cantidad mediante

Más detalles

Colegio Nuestra Señora de los Ángeles Curso 2015-2016

Colegio Nuestra Señora de los Ángeles Curso 2015-2016 Colegio Nuesta Señoa de los Ángeles Cuso 05-06 Almudena de la Fuente, 05 ÍNDICE TEMA : VIBRACIONES Y ONDAS. Movimiento amónico simple 3. Movimiento ondulatoio 3. Ondas sonoas 8 TEMA : ÓPTICA. Natualeza

Más detalles