CANTIDADES VECTORIALES: VECTORES

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CANTIDADES VECTORIALES: VECTORES"

Transcripción

1 INSTITUION EDUTIV L PRESENTION NOMRE LUMN: RE : MTEMÁTIS SIGNTUR: GEOMETRÍ DOENTE: JOSÉ IGNIO DE JESÚS FRNO RESTREPO TIPO DE GUI: ONEPTUL - EJERITION PERIODO GRDO FEH DURION 3 11 JUNIO 3 DE UNIDDES INDIDORES DE DESEMPEÑO Identfca las característcas analítcas de los vectores, para realzar las operacones báscas entre ellos. Realza el producto punto y vectoral entre vectores, aplcándolos en el cálculo de algunos parámetros. Resuelve problemas en dferentes contextos, para hacer uso de los vectores y sus propedades. Desarrolla las actvdades de la guía oportunamente. Respeta la opnón y el trabao de sus compañeras NTIDDES VETORILES: VETORES en sabes que todo lo que sea susceptble de ser meddo se denomna magntud y se clasfca dentro de dos grupos: magntudes ó cantdades escalares y magntudes ó cantdades vectorales. En tu curso de físca 1 (grado 10º) pudste reconocer la dferenca entre cada una de ellas, pero de todas maneras hagamos un pequeño recorders de ello. antdades escalares: Son aquellas cantdades físcas que quedan completamente determnadas cuando se conoce su magntud (valor numérco) y su respectva undad de medda. La forma de operarlas está de acuerdo con las reglas elementales del álgebra. Son eemplos de cantdades escalares: El área, el volumen, la temperatura, el tempo, la masa, la densdad, la carga eléctrca, la energía, el trabao, el espaco, la rapdez (magntud de la velocdad), la corrente eléctrca, el calor, la longtud (largo, ancho, alto), la potenca, la densdad, entre otras. antdades vectorales: Son aquellas cantdades físcas que para quedar completamente determnadas además de su magntud y de su undad de medda necestan de una dreccón y de un sentdo en el espaco. La forma de operarlas ya no es algebracamente como las escalares, sno que su tratamento se realza por medo de vectores los cuales se analzarán en la presente guía. Son eemplos de cantdades físcas vectorales: La fuerza, la presón, la velocdad, la aceleracón, el desplazamento, el peso, el torque, la cantdad de movmento, el mpulso, el momento, entre otras. Estas cantdades vectorales como dmos anterormente se representan por medo de una flecha que recbe el nombre de vector. Entramos ahora s en la presente guía a realzar el estudo de las cantdades vectorales que son de gran aplcabldad en el estudo de efectos electromagnétcos, aeronáutca, mecánca, entre otros. Para su estudo abordaremos los vectores en el plano y en el espaco, veremos los conceptos báscos que nos permtrán defnr las operacones báscas entre ellos y algunas de sus aplcacones. delante! pues con el estudo del campo vectoral. 1

2 ONEPTOS ÁSIOS: VETOR: Un vector es un segmento drgdo de recta con orgen o punto de aplcacón o cola y con cabeza o punto termnal; un vector se representa por medo de una flecha y se acostumbra a nombrarlo con letras mayúsculas (que puede ser en negrlla o con una flechta encma de la letra). sí por eemplo hablamos del vector o del vector. - Elementos de un vector: Un vector tene magntud, dreccón y sentdo. Magntud: Es el valor numérco o medda del vector. Se denomna tambén módulo. Dreccón: La da la recta que contene al vector y está determnada por el ángulo que forma el vector con el ee horzontal a la derecha de éste. El sentdo: Lo ndca la flecha. Puede ser norte (N), sur (S), este (E), oeste (O), sureste (SE), suroeste (SO), noreste (NE) o noroeste (NO). Ten en cuenta que cuando te ubcas en un plano, el norte te queda arrba, el sur abao, el este a la derecha y el oeste a la zquerda. sí por eemplo, en el dagrama mostrado se tene que: Vector: Magntud: 3 undades 120º Dreccón: 120º Sentdo: Noroeste. REUERD nuevamente: La dreccón de un vector es el ángulo que forma el vector con el ee horzontal a la derecha de dcho vector. - Ubcacón de vectores en el plano cartesano: Para ubcar vectores en el plano es necesaro conocer sus tres elementos. demás es necesaro tener en cuenta que s nos dcen: ubcar en el plano cartesano el vector = 4 undades, 60º S0, sgnfca que es un vector cuya magntud es 4 undades y que a partr del orgen trazamos un vector de 4 undades haca el Sur del Oeste, es decr, nos drgmos haca el Oeste y luego lo desvamos 60º haca el Sur. Por lo tanto el vector ubcado en el plano cartesano es: Y 60º X Observa que la dreccón del vector anteror es 240º. Por qué? Nota mportante: uando nos dgan 60º SO es lo msmo que s nos desen O 60º S. 2

3 M profesor en clase ubcará los sguentes vectores en el plano e ndcará la dreccón de ellos en los casos que no se conozca. sí que presta mucha atencón a las observacones que hará. a. = 7u; S 30º O e. E = 2 cm; SE. I = 4u; dreccón 270º b. = 2u; 30º NE f. F = 3 cm; E 60º N c. = 4u; O 20º N g. G =1 cm; O 10º S d. D = 1u; E h. H = 3 cm; dreccón 330º Ubco cada uno de los sguentes vectores en el plano (de a cuatro en un msmo plano) e ndca la dreccón de ellos. a. = 2u ; O 30º S f. F = 3 cm; NO b. = 1u ; 30º SE g. G = 3 cm; O 60º N c. = 4u; E 20º S h. H = 5 cm; S 10º E d. D = 1u; O. I = 3 cm; dreccón 210º e. E = 4u; dreccón 180º. J = 2 cm; dreccón 90º Fu capaz!. por fn logré alcanzarla VETOR EN POSIIÓN NORML Ó NÓNI: Un vector está en poscón normal ó canónca cuando ubcado en el plano cartesano su cola concde con el orgen de coordenadas y su cabeza está en cualquera de los cuadrantes ó en cualquera de los semees. todo punto en el plano cartesano le corresponde un vector en poscón canónca de tal manera que su cola (ó punto ncal del vector) sempre será el orgen del plano y su cabeza (ó punto fnal del vector) estará en el punto dado. VETOR UNITRIO: Es aquél vector cuya magntud, norma ó medda es gual a 1. VETORES DIREIONLES UNITRIOS EN DIREIÓN DE LOS EJES OORDENDOS DEL PLNO RTESINO: En el plano cartesano al punto (1, 0) se le asgna un vector untaro en poscón canónca (en la dreccón postva del ee x) que llamamos y al punto (0, 1) se le asgna un vector untaro en poscón canónca (en la dreccón postva del ee y) que llamamos ; por lo tanto podemos conclur y tener presente que: * En el plano: = (1, 0) ; - = (-1, 0) ; = (0, 1) ; - = (0, -1) * En el espaco: = (1, 0, 0) ; - = (-1, 0, 0) ; = (0, 1, 0) ; - = (0, -1, 0) k = (0, 0, 1) ; - k = (0, 0, -1) 3

4 REPRESENTIÓN DE UN VETOR EN POSIIÓN NÓNI: omo hemos dcho a todo punto en el plano (ó en el espaco) se le asoca un vector en poscón canónca; por lo tanto un vector en el plano (ó en el espaco) se puede representar ó expresar por medo de un punto ó por medo de sus componentes rectangulares en funcón de los vectores untaros, y k. Por eemplo: Sea el punto en el plano (a, b), a dcho punto le podemos asocar un vector en poscón canónca (dgamos el vector ), por lo tanto a dcho vector lo podemos expresar así: = (a, b) ó = a + b S el punto está en el espaco, dgamos el punto (a, b, c), le podemos asocar el vector Por eemplo y tendríamos que: = (a, b, c) ó = a + b + c k. OMPONENTES RETNGULRES DE UN VETOR EN EL PLNO: S tomamos el vector = (a, b) en el plano cartesano, las coordenadas a y b del punto recben el nombre de componentes rectangulares del vector a lo largo del ee X y del ee Y respectvamente y se escrben así: x = a y y = b. hora ben, s conocemos la magntud ó medda del vector y su dreccón (ángulo que forma el vector con el ee x a la derecha de éste), sus componentes rectangulares serán: x = cos y y = bsen, donde es la magntud del vector y su dreccón. EN GENERL gráfcamente: (a, b) X Y y tenemos que: = (a, b) ó = a + b ó = cos + sen MGNITUD, NORM Ö MÖDULO DE UN VETOR: Se defne la magntud, norma ó módulo de un vector como la medda de dcho vector. S tenemos por eemplo al vector = a + b en el plano, la magntud, norma ó módulo de dcho vector (notada ) se calcula así: = 2 2 a b S el vector está en el espaco como por eemplo: ó = a + b + c k, entonces tenemos que: = a b c 4

5 OPERIONES ÁSIS ENTRE VETORES (Parte I): Suma y/o resta (analítcamente): Para sumar y/o restar vectores analítcamente, se suman y/o restan las componentes en las msmas dreccones respectvamente (como s fuesen térmnos semeantes), así: Sean los vectores: = a + b + c k y = d + e + f k, entonces: + = (a + d) - = (a - d) + (b + e) + (c + f) k + (b - e) + (c - f) k NOT IMPORTNTE: S nos dan los vectores en poscón canónca y conocemos sus magntudes y dreccones, para hallar su suma y/o resta es necesaro prmero hallar sus componentes rectangulares y luego realzar las operacones peddas. Producto de un escalar (número) por un vector: Para realzar la multplcacón de un escalar por un vector se multplca cada una de las componentes de dcho vector por el escalar, así por eemplo: Sean: un escalar (número dado) y el vector = d = d + e + f k + e + f k, tenemos que: para poder entender la solucón de los sguentes eerccos que encuentra m profesor en la clase: 1. PORTE DEL PROFESOR.... Dados los vectores: = 3 Determno: k, = k y = k, Hallo un vector tal que: = 10. Tres vectores tenen magntudes de 9 m, 20 m y 7 m respectvamente y sus dreccones son 60º,135º y 30º respectvamente; los ubco en el plano cartesano y determno: S P Q D P, R Q 3 P 2 Q y D R 5

6 2. OTRO DE MIS VLIOSOS PORTES EXTRLSE: No Karen, no nsstas, hoy no saldré porque me ré pronto para m casta a hacer esta actvdad. Del texto certos matemátcos 10º que encuentro en el bblobanco desarrollo de la pág. 236 los eerccos 1a, c ; 2 a, b, d y f; 3, 4 y 5.. Dados los vectores: M= - 8 determno: k, D = 11-4 y F = M + 3 D - 2 F 2. Será alguno de estos vectores untaros?, por qué?. 3. Determno un vector Q tal que: - 2 D = 3 Q - 5 M + 4. Verfco que el vector: es untaro. D D F - 15 k,. Dado cada uno de los sguentes sstemas de vectores, halla en cada caso la magntud del vector resultante, su dreccón y ubícalo en el plano cartesano. 1. Y 2. Y = 3 T = 1 65º Q = 1 20º = 2 30º X 70º 40º R = 1 S = 1 35º = 4 D = 1 X 6

CÁLCULO VECTORIAL 1.- MAGNITUDES ESCALARES Y VECTORIALES. 2.- VECTORES. pág. 1

CÁLCULO VECTORIAL 1.- MAGNITUDES ESCALARES Y VECTORIALES. 2.- VECTORES. pág. 1 CÁLCL ECTRIAL 1. Magntudes escalares y vectorales.. ectores. Componentes vectorales. ectores untaros. Componentes escalares. Módulo de un vector. Cosenos drectores. 3. peracones con vectores. 3.1. Suma.

Más detalles

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22 DOCENTE: LIC.GUSTO DOLFO JUEZ GUI DE TJO PCTICO Nº 22 CES: POFESODO Y LICENCITU EN IOLOGI PGIN Nº 132 GUIS DE CTIIDDES Y TJO PCTICO Nº 22 OJETIOS: Lograr que el lumno: Interprete la nformacón de un vector.

Más detalles

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales: VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles

RESISTENCIAS EN SERIE Y LEY DE LAS MALLAS V 1 V 2 V 3 A B C

RESISTENCIAS EN SERIE Y LEY DE LAS MALLAS V 1 V 2 V 3 A B C RESISTENCIS EN SERIE Y LEY DE LS MLLS V V 2 V 3 C D Fgura R R 2 R 3 Nomenclatura: Suponemos que el potencal en es mayor que el potencal en, por lo tanto la ntensdad de la corrente se mueve haca la derecha.

Más detalles

Trabajo y Energía Cinética

Trabajo y Energía Cinética Trabajo y Energía Cnétca Objetvo General Estudar el teorema de la varacón de la energía. Objetvos Partculares 1. Determnar el trabajo realzado por una fuerza constante sobre un objeto en movmento rectlíneo..

Más detalles

Unidad I. 1. 1. Definición de reacción de combustión. 1. 2. Clasificación de combustibles

Unidad I. 1. 1. Definición de reacción de combustión. 1. 2. Clasificación de combustibles 2 Undad I.. Defncón de reaccón de combustón La reaccón de combustón se basa en la reaccón químca exotérmca de una sustanca (o una mezcla de ellas) denomnada combustble, con el oxígeno. Como consecuenca

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

Física I. TRABAJO y ENERGÍA MECÁNICA. Apuntes complementarios al libro de texto. Autor : Dr. Jorge O. Ratto

Física I. TRABAJO y ENERGÍA MECÁNICA. Apuntes complementarios al libro de texto. Autor : Dr. Jorge O. Ratto ísca I Apuntes complementaros al lbro de teto TRABAJO y ENERGÍA MECÁNICA Autor : Dr. Jorge O. Ratto Estudaremos el trabajo mecánco de la sguente manera : undmensonal constante Tpo de movmento varable bdmensonal

Más detalles

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma Estadístca Tema 1: Estadístca Descrptva Undmensonal Undad 2: Meddas de Poscón, Dspersón y de Forma Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Septembre 2010 Contendos...............................................................

Más detalles

1. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA. Definición del álgebra geométrica del espacio-tiempo

1. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA. Definición del álgebra geométrica del espacio-tiempo EL ÁLGEBRA GEOMÉTRICA DEL ESPACIO Y TIEMPO. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA Defncón del álgebra geométrca del espaco-tempo Defno el álgebra geométrca del espaco y tempo como el álgebra de las matrces

Más detalles

DEFINICIÓN DE INDICADORES

DEFINICIÓN DE INDICADORES DEFINICIÓN DE INDICADORES ÍNDICE 1. Notacón básca... 3 2. Indcadores de ntegracón: comerco total de benes... 4 2.1. Grado de apertura... 4 2.2. Grado de conexón... 4 2.3. Grado de conexón total... 5 2.4.

Más detalles

v i CIRCUITOS ELÉCTRICOS (apuntes para el curso de Electrónica)

v i CIRCUITOS ELÉCTRICOS (apuntes para el curso de Electrónica) IUITOS EÉTIOS (apuntes para el curso de Electrónca) os crcutos eléctrcos están compuestos por: fuentes de energía: generadores de tensón y generadores de corrente y elementos pasos: resstores, nductores

Más detalles

Calorimetría - Soluciones. 1.- Cuántas calorías ceden 5 kg de cobre (c = 0,094 cal/g C) al enfriarse desde 36 o C hasta -4 C?

Calorimetría - Soluciones. 1.- Cuántas calorías ceden 5 kg de cobre (c = 0,094 cal/g C) al enfriarse desde 36 o C hasta -4 C? Calormetría - Solucones 1.- Cuántas calorías ceden 5 kg de cobre () al enfrarse desde 3 o C hasta -4 C? m = 5 kg = 5.000 g T = 3 C T f = - 4 C = - T = - (T f T ) = - 5.000 g 0,094 cal/g C (-4 C 3 C) =

Más detalles

TEMA 8: PRÉSTAMOS ÍNDICE

TEMA 8: PRÉSTAMOS ÍNDICE TEM 8: PRÉSTMOS ÍNDICE 1. CONCEPTO DE PRÉSTMO: SISTEMS DE MORTIZCIÓN DE PRÉSTMOS... 1 2. NOMENCLTUR PR PRÉSTMOS DE MORTIZCIÓN FRCCIOND... 3 3. CUDRO DE MORTIZCIÓN GENERL... 3 4. MORTIZCIÓN DE PRÉSTMO MEDINTE

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

ANÁLISIS DE ACCESIBILIDAD E INTERACCIÓN ESPECIAL:

ANÁLISIS DE ACCESIBILIDAD E INTERACCIÓN ESPECIAL: Geografía y Sstemas de Informacón Geográfca (GEOSIG). Revsta dgtal del Grupo de Estudos sobre Geografía y Análss Espacal con Sstemas de Informacón Geográfca (GESIG). Programa de Estudos Geográfcos (PROEG).

Más detalles

GANTT, PERT y CPM INDICE

GANTT, PERT y CPM INDICE GANTT, PERT y CPM INDICE 1 Antecedentes hstórcos...2 2 Conceptos báscos: actvdad y suceso...2 3 Prelacones entre actvdades...3 4 Cuadro de prelacones y matrz de encadenamento...3 5 Construccón del grafo...4

Más detalles

Tema 3. Trabajo, energía y conservación de la energía

Tema 3. Trabajo, energía y conservación de la energía Físca I. Curso 2010/11 Departamento de Físca Aplcada. ETSII de Béjar. Unversdad de Salamanca Profs. Alejandro Medna Domínguez y Jesús Ovejero Sánchez Tema 3. Trabajo, energía y conservacón de la energía

Más detalles

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos. ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:

Más detalles

1.- Una empresa se plantea una inversión cuyas características financieras son:

1.- Una empresa se plantea una inversión cuyas características financieras son: ESCUELA UNIVERSITARIA DE ESTUDIOS EMPRESARIALES. Departamento de Economía Aplcada (Matemátcas). Matemátcas Fnanceras. Relacón de Problemas. Rentas. 1.- Una empresa se plantea una nversón cuyas característcas

Más detalles

ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (6a)

ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (6a) ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 Rcardo Ramírez Facultad de Físca, Pontfca Unversdad Católca, Chle 1er. Semestre 2008 Corrente eléctrca CORRIENTE ELECTRICA Corrente eléctrca mplca carga en movmento.

Más detalles

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo Evaluacón Económca de Proyectos de Inversón 1 ANTECEDENTES GENERALES. La evaluacón se podría defnr, smplemente, como el proceso en el cual se determna el mérto, valor o sgnfcanca de un proyecto. Este proceso

Más detalles

Rentas financieras. Unidad 5

Rentas financieras. Unidad 5 Undad 5 Rentas fnanceras 5.. Concepto de renta 5.2. Clasfcacón de las rentas 5.3. Valor captal o fnancero de una renta 5.4. Renta constante, nmedata, pospagable y temporal 5.4.. Valor actual 5.4.2. Valor

Más detalles

8 MECANICA Y FLUIDOS: Calorimetría

8 MECANICA Y FLUIDOS: Calorimetría 8 MECANICA Y FLUIDOS: Calormetría CONTENIDOS Dencones. Capacdad caloríca. Calor especíco. Equlbro térmco. Calormetría. Calorímetro de las mezclas. Marcha del calorímetro. Propagacón de Errores. OBJETIVOS

Más detalles

Unidad II: Análisis de la combustión completa e incompleta. 2. 1. Aire

Unidad II: Análisis de la combustión completa e incompleta. 2. 1. Aire 4 Undad II: Análss de la combustón completa e ncompleta. 1. Are El are que se usa en las reaccones de combustón es el are atmosférco. Ya se djo en la Undad I que, debdo a que n el N n los gases nertes

Más detalles

Leyes de tensión y de corriente

Leyes de tensión y de corriente hay6611x_ch03.qxd 1/4/07 5:07 PM Page 35 CAPÍTULO 3 Leyes de tensón y de corrente CONCEPTOS CLAVE INTRODUCCIÓN En el capítulo 2 se presentaron la resstenca así como varos tpos de fuentes. Después de defnr

Más detalles

www.fisicaeingenieria.es

www.fisicaeingenieria.es 2.- PRIMER PRINCIPIO DE LA TERMODINÁMICA. 2.1.- Experencas de Joule. Las experencas de Joule, conssteron en colocar una determnada cantdad de agua en un calorímetro y realzar un trabajo, medante paletas

Más detalles

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS P L V S V LT R A BANCO DE ESPAÑA OPERACIONES Gestón de la Informacón ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS El proceso de ntegracón fnancera dervado de la Unón Monetara exge la

Más detalles

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales ESTADÍSTICA DESCRIPTIVA Métodos Estadístcos Aplcados a las Audtorías Socolaborales Francsco Álvarez González http://www.uca.es/serv/fag/fct/ francsco.alvarez@uca.es Bajo el térmno Estadístca Descrptva

Más detalles

APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES

APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES Documento Preparado para la Cámara de Fondos de Inversón Versón 203 Por Rodrgo Matarrta Venegas 23 de Setembre del 204 2 Análss Industral

Más detalles

TRABAJO Y ENERGÍA INTRODUCCIÓN. requiere como varia la fuerza durante el movimiento. entre los conceptos de fuerza y energía mecánica.

TRABAJO Y ENERGÍA INTRODUCCIÓN. requiere como varia la fuerza durante el movimiento. entre los conceptos de fuerza y energía mecánica. TRABAJO Y ENERGÍA INTRODUCCIÓN La aplcacón de las leyes de Newton a problemas en que ntervenen fuerzas varables requere de nuevas herramentas de análss. Estas herramentas conssten en los conceptos de trabajo

Más detalles

LABORATORIOS Y PROBLEMAS DE FÍSICA PARA AGRONOMIA

LABORATORIOS Y PROBLEMAS DE FÍSICA PARA AGRONOMIA LAORATORIOS Y PROLEMAS DE FÍSICA PARA AGRONOMIA CARRERAS: INGENIERIA AGRONOMICA PROFESORES: Mg. CARLOS A. CATTANEO AUXILIARES: LIC. ENRIQUE M. IASONI ING. ANGEL ROSSI CONTENIDOS: Medcones Laboratoros Medcones

Más detalles

Material realizado por J. David Moreno y María Gutiérrez. Asignatura: Economía Financiera

Material realizado por J. David Moreno y María Gutiérrez. Asignatura: Economía Financiera Tema - MATEMÁTICAS FINANCIERAS Materal realzado por J. Davd Moreno y María Gutérrez Unversdad Carlos III de Madrd Asgnatura: Economía Fnancera Apuntes realzados por J. Davd Moreno y María Gutérrez Advertenca

Más detalles

TÉCNICAS AUXILIARES DE LABORATORIO

TÉCNICAS AUXILIARES DE LABORATORIO TÉCNICAS AUXILIARES DE LABORATORIO I.- ERRORES 1.- Introduccón Todas las meddas epermentales venen afectadas de una mprecsón nherente al proceso de medda. Puesto que en éste se trata, báscamente, de comparar

Más detalles

RESOLUCIÓN DE TRIÁNGULOS OBLICUÁNGULOS (NO RECTÁNGULOS).

RESOLUCIÓN DE TRIÁNGULOS OBLICUÁNGULOS (NO RECTÁNGULOS). INSTITUION EDUTIV L PRESENTION NOMRE LUMN: RE : MTEMÁTIS SIGNTUR: MTEMÁTIS DOENTE: JOSÉ IGNIO DE JESÚS FRNO RESTREPO TIPO DE GUI: onceptual y ejercitación PERIODO GRDO N FEH DURION 3 10 8 gosto 8 DE 2016

Más detalles

Media es la suma de todas las observaciones dividida por el tamaño de la muestra.

Media es la suma de todas las observaciones dividida por el tamaño de la muestra. Estadístcos Los estadístcos son valores calculados con los datos de una varable cuanttatva y que mden alguna de las característcas de la dstrbucón muestral. Las prncpales característcas son: tendenca central,

Más detalles

Organización y resumen de datos cuantitativos

Organización y resumen de datos cuantitativos Organzacón y resumen de datos cuanttatvos Contendos Organzacón de datos cuanttatvos: dagrama de tallos y hojas, tablas de frecuencas. Hstogramas. Polígonos. Ojvas ORGANIZACIÓN Y RESUMEN DE DATOS CUANTITATIVOS

Más detalles

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS TEMA NÚMEROS COMPLEJOS. EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS DEFINICIONES Al resolver ecuacones del tpo : x + = 0 x = ± que no tene solucón en los números reales. Los números complejos nacen del deseo

Más detalles

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos)

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos) PROBLEMAS DE ELECTRÓNCA ANALÓGCA (Dodos) Escuela Poltécnca Superor Profesor. Darío García Rodríguez . En el crcuto de la fgura los dodos son deales, calcular la ntensdad que crcula por la fuente V en funcón

Más detalles

Matemáticas aplicadas a las ciencias sociales Estadística y Probabilidad 1º de bachillerato

Matemáticas aplicadas a las ciencias sociales Estadística y Probabilidad 1º de bachillerato Departamento de Matemátcas Matemátcas aplcadas a las cencas socales Estadístca y Probabldad º de bachllerato Matemátcas aplcadas a las cencas socales I, pág. de 48 Departamento de Matemátcas TEMA : ESTADÍSTICA

Más detalles

Tema 1. Conceptos Básicos de la Teoría de Circuitos

Tema 1. Conceptos Básicos de la Teoría de Circuitos Tema. Conceptos Báscos de la Teoría de Crcutos. Introduccón. Sstema de undades.3 Carga y corrente.4 Tensón.5 Potenca y energía.6 Ley de Ohm.7 Fuentes ndependentes.8 Leyes de Krchhoff.9 Dsores de tensón

Más detalles

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA Alca Maroto, Rcard Boqué, Jord Ru, F. Xaver Rus Departamento de Químca Analítca y Químca Orgánca Unverstat Rovra Vrgl. Pl. Imperal Tàrraco,

Más detalles

Cifrado de imágenes usando autómatas celulares con memoria

Cifrado de imágenes usando autómatas celulares con memoria Cfrado de mágenes usando autómatas celulares con memora L. Hernández Encnas 1, A. Hernández Encnas 2, S. Hoya Whte 2, A. Martín del Rey 3, G. Rodríguez Sánchez 4 1 Insttuto de Físca Aplcada, CSIC, C/Serrano

Más detalles

Análisis de Regresión y Correlación

Análisis de Regresión y Correlación 1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón

Más detalles

Modelado de Contratos en Modalidad de Take Or Pay

Modelado de Contratos en Modalidad de Take Or Pay Modelado de Contratos en Modaldad de Tae Or ay Enrque Brgla, UTE Elías Carnell, UTE Fernando Ron, UTE Resumen-- El objetvo del trabajo es modelar en el software de smulacón de sstemas eléctrcos SIMSEE,

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Prmer Semestre. EstadísTICa Curso Prmero Graduado en Geomátca y Topografía Escuela Técnca Superor de Ingeneros en Topografía, Geodesa y Cartografía. Unversdad Poltécnca de Madrd

Más detalles

Variables Aleatorias. Variables Aleatorias. Variables Aleatorias. Objetivos del tema: Al final del tema el alumno será capaz de:

Variables Aleatorias. Variables Aleatorias. Variables Aleatorias. Objetivos del tema: Al final del tema el alumno será capaz de: Varables Aleatoras Varables Aleatoras Objetvos del tema: Concepto de varable aleatora Al fnal del tema el alumno será capaz de: Varables aleatoras dscretas y contnuas Funcón de probabldad Funcón de dstrbucón

Más detalles

Pruebas Estadísticas de Números Pseudoaleatorios

Pruebas Estadísticas de Números Pseudoaleatorios Pruebas Estadístcas de Números Pseudoaleatoros Prueba de meda Consste en verfcar que los números generados tengan una meda estadístcamente gual a, de esta manera, se analza la sguente hpótess: H 0 : =

Más detalles

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad.

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad. Nombre: Mecansmo: PROYECTO DE TEORIA DE MECANISMOS. Análss cnemátco y dnámco de un mecansmo plano artculado con un grado de lbertad. 10. Análss dnámco del mecansmo medante el método de las tensones en

Más detalles

TEMA 4 Variables aleatorias discretas Esperanza y varianza

TEMA 4 Variables aleatorias discretas Esperanza y varianza Métodos Estadístcos para la Ingenería Curso007/08 Felpe Ramírez Ingenería Técnca Químca Industral TEMA 4 Varables aleatoras dscretas Esperanza y varanza La Probabldad es la verdadera guía de la vda. Ccerón

Más detalles

Guía de Electrodinámica

Guía de Electrodinámica INSTITITO NACIONAL Dpto. de Físca 4 plan electvo Marcel López U. 05 Guía de Electrodnámca Objetvo: - econocer la fuerza eléctrca, campo eléctrco y potencal eléctrco generado por cargas puntuales. - Calculan

Más detalles

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II PRACTICA 11: Crcutos no lneales elementales con el amplfcador operaconal OBJETIVO: El alumno se famlarzará con

Más detalles

CONCEPTOS GENERALES DEL CAMPO MAGNÉTICO

CONCEPTOS GENERALES DEL CAMPO MAGNÉTICO CONCEPTOS GENERALES DEL CAMPO MAGNÉTICO 1 ÍNDICE 1. INTRODUCCIÓN 2. EL CAMPO MAGNÉTICO 3. PRODUCCIÓN DE UN CAMPO MAGNÉTICO 4. LEY DE FARADAY 5. PRODUCCIÓN DE UNA FUERZA EN UN CONDUCTOR 6. MOVIMIENTO DE

Más detalles

Medidas de Tendencia Central y de Variabilidad

Medidas de Tendencia Central y de Variabilidad Meddas de Tendenca Central y de Varabldad Contendos Meddas descrptvas de forma: curtoss y asmetría Meddas de tendenca central: meda, medana y moda Meddas de dspersón: rango, varanza y desvacón estándar.

Más detalles

F.Ares (2003) Business plan de una empresa de transporte de mercancías 48 CAPÍTULO 5 : MODELO DE LOCALIZACIÓN. LOCALIZACIÓ FINAL

F.Ares (2003) Business plan de una empresa de transporte de mercancías 48 CAPÍTULO 5 : MODELO DE LOCALIZACIÓN. LOCALIZACIÓ FINAL F.Ares (00) Busness plan de una empresa de transporte de mercancías 48 CAPÍTULO 5 : MODELO DE LOCALIZACIÓN. LOCALIZACIÓ FINAL F.Ares (00) Busness plan de una empresa de transporte de mercancías 49 MODELO

Más detalles

Determinación de Puntos de Rocío y de Burbuja Parte 1

Determinación de Puntos de Rocío y de Burbuja Parte 1 Determnacón de Puntos de Rocío y de Burbuja Parte 1 Ing. Federco G. Salazar ( 1 ) RESUMEN El cálculo de las condcones de equlbro de fases líqudo vapor en mezclas multcomponentes es un tema de nterés general

Más detalles

Una matriz es un conjunto de elementos de cualquier naturaleza aunque, en general, son números ordenados en filas y columnas.

Una matriz es un conjunto de elementos de cualquier naturaleza aunque, en general, son números ordenados en filas y columnas. MATRICES Las matrces se utlzan en el cálculo numérco, en la resolucón de sstemas de ecuacones lneales, de las ecuacones dferencales y de las dervadas parcales. Además de su utldad para el estudo de sstemas

Más detalles

La variable compleja permite resolver problemas muy diferentes dentro de. áreas tan variadas como pueden ser hidráulica, aerodinámica, electricidad,

La variable compleja permite resolver problemas muy diferentes dentro de. áreas tan variadas como pueden ser hidráulica, aerodinámica, electricidad, 17 Análss matemátco para Ingenería. M. MOLERO; A. SALVADOR; T. MENARGUEZ; L. GARMENDIA CAPÍTULO 1 Los números complejos La varable compleja permte resolver problemas muy dferentes dentro de áreas tan varadas

Más detalles

2.5 Especialidades en la facturación eléctrica

2.5 Especialidades en la facturación eléctrica 2.5 Especaldades en la facturacón eléctrca Es necesaro destacar a contnuacón algunos aspectos peculares de la facturacón eléctrca según Tarfas, que tendrán su mportanca a la hora de establecer los crteros

Más detalles

Trabajo Especial 2: Cadenas de Markov y modelo PageRank

Trabajo Especial 2: Cadenas de Markov y modelo PageRank Trabajo Especal 2: Cadenas de Markov y modelo PageRank FaMAF, UNC Mayo 2015 1. Conceptos prelmnares Sea G = (V, E, A) un grafo drgdo, con V = {1, 2,..., n} un conjunto (contable) de vértces o nodos y E

Más detalles

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado Análss de la varanza con dos factores. Introduccón Hasta ahora se ha vsto el modelo de análss de la varanza con un factor que es una varable cualtatva cuyas categorías srven para clasfcar las meddas de

Más detalles

Tema 4. Números Complejos

Tema 4. Números Complejos Tema. Números Complejos. Números complejos...... Defncón de números complejo..... Conjugado y opuesto de números complejos..... Representacón gráfca de los complejos.... Operacones con complejos..... Suma

Más detalles

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID DELTA MATE OMAÓN UNETAA / Gral. Ampuda, 6 8003 MADD EXÁMEN NTODUÓN A LA ELETÓNA UM JUNO 008 El examen consta de ses preguntas. Lea detendamente los enuncados. tene cualquer duda consulte al profesor. Todas

Más detalles

VECTORES INGENIERO: PERCY ALFREDO AGRAMONTE LIMACHE

VECTORES INGENIERO: PERCY ALFREDO AGRAMONTE LIMACHE FILIL - REQUIP VECTORES INGENIERO: PERCY LFREDO GRMONTE LIMCHE En el tem nteror hímos menondo qe ls mgntdes físs según s ntrle peden ser lsfds omo eslres o etorles MGNITUD ESCLR: Es qell mgntd qe qed en

Más detalles

Cinemática del Brazo articulado PUMA

Cinemática del Brazo articulado PUMA Cnemátca del Brazo artculado PUMA José Cortés Parejo. Enero 8. Estructura del brazo robótco El robot PUMA de la sere es un brazo artculado con artculacones rotatoras que le proporconan grados de lbertad

Más detalles

ALN - SVD. Definición SVD. Definición SVD (Cont.) 29/05/2013. CeCal In. Co. Facultad de Ingeniería Universidad de la República.

ALN - SVD. Definición SVD. Definición SVD (Cont.) 29/05/2013. CeCal In. Co. Facultad de Ingeniería Universidad de la República. 9/05/03 ALN - VD CeCal In. Co. Facultad de Ingenería Unversdad de la Repúblca Índce Defncón Propedades de VD Ejemplo de VD Métodos para calcular VD Aplcacones de VD Repaso de matrces: Una matrz es Untara

Más detalles

Es el movimiento periódico de un punto material a un lado y a otro de su posición en equilibrio.

Es el movimiento periódico de un punto material a un lado y a otro de su posición en equilibrio. 1 Movmento Vbratoro Tema 8.- Ondas, Sondo y Luz Movmento Peródco Un móvl posee un movmento peródco cuando en ntervalos de tempo guales pasa por el msmo punto del espaco sempre con las msmas característcas

Más detalles

Capacidad de Procesos según ISO 9000 Ing o. Angel Francisco Arvelo

Capacidad de Procesos según ISO 9000 Ing o. Angel Francisco Arvelo EVALUACION DE LA CAPACIDAD DE CALIDAD DE UN PROCESO INDUSTRIAL METODOS ESTADISTICOS SUGERIDOS POR LA NORMA ISO 9000 ANGEL FRANCISCO ARVELO L. Ingenero Industral Master en Estadístca Matemátca CARACAS,

Más detalles

Matemáticas Financieras

Matemáticas Financieras Matemátcas Fnanceras Francsco Pérez Hernández Departamento de Fnancacón e Investgacón de la Unversdad Autónoma de Madrd Objetvo del curso: Profundzar en los fundamentos del cálculo fnancero, necesaros

Más detalles

NÚMEROS COMPLEJOS. y sabemos que no podemos calcular raíces de números negativos en R. Para resolver este problema introduciremos el valor i = 1

NÚMEROS COMPLEJOS. y sabemos que no podemos calcular raíces de números negativos en R. Para resolver este problema introduciremos el valor i = 1 NÚMEROS COMPLEJOS 1. Qué es un número complejo? Defncones. La ecuacón x + 1 = 0 no tene solucón en el campo real puesto que s ntentamos resolverla tendremos que x = ± 1 y sabemos que no podemos calcular

Más detalles

OSCILACIONES 1.- INTRODUCCIÓN

OSCILACIONES 1.- INTRODUCCIÓN OSCILACIONES 1.- INTRODUCCIÓN Una parte relevante de la asgnatura trata del estudo de las perturbacones, entenddas como varacones de alguna magntud mportante de un sstema respecto de su valor de equlbro.

Más detalles

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange Mecánca 2 Resumen TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange. Prncpos de dnámca clásca.. Leyes de ewton a) Ley

Más detalles

Aplicación de la termodinámica a las reacciones químicas Andrés Cedillo Departamento de Química Universidad Autónoma Metropolitana-Iztapalapa

Aplicación de la termodinámica a las reacciones químicas Andrés Cedillo Departamento de Química Universidad Autónoma Metropolitana-Iztapalapa Aplcacón de la termodnámca a las reaccones químcas Andrés Cedllo Departamento de Químca Unversdad Autónoma Metropoltana-Iztapalapa Introduccón Las leyes de la termodnámca, así como todas las ecuacones

Más detalles

ELECTRICIDAD II - INDICE TEMÁTICO

ELECTRICIDAD II - INDICE TEMÁTICO ELECTRICIDAD II - INDICE TEMÁTICO ELECTRODINÁMICA 1 ELECTRICIDAD II - INDICE TEMÁTICO...1 EFECTOS MAGNÉTICOS DE LA CORRIENTE ELÉCTRICA...2 CAMPO MAGNÉTICO...2 Cómo decrece el campo magnétco con la dstanca?:...2

Más detalles

ADENDA 008 LICITACIÓN L-CEEC-001-12

ADENDA 008 LICITACIÓN L-CEEC-001-12 ADENDA 008 LICITACIÓN L-CEEC-001-12 OBJETO: CONTRATACIÓN DE LA CONSTRUCCIÓN DE LA FASE I DEL RECINTO FERIAL, DEL CENTRO DE EVENTOS Y EXPOSICIONES DEL CARIBE PUERTA DE ORO POR EL SISTEMA DE ECIOS UNITARIOS

Más detalles

Unidad 3 PLANIFICACIÓN DE TIEMPOS, PROGRAMACIÓN DE RECURSOS Y ESTIMACIÓN DE COSTOS DE LA EJECUCIÓN Y MANTENIMIENTO DE LOS STI

Unidad 3 PLANIFICACIÓN DE TIEMPOS, PROGRAMACIÓN DE RECURSOS Y ESTIMACIÓN DE COSTOS DE LA EJECUCIÓN Y MANTENIMIENTO DE LOS STI Undad 3 PLANIFICACIÓN DE TIEMPOS, PROGRAMACIÓN DE RECURSOS Y ESTIMACIÓN DE COSTOS DE LA EJECUCIÓN Y MANTENIMIENTO DE LOS STI 3.1. DINÁMICA DE LA GESTIÓN DE PROYECTOS. 3.1.1. GESTIÓN DE PROYECTOS. La gestón

Más detalles

III. <> <>

III. <<Insertar Cita>> <<Autor>> Capítulo III Vsón III 3.1 Procesamento de Imágenes Se entende por procesamento de mágenes a la alteracón y análss de la normacón gráca. 3.1.1 Sstema de vsón humano El sstema

Más detalles

SISTEMAS COMBINACIONALES

SISTEMAS COMBINACIONALES Tema 2 SISTEMAS COMBINACIONALES En este tema se estudarán algunas de las funcones combnaconales más utlzadas, las cuales se mplementan en chps comercales Como estas funcones son relatvamente complejas,

Más detalles

V1 = A1 = V2 = A2 = V3 = L e) Construir el diagrama fasorial de voltajes. V. Nombre: Lecturas amperímetros (en ma) Lecturas voltímetros (en V)

V1 = A1 = V2 = A2 = V3 = L e) Construir el diagrama fasorial de voltajes. V. Nombre: Lecturas amperímetros (en ma) Lecturas voltímetros (en V) FÍSICA APICADA. EXAMEN ODINAIO MAYO 013. MODEO A Nombre: TEOÍA (.5 p) A) Una carga puntual postva que sgue una trayectora rectlínea entra en un campo magnétco perpendcularmente a las líneas del campo.

Más detalles

Los vectores y sus operaciones

Los vectores y sus operaciones lasmatematcase Pedro Castro rtega Los ectores y ss operacones Un ector qeda determnado por dos pntos, el orgen, y el extremo Un ector qeda completamente defndo a traés de tres elementos: módlo, dreccón

Más detalles

Gráficos de flujo de señal

Gráficos de flujo de señal UNIVRSIDAD AUTÓNOMA D NUVO ÓN FACUTAD D INGNIRÍA MCANICA Y ÉCTRICA Gráfcos de flujo de señal l dagrama de bloques es útl para la representacón gráfca de sstemas de control dnámco y se utlza extensamente

Más detalles

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 21 de enero de 2009

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 21 de enero de 2009 UNIVERSIDAD CARLOS III DE MADRID Ingenería Informátca Examen de Investgacón Operatva 2 de enero de 2009 PROBLEMA. (3 puntos) En Murca, junto al río Segura, exsten tres plantas ndustrales: P, P2 y P3. Todas

Más detalles

Consideraciones empíricas del consumo de los hogares: el caso del gasto en electricidad y alimentos

Consideraciones empíricas del consumo de los hogares: el caso del gasto en electricidad y alimentos Consderacones empírcas del consumo de los hogares: el caso del gasto en electrcdad y almentos Emprcal Consderatons of the Famles Consumpton: the Case uf the Expense n Electrcty and Food Maro Andrés Ramón

Más detalles

Reparto de los ahorros de la gestión conjunta de stocks

Reparto de los ahorros de la gestión conjunta de stocks Reparto de los ahorros de la gestón conjunta de stocks ntono Magaña Neto Manel Rajadell arreras rofesores de la Unverstat oltécnca de atalunya En este trabajo se prueba que la gestón conjunta de stocks

Más detalles

PRÁCTICA 1. IDENTIFICACIÓN Y MANEJO DE MATERIAL DE LABORATORIO: PREPARACIÓN DE DISOLUCIONES Y MEDIDA DE DENSIDADES

PRÁCTICA 1. IDENTIFICACIÓN Y MANEJO DE MATERIAL DE LABORATORIO: PREPARACIÓN DE DISOLUCIONES Y MEDIDA DE DENSIDADES PRÁCTICA 1. IDENTIFICACIÓN Y MANEJO DE MATERIAL DE LABORATORIO: PREPARACIÓN DE DISOLUCIONES Y MEDIDA DE DENSIDADES OBJETIVOS ESPECÍFICOS 1) Identfcar y manejar el materal básco de laboratoro. ) Preparar

Más detalles

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández MEMORIA DE LA ESTANCIA CON EL GRUPO DE VISIÓN Y COLOR DEL INSTITUTO UNIVERSITARIO DE FÍSICA APLICADA A LAS CIENCIAS TECNOLÓGICAS. UNIVERSIDAD DE ALICANTE. 1-16 de Novembre de 01 Francsco Javer Burgos Fernández

Más detalles

Equilibrio termodinámico entre fases fluidas

Equilibrio termodinámico entre fases fluidas CAPÍTULO I Equlbro termodnámco entre fases fludas El conocmento frme de los conceptos de la termodnámca se consdera esencal para el dseño, operacón y optmzacón de proyectos en la ngenería químca, debdo

Más detalles

Explicación de las tecnologías - PowerShot SX500 IS y PowerShot SX160 IS

Explicación de las tecnologías - PowerShot SX500 IS y PowerShot SX160 IS Explcacón de las tecnologías - PowerShot SX500 IS y PowerShot SX160 IS EMBARGO: 21 de agosto de 2012, 15:00 (CEST) Objetvo angular de 24 mm, con zoom óptco 30x (PowerShot SX500 IS) Desarrollado usando

Más detalles

TEMA 10. OPERACIONES PASIVAS Y OPERACIONES ACTIVAS.

TEMA 10. OPERACIONES PASIVAS Y OPERACIONES ACTIVAS. GESTIÓN FINANCIERA. TEMA 10. OPERACIONES PASIVAS Y OPERACIONES ACTIVAS. 1.- Funconamento de las cuentas bancaras. FUNCIONAMIENTO DE LAS CUENTAS BANCARIAS. Las cuentas bancaras se dvden en tres partes:

Más detalles

1.1 CANTIDADES VECTORIALES Y ESCALARES. Definición de Magnitud

1.1 CANTIDADES VECTORIALES Y ESCALARES. Definición de Magnitud 1.1 CANTIDADES VECTORIALES Y ESCALARES Definición de Magnitud Atributo de un fenómeno, cuerpo o sustancia que puede ser distinguido cualitativamente y determinado cuantitativamente. También se entiende

Más detalles

Correlación y regresión lineal simple

Correlación y regresión lineal simple . Regresón lneal smple Correlacón y regresón lneal smple. Introduccón La correlacón entre dos varables ( e Y) se refere a la relacón exstente entre ellas de tal manera que a determnados valores de se asocan

Más detalles

Desarrollo de sistema de control para un manipulador de seis grados de libertad

Desarrollo de sistema de control para un manipulador de seis grados de libertad Memora del Trabajo Fn de Máster realzado por Fdel Pérez Menéndez para la obtencón del título de Máster en Ingenería de Automatzacón e Informátca Industral Desarrollo de sstema de control para un manpulador

Más detalles

Análisis de error y tratamiento de datos obtenidos en el laboratorio

Análisis de error y tratamiento de datos obtenidos en el laboratorio Análss de error tratamento de datos obtendos en el laboratoro ITRODUCCIÓ Todas las meddas epermentales venen afectadas de una certa mprecsón nevtable debda a las mperfeccones del aparato de medda, o a

Más detalles

CAPACIDAD DE LAS HOJAS DE CÁLCULO EN EL ANÁLISIS Y OPTIMIZACIÓN DE PROCESOS Y SISTEMAS

CAPACIDAD DE LAS HOJAS DE CÁLCULO EN EL ANÁLISIS Y OPTIMIZACIÓN DE PROCESOS Y SISTEMAS CAPACIDAD DE LAS OJAS DE CÁLCULO EN EL ANÁLISIS Y OPIMIZACIÓN DE PROCESOS Y SISEMAS A. Rvas y. Gómez-Acebo Departamento de Ingenería Mecánca-Área de Ingenería érmca y de Fludos ECNUN - Escuela Superor

Más detalles

Clase 25. Macroeconomía, Sexta Parte

Clase 25. Macroeconomía, Sexta Parte Introduccón a la Facultad de Cs. Físcas y Matemátcas - Unversdad de Chle Clase 25. Macroeconomía, Sexta Parte 12 de Juno, 2008 Garca Se recomenda complementar la clase con una lectura cudadosa de los capítulos

Más detalles

Incertidumbre de la Medición: Teoría y Práctica

Incertidumbre de la Medición: Teoría y Práctica CAPACIDAD, GESTION Y MEJORA Incertdumbre de la Medcón: Teoría y Práctca (1 ra Edcón) Autores: Sfredo J. Sáez Ruz Lus Font Avla Maracay - Estado Aragua - Febrero 001 Copyrght 001 L&S CONSULTORES C.A. Calle

Más detalles

ELEMENTOS DE ELECTRICIDAD BASICA

ELEMENTOS DE ELECTRICIDAD BASICA MODULO 1 ELEMENTOS DE ELECTRICIDAD BASICA A contnuacón se resumen algunos elementos de Electrcdad Básca que se supone son conocdos por los estudantes al ngresar a la Unversdad DESCUBRIMIENTO DE LA ELECTRICIDAD:

Más detalles

Física Curso: Física General

Física Curso: Física General UTP IMAAS ísca Curso: ísca General Sesón Nº 14 : Trabajo y Energa Proesor: Carlos Alvarado de la Portlla Contendo Dencón de trabajo. Trabajo eectuado por una uerza constante. Potenca. Trabajo eectuado

Más detalles

XII. Uso de la Estimación de la Distribución de Probabilidad para Muestras Pequeñas y de la Simulación en la Inferencia de Carteras de Seguros.

XII. Uso de la Estimación de la Distribución de Probabilidad para Muestras Pequeñas y de la Simulación en la Inferencia de Carteras de Seguros. Uso de la Estmacón de la Dstrbucón de Probabldad para Muestras Pequeñas y de la Smulacón en la Inferenca de Carteras de Seguros. Trabajo presentado para el XII Premo de Investgacón sobre Seguros y Fanzas

Más detalles