Vectores. Observación: 1. Cantidades vectoriales.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Vectores. Observación: 1. Cantidades vectoriales."

Transcripción

1 Vectores. 1. Cantidades vectoriales. Los vectores se definen como expresiones matemáticas que poseen magnitud y dirección, y que se suman de acuerdo con la ley del paralelogramo. Los vectores se representan, en los dibujos, con flechas de tal manera que la longitud de la flecha representa la magnitud del vector y la inclinación de la flecha con respecto a un eje indica su dirección. En la escritura a mano los vectores se representan con letras sobre las cuales se dibuja una flechita y su magnitud con sólo la letra o encerrando entre barras paralelas, así: : representa el vector. ן ן : Magnitud del vector. Observación: ara simplificar su escritura, los vectores también se representan con letras en negrilla, (así se hará en este documento), siempre que no se confunda con otras cantidades. or ejemplo, la letra representará un vector y la misma letra en cursiva representará la magnitud del vector. 1.1 Tipos de vectores. Los vectores pueden ser: Fijos: son vectores que no pueden moverse sin modificar las condiciones del problema. or ejemplo, la fuerza que actúa sobre una partícula tiene un punto de aplicación bien definido, esto es, la partícula misma. Libres: son vectores que pueden desplazarse libremente en el espacio. Ejemplo: los pares de fuerza. Deslizantes: vectores que pueden moverse o deslizarse a lo largo de una línea de acción, que es una línea infinita que define la dirección del vector. Ejemplo: una fuerza que actúa sobre un cuerpo rígido. 1.2 Definiciones y propiedades de los vectores. a. Se dice que dos vectores son iguales cuando tienen la misma dirección y la misma magnitud, tengan o no el mismo punto de aplicación.

2 b. El vector negativo de un vector (o vector opuesto de ), se define como el vector que tiene la misma magnitud de y dirección opuesta a la de. El vector opuesto se representa anteponiendo el signo menos al vector. Se cumple que + (- ) = 0. El vector ( ) es el vector opuesto del vector. - Figura 1: Vectores opuestos. c. El producto k de un escalar k y un vector es un vector que tiene la misma dirección de (si k es positivo), o dirección opuesta a la de (si k es negativo), y la magnitud igual al producto del valor absoluto de k con. d. Se define como vector unitario cualquier vector cuya magnitud es la unidad. Se obtiene un vector unitario si se divide un vector entre su magnitud, así: Si V es un vector, y V su magnitud, el cociente (V/V) = v es un vector unitario en la dirección de V. (Observe que se usó la v minúscula para representar el vector unitario). e. Adición de vectores. La suma de dos vectores y Q se obtiene fijando los dos vectores al mismo punto de aplicación A y construyendo un paralelogramo con y Q como los lados contiguos del paralelogramo. En la Figura 2 se muestra el procedimiento para obtener la suma de dos vectores. El vector S = + Q es la suma (o composición), de los vectores y Q, la magnitud del vector S corresponde a la longitud de la diagonal del paralelogramo. Obsérvese que, en general, S + Q. Es decir, la magnitud del vector suma no es igual a la suma de las magnitudes de los vectores. Como el paralelogramo construido con los vectores y Q no depende del orden en que se tomen éstos, se concluye que la suma de dos vectores es conmutativa: + Q = Q +.

3 Figura 2: Ley del paralelogramo para la adición de vectores. De la ley del paralelogramo se obtiene un segundo método para determinar la suma de dos vectores. Este método se conoce como la regla del triángulo y consiste en: colocar el vector Q en el extremo del vector, el vector que une el origen de con el extremo de Q es la suma de ambos. Q S = + Q Q Figura 3: Regla del triángulo. ara sumar más de dos vectores se aplica sucesivamente la regla del triángulo.

4 Ejemplo 1. Al vector S = + Q, obtenido anteriormente, sumar el vector T. T Solución. R T S Figura 4. Aplicación de la regla del triángulo. Q En la Figura 4 se muestra que al final del vector S = + Q se coloca el vector T, por la regla del triángulo el vector que va del origen de S al final de T es la suma de éstos dos: R = S + T. La aplicación sucesiva de la regla del triángulo se conoce como la regla del polígono. f. Sustracción de vectores. La sustracción de un vector se define como la adición del correspondiente vector opuesto. Así, el vector ( Q) que representa la diferencia entre los vectores y Q, se obtiene sumando a el vector negativo de Q pues: Q = + (- Q) - Q Q Q - Q Figura 5. Sustracción de vectores.

5 1.3 Componentes de un vector. En la Figura 2, repetida aquí, se muestra la suma de los vectores y Q cuyo resultado es el vector S. El vector S se llama resultante y los vectores y Q son los componentes de S. El proceso de sumar dos vectores para obtener el resultante se denomina composición de vectores (o bien, obtener el vector resultante). El proceso inverso, dado un vector obtener sus componentes, se llama descomposición de vectores. Figura 2. Repetida Un vector puede descomponerse en infinito número de componentes o conjuntos de componentes. ara efectos prácticos, los conjuntos más importantes son los de dos componentes, pero aun así hay un número ilimitado de componentes. En la Figura 6 se muestran dos formas de descomponer un vector S en dos componentes. V S U S S B A Figura 6. Componentes de un vector Componentes rectangulares. Si las componentes de un vector son perpendiculares entre sí se llaman componentes rectangulares del vector. El sistema de componentes rectangulares más utilizado en mecánica es el que sigue las direcciones de un sistema de ejes X-Y, como se muestra en la Figura 7. El vector que va del punto A al punto B, el vector V, tiene componentes V x y V y según los ejes x y y, respectivamente. El vector se escribe, en término de sus componentes, como:

6 V = V x + V y Los pequeños vectores representados en la Figura 7, (i, j), son vectores unitarios dirigidos según los ejes x-y. La magnitud del vector V se determina ya sea por la fórmula para la distancia entre dos puntos: V = (x2 x1) 2 + (y2 y1) 2 O bien, aplicando el teorema de itágoras: V = (Vx) 2 + (Vy) 2 V = V x + V y Magnitud de V: V 2 = (V x) 2 + (V y) 2. En términos de los vectores unitarios: V = (V x)i + (V y)j Figura 7. Componentes rectangulares x-y.

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano 24 Unidad II Vectores 2.1 Magnitudes escalares y vectoriales Unidad II. VECTORES Para muchas magnitudes físicas basta con indicar su valor para que estén perfectamente definidas y estas son las denominadas

Más detalles

ALGEBRA DE VECTORES Y MATRICES VECTORES

ALGEBRA DE VECTORES Y MATRICES VECTORES ALGEBRA DE VECTORES Y MATRICES VECTORES DEFINICIÓN DE ESCALAR: Cantidad física que queda representada mediante un número real acompañado de una unidad. EJEMPLOS: Volumen Área Densidad Tiempo Temperatura

Más detalles

A.2. Notación y representación gráfica de vectores. Tipos de vectores.

A.2. Notación y representación gráfica de vectores. Tipos de vectores. Apéndice A: Vectores A.1. Magnitudes escalares y vectoriales Las magnitudes escalares son aquellas magnitudes físicas que quedan completamente definidas por un módulo (valor numérico) y la unidad de medida

Más detalles

CURSO BÁSICO DE FÍSICA MECÁNICA PROYECTO UNICOMFACAUCA TU PROYECTO DE VIDA

CURSO BÁSICO DE FÍSICA MECÁNICA PROYECTO UNICOMFACAUCA TU PROYECTO DE VIDA UNICOMFACAUCA TU DE VIDA Tabla de contenido... 2 PARTES DE UN VECTOR... 3 Notación... 5 Tipos de vectores... 5 Componentes de un vector... 6 Operaciones con vectores... 7 Suma de vectores... 7 Resta de

Más detalles

SUMA Y RESTA DE VECTORES

SUMA Y RESTA DE VECTORES SUMA Y RESTA DE VECTORES Definición de vectores Un vector es la expresión que proporciona la medida de cualquier magnitud vectorial. Un vector es todo segmento de recta dirigido en el espacio. Cada vector

Más detalles

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define.

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define. VECTORES El estudio de los vectores es uno de tantos conocimientos de las matemáticas que provienen de la física. En esta ciencia se distingue entre magnitudes escalares y magnitudes vectoriales. Se llaman

Más detalles

ESTÁTICA 2. VECTORES. Figura tomada de http://www.juntadeandalucia.es/averroes/~04001205/fisiqui/imagenes/vectores/473396841_e1de1dd225_o.

ESTÁTICA 2. VECTORES. Figura tomada de http://www.juntadeandalucia.es/averroes/~04001205/fisiqui/imagenes/vectores/473396841_e1de1dd225_o. ESTÁTICA Sesión 2 2 VECTORES 2.1. Escalares y vectores 2.2. Cómo operar con vectores 2.2.1. Suma vectorial 2.2.2. Producto de un escalar y un vector 2.2.3. Resta vectorial 2.2.4. Vectores unitarios 2.2.5.

Más detalles

VECTORES: VOCABULARIO 1. Abscisa de un punto. 2. Ordenada de un punto. 3. Concepto de vector. 4. Coordenadas o componentes de un vector. 5.

VECTORES: VOCABULARIO 1. Abscisa de un punto. 2. Ordenada de un punto. 3. Concepto de vector. 4. Coordenadas o componentes de un vector. 5. VECTORES: VOCABULARIO 1. Abscisa de un punto. 2. Ordenada de un punto. 3. Concepto de vector. 4. Coordenadas o componentes de un vector. 5. Elementos de un vector. 6. Concepto de origen de un vector. 7.

Más detalles

a. Dibujar los paralelogramos completos, señalar los vértices con letras.

a. Dibujar los paralelogramos completos, señalar los vértices con letras. PRACTICO DE VECTORES 1. Dada la siguiente figura, se pide determinar vectores utilizando los vértices. Por ejemplo, el vector, el vector, etcétera. Se pide indicar a. Tres vectores que tengan la misma

Más detalles

Definición de vectores

Definición de vectores Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre

Más detalles

requerido). vectoriales, y operan según el Álgebra a continuación. 2.1.2 Vector. dirección. representados.

requerido). vectoriales, y operan según el Álgebra a continuación. 2.1.2 Vector. dirección. representados. 2.1 Vectores. 2.1.1 Introducción. Cuando queremos referirnos al tiempo que demanda un suceso determinado, nos basta con una magnitud (se demoró 3 segundos, saltó durante 1 minuto, volverá el próximo año,

Más detalles

De acuerdo con sus características podemos considerar tres tipos de vectores:

De acuerdo con sus características podemos considerar tres tipos de vectores: CÁLCULO VECTORIAL 1. ESCALARES Y VECTORES 1.1.-MAGNITUDES ESCALARES Y VECTORIALES Existen magnitudes físicas cuyas cantidades pueden ser expresadas mediante un número y una unidad. Otras, en cambio, requieren

Más detalles

1. Vectores 1.1. Definición de un vector en R2, R3 (Interpretación geométrica), y su generalización en Rn.

1. Vectores 1.1. Definición de un vector en R2, R3 (Interpretación geométrica), y su generalización en Rn. 1. VECTORES INDICE 1.1. Definición de un vector en R 2, R 3 (Interpretación geométrica), y su generalización en R n...2 1.2. Operaciones con vectores y sus propiedades...6 1.3. Producto escalar y vectorial

Más detalles

Nivelación de Matemática MTHA UNLP 1. Vectores

Nivelación de Matemática MTHA UNLP 1. Vectores Nivelación de Matemática MTHA UNLP 1 1. Definiciones básicas Vectores 1.1. Magnitudes escalares y vectoriales. Hay magnitudes que quedan determinadas dando un solo número real: su medida. Por ejemplo:

Más detalles

LONGITUD MASA TIEMPO AREA VOLUMEN, ETC AREA VOLUMEN VELOCIDAD ACELERACION, ETC LONGITUD MASA TIEMPO, ETC DESPLAZAMIENTO VELOCIDAD ACELERACION, ETC

LONGITUD MASA TIEMPO AREA VOLUMEN, ETC AREA VOLUMEN VELOCIDAD ACELERACION, ETC LONGITUD MASA TIEMPO, ETC DESPLAZAMIENTO VELOCIDAD ACELERACION, ETC MAGNITUDES FISICAS SEGÚN SU ORIGEN SEGÚN SU NATURALEZA FUNDAMENTALES DERIVADAS ESCALARES VECTORIALES LONGITUD MASA TIEMPO, ETC AREA VOLUMEN VELOCIDAD ACELERACION, ETC LONGITUD MASA TIEMPO AREA VOLUMEN,

Más detalles

Vectores en el espacio

Vectores en el espacio Vectores en el espacio Un sistema de coordenadas tridimensional se construye trazando un eje Z, perpendicular en el origen de coordenadas a los ejes X e Y. Cada punto viene determinado por tres coordenadas

Más detalles

3.1 DEFINICIÓN. Figura Nº 1. Vector

3.1 DEFINICIÓN. Figura Nº 1. Vector 3.1 DEFINICIÓN Un vector (A) una magnitud física caracterizable mediante un módulo y una dirección (u orientación) en el espacio. Todo vector debe tener un origen marcado (M) con un punto y un final marcado

Más detalles

Geometría Tridimensional

Geometría Tridimensional Capítulo 4 Geometría Tridimensional En dos dimensiones trabajamos en el plano mientras que en tres dimensiones trabajaremos en el espacio, también provisto de un sistema de coordenadas. En el espacio,

Más detalles

Vectores no colineales.

Vectores no colineales. Vectores no colineales. Por definición son aquellos vectores que no tienen igual dirección. La resultante de los mismos no surge de la suma algebraica de los módulos de dichos vectores, sino que deben

Más detalles

INTRODUCCIÓN A VECTORES Y MAGNITUDES

INTRODUCCIÓN A VECTORES Y MAGNITUDES C U R S O: FÍSIC Mención MTERIL: FM-01 INTRODUCCIÓN VECTORES Y MGNITUDES La Física tiene por objetivo describir los fenómenos que ocurren en la naturaleza, a través de relaciones entre magnitudes físicas.

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

VECTORES. Abel Moreno Lorente. February 3, 2015

VECTORES. Abel Moreno Lorente. February 3, 2015 VECTORES Abel Moreno Lorente February 3, 015 1 Aspectos grácos. 1.1 Deniciones. Un vector entre dos puntos A y B es el segmento de recta orientado que tiene su origen en A y su extremo en B. A este vector

Más detalles

Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x

Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Los polinomios Los polinomios Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Elementos de un polinomio Los términos: cada

Más detalles

Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo

Polinomios: Definición: Se llama polinomio en x de grado n a una expresión del tipo Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo P (x) = a 0 x n + a 1 x n 1 +... + a n Donde n N (número natural) ; a 0, a 1, a 2,..., a n son coeficientes reales

Más detalles

Capítulo 1. Vectores en el plano. 1.1. Introducción

Capítulo 1. Vectores en el plano. 1.1. Introducción Índice general 1. Vectores en el plano 2 1.1. Introducción.................................... 2 1.2. Qué es un vector?................................ 3 1.2.1. Dirección y sentido............................

Más detalles

Te damos los elementos básicos de los vectores para que puedas entender las operaciones básicas.

Te damos los elementos básicos de los vectores para que puedas entender las operaciones básicas. 4 año secundario Vectores, refrescando conceptos adquiridos Te damos los elementos básicos de los vectores para que puedas entender las operaciones básicas. El término vector puede referirse al: concepto

Más detalles

ESTATICA: TIPOS DE MAGNITUDES: CARACTERÍSTICAS DE UN VECTOR. Rama de la física que estudia el equilibrio de los cuerpos.

ESTATICA: TIPOS DE MAGNITUDES: CARACTERÍSTICAS DE UN VECTOR. Rama de la física que estudia el equilibrio de los cuerpos. ESTATICA: Rama de la física que estudia el equilibrio de los cuerpos. TIPOS DE MAGNITUDES: MAGNITUD ESCALAR: Es una cantidad física que se especifica por un número y una unidad. Ejemplos: La temperatura

Más detalles

Electrostática: ejercicios resueltos

Electrostática: ejercicios resueltos Electrostática: ejercicios resueltos 1) Dos cargas de 4 y 9 microculombios se hallan situadas en los puntos (2,0) y (4,0) del eje 0X. Calcula el campo y el potencial eléctrico en el punto medio. 2) Dos

Más detalles

VECTORES EN EL PLANO

VECTORES EN EL PLANO VECTORES EN EL PLANO VECTOR: vectores libres Segmento orientado, con un origen y extremo. Módulo: es la longitud del segmento orientado, es un número positivo y su símbolo es a Dirección: es la recta que

Más detalles

1.1 CANTIDADES VECTORIALES Y ESCALARES. Definición de Magnitud

1.1 CANTIDADES VECTORIALES Y ESCALARES. Definición de Magnitud 1.1 CANTIDADES VECTORIALES Y ESCALARES Definición de Magnitud Atributo de un fenómeno, cuerpo o sustancia que puede ser distinguido cualitativamente y determinado cuantitativamente. También se entiende

Más detalles

Seminario Universitario Material para estudiantes. Física. Unidad 2. Vectores en el plano. Lic. Fabiana Prodanoff

Seminario Universitario Material para estudiantes. Física. Unidad 2. Vectores en el plano. Lic. Fabiana Prodanoff Seminario Universitario Material para estudiantes Física Unidad 2. Vectores en el plano Lic. Fabiana Prodanoff CONTENIDOS Vectores en el plano. Operaciones con vectores. Suma y producto por un número escalar.

Más detalles

NÚMEROS NATURALES Y NÚMEROS ENTEROS

NÚMEROS NATURALES Y NÚMEROS ENTEROS NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de un rebaño) y de

Más detalles

Representación de un Vector

Representación de un Vector VECTORES Vectores Los vectores se caracterizan por tener una magnitud, expresable por un número real, una dirección y un sentido. Un ejemplo de vectores son los desplazamientos. Otro ejemplo de vectores

Más detalles

Vectores. Las cantidades físicas que estudiaremos en los cursos de física son escalares o vectoriales.

Vectores. Las cantidades físicas que estudiaremos en los cursos de física son escalares o vectoriales. Cantidades vectoriales escalares Vectores Las cantidades físicas que estudiaremos en los cursos de física son escalares o vectoriales. Una cantidad escalar es la que está especificada completamente por

Más detalles

Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores

Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Universidad Politécnica de Madrid 5 de marzo de 2010 2 4.1. Planificación

Más detalles

Geometría analítica. Impreso por Juan Carlos Vila Vilariño Centro I.E.S. PASTORIZA

Geometría analítica. Impreso por Juan Carlos Vila Vilariño Centro I.E.S. PASTORIZA Conoce los vectores, sus componentes y las operaciones que se pueden realizar con ellos. Aprende cómo se representan las rectas y sus posiciones relativas. Impreso por Juan Carlos Vila Vilariño Centro

Más detalles

Alternativamente, los vectores también se pueden poner en función de los vectores unitarios:

Alternativamente, los vectores también se pueden poner en función de los vectores unitarios: 1. Nociones fundamentales de cálculo vectorial Un vector es un segmento orientado que está caracterizado por tres parámetros: Módulo: indica la longitud del vector Dirección: indica la recta de soporte

Más detalles

Cantidades vectoriales y escalares

Cantidades vectoriales y escalares Solución: Al sustituir las unidades por las cantidades en cada término, tenemos m m, m = ( ) H ^ ist se obtiene m = m + m Con esto se satisfacen tanto la regla 1 como la regla 2. Por tanto, la ecuación

Más detalles

1. ESCALARES Y VECTORES

1. ESCALARES Y VECTORES 1. ESCLRES Y VECTORES lgunas magnitudes físicas se especifican por completo mediante un solo número acompañado de su unidad, por ejemplo, el tiempo, la temperatura, la masa, la densidad, etc. Estas magnitudes

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 4 La recta en el plano Elaborado por la Profesora Doctora María Teresa

Más detalles

6. VECTORES Y COORDENADAS

6. VECTORES Y COORDENADAS 6. VECTORES Y COORDENADAS Página 1 Traslaciones. Vectores Sistema de referencia. Coordenadas. Punto medio de un segmento Ecuaciones de rectas. Paralelismo. Distancias Página 2 1. TRASLACIONES. VECTORES

Más detalles

VECTORES. Se representa gráficamente por medio de una flecha, por ejemplo: Todos los vectores poseen las siguientes características:

VECTORES. Se representa gráficamente por medio de una flecha, por ejemplo: Todos los vectores poseen las siguientes características: Un vector v es un segmento orientado. VECTORES Se representa gráficamente por medio de una flecha, por ejemplo: Todos los vectores poseen las siguientes características: Punto de aplicación: es el lugar

Más detalles

La magnitud vectorial mas simple es el desplazamiento (cambio de posición de un punto a otro de una partícula o de un cuerpo)

La magnitud vectorial mas simple es el desplazamiento (cambio de posición de un punto a otro de una partícula o de un cuerpo) Existen ciertas magnitudes que quedan perfectamente determinadas cuando se conoce el nombre de una unidad y el numero de veces que se ha tomado.estas unidades se llaman escalares (tiempo, volumen, longitud,

Más detalles

Álgebra Vectorial. Principios de Mecánica. Licenciatura de Física. Curso 2007-2008. 1

Álgebra Vectorial. Principios de Mecánica. Licenciatura de Física. Curso 2007-2008. 1 Álgebra Vectorial Principios de Mecánica. Licenciatura de Física. Curso 2007-2008. 1 Indice. 1. Magnitudes Escalares y Vectoriales. 2. Vectores. 3. Suma de Vectores. Producto de un vector por un escalar.

Más detalles

Actividades recreativas para recordar a los vectores. 1) Representa en un eje de coordenadas las siguientes sugerencias:

Actividades recreativas para recordar a los vectores. 1) Representa en un eje de coordenadas las siguientes sugerencias: Actividades recreativas para recordar a los vectores 1) Representa en un eje de coordenadas las siguientes sugerencias: a) Dibuja un segmento y oriéntalo en sentido positivo. b) Dibuja un segmento y oriéntalo

Más detalles

Potencial eléctrico. du = - F dl

Potencial eléctrico. du = - F dl Introducción Como la fuerza gravitatoria, la fuerza eléctrica es conservativa. Existe una función energía potencial asociada con la fuerza eléctrica. Como veremos, la energía potencial asociada a una partícula

Más detalles

1. Magnitudes vectoriales

1. Magnitudes vectoriales FUNDACIÓN INSTITUTO A DISTANCIA EDUARDO CABALLERO CALDERON Espacio Académico: Física Docente: Mónica Bibiana Velasco Borda mbvelascob@uqvirtual.edu.co CICLO: V INICADORES DE LOGRO VECTORES 1. Adquiere

Más detalles

TEORÍA TEMA 9. 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N)

TEORÍA TEMA 9. 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N) 1. Definición de Viga de alma llena TEORÍA TEMA 9 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N) 3. Determinación de los esfuerzos característicos i. Concepto de Polígonos de Presiones ii. Caso

Más detalles

Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8

Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8 Esta semana estudiaremos la definición de vectores y su aplicabilidad a muchas situaciones, particularmente a las relacionadas con el movimiento. Por otro lado, se podrán establecer las características

Más detalles

. Definición: Dos o más términos son semejantes cuando tienen las mismas letras y afectadas por el mismo exponente.

. Definición: Dos o más términos son semejantes cuando tienen las mismas letras y afectadas por el mismo exponente. Ejercicios Resueltos del Algebra de Baldor. Consultado en la siguiente dirección electrónica http://www.quizma.cl/matematicas/recursos/algebradebaldor/index.htm. Definición: Dos o más términos son semejantes

Más detalles

APUNTES DE MATEMÁTICAS TEMA 4: VECTORES 1º BACHILLERATO

APUNTES DE MATEMÁTICAS TEMA 4: VECTORES 1º BACHILLERATO APUNTES DE MATEMÁTICAS TEMA 4: VECTORES 1º BACHILLERATO ÍNDICE VECTORES EN EL PLANO... 3 Vector Fijo... 3 VECTOR LIBRE... 3 Operaciones con Vectores... 3 Suma de vectores... 3 Producto de un número por

Más detalles

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite

Más detalles

REPASO NÚMEROS NATURALES Y NÚMEROS ENTEROS

REPASO NÚMEROS NATURALES Y NÚMEROS ENTEROS SUMA REPASO NÚMEROS NATURALES Y NÚMEROS ENTEROS NÚMEROS NATURALES (N) 1. Características: Axiomas de Giuseppe Peano (*): El 1 es un número natural. Si n es un número natural, entonces el sucesor (el siguiente

Más detalles

MAGNITUDES ESCALARES Y VECTORIALES

MAGNITUDES ESCALARES Y VECTORIALES CPITULO II MGNITUDES ESCLRES Y VECTORILES 1 CONTENIDO 1. VECTORES Y ESCLRES 2. ELEMENTOS DE UN VECTOR, CONCEPTO DE DIRECCION Y SENTIDO 3. LGEBR DE VECTORES 4. METODOS GRFICOS Y NLITICOS 5. COMPOSICION

Más detalles

CORRIENTE ALTERNA. Fig.1 : Corriente continua

CORRIENTE ALTERNA. Fig.1 : Corriente continua CORRIENTE ALTERNA Hasta ahora se ha considerado que la corriente eléctrica se desplaza desde el polo positivo del generador al negativo (la corriente electrónica o real lo hace al revés: los electrones

Más detalles

ESTATICA. Componentes ortogonales de una fuerza. Seminario Universitario Física

ESTATICA. Componentes ortogonales de una fuerza. Seminario Universitario Física ESTATICA Es la parte de la física que estudia las fuerzas en equilibrio. Si sobre un cuerpo no actúan fuerzas o actúan varias fuerzas cuya resultante es cero, decimos que el cuerpo está en equilibrio.

Más detalles

1 Estática Básica Prohibida su reproducción sin autorización. CONCEPTOS DE FISICA MECANICA. Conceptos de Física Mecánica

1 Estática Básica Prohibida su reproducción sin autorización. CONCEPTOS DE FISICA MECANICA. Conceptos de Física Mecánica 1 CONCEPTOS DE FISICA MECANICA Introducción La parte de la física mecánica se puede dividir en tres grandes ramas de acuerdo a lo que estudia cada una de ellas. Así, podemos clasificarlas según lo siguiente:

Más detalles

Operaciones con vectores y matrices ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES. Ana Morata Gasca

Operaciones con vectores y matrices ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES. Ana Morata Gasca ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES Ana Morata Gasca 1 DEFINICIÓN DE VECTOR Un vector es todo segmento de recta dirigido en el espacio. CARACTERÍSTICAS DE UN VECTOR Origen o Punto de aplicación:

Más detalles

TEMA II ÁLGEBRA VECTORIAL; FUNDAMENTOS. 2.1.- Definicion, notacion y clasificacion de los vectores.

TEMA II ÁLGEBRA VECTORIAL; FUNDAMENTOS. 2.1.- Definicion, notacion y clasificacion de los vectores. J.A DÁVILA BAZ - J. PAJÓN PERMUY CÁLCULO VECTORIAL 29 UNIDAD DIDÁCTICA I: CÁLCULO VECTORIAL. TEMA II ÁLGEBRA VECTORIAL; FUNDAMENTOS 2.1.- Definicion, notacion y clasificacion de los vectores. Un vector

Más detalles

Unidad V: Integración

Unidad V: Integración Unidad V: Integración 5.1 Introducción La integración es un concepto fundamental de las matemáticas avanzadas, especialmente en los campos del cálculo y del análisis matemático. Básicamente, una integral

Más detalles

1.1 Definición 1.2 Enfoque geométrico 1.3 Igualdad 1.4 Operaciones 1.5 Aplicaciones

1.1 Definición 1.2 Enfoque geométrico 1.3 Igualdad 1.4 Operaciones 1.5 Aplicaciones . Definición. Enfoque geométrico. Igualdad.4 Operaciones.5 Aplicaciones Objetios. Se persigue que el estudiante: epresente geométricamente un ector de Determine magnitud dirección de un ector. Sume ectores,

Más detalles

ELEMENTOS DEL MOVIMIENTO

ELEMENTOS DEL MOVIMIENTO ELEMENTOS DEL MOVIMIENTO Unidad 10 CONTENIDOS.- 1.- Introducción..- Magnitudes escalares vectoriales. 3.- Sistemas de referencia. Concepto de movimiento. 4.- Operaciones con vectores. 5.- Traectoria, posición

Más detalles

VECTORES MAGNITUDES ESCALARES Y MAGNITUDES VECTORIALES.

VECTORES MAGNITUDES ESCALARES Y MAGNITUDES VECTORIALES. VECTORES ING. MARTA LIDIA MERLOS ARAGÓN Resumen. Los vectores son de vital importancia para el estudio de la Estática, la Dinámica, Mecánica de los Fluidos, Electricidad magnetismo, entre otras aplicaciones

Más detalles

, y su resultado es igual a la suma de los productos de las coordenadas correspondientes. Si u = (u 1, u 2 ) y v = (v 1, v 2 ), = u1 v 1 + u 2 v 2

, y su resultado es igual a la suma de los productos de las coordenadas correspondientes. Si u = (u 1, u 2 ) y v = (v 1, v 2 ), = u1 v 1 + u 2 v 2 Los vectores Los vectores Distancia entre dos puntos del plano Dados dos puntos coordenados del plano, P 1 = (x 1, y 1 ) y P = (x, y ), la distancia entre estos dos puntos, d(p 1,P ), se calcula de la

Más detalles

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos

Más detalles

Qué son los monomios?

Qué son los monomios? Qué son los monomios? Recordemos qué es una expresión algebraica. Definición Una expresión algebraica es aquella en la que se utilizan letras, números y signos de operaciones. Si se observan las siguientes

Más detalles

1 v 1 v 2. = u 1v 1 + u 2 v 2 +... u n v n. v n. y v = u u = u 2 1 + u2 2 + + u2 n.

1 v 1 v 2. = u 1v 1 + u 2 v 2 +... u n v n. v n. y v = u u = u 2 1 + u2 2 + + u2 n. Ortogonalidad Producto interior Longitud y ortogonalidad Definición Sean u y v vectores de R n Se define el producto escalar o producto interior) de u y v como u v = u T v = u, u,, u n ) Ejemplo Calcular

Más detalles

GUÍA MAGNITUDES FÍSICAS SEGUNDO AÑO

GUÍA MAGNITUDES FÍSICAS SEGUNDO AÑO LICEO LUIS CRUZ MARTINEZ DEPARTAMENTO DE FÍSICA RODRIGO VEJAR ANCATÉN GUÍA MAGNITUDES FÍSICAS SEGUNDO AÑO Contenido: Aprendizaje esperado: Magnitudes Físicas Comprender la naturaleza y tipos de magnitudes

Más detalles

GEOMETRÍA CON LA CLASSPAD 300

GEOMETRÍA CON LA CLASSPAD 300 8. GEOMETRÍA CON LA CLASSPAD 300 LA APLICACIÓN GEOMETRÍA Para acceder a la aplicación para trabajar con distintas construcciones geométricas bastará con pulsar el icono correspondiente a Geometry en el

Más detalles

Trabajo, fuerzas conservativas. Energia.

Trabajo, fuerzas conservativas. Energia. Trabajo, fuerzas conservativas. Energia. TRABAJO REALIZADO POR UNA FUERZA CONSTANTE. Si la fuerza F que actúa sobre una partícula constante (en magnitud y dirección) el movimiento se realiza en línea recta

Más detalles

TEMA 7 VECTORES MATEMÁTICAS I 1º Bach. 1

TEMA 7 VECTORES MATEMÁTICAS I 1º Bach. 1 TEMA 7 VECTORES MATEMÁTICAS I º Bach. TEMA 7 VECTORES 7. LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un ector es un segmento orientado. Un ector AB queda determinado por dos puntos, origen A y extremo B.

Más detalles

TEMA 8 CAMPO ELÉCTRICO

TEMA 8 CAMPO ELÉCTRICO TEMA 8 CAMPO ELÉCTRICO INTERACCIÓN ELECTROSTÁTICA Los antiguos griegos ya sabían que el ámbar frotado con lana adquiría la propiedad de atraer cuerpos ligeros. Todos estamos familiarizados con los efectos

Más detalles

Vectores: Producto escalar y vectorial

Vectores: Producto escalar y vectorial Nivelación de Matemática MTHA UNLP 1 Vectores: Producto escalar y vectorial Versores fundamentales Dado un sistema de coordenadas ortogonales, se considera sobre cada uno de los ejes y coincidiendo con

Más detalles

Los números racionales

Los números racionales Los números racionales Los números racionales Los números fraccionarios o fracciones permiten representar aquellas situaciones en las que se obtiene o se debe una parte de un objeto. Todas las fracciones

Más detalles

VECTORES. Por ejemplo: la velocidad de un automóvil, o la fuerza ejercida por una persona sobre un objeto.

VECTORES. Por ejemplo: la velocidad de un automóvil, o la fuerza ejercida por una persona sobre un objeto. Un vector v es un segmento orientado. VECTORES Se representa gráficamente por medio de una flecha, por ejemplo: Todos los vectores poseen las siguientes características: Punto de aplicación: es el lugar

Más detalles

FÍSICA I PRÁCTICA 1 DIAGRAMAS DE CUERPO LIBRE. UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. OBJETIVOS DEL APRENDIZAJE:

FÍSICA I PRÁCTICA 1 DIAGRAMAS DE CUERPO LIBRE. UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. OBJETIVOS DEL APRENDIZAJE: UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA I PRÁCTICA 1 DIAGRAMAS DE CUERPO LIBRE. OBJETIVOS DEL APRENDIZAJE: IDENTIFICAR LAS FUERZAS QUE ACTÚAN SOBRE UN OBJETO. REPRESENTAR

Más detalles

Fuerza Cortante y Momento Flector

Fuerza Cortante y Momento Flector TEMA VI Fuerza Cortante y Momento Flector Mecánica Racional 10 Profesora: Nayive Jaramillo S. Contenido Vigas. Pórticos. Fuerza Cortante (V). Momento Flector (M). Convenio de signos. Diagramas de fuerza

Más detalles

VECTORES COORDENADOS (R n )

VECTORES COORDENADOS (R n ) VECTORES COORDENADOS (R n ) Cómo puede ser representado un número Real? Un número real puede ser representado como: Un punto de una línea recta. Una pareja de números reales puede ser representado por

Más detalles

Funciones definidas a trozos

Funciones definidas a trozos Concepto de función Dominio de una función Características de las funciones Intersecciones con los ejes Crecimiento y decrecimiento Máximos y mínimos Continuidad y discontinuidad Simetrías Periodicidad

Más detalles

INSTITUTO VALLADOLID PREPARATORIA página 9

INSTITUTO VALLADOLID PREPARATORIA página 9 INSTITUTO VALLADOLID PREPARATORIA página 9 página 10 FACTORIZACIÓN CONCEPTO Para entender el concepto teórico de este tema, es necesario recordar lo que se mencionó en la página referente al nombre que

Más detalles

TEMA 8: TRAZADOS GEOMÉTRICOS

TEMA 8: TRAZADOS GEOMÉTRICOS EDUCACIÓN PLÁSTICA Y VISUAL 3º DE LA E.S.O. TEMA 8: TRAZADOS GEOMÉTRICOS En dibujo técnico, es fundamental conocer los trazados geométricos básicos para construir posteriormente formas o figuras de mayor

Más detalles

Lección 2. Puntos, vectores y variedades lineales.

Lección 2. Puntos, vectores y variedades lineales. Página 1 de 11 Lección 2. Puntos, vectores y variedades lineales. Objectivos. En esta lección se repasan las nociones de punto y vector, y se identifican, via coordenadas, con los pares (ternas,...) de

Más detalles

UNIDAD I NÚMEROS REALES

UNIDAD I NÚMEROS REALES UNIDAD I NÚMEROS REALES Los números que se utilizan en el álgebra son los números reales. Hay un número real en cada punto de la recta numérica. Los números reales se dividen en números racionales y números

Más detalles

SUMA Y RESTA DE FRACCIONES

SUMA Y RESTA DE FRACCIONES SUMA Y RESTA DE FRACCIONES CONCEPTOS IMPORTANTES FRACCIÓN: Es la simbología que se utiliza para indicar que un todo será dividido en varias partes (se fraccionará). Toda fracción tiene dos partes básicas:

Más detalles

Definición operacional, independientemente de cualquier sistema de referencia

Definición operacional, independientemente de cualquier sistema de referencia Carácter de las magnitudes físicas: Magnitudes escalares y vectoriales. Vectores unitarios, Operaciones con vectores. No todas las magnitudes físicas tienen las mismas características matemáticas El carácter

Más detalles

2. Geométricamente: Hay dos métodos:

2. Geométricamente: Hay dos métodos: Ejercicio realizado por José Francisco Ramón Prados Enunciado: 1. Dado el ortoedro de vértices ABFDCHGE representado en la figura, indicar que vectores son equipolentes a los dados. Expresar las diagonales

Más detalles

NOCIONES BÁSICAS DE LA GEOMETRÍA ANALÍTICA

NOCIONES BÁSICAS DE LA GEOMETRÍA ANALÍTICA . NOCIONES BÁSICAS DE LA GEOETRÍA ANALÍTICA NOCIONES BÁSICAS DE LA GEOETRÍA ANALÍTICA CONTENIDO Sistema de coordenadas rectangulares o cartesianas Coordenadas cartesianas de un punto Distancia entre dos

Más detalles

Tipos de funciones. Clasificación de funciones

Tipos de funciones. Clasificación de funciones Tipos de funciones Clasificación de funciones Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación,

Más detalles

COORDENADAS CURVILINEAS

COORDENADAS CURVILINEAS CAPITULO V CALCULO II COORDENADAS CURVILINEAS Un sistema de coordenadas es un conjunto de valores que permiten definir unívocamente la posición de cualquier punto de un espacio geométrico respecto de un

Más detalles

El espacio tridimensional. Tema 01: Álgebra lineal y geometría en R 3. Vectores. El producto punto o producto escalar. Teorema

El espacio tridimensional. Tema 01: Álgebra lineal y geometría en R 3. Vectores. El producto punto o producto escalar. Teorema El espacio tridimensional Tema 01: Álgebra lineal y geometría en R 3 Juan Ignacio Del Valle Gamboa Sede de Guanacaste Universidad de Costa Rica Ciclo I - 2014 Partimos de los conceptos de punto y vector.

Más detalles

TORNEO DE LAS CUENCAS. 2013 Primera Ronda Soluciones PRIMER NIVEL

TORNEO DE LAS CUENCAS. 2013 Primera Ronda Soluciones PRIMER NIVEL TORNEO DE LAS CUENCAS 2013 Primera Ronda Soluciones PRIMER NIVEL Problema 1- La figura adjunta está formada por un rectángulo y un cuadrado. Trazar una recta que la divida en dos figuras de igual área.

Más detalles

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones Fracciones. Las fracciones y los números Racionales Las fracciones se utilizan cotidianamente en contextos relacionados con la medida, el reparto o como forma de relacionar dos cantidades. Tenemos entonces

Más detalles

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES. Estudiar el crecimiento, el decrecimiento y los etremos relativos de las siguientes funciones: a) f( ) 7 + + b) ln f( ) c) 5 si < f(

Más detalles

Límite de una función

Límite de una función Límite de una función Idea intuitiva de límite El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es

Más detalles

PRISMA OBLICUO > REPRESENTACIÓN Y DESARROLLO POR EL MÉTODO DE LA SECCIÓN NORMAL

PRISMA OBLICUO > REPRESENTACIÓN Y DESARROLLO POR EL MÉTODO DE LA SECCIÓN NORMAL 1. CARACTERÍSTICAS GENERALES DEL PRISMA OBLICUO Desde el punto de vista de la representación en SISTEMA DIÉDRICO, el prisma oblicuo presenta dos características importantes que lo diferencian del prisma

Más detalles

Cinemática en una Dimensión. Posición, velocidad. Cantidades vectoriales: operación de suma y diferencia.

Cinemática en una Dimensión. Posición, velocidad. Cantidades vectoriales: operación de suma y diferencia. Cinemática en una Dimensión. Posición, velocidad. Cantidades vectoriales: operación de suma y diferencia. Resumen Para cualquier numero que resulte de una medición es importante especificar su incertidumbre

Más detalles

EDITOR DE ECUACIONES en Open Office.org Writer INTRODUCCIÓN

EDITOR DE ECUACIONES en Open Office.org Writer INTRODUCCIÓN EDITOR DE ECUACIONES en Open Office.org Writer INTRODUCCIÓN Para escribir en el ordenador cualquier texto de una materia como puede ser las Matemáticas, la Física, la Economía, etc es necesario usar alguna

Más detalles

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado

Más detalles

TEMA 7 GEOMETRÍA ANALÍTICA

TEMA 7 GEOMETRÍA ANALÍTICA Nueva del Carmen, 35. 470 Valladolid. Tel: 983 9 63 9 Fax: 983 89 96 TEMA 7 GEOMETRÍA ANALÍTICA. Objetivos / Criterios de evaluación O.7. Concepto y propiedades de los vectores O.7. Operaciones con vectores:

Más detalles

EL TABLERO. El tablero está dividido en sesenta y cuatro (64) casillas o escaques alternando los colores blancos con los negros.

EL TABLERO. El tablero está dividido en sesenta y cuatro (64) casillas o escaques alternando los colores blancos con los negros. EL TABLERO El tablero es el campo de batalla donde dos ejércitos, uno de color blanco y otro de color negro, se enfrentan, dirigidos cada uno por un rey. El tablero está dividido en sesenta y cuatro (64)

Más detalles