Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales"

Transcripción

1 Universidd Centrl de Venezuel Fcultd de Frmci Mtemátic - Físic Prof J R Morles Guí de Vectores (Resumen de l Teorí) 1 En físic distinguiremos dos tipos de cntiddes: vectoriles esclres Ls cntiddes vectoriles constn de mgnitud, dirección sentido; ls cntiddes esclres quedn determinds por su mgnitud solmente Ejemplos de cntiddes vectoriles en físic son: el desplzmiento, l velocidd, l celerción ls fuerzs Ejemplos de cntiddes esclres son: l tempertur, l presión el tiempo 2 Gráficmente, un vector se represent por un segmento de rect orientdo, esto es, un flech L rect que contiene est flech determin l dirección; l flech punt en el sentido del vector l longitud de est flech es l mgnitud o módulo del vector Además, se considerrá que rects prlels determinn l mism dirección 3 Se usrá l notción pr designr vectores Su mgnitud o módulo se denotrá por el símbolo o simplemente por 4 Adición de vectores: un operción vectoril importnte que encontrremos con frecuenci es l dición vectoril Eisten dos métodos pr l dición vectoril: el método geométrico el método nlítico 41 Método geométrico (Le del prlelogrmo): ddos dos vectores b, pr hllr el vector +b se coloc el vector b continución del vector (es decir, el etremo de coincidiendo con el origen de b,conservndo ls direcciones de b, respectivmente; ver Figur 1) En ests condiciones, el vector resultnte +b será el vector con origen en el origen de etremo en el etremo de b 411 Conociendo ls mgnitudes de los vectores b el ángulo θ formdo entre ellos, se puede clculr l mgnitud l dirección del vector sum medinte el uso de l Le del Seno l Le del Coseno:

2 2 2 + b = + b + 2 b cosθ (ec 1) + b = = senθ senβ b senα (ec 2) + b Figur 1 θ α β b 412 L dición de vectores stisfce ls siguientes propieddes: ) Propiedd conmuttiv: + b = b + b) Propiedd socitiv: ( + b )+ c = + (b +c ) 413 El opuesto del vector b, notdo por b, es un vector con l mism mgnitud dirección que b pero con sentido opuesto Así: b + ( b ) = 0 (ec 3) donde 0 es el vector nulo 414 Substrer el vector b del vector es, por definición, sumr l opuesto de b : b = + ( b ) (ec 4) 42 Método nlítico: nos limitremos quí trbjr en 2 dimensiones Definmos un sistem de coordends con un eje un eje (Ver Figur 2) Ddo un vector, siempre podemos encontrr dos cu sum vectoril se igul l vector Estos vectores 2

3 dos vectores se llmn los componentes de por definición stisfcen l siguiente relción: + = (ec 5) Eje ĵ θ 0 î Figur 2 Eje 421 Suponiendo que θ es el ángulo entre el vector el semieje positivo de ls, ls mgnitudes de los dos componentes de, notds por, pueden determinrse fácilmente usndo trigonometrí: = cos(θ ) (ec 6) = sen(θ ) (ec 6b) el vector puede escribirse como: = i + j (ec 7) donde los vectores î ĵ son los vectores coordendos unitrios (es decir, de mgnitud 1) lo lrgo de los ejes e, respectivmente 422 Se puede demostrr que si el vector tiene componentes, lo cul se denot medinte = (, ), el vector b tiene componentes, o se, b b b = (b, b ), respecto un sistem de coordends ddo, entonces el vector sum ( +b ) stisfce l relción: 3

4 + b = ( + b, + b ) (ec 8) 423 Si = (, ) entonces se puede demostrr, usndo el Teorem de Pitágors, que l mgnitud del vector stisfce l relción: = (ec 9) 424 El ángulo θ entre el vector el semieje positivo de ls se puede obtener prtir de l relción: tg ) = (θ (ec 10) 5 Multiplicción de un vector por un esclr: el producto de un vector por un esclr s es un nuevo vector b cu dirección es l mism que l del vector, pero cu mgnitud es l mgnitud de multiplicd por el vlor bsoluto de s cuo sentido es el mismo que si s>0, o de sentido opuesto si s<0 Podemos resumir esto escribiendo: b = s (ec 11) En términos nlíticos, se tiene l siguiente relción: s = ( s, s ) (ec 12) 6 Producto esclr: Sen b dos vectores, siendo θ el ángulo formdo entre ellos El producto esclr de por b, notdo por b, se define como el esclr: b = b cos(θ ) (ec 13) Anlíticmente, si = (, ) b = (b, b ), el producto esclr puede definirse medinte l siguiente relción: b = + (ec 14) b b El producto esclr stisfce l propiedd distributiv respecto l sum vectoril: 4

5 b + c) = b + c ( (ec 15) Además, el producto esclr stisfce l siguiente propiedd: 2 = (ec 16) 7 Producto vectoril: el producto vectoril de dos vectores u v en el espcio (en R 3 u ), notdo por v, es un tercer vector c en R 3 que stisfce ls siguientes propieddes: ) l mgnitud de c está dd por: c = u v sen(θ ) (ec 17) donde θ es el menor ángulo formdo por u v b) L dirección de c es perpendiculr l plno definido por u v el sentido viene determindo por l regl de l mno derech (Ver Figur 3) En generl, el producto vectoril no es conmuttivo sino que stisfce: u v v u = (ec 18) En términos nlíticos, puede usrse l siguiente epresión pr determinr los componentes de u v : i j k u v u u u u vz u z v i u z v u vz j u v u v k (ec 19) = z = ( ) + ( ) + ( ) v v vz Figur 3 5

6 Ejercicios sobre vectores 1 ) Cuál es l sum, en notción de vectores unitrios, de los dos vectores A = 4 i + 3 j B = 3 i + 7 j? b) Cuáles son l mgnitud dirección de ( A + B )? Soluc ) + b) ~ 10 uniddes ~ 84 con el eje i 10 j + 2 Clculr ls componentes, l mgnitud l dirección de: ) ( A B) b) ( B A ), si A = 3 i + 4 j B = 5i 2 j Soluc ) (8, 2) b) (2, -6) 3 Dos vectores están ddos por A = 4 i j + k Encontrr: ) A + B b) A B c) un vector C tl que A B + C = 0 Soluc ) 3i-2j+5k b) 5i-4j-3k c) el opuesto del vector que prece en l respuest b) 4 Sen los vectores, A = 4i 3 j 3 B = 6 i + 8 j mgnitud dirección de A, B, A + B B A B = i + j + 4k Encontrr l Soluc Ls mgnitudes son: 5, 10, Los ángulos con el semieje positivo de ls son: 320, 53, Dos vectores están ddos por A = 3 i + 5 j Encontrr: ) A B b) A B B ( + ) Soluc ) 14 b) 34 B = 2 i + 4 j 6 Un vector A de 10 uniddes de mgnitud otro vector B de 6 uniddes de mgnitud, puntn en direcciones que difieren en 60 Encontrr: ) el producto esclr de mbos vectores b) el producto vectoril de los dos vectores Soluc ) 30 b) un vector de mgnitud 52 puntndo de cuerdo con l regl de l mno derech 7 L componente de un vector es de 25 uniddes l componente es de +40 uniddes A) Cuál es l mgnitud del vector? B) Cuál es el ángulo entre l dirección del vector el semieje positivo de ls? Soluc ) 47 uniddes b) El vector A tiene un mgnitud de 5 uniddes está dirigido hci el este El vector B está dirigido 45 l oeste del norte tiene un 6

7 mgnitud de 4 uniddes Construir el digrm vectoril pr clculr ( A + B) ( B A ) Estimr ls mgnitudes direcciones de ( A + B) ( B A ) Soluc ( A + B ) punt 35 l este del norte tiene un mgnitud de 36 uniddes ( B A ) punt 70 l oeste del norte tiene un mgnitud de 83 uniddes 9 Dos vectores de 6 9 uniddes de longitud, formn un ángulo entre ellos de: ) 0, b) 60 Encontrr l mgnitud de su resultnte su dirección con respecto l vector más pequeño Soluc ) 15, θ=0 b) 1308, θ= Encontrr el ángulo entre dos vectores de uniddes de longitud, cundo su resultnte tiene: ) 20 uniddes de longitud, b) 12 uniddes de longitud Soluc ) θ = b) θ = El vector resultnte de dos vectores tiene 10 uniddes de longitud hce un ángulo de 35 con uno de los vectores componentes, el cul tiene 12 uniddes de longitud Encontrr l mgnitud del otro vector el ángulo entre ellos Soluc 687, θ = Dos vectores de 10 8 uniddes de longitud formn entre sí un ángulo de: ) 60, b) 90 Encontrr l mgnitud de l diferenci l ángulo con respecto l vector mor Soluc ) θ = , 9165 b) θ = , En cd cso, hllr un vector B del plno tl que B A = 0 B = A ) A = (1,1 ) b) A = ( 1, 1) c) A = ( 2, 3) Soluc ) (1, -1) o (-1, 1), b) (1, 1) o (-1, -1), c) (3,2) o (-3, -2) A B = (3, 1, 2) 14 Sen = ( 1, 2, 3) dos vectores del espcio En cd cso, hllr un vector C unitrio prlelo : ) A + B b) A B c) A 2B Soluc )( 1/ 42)(4, 1,5) b) ( 1/ 42)( 2, 3,1 ) c) (( 1/ 42)( 5, 4, 1) 7

8 2 + i,, j k : ) A B b) B C c) C A 15 Sen A = i + 2k, B = 2i + j k, C = i + j 2k Clculr los siguientes vectores en función de d) A( BC) e) ( AB) C Soluc ) (-2,3,-1) b) (4,-5,3) c) (4,-4,2) d) (10, 11, 5) e) (8, 3, -7) 16 Si A = 2 i + j + 3k, B = 2 i + j + 4k, epresr el producto vectoril ( A C) ( B A) en función de los vectores Soluc 5 i,, j k 8i + j 2k 7 C = 3 i + 3 j + 6k 8

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles

2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR

2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR 1. INTRODUCCIÓN CÁLCULO VECTORIAL Mgnitud: Es todo quello que se puede medir eperimentlmente. Ls mgnitudes físics se clsificn en esclres ectoriles. Mgnitud esclr: Es quell que iene perfectmente definid

Más detalles

TEMA 1. CÁLCULO VECTORIAL.

TEMA 1. CÁLCULO VECTORIAL. TEMA 1. CÁLCUL VECTRIAL. MAGNITUDES FÍSICAS ESCALARES Son quells que quedn determinds por su vlor numérico y l unidd de medid. Ejemplos: ms, energí, tiempo, tempertur, etc. MAGNITUDES FÍSICAS VECTRIALES

Más detalles

Suma de DOS vectores angulares o concurrentes

Suma de DOS vectores angulares o concurrentes Suma de DOS vectores angulares o concurrentes y F 2 o a q=? F 1 x Suma de DOS vectores angulares o concurrentes Trángulo oblcuo: aquel que no tene nngún ángulo recto Ley de los Senos Ley de los Cosenos

Más detalles

Primer octante Segundo octante Tercer octante Cuarto octante P ( X, Y, Z ) P (-X, Y, Z ) P (-X,-Y, Z ) P ( X,-Y, Z )

Primer octante Segundo octante Tercer octante Cuarto octante P ( X, Y, Z ) P (-X, Y, Z ) P (-X,-Y, Z ) P ( X,-Y, Z ) Cpítulo III. Álgebr vectoril Objetivo: El lumno plicrá el álgebr vectoril en l resolución de problems geométricos. Contenido: 3.1 Sistem crtesino en tres dimensiones. Simetrí de puntos. 3. Cntiddes esclres

Más detalles

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este

Más detalles

E-mail: grupociencia@hotmail.com 405 4466 Web-page: www.grupo-ciencia.jimdo.com 945 631 619

E-mail: grupociencia@hotmail.com 405 4466 Web-page: www.grupo-ciencia.jimdo.com 945 631 619 1. En el prlelogrmo mostrdo en l figur M N son puntos medios. Hlle = ++ en función de 3 + D + C +3. En l figur muestr los vectores de inscritos en un cudro de 6m de ldo. Determine el vector unitrio del

Más detalles

VECTORES PLANO Y ESPACIO

VECTORES PLANO Y ESPACIO TETO º 3 ECTOES PLAO ESPACIO Conceptos Básicos Ejercicios esueltos Ejercicios Propuestos Edict Arrigd D. ictor Perlt A Diciemre 008 Sede Mipú, Sntigo de Chile Introducción Este mteril h sido construido

Más detalles

Repaso de vectores. Semana 2 2. Empecemos! Qué sabes de...? El reto es... Repaso de vectores

Repaso de vectores. Semana 2 2. Empecemos! Qué sabes de...? El reto es... Repaso de vectores Semn 2 2 Repso de vectores Repso de vectores Empecemos! Estimdo prticipnte, en est sesión tendrás l oportunidd de refrescr tus seres en cunto l tem de vectores, los cules tienen como principl plicción

Más detalles

VECTORES. b procesador de texto lo más usual es escribirlo con negrita (a). Ambas notaciones se leen el vector a. De ahora en

VECTORES. b procesador de texto lo más usual es escribirlo con negrita (a). Ambas notaciones se leen el vector a. De ahora en /o Físic Generl. FCQN. UNM. Ciclo Lectio 008 VECTORES En físic eisten cntiddes que quedn representds por un número, ests cntiddes dimensionles pueden ser: el umento de un lente ( M 3); el coeficiente de

Más detalles

71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES

71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES 71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES 5. APLICACIONES (EN UNA BASE ORTONORMAL) 6. EJERCICIOS Y PROBLEMAS Vectores

Más detalles

2.1 Ecuaciones de la recta en 2.2 Posiciones relativas.

2.1 Ecuaciones de la recta en 2.2 Posiciones relativas. . Ecuciones de l rect en. Posiciones reltivs. R Objetivos. Se persigue que el estudinte: Encuentre ecuciones de rects Determine si dos rects son coincidentes, prlels o si son intersecntes Encuentre punto

Más detalles

MAGNITUDES ESCALARES Y VECTORIALES

MAGNITUDES ESCALARES Y VECTORIALES CPITULO II MGNITUDES ESCLRES Y VECTORILES 1 CONTENIDO 1. VECTORES Y ESCLRES 2. ELEMENTOS DE UN VECTOR, CONCEPTO DE DIRECCION Y SENTIDO 3. LGEBR DE VECTORES 4. METODOS GRFICOS Y NLITICOS 5. COMPOSICION

Más detalles

Tema 1: Introducción y fundamentos matemáticos. Parte 3/4 Vectores en física I: Definiciones y propiedades

Tema 1: Introducción y fundamentos matemáticos. Parte 3/4 Vectores en física I: Definiciones y propiedades Tem 1: Introducción y fundmentos mtemáticos Antonio González Fernández Deprtmento de Físic Aplicd III Universidd de Sevill Prte 3/4 es en físic I: Definiciones y propieddes Ls mgnitudes se clsificn en

Más detalles

Vectores en el espacio. Producto escalar

Vectores en el espacio. Producto escalar Geometrí del espcio: Vectores; producto esclr Vectores en el espcio Producto esclr Espcios vectoriles Definición de espcio vectoril Un conjunto E es un espcio vectoril si en él se definen dos operciones,

Más detalles

r = 1 1 Introducción a la Física Paralelos 10 y 13. Profesor RodrigoVergara R DESPLAZAMIENTO Y VECTORES

r = 1 1 Introducción a la Física Paralelos 10 y 13. Profesor RodrigoVergara R DESPLAZAMIENTO Y VECTORES 1 Introducción l Físic Prlelos 10 13. Profesor RodrigoVergr R DPLAZAMIT Y VCTR 1) Repso de trigonometrí Definir plicr ls 3 funciones trigonométrics ásics en triángulos rectángulos. Definir ls funciones

Más detalles

51 EJERCICIOS DE VECTORES

51 EJERCICIOS DE VECTORES 51 EJERCICIOS DE VECTORES 1. ) Representr en el mismo plno los vectores: = (3,1) b = ( 1,5) c = (, 4) = ( 3, 1) i = (1,0) j = (0,1) e = (3,0) f = (0, 5) b) Escribir ls coorens e los vectores fijos e l

Más detalles

Vectores en el espacio 2º Bachillerato. Ana Mª Zapatero

Vectores en el espacio 2º Bachillerato. Ana Mª Zapatero Vectores en el espcio º Bchillerto An Mª Zptero El conjunto R Es un conjunto de terns ordends de números reles R { ( x, y, z ) / x R, y R, z R } Primer componente Segund componente Tercer componente Iguldd

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS

LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS L Rect del Plno Mtemátic 4º Año Cód. 44-5 P r o f. M r í d e l L u j á n M r t í n e z P r o f. J u n C r l o s B u e P r o f. M i r t R o s i t o P r o f. V e r ó n i c F i l o t t i Dpto. de Mtemátic

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr

Más detalles

DESPLAZAMIENTO VECTORES

DESPLAZAMIENTO VECTORES CAPÍTULO DESPLAZAMIENTO ECTORES Hemos indicdo que un cuerpo se mueve cundo cmi de posición en el espcio. Es mu importnte en Físic ser medir ese cmio de posición, introduciendo el concepto de desplzmiento.

Más detalles

Vectores. Dr. Rogerio Enríquez

Vectores. Dr. Rogerio Enríquez Vectores Dr. Rogerio Enríquez Objetivo Eductivo Reflexión sobre lo que y se sbe Dominr los conceptos como mestros Unir l geometrí con el álgebr Deducir lógicmente el álgebr Explorr el dominio mtemático

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA VECTORES EJERCICIOS DE GEOMETRÍA 1. Hllr un vector unitrio u r r r r de l mism dirección que el vector v = 8i 6j.Clculr otro vector ortogonl v r y de módulo 5.. Normliz los vectores: u r = ( 1, v r = (-4,3

Más detalles

C A P I T U L O I V E C T O R E S Y F U E R Z A S

C A P I T U L O I V E C T O R E S Y F U E R Z A S C P I T U L I V E C T R E S U E R S I.1. Mgnitudes esclres vectoriles. Esclres: Pr su interpretción precisn del vlor numérico de l unidd de medid. Ej.: m 3, 0 V, 50 km, 5 ºC. Vectoriles: Si decimos que

Más detalles

Nivelación de Matemática MTHA UNLP 1. Vectores

Nivelación de Matemática MTHA UNLP 1. Vectores Nivelación de Matemática MTHA UNLP 1 1. Definiciones básicas Vectores 1.1. Magnitudes escalares y vectoriales. Hay magnitudes que quedan determinadas dando un solo número real: su medida. Por ejemplo:

Más detalles

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y L Elipse Regresr Wikispces L elipse es el conjunto de todos los puntos P de un plno, tles que l sum de ls distncis de culquier punto dos puntos fijos del plno es constnte y su ecución se llm ecución ordinri.

Más detalles

Llamaremos S a la superficie dada y D a su proyección sobre el plano XY (ver figura).

Llamaremos S a la superficie dada y D a su proyección sobre el plano XY (ver figura). TEOREMA E GAU. 15. Hllr el flujo del cmpo i + j + z k trvés de l superficie z 1 +, z 1. ) irectmente. b) Aplicndo el teorem de Guss. olución Llmremos l superficie dd su proección sobre el plno XY (ver

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

Donde a los elementos de E y R se les llama vectores y escalares respectivamente, los segundos como coeficientes de los primeros.

Donde a los elementos de E y R se les llama vectores y escalares respectivamente, los segundos como coeficientes de los primeros. 4. Espcios vectoriles, definición propieddes Viguers En l Físic, con frecuenci se us el término vector pr descriir mgnitudes como l fuer, l velocidd, l celerción, otros fenómenos de l nturle, sin emrgo

Más detalles

Tema 4: Integrales Impropias

Tema 4: Integrales Impropias Prof. Susn López 1 Universidd Autónom de Mdrid Tem 4: Integrles Impropis 1 Integrl Impropi En l definición de un integrl definid f (x) se exigió que el intervlo [, b] fuese finito. Por otro ldo el teorem

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral 5 Mtemátics I : Cálculo integrl en I Tem 4 Aplicciones de l integrl 4. Áres de superficies plns 4.. Funciones dds de form explícit A l vist del estudio de l integrl definid relizdo en el Tem 3, prece rzonle

Más detalles

CÓNICAS ESTUDIO ANALÍTICO DE LAS CÓNICAS

CÓNICAS ESTUDIO ANALÍTICO DE LAS CÓNICAS ESTUDIO ANALÍTICO DE LAS CÓNICAS Definición: Cónic es el lugr geométrico de los puntos de un plno cu rzón de distncis un punto fijo (que llmremos foco) un rect fij (que llmremos directriz) es constnte.

Más detalles

Vectores en R 2 y R 3

Vectores en R 2 y R 3 Vectores en R R 3 Vectores en R R 3 Mgnitudes esclres vectoriles H mgnitudes que quedn determinds dndo un solo número rel. Por ejemplo: l longitud de un regl, l ms de un cuerpo o el tiempo trnscurrido

Más detalles

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO XI. LA HIPÉRBOLA 11.1. LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO Definición L hipérol es el lugr geométrico descrito por un punto P que se mueve en el plno de tl modo que el vlor soluto de l diferenci de sus

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CONCEPTOS CLAVE: FUNCIONES, GRAFICA DE UNA FUNCIÒN, COMPOSICIÒN DE FUNCIONES, INVERSA DE UNA FUNCIÒN, LIMITE DE UNA FUNCIÒN, LIMITES LATERALES, TEOREMAS

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de

Más detalles

Problema 5.154. w A. 24 kn 30 kn. 0.3 m. 1.8 m

Problema 5.154. w A. 24 kn 30 kn. 0.3 m. 1.8 m Problem 5.54 A w A 4 kn 0 kn.8 m 0. m w L vig A soport dos crgs concentrds y descns sobre el suelo el cul ejerce un crg linelmente distribuid hci rrib como se muestr. Determine ) l distnci pr l cul w A

Más detalles

Tema 4. Integración de Funciones de Variable Compleja

Tema 4. Integración de Funciones de Variable Compleja Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22 Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores

Más detalles

CAPITULO 2 MATEMÁTICAS PARA LA FÍSICA. extremo. origen. 2.1.2 Vector. 2.1 Vectores. 2.1.1 Introducción.

CAPITULO 2 MATEMÁTICAS PARA LA FÍSICA. extremo. origen. 2.1.2 Vector. 2.1 Vectores. 2.1.1 Introducción. CPITULO 2 MTEMÁTICS PR L FÍSIC 2.1 Vectores. 2.1.1 Introducción. Cuando queremos referirnos al tiempo que demanda un suceso determinado, nos basta con una magnitud (se demoró 3 segundos, saltó durante

Más detalles

8 - Ecuación de Dirichlet.

8 - Ecuación de Dirichlet. Ecuciones Diferenciles de Orden Superior Prte V III Integrl de Dirichle t Ing. Rmón scl Prof esor Titulr de nálisi s de Señles Sistems Teorí de los Circuit os I I en l UTN, Fcultd Regionl vellned uenos

Más detalles

( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3.

( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3. Colegio Diocesno Sgrdo Corzón de Jesús MATEMÁTICAS I / º Bchillerto C y T LOGARTIMOS Logritmos El ritmo de un número, m, positivo, en bse, positiv y distint de uno, es el eponente l que hy que elevr l

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos UNI DAD 2 TRIGONOMETRÍA ANALÍTICA Objetivos Geometrí nlític Introducción funciones trigonométrics Vribles: dependientes independientes Constnte: numéric bsolut rbitrri, y z., b, c, Funciones: función

Más detalles

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}.

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}. UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 28/9 PRÁCTICA Nº Espcios vectoriles y Aplicciones Lineles II: Núcleo e imgen. Digonlizción. NÚCLEO E IMAGEN

Más detalles

Aplicaciones de la derivada (II)

Aplicaciones de la derivada (II) UNIVERSIDAD DEL CAUCA Fcultd de Ciencis Nturles, Ects de l Educción Deprtmento de Mtemátics CÁLCULO I Ejercicios Rects tngentes Aplicciones de l derivd (II) 1. Se l curv gráfic de l ecución ( ) =. Encuentre

Más detalles

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,

Más detalles

Problema 1 El estado de tensiones de un punto de un sólido viene definido por el siguiente tensor:

Problema 1 El estado de tensiones de un punto de un sólido viene definido por el siguiente tensor: CAPÍULO - 8 Problem El estdo de tensiones de un punto de un sólido viene definido por el siguiente tensor: 7 6 ( ) 6 8 N / m XYZ 76 Hllr: ) ensiones direcciones principles sí como l mtri de pso entre el

Más detalles

O(0, 0) verifican que. Por tanto,

O(0, 0) verifican que. Por tanto, Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O

Más detalles

DPTO. FISICA APLICADA II - EUAT

DPTO. FISICA APLICADA II - EUAT Cpítulo 1 Álgebr vectoril Glileo decí que l Físic está en un grn libro que se bre continumente nte nuestros ojos y que no se puede comprender sin ntes prender l lengu en que está escrito. Es lengu es l

Más detalles

ELECTROMAGNETISMO PARA INGENIERÍA ELECTRÓNICA. CAMPOS Y ONDAS

ELECTROMAGNETISMO PARA INGENIERÍA ELECTRÓNICA. CAMPOS Y ONDAS ELECTROMGNETISMO PR INGENIERÍ ELECTRÓNIC. CMPOS Y ONDS Fundmentos de Cálculo Vectoril Introducción Cpítulo 1 El Cálculo Vectoril es un herrmient fundmentl pr el modeldo de ls intercciones de nturle electromgnétic,

Más detalles

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES. I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,

Más detalles

Espacios vectoriales y Aplicaciones Lineales I: Bases y coordenadas. Aplicaciones lineales.

Espacios vectoriales y Aplicaciones Lineales I: Bases y coordenadas. Aplicaciones lineales. UNIVERSIDAD DE JAÉN ESCUEA POITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 009/10 PRÁCTICA Nº9 Espcios vectoriles y Aplicciones ineles I: Bses y coordends. Aplicciones lineles. Recordemos

Más detalles

7.1. Definición de integral impropia y primeras propiedades

7.1. Definición de integral impropia y primeras propiedades Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,

Más detalles

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx Integrles Clculr l integrl: +e + -+ + sen(+) 6-7 - 8 9 - + ln - 9- + (-)cos 6 ln 7 e 8 sen 9 e - + + + +- +- -6 - ++ () Describir el método de integrción por cmbio de vrible () Usndo el cmbio de vrible

Más detalles

3 E.M. ALGEBRA. Curso: ECUACION DE LA ElIPSE. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Eje Temático: SECCIONES CONICAS

3 E.M. ALGEBRA. Curso: ECUACION DE LA ElIPSE. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Eje Temático: SECCIONES CONICAS Colegio SSCC Concepción - Depto. de Mtemátics Eje Temático: SECCIONES CONICAS Unidd de Aprendizje: Ecución de l Elipse Cpciddes/Destrez/Hbiliddes: Resolver/Construir/ Decidir/Anlizr/ Identificr/ Verificr

Más detalles

MATRICES. 1. Determinar la matriz transpuesta de cada una de las siguientes; , B= , C= 2. Efectúa la siguiente operación con matrices y calcula A

MATRICES. 1. Determinar la matriz transpuesta de cada una de las siguientes; , B= , C= 2. Efectúa la siguiente operación con matrices y calcula A MTRICES. Determinr l mtriz trnspuest de cd un de ls siguientes;,, C 8. Efectú l siguiente operción con mtrices y clcul. Sen 8, y C determinr: ) t C ) (-C) t t c) -C( t -) d) - t -(C). Dds ls siguientes

Más detalles

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco LA ELIPSE EJERCICIOS RESUELTOS Colegio Sor Jun Inés de l Cruz Sección Preprtori Mtemátics III Bloque VII Ing. Jonthn Quirog Tinoco 1. Pr encontrr l ecución de l elipse con centro en el origen, un foco

Más detalles

MATRICES DE NÚMEROS REALES

MATRICES DE NÚMEROS REALES MTRICES. MTURITS Luis Gil Guerr.- DEFINICIÓN MTRICES DE NÚMEROS RELES Llmmos mtriz de números reles de orden m x n un conjunto ordendo de m. n números reles dispuestos en m fils y en n columns i m i m

Más detalles

Figura 1. Teoría y prática de vectores

Figura 1. Teoría y prática de vectores UNIVERSIDAD TECNOLÓGICA NACIONAL Fultd Regionl Rosrio UDB Físi Cátedr FÍSICA I VECTORES Mgnitudes eslres vetoriles Ls mgnitudes eslres son quells que quedn determinds dndo un solo número rel, resultdo

Más detalles

Fundamentos Físicos de la Ingeniería. (Cuatrimestre de Mecánica)

Fundamentos Físicos de la Ingeniería. (Cuatrimestre de Mecánica) Deprtmento de Físic Aplicd III Escuel Superior de Ingenieros Cmino de los Descubrimientos s/n 409 Sevill AUNTES DE Fundmentos Físicos de l Ingenierí (Cutrimestre de Mecánic) INGENIERÍA INDUSTRIAL Enrique

Más detalles

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES Mtrices. Estudio de l comptibilidd de sistems Abel Mrtín & Mrt Mrtín Sierr MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES. Actividd propuest Escribe un mtri A de dimensión

Más detalles

ALGEBRA. 3.- Obtener las matrices A y B tales que cumplen las siguientes condiciones: (Sep ptos) A 1 = a

ALGEBRA. 3.- Obtener las matrices A y B tales que cumplen las siguientes condiciones: (Sep ptos) A 1 = a ALGEBRA Mtrices determinntes.- Se A un mtri cudrd se A l mtri que se obtiene de intercmbir en A ls fils primer segund. Es sbido que entonces se verific que det(a ) = - det(a). Justifíquese este resultdo.

Más detalles

UNIDAD. Vectores y rectas

UNIDAD. Vectores y rectas UNIDAD 6 Vectores y rects L os ectores fcilitn el estudio de los elementos del plno y los prolems que se pueden estlecer entre ellos En su origen, el concepto de ector prece en Físic pr crcterizr cierts

Más detalles

VECTORES INGENIERO: PERCY ALFREDO AGRAMONTE LIMACHE

VECTORES INGENIERO: PERCY ALFREDO AGRAMONTE LIMACHE FILIL - REQUIP VECTORES INGENIERO: PERCY LFREDO GRMONTE LIMCHE En el tem nteror hímos menondo qe ls mgntdes físs según s ntrle peden ser lsfds omo eslres o etorles MGNITUD ESCLR: Es qell mgntd qe qed en

Más detalles

ACTIVIDADES DE APRENDIZAJE Nº 5... 112

ACTIVIDADES DE APRENDIZAJE Nº 5... 112 FACULTAD DE INGENIERÍA - UNJ Unidd : olinomios UNIDAD olinomios Introducción - Epresiones lgebrics - Clsificción de ls epresiones lgebrics - Epresiones lgebrics enters 7 - Monomios 7 - Grdo de un monomio

Más detalles

1.- VECTORES EN EL PLANO. OPERACIONES. Cualquier vector v tiene dos componentes (v 1. v = (4,3) 1 2 1 2 u v. u = v (u, u ) = (v, v )

1.- VECTORES EN EL PLANO. OPERACIONES. Cualquier vector v tiene dos componentes (v 1. v = (4,3) 1 2 1 2 u v. u = v (u, u ) = (v, v ) º Bchillerto Mtemátics I Dpto e Mtemátics- I.E.S. Montes Orientles (Iznlloz-Curso 0/0 TEMA 8.- GEOMETRÍA ANALÍTICA. PROBLEMAS AFINES Y MÉTRICOS.- VECTORES EN EL PLANO. OPERACIONES. Concepto e vector Un

Más detalles

CURSO DE MATEMÁTICA 1. Facultad de Ciencias

CURSO DE MATEMÁTICA 1. Facultad de Ciencias CURSO DE MATEMÁTICA 1. Fcultd de Ciencis Reprtido Teórico 1 Mrzo de 2008 1. Conceptos Básicos de Funciones Definiciones 1. Si A y B son conjuntos no vcíos, un función de A en B es un correspondenci tl

Más detalles

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de Sistems de ecuciones lineles SISTEMAS DE ECUACIONES LINEALES EJERCICIOS DE SELECTIVIDAD º (junio 994) i) Estudir, pr los diferentes vlores del prámetro, l eistenci de soluciones del sistem resolverlo cundo

Más detalles

GUÍA DE MATEMÁTICAS V. Ciclo escolar B determina:

GUÍA DE MATEMÁTICAS V. Ciclo escolar B determina: Elbor: Preprtori Págin 1 de 14 Ciclo escolr 014-015 Docente: Fernndo Vivr Mrtínez I) Producto Crtesino, Relciones y Funciones B determin: 1) Ddos los conjuntos A 0,1,,3 y 4,5,6,7 ) El Producto Crtesino

Más detalles

Funciones de Variable Compleja - Clase 27-28/08/2012 ( ) 4) Acotación del módulo de la integral. Demostrar

Funciones de Variable Compleja - Clase 27-28/08/2012 ( ) 4) Acotación del módulo de la integral. Demostrar Funciones de Vrile omplej - lse 7-8/08/01 [ ] ω : I =, R t I ω Donde : ω = u + iv( y) L derivd de ω se define como: [ ] ω : I =, R t I ω Donde : ω = u + iv L integrl definid de funciones ω sore t, se define

Más detalles

Capítulo 1. Vectores en el plano. 1.1. Introducción

Capítulo 1. Vectores en el plano. 1.1. Introducción Índice general 1. Vectores en el plano 2 1.1. Introducción.................................... 2 1.2. Qué es un vector?................................ 3 1.2.1. Dirección y sentido............................

Más detalles

ÁlgebrayGeometría. 5. Halla la ecuación de la circunferencia que pasa por (3, 0), ( 1, 0) y (0, 3).

ÁlgebrayGeometría. 5. Halla la ecuación de la circunferencia que pasa por (3, 0), ( 1, 0) y (0, 3). ÁlgebryGeometrí 1. ) Ddos tres puntos A, B y C en el plno demuestr que l circunferenci de diámetro AC ps por B siysólosielánguloâbc es recto. b) Ddos dos puntos A y B del plno y un rect r, determin, cundo

Más detalles

Guía de Sustentación Matemática. 1º medio A 3, 2. h) H. c) El cuarto cuadrante d) El segundo cuadrante 5, 2

Guía de Sustentación Matemática. 1º medio A 3, 2. h) H. c) El cuarto cuadrante d) El segundo cuadrante 5, 2 Royl Americn School Profesor An Mendiet Guí de Sustentción Mtemátic 1º medio A Formndo persons: Responsles respetuoss honests y leles 1) Represent en el plno crtesino los siguientes puntos: ) A(-1) d)

Más detalles

INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA

INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA I. LA RECTA. Ejercicios pr resolver. 1. Demuestr que los puntos A(-,8); B(-6,1) C(0,4) son los vértices de un tringulo

Más detalles

VECTORES. Se representa gráficamente por medio de una flecha, por ejemplo: Todos los vectores poseen las siguientes características:

VECTORES. Se representa gráficamente por medio de una flecha, por ejemplo: Todos los vectores poseen las siguientes características: Un vector v es un segmento orientado. VECTORES Se representa gráficamente por medio de una flecha, por ejemplo: Todos los vectores poseen las siguientes características: Punto de aplicación: es el lugar

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente: FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De

Más detalles

Marcelo Lugo. Figura 1

Marcelo Lugo. Figura 1 Los esclres los vectores Durnte cientos de ños los humnos hn desrrolldo vris forms pr contr los objetos. Pr contr, registrr, comprr o comunicr se usn símbolos que permiten identificr l número de objetos,

Más detalles

1. VECTORES. Iván Vargas Blanco Físico Profesor, Instituto Tecnológico de Costa Rica

1. VECTORES. Iván Vargas Blanco Físico Profesor, Instituto Tecnológico de Costa Rica 1 VECTORES. Iván Vargas Blanco, Físico 1. VECTORES Iván Vargas Blanco Físico Profesor, Instituto Tecnológico de Costa Rica 1.1 CNTIDDES VECTORILES Y ESCLRES Definición de Magnitud tributo de un fenómeno,

Más detalles

1.1 Definición 1.2 Enfoque geométrico 1.3 Igualdad 1.4 Operaciones 1.5 Aplicaciones

1.1 Definición 1.2 Enfoque geométrico 1.3 Igualdad 1.4 Operaciones 1.5 Aplicaciones . Definición. Enfoque geométrico. Igualdad.4 Operaciones.5 Aplicaciones Objetios. Se persigue que el estudiante: epresente geométricamente un ector de Determine magnitud dirección de un ector. Sume ectores,

Más detalles

SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES

SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES Junio 009 SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES PR-.- Un cmpo de tletismo de 00 metros de perímetro consiste en un rectángulo y dos semicírculos en dos ldos opuestos, según

Más detalles

Vectores. Glosario vector: toda magnitud en la que, además de la cantidad, hay que considerar la dirección y el sentido.

Vectores. Glosario vector: toda magnitud en la que, además de la cantidad, hay que considerar la dirección y el sentido. UNIDD 3 (98-155)C _Mquetción 1 13-07-11 9:25 Págin 102 Vectores Como y lo mencionmos, en el desrrollo de l prueb olímpic del lnzmiento del mrtillo se mnifiestn diverss fuerzs. Observ el dibujo donde se

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3 UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID EJERCICIOS PUS MTEMÁTICS II (DESDE EL CURSO 78 L ) ÁLGEBR: TEMS (Los ejercicios de selectividd resueltos los podéis encontrr en l págin web clsesdepooco) http://wwwclsesdepooco/docuents/es_serch

Más detalles

Números Reales. Los números naturales son {1; 2; 3; }, el conjunto de todos ellos se representa por.

Números Reales. Los números naturales son {1; 2; 3; }, el conjunto de todos ellos se representa por. Se distinguen distints clses de números: Números Reles Los números nturles son {1; 2; 3; }, el conjunto de todos ellos se represent por. El primer elemento es el 1 y no tiene último elemento Todo número

Más detalles

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=±

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=± CAPÍTULO X ECUACIÓN DE º GRADO Y FUNCIÓN CUADRÁTICA 9.. ECUACIÓN DE º GRADO Un ecución de segundo grdo con un incógnit es tod quell que puede ser puest en l form x + bx + c = 0 siendo, b y c coeficientes

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

Problemas de fases nacionales e internacionales

Problemas de fases nacionales e internacionales Problems de fses ncionles e interncionles 1.- (Chin 1993). Ddo el prlelogrmo ABCD, se considern dos puntos E, F sobre l digonl AC e interiores l prlelogrmo. Demostrr que si existe un circunferenci psndo

Más detalles

PROBLEMAS DE RODADURA EJEMPLOS SELECCIONADOS

PROBLEMAS DE RODADURA EJEMPLOS SELECCIONADOS POBLEMAS DE ODADUA EJEMPLOS SELECCONADOS UNDAMENTOS ÍSCOS DE LA NGENEÍA Antonio J. Brbero / Alfonso Cler Belmonte / Mrino Hernández Puche Dpt. ísic Aplicd. ETS ng. Agrónomos (Albcete) EJEMPLO Considere

Más detalles

Razones trigonométricas

Razones trigonométricas LECCIÓ CODESADA 12.1 Rzones trigonométrics En est lección Conocerás ls rzones trigonométrics seno, coseno y tngente Usrás ls rzones trigonométrics pr encontrr ls longitudes lterles desconocids en triángulos

Más detalles

Algebra de Logaritmos. 2do. Medio. (f) log 27 ( 1 81 ) (g) log a. (i) log (j) log 9. (i) (j) log x. (k) log 4 x = 1, 5.

Algebra de Logaritmos. 2do. Medio. (f) log 27 ( 1 81 ) (g) log a. (i) log (j) log 9. (i) (j) log x. (k) log 4 x = 1, 5. do. Medio. 0. 0. 0. Expresr en form rítmic : = 0, 9, = 7 Expresr en form exponencil : 64 = 6 = 9 Clculr los siguientes ritmos : 6 7 ( 8 ) 8 = 4 = 4 8 9 0, (h) 4 0 04. 0. 8 0, 06 7 4 Determinr el vlor de

Más detalles

es pa c i o s c o n p r o d U c t o

es pa c i o s c o n p r o d U c t o Unidd 5 es p c i o s c o n p r o d U c t o i n t e r n o (n o r M, d i s t n c i ) Objetivos: Al inlizr l unidd, el lumno: Aplicrá los conceptos de longitud y dirección de vectores en R. Aplicrá el concepto

Más detalles

b) Calcule el área del recinto limitado por la gráfica de la función f(x) y el eje de abscisas entre x = 1 e y x = e.

b) Calcule el área del recinto limitado por la gráfica de la función f(x) y el eje de abscisas entre x = 1 e y x = e. MsMtescom Integrles Selectividd CCNN Murci [] [EXT-A] ) Clcule l integrl indefinid rctgd, donde rctg denot l función rco-tngente de ) De tods ls primitivs de l función f() = rctg, encuentre l que ps por

Más detalles

Integrales impropias

Integrales impropias Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección

Más detalles

int(s) o int(s, var) S puede ser una expresión simbólica o el nombre de una expresión simbólica.

int(s) o int(s, var) S puede ser una expresión simbólica o el nombre de una expresión simbólica. Práctic 3: Cálculo Integrl con MtLb Curso 2010-2011 1 1 Introducción Un de los pquetes más útiles pr el cálculo con MtLb lo constituye Symbolic Mth Toolbox, que permite relizr cálculo simbólico vnzdo,

Más detalles

. Conocer y manejar los conceptos básicos relacionados con las distintas ramas de la Fisica.

. Conocer y manejar los conceptos básicos relacionados con las distintas ramas de la Fisica. 1. - EXPECTATIVAS DE LOGRO" FíSICA I Pln 2001- Sexto Año- Vigente prtir de 2006. Conocer y mnejr los conceptos básicos relciondos con ls distints rms de l Fisic.. Trnsferir los conocimientos dquiridos

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidd 1: Números reles. 1 Unidd 1: Números reles. 1.- Números rcionles e irrcionles Números rcionles: Son quellos que se pueden escriir como un frcción. 1. Números enteros 2. Números decimles exctos y

Más detalles

El conjunto de los números naturales tiene las siguientes características

El conjunto de los números naturales tiene las siguientes características CAPÍTULO Números Podemos decir que l noción de número nció con el homre. El homre primitivo tení l ide de número nturl y prtir de llí, lo lrgo de muchos siglos e intenso trjo, se h llegdo l desrrollo que

Más detalles