A N U A L I D A D E S

Tamaño: px
Comenzar la demostración a partir de la página:

Download "A N U A L I D A D E S"

Transcripción

1 A N U A L I D A D E S INTRODUCCION Y TERMINOLOGIA Se deomia aualidad a u cojuto de pagos iguales realizados a itervalos iguales de tiempo. Se coserva el ombre de aualidad por estar ya muy arraigado e el tema, auque o siempre se refiera a periodos auales de pago. Alguos ejemplos de aualidades so: Los pagos mesuales por reta El cobro quiceal o semaal de sueldos. Los aboos mesuales a ua cueta de crédito. Los pagos auales de primas de pólizas de seguro de vida. Se cooce como itervalo o periodo de pago al tiempo que trascurre etre u pago y otro y se deomia plazo de ua aualidad al tiempo que pasa etre el iicio del primer periodo de pago y el fial del último. Reta es el ombre que se le da al pago periódico que se hace. Tambié hay ocasioes e las que se habla de aualidades que, o o tiee pagos e forma especial. TIPOS DE ANUALIDADES: La variació de los elemetos que iterviee e las aualidades hace que exista diferetes tipos de ellas. Coviee, por ello, clasificarlas de acuerdo co diversos criterios. Criterio a).- Tiempo b).- Itereses c).- Pagos d).- Iiciació Tipos de aualidad Ciertas Cotigetes Simples Geerales Vecidas Aticipadas Imediatas diferidas a).- Este criterio de clasificació se refiere a la fecha de iiciació y determiació de las aualidades. Aualidad cierta. Sus fechas so fijas y se estipula de atemao. Por ejemplo: Al realizar ua compra a crédito se fija tato la fecha e que se debe hacer el primer pago, como la fecha de efectuar el último. Aualidad cotigete. La fecha del primer pago, la fecha del último pago, o ambas, o se fija de atemao; depede de algú hecho que se sabe que ocurrirá, pero o se sabe cuado. U caso comú de este tipo de aualidad so las retas vitalicias que se otorga a u cóyuge tras la muerte del otro. El iicio de la reta se da al morir el cóyuge y se sabe que éste morirá, pero o se sabe cuádo.

2 b)- E este caso: Aualidad simple. Cuado el periodo de pago coicide co el de capitalizació de los itereses. U ejemplo muy simple sería: El pago de ua reta mesual x co itereses al 18% aual capitalizable mesualmete. Aualidad Geeral. A diferecia de la aterior, el periodo de pago o coicide co el periodo de capitalizació: el pago de ua reta semestral co itereses al 30% aual capitalizable trimestralmete. c)- De acuerdo co los pagos: Aualidad vecida. Tambié se le cooce como aualidad ordiaria y, como su primer ombre lo idica, se trata de casos e los que los pagos se efectúa a su vecimieto, es decir, al fial de cada periodo. Aualidad aticipada. Es aquella e la que los pagos se realiza al pricipio de cada periodo. d)- De acuerdo co el mometo e que se iicia: Aualidad imediata. Es el caso más comú. La realizació de los cobros o pagos tiee lugar e el periodo imediatamete siguiete a la formalizació del trato: se compra a crédito hoy u artículo que se va a pagar e mesualidades, la primera de las cuales habrá de realizarse e ese mometo o u mes después de adquirir la mercacía (aticipada o vecida). Aualidad diferida. Se pospoe la realizació de los cobros o pagos: se adquiere hoy u artículo a crédito, para pagar co aboos mesuales; el primer pago habrá de hacerse seis meses después de adquirir la mercacía. MONTO Y VALOR PRESENTE DE UNA ANUALIDAD. Los elemetos que iterviee so: R A i La reta o pago por período Aualidad Tiempo o periodos Iterés. 1 (1 + i) A = R i

3 Ejercicio: E ua Tieda de muebles tiee e oferta u aparato de soido marca Soy, la promoció está e $15, de cotado, e otra tieda tiee el mismo aparato de soido de la misma marca a u precio de: $4, de egache y 12 mesualidades de $1, más ua tasa de iterés del 28% aual capitalizable mesualmete. E cuál de las dos tiedas es más barato? 1 (1 + i) = (1)(12) = 12 A = R i 12 1 ( ) 1, A = 1, i = = 2.3 A = 1, A = 1,000 ( ) A = 13, Precio del equipo de soido e la seguda opció Egache $ 4, Aualidad 13, Total $ 18, Como se puede apreciar el equipo de soido sale más barato e la seguda tieda además de estar ofreciedo el equipo a crédito. Ejercicio: Ua persoa adquirió ua casa e ua coloia del oriete de la ciudad. El crédito es de iterés social, la compró de la siguiete maera: Hace u pago iicial por $40, y se compromete a pagar $2, mesuales durate u tiempo de 15 años co iterés del 24.32% si fluctuació. Cuáto costo la casa? 1 (1 + i) A = R i 1 ( ) A = 2, A = 2, A = 2, A = 2,600 ( ) A = 124, Precio Global: Egache $ 40, Aualidad 124, = $

4 PAGOS PERIODICOS R Si ( 1+ i) 1 = Ejercicio: El Sr. Pedro Samao desea comprar ua mesa de billar cuyo costo al cotado es de $12, y para ello desea jutar e el baco durate u año y medio. Abre ua cueta de ahorro el cual le da ua tasa de iterés del 12% aual capitalizable mesualmete. Cuáto debe depositar el Sr. Samao cada mes para que pueda comprar su mesa de billar? R Si ( 1+ i) 1 = 12,000 ( ) 0.12 ( ) $ Fecha Deposito mesual Iterés Total de fodo acumulado Saldo = o = , , , , , , , , , , , , , , , , , ,

5 Ejercicio: La señora Ramírez acaba de recibir su jubilació y debido a esto la empresa la liquido co u importe de $100, La Sra. Ramírez desea ivertir el diero e el baco para que mesualmete le de los itereses. El baco esta proporcioado ua tasa de iterés del 32% aual capitalizable trimestralmete. Cuáto le dará el baco a la Sra. Ramírez durate los próximos 5 años? Ai 1 (1 + i) 100,000( ) 1 ( ) , , $ 10,185.22

6 PLAZO DE UNA ANUALIDAD Si ( + 1) log R = log(1 + i) Ejercicio: El Sr. Rocha desea jutar la catidad de $45, para dar el egache para u automóvil. El Sr. Rocha cueta co la catidad de $1, cada mes, si los ahorra e u baco del cual está otorgado u redimieto del 27.6% aual capitalizable mesualmete, E qué tiempo puede jutar esta persoa la catidad requerida? Si ( + 1) log R = log(1 + i) = 45,000(0.023) [ + 1] log 1, 200 log( ) log = log = = Respuesta: hay que hacer 27 pagos de 1,200 y para el último ( 1+ i ) 1 S = R[ ] i 27 ( ) 1 S 27 = 1,200[ ] S 27 = 1, 200 S = $44, [ ] El último pago será: 45, , = $769.81

7 Ejercicio: Cuátos pagos de $94.76 al fial del mes tedría que hacer u comprador de ua lavadora que cuesta $850.00, si da $ de egache y acuerda pagar ua tasa de iterés del 45.6% aual capitalizable mesualmete sobre el saldo? S = R (1+ i) [ 1 ] i = S = = 500 i = 0.456/12 = = ( ) [ ] (0.038) = 1 (1.038) = -(1.038) ( 1.038) = = (1.038) ( 1.038) = = log = log = log log = = 6

8 Ejercicio. U empleado de gobiero, desea acumular $30, Para reuir esa catidad decide hacer depósitos vecidos e u fodo de iversioes a ua tasa de iterés del 32% aual covertible trimestralmete. Si deposita $ cada fi de trimestre. Detro de cuáto tiempo habrá acumulado esa catidad? S = R 30,000 30,000(0.08) 500 ( 1+ i) [ ] 1 i ( ) 1 = 500[ ] + 1 = 5.8 = (1.08) 0.08 (1.08) = log 5.8 log = = = ( 3 ) = 69 meses La persoa; tedrá los $30, aproximadamete detro de cico años y ueve meses.

9 TASA DE INTERES Ejercicio: Ua señora recibió u crédito del Baco Mercatil Por la catidad de $47,000 a pagar e 2 años de $ cada ua Qué tasa de iterés capitalizable mesualmete fue cargada? ( 1 i) 1 + A = R i ( i 1 1+ ) 12 47,000 = 2, i 12 Si seguimos así podríamos llega a ua ecuació hasta ecotrar el iterés deseado Si tomamos u iterés del 12% sería: 24 i 1 ( 1+ ) 12 A 1 = 2, = 62, Y así buscaríamos cambiado úicamete el iterés hasta ecotrar la catidad de: ( 1 ) A = 2, = 55,038.71

10 AMORTIZACION Y FONDO DE AMORTIZACION E el área fiaciera, amortizar sigifica saldar gradualmete ua deuda por medio de ua serie de pagos que, geeralmete, so iguales y que se realiza tambié a itervalos de tiempo iguales. Auque está igualdad de pagos y de periodicidad es lo más comú, tambié se lleva a cabo operacioes co alguas variates. Ejercicio: Ua señora cotrae hoy ua deuda e el Baco Mercatil por la catidad de $65, a ua tasa de iterés del 48% aual covertible semestralmete que amortizará mediate 6 pagos semestrales iguales (R), el primero de los cuales vece detro de 6 meses, costruir ua tabla. A = 65, i = 48% = 0.48/2 = 0.24 = 6 1 (1 + i) A = R i 1 ( ) 65,000 = R ,000(0.24) 6 1 (1.24) 15, $21, Fecha pago 24% iterés Amortizació saldo Semestral sobre saldo ( capital ) Al mometo de La operació 65, fi del semestre 1 21, , , , fi del semestre 2 21, , , , fi del semestre 3 21, , , , fi del semestre 4 21, , , fi del semestre 5 21, , , , fi del semestre 6 21, , , Totales 129, , , , x 0.24 = 15, % de iterés sobre saldo. 21, , = 5, Amortizació. 65, = 59, Saldo Lo que se puede observar e la tabla:

11 La suma de los pagos auales es igual a la suma de los itereses más la suma de las amortizacioes. El saldo como ya se había visto ates, es igual al saldo aterior más los itereses meos el pago. Por ejemplo, el saldo de $42, del fi del semestre 3 es igual al saldo aterior ($51,739.60), más los itereses del periodo ($12,417.50) meos el pago ($21,519.82) = 42, = 51, , , La amortizació es igual al pago meos los itereses. E cada periodo subsecuete, cada vez va siedo mayor la parte del pago que se aplica a la amortizació ya que, al mismo tiempo, tambié va dismiuyedo tato el saldo como los itereses correspodietes. Se puede ver claramete cuáto es lo que resta por pagar al fial de cada semestre; el saldo. El valor del último pago semestral se ajusto para que coicidiera exactamete al saldo de la deuda: 4, , = 21, Auque el ajuste e este caso fue sólo de cuatro pesos, e casi todas las operacioes es ecesario hacerlo debido a pequeñas diferecias ocasioadas por redodeo. E la tabla se pude apreciar: a)- Los pagos: la catidad que se paga e cada periodo y que e parte sirve para pagar los itereses correspodietes y e parte para amortizar el saldo de la deuda. b)- Las amortizacioes: la parte de cada pago (pago meos itereses) que se aplica a la reducció del saldo del deudor. De lo que se ha visto hasta aquí, se puede apreciar que las operacioes de amortizacioes se resuelve utilizado las fórmulas de aualidad de acuerdo a las codicioes de amortizació plateadas. Se hace hicapié e el aálisis de las cuatro pricipales icógitas que se puede platear e ua operació de este tipo, a saber: El importe de los pagos. El úmero de pagos. La tasa de iterés. Los derechos adquiridos por el deudor y el saldo a favor del acreedor.

12 DEPOSITO A UN FONDO DE AMORTIZACIÓN El caso del fodo de amortizació se distigue porque aquí la deuda que se va amortizar se platea a futuro y lo que se hace es costruir ua reserva o u fodo depositado determiadas catidades (geeralmete iguales y periódicas) e cuetas que devega itereses, co el fi de poder acumular la catidad o moto que permita pagar la deuda a su vecimieto. Ejercicio: La empresa Cortias y Persiaas de Acero, S.A. Debe pagar detro de seis meses al Baco del Golfo la catidad de $40, Para asegurar el pago, el cotador de la empresa propoe, dado que hay liquidez e la empresa, acumular u fodo mediate depósitos mesuales a ua cueta que paga el 30% covertible mesualmete. a)- De cuáto debe ser los depósitos? b)- Costruir ua tabla que muestre la forma e que se acumula el fodo. a)- S = 40, i = 30% = 0.30/12 = = 6 Si ( 1+ i) 1 b)- tabla: 40,000(0.025) ( ) 6 1 1, $ 6, Fecha Depósito Iterés Total que se saldo mesual suma al fodo Fi del mes 1 6, o - 6, , Fi del mes 2 6, , , Fi del mes 3 6, , , Fi del mes 4 6, , , Fi del mes 5 6, , , Fi del mes 6 6, , , Totales 37, , , *.- Nótese que se redujo el último depósito mesual e u cetavo para ajustar el total del fodo a exactamete $40, , por = más 6, = 6, , más 6, = 12,680.00

13 EJERCICIOS DE AMORTIZACIÓN 1.- Cuál sería el pago fial que liquida ua deuda de $23, cotratada al 27% efectivo aual a pagar mediate tres pagos auales vecidos de $10, y u pago fial que debe realizarse al térmio de 4 años. 2.- Ua deuda de $7, se debe pagar e u año mediate pagos trimestrales iguales vecidos. Sí el iterés pactado para la operació es de 36% aual covertible trimestralmete. a).- Hallar el importe de cada pago. b).- Costruir ua tabla de amortizació. 3.- Hacer u cuadro de amortizació de pagos mesuales vecidos de $1, hasta la extició total de ua deuda de $5, pactada al 20% aual covertible mesualmete, calculado tambié el pago fial que extiga la deuda. 4.- Ua pareja de recié casados adquiere ua casa e codomiio que cuesta $60,000.00, paga u egache de $15,000.oo y acuerda pagar el resto co 24 mesualidades iguales co el 24% de iterés covertible mesualmete. Haga ua tabla de amortizació que muestre los dos primeros y los dos últimos meses de la operació. 5.- Ua persoa adquiere u automóvil que cuesta $43, paga $12, e efectivo al mometo de la operació y el resto lo pagará co u préstamo de iterés social otorgado por el Baco Mercatil que cobra el 0.4% quiceal de iterés. Hallar el valor de los derechos adquiridos por el comprador al mometo de realizar el vigesimoctavo pago si lo acordado fue liquidar el saldo a 2 años mediate pagos quiceales vecidos. 6.- El Liceciado Motiel adquiere a crédito u despacho e codomiio que cuesta $185,000.00, al mometo de la operació paga el 30% de egache y se compromete a pagar el saldo mediate pagos mesuales aticipado durate 5 años. Si la tasa de iterés que paga es del 34% aual covertible mesualmete Qué catidad tedría que pagar al cabo del sexagésimo mes para adquirir la totalidad de los derechos sobre el despacho? 7.- Ua persoa tiee ua deuda de $10, que covio e pagar co pagos bimestrales vecidos e iguales durate u año co ua tasa de iterés del 28% covertible cada dos meses. Cuátos pagos le falta hacer si el saldo de su deuda es de 5, Cuál es el valor de los derechos adquiridos sobre u mueble de sala por u cliete que lo compró a crédito si el precio fue de $3, y se covio pagarlo mesualmete y se ha realizado 3 pagos? 9.- Determie el úmero de pagos ecesarios para amortizar totalmete la compra a crédito de u automóvil que cuesta $68, y se vede co u egache del 45% y el resto a pagar e mesualidades vecidas de $2, co ua tasa de iterés del 39% covertible mesualmete Haga ua tabla de amortizació que muestre la forma e que se extiguiría ua deuda de $32, mediate 4 pagos mesuales vecidos si la tasa de iterés que se le carga es del 29% aual covertible mesualmete si e cada uo de los dos primeros aboos se pago el 30% de la deuda el tercero el 25% y el último el 15%.

14

Unidad 5. Anualidades vencidas. Objetivos. Al finalizar la unidad, el alumno:

Unidad 5. Anualidades vencidas. Objetivos. Al finalizar la unidad, el alumno: Uidad 5 Aualidades vecidas Objetivos Al fializar la uidad, el alumo: Calculará el valor de la reta de ua perpetuidad simple vecida. Calculará el valor actual de ua perpetuidad simple vecida. Calculará

Más detalles

4) Calcular el plazo necesario para obtener 20.000 a partir de una inversión

4) Calcular el plazo necesario para obtener 20.000 a partir de una inversión ) alcular el motate o capital fial obteido al ivertir u capital de. al 8% de iterés aual simple durate 8 años.. 8 o i. 8,8 ( i ) 8.( 8,8) ) alcular el capital iicial ecesario para obteer u capital de.

Más detalles

TEMA4: MATEMÁTICA FINANCIERA

TEMA4: MATEMÁTICA FINANCIERA TEMA4: MATEMÁTICA FINANCIEA 1. AUMENTOS Y DISMINUCIONES POCENTUALES Si expresamos u porcetaje % como u úmero decimal: tato por uo: r = 23 23% = 0, 23 obteemos el Para calcular el porcetaje % de ua catidad

Más detalles

ANEXO 2 INTERES COMPUESTO

ANEXO 2 INTERES COMPUESTO ANEXO 2 INTERES COMPUESTO EJERCICIOS VARIOS: 1. Adrés y Silvaa acaba de teer a su primer hijo. Es ua iña llamada Luciaa. Adrés ese mismo día abre ua cueta para Luciaa co la catidad de $3 000,000.00. Qué

Más detalles

CONCEPTOS BÁSICOS DE PRESTAMOS.

CONCEPTOS BÁSICOS DE PRESTAMOS. GESTIÓN FINANCIERA. TEMA 8º. PRESTAMOS. 1.- Coceptos básicos de préstamos. CONCEPTOS BÁSICOS DE PRESTAMOS. Coceptos básicos de prestamos. Préstamo. U préstamo es la operació fiaciera que cosiste e la etrega,

Más detalles

Imposiciones y Sistemas de Amortización

Imposiciones y Sistemas de Amortización Imposicioes y Sistemas de Amortizació La Imposició u caso particular de reta e el cual cada térmio devega iterés (simple o compuesto) desde la fecha de su aboo hasta la fecha fial. Imposicioes Vecidas

Más detalles

donde n e i, están en la misma unidad de tiempo. Por tanto, la expresión de los intereses ordinarios ó simples y pospagables :

donde n e i, están en la misma unidad de tiempo. Por tanto, la expresión de los intereses ordinarios ó simples y pospagables : 1 1. LEY FINANCIERA DE CAPITALIZACIÓN SIMPLE. 1.- Calcular los itereses producidos por u capital de 1800 colocado 10 días al 7% de iterés aual simple. a) Cosiderado el año civil. b) Cosiderado el año comercial.

Más detalles

TEMA 1: OPERACIONES FINANCIERAS DE AMORTIZA- CION: PRESTAMOS Y EMPRESTITOS

TEMA 1: OPERACIONES FINANCIERAS DE AMORTIZA- CION: PRESTAMOS Y EMPRESTITOS TEMA : OPERACIONES FINANCIERAS DE AMORTIZA- CION: PRESTAMOS Y EMPRESTITOS..-INTRODUCCION : Etedemos por operació fiaciera de amortizació, aquella, e que u ete ecoómico, (acreedor ó prestamista), cede u

Más detalles

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento.

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento. UNIDAD Nº 2 Leyes fiacieras: Iterés simple. Iterés compuesto. Descueto. 2.1 La Capitalizació simple o Iterés simple 2.1.1.- Cocepto de Capitalizació simple Es la Ley fiaciera segú la cual los itereses

Más detalles

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública Uidad Cetral del Valle del Cauca acultad de Ciecias Admiistrativas, Ecoómicas y Cotables Programa de Cotaduría Pública Curso de Matemáticas iacieras Profesor: Javier Herado Ossa Ossa Ejercicios resueltos

Más detalles

2. LEYES FINANCIERAS.

2. LEYES FINANCIERAS. TEMA 1: CONCEPTOS PREVIOS 1. INTRODUCCIÓN. Se va a aalizar los itercambios fiacieros cosiderado u ambiete de certidumbre. El itercambio fiaciero supoe que u agete etrega a otro u capital (o capitales),

Más detalles

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación)

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación) Aputes: Matemáticas Fiacieras 1. Lecció 11 - Operacioes Fiacieras a largo plazo - Préstamos (Cotiuació) 1.1. Préstamo: Método de cuotas de amortizació costates E este caso se verifica A 1 = A 2 = = A =

Más detalles

EJERCICIOS DE PORCENTAJES E INTERESES

EJERCICIOS DE PORCENTAJES E INTERESES EJERCICIOS DE PORCENTAJES E INTERESES Ejercicio º 1.- Por u artículo que estaba rebajado u 12% hemos pagado 26,4 euros. Cuáto costaba ates de la rebaja? Ejercicio º 2.- El precio de u litro de gasóleo

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS MATEMÁTIAS FINANIERAS Secció: 1 Profesores: ristiá Bargsted Adrés Kettlu oteido Matemáticas Fiacieras: Iterés Simple vs Iterés ompuesto Valor Presete y Valor Futuro Plaificació estratégica Matemáticas

Más detalles

TEMA 3.- OPERACIÓN FINANCIERA

TEMA 3.- OPERACIÓN FINANCIERA . DEFINICIÓN Y CLASIFICACIÓN. TEMA 3.- OPEACIÓN FINANCIEA Se deomia operació fiaciera a todo itercambio o simultáeo de capitales fiacieros pactado etre dos agetes, siempre que se verifique la equivalecia,

Más detalles

ANUALIDADES CON LA UTILIZACION DE LAS FUNCIONES FINANCIERAS DEL EXCEL

ANUALIDADES CON LA UTILIZACION DE LAS FUNCIONES FINANCIERAS DEL EXCEL ANUALIDADES CON LA UTILIZACION DE LAS FUNCIONES FINANCIERAS DEL EXCEL Dr. Wisto Castañeda Vargas ASPECTOS GENERALES Ua aualidad es u cojuto de dos o más flujos, e el que a partir del segudo, los períodos

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS MATEMÁTICAS FINANCIERAS Asigatura Clave: CON015 Numero de créditos Teóricos: 4 Prácticos: 4 Asesor Resposable: M.C. Eduardo Suárez Mejia (correo electróico esuarez@uaim.edu.mx) Asesor de Asistecia: Ig.

Más detalles

Matemáticas Financieras Material recopilado por El Prof. Enrique Mateus Nieves. Financial math.

Matemáticas Financieras Material recopilado por El Prof. Enrique Mateus Nieves. Financial math. Matemáticas Fiacieras Material recopilado por El Prof. Erique Mateus Nieves Fiacial math. 2.10 DESCUENO El descueto es ua operació de crédito que se realiza ormalmete e el sector bacario, y cosiste e que

Más detalles

Progresiones. Objetivos. Antes de empezar. 1.Sucesiones.. pág. 74 Definición. Regla de formación Término general

Progresiones. Objetivos. Antes de empezar. 1.Sucesiones.. pág. 74 Definición. Regla de formación Término general 5 Progresioes Objetivos E esta quicea aprederás a: Recoocer ua sucesió de úmeros. Recoocer y distiguir las progresioes aritméticas y geométricas. Calcular él térmio geeral de ua progresió aritmética y

Más detalles

FÓRMULAS Y EJEMPLOS PARA EL CÁLCULO DE CRÉDITO LEASING

FÓRMULAS Y EJEMPLOS PARA EL CÁLCULO DE CRÉDITO LEASING . GLOSARO DE TÉRMNOS FÓRMULAS Y EJEMPLOS PARA EL CÁLCULO DE CRÉDTO LEASNG a. Amortizació: Pago total o parcial del capital de ua deuda o préstamo. b. Capital Fiaciado (CF): Equivale al valor de veta meos

Más detalles

2 Concepto de Capital Financiero. 3 Comparación de capitales financieros. 3 Ley financiera. 14 Capitalización compuesta. 23 Descuento comercial simple

2 Concepto de Capital Financiero. 3 Comparación de capitales financieros. 3 Ley financiera. 14 Capitalización compuesta. 23 Descuento comercial simple MODULO : FUNDAMENTOS DE LA INVERSIÓN Ídice oceptos básicos de la iversió 2 ocepto de apital Fiaciero 3 omparació de capitales fiacieros 3 Ley fiaciera apitalizació 8 apitalizació simple 4 apitalizació

Más detalles

ASIGNATURA: MATEMATICAS FINANCIERAS

ASIGNATURA: MATEMATICAS FINANCIERAS APUNTES DOCENTES ASIGNATURA: MATEMATICAS FINANCIERAS PROFESORES: MARIN JAIMES CARLOS JAVIER SARMIENTO LUIS JAIME UNIDAD 3: EVALUACIÓN ECONÓMICA DE PROYECTOS DE INVERSIÓN EL VALOR PRESENTE NETO VPN Es ua

Más detalles

FACULTAD DE CIENCIAS CONTABLESY ADMINISTRATIVAS MATEMÁTICA FINANCIERA. CPC. Oscar Suzuki Muroy HUANCAYO - PERÚ

FACULTAD DE CIENCIAS CONTABLESY ADMINISTRATIVAS MATEMÁTICA FINANCIERA. CPC. Oscar Suzuki Muroy HUANCAYO - PERÚ FACULTAD DE CIENCIAS CONTABLESY ADMINISTRATIVAS MATEMÁTICA FINANCIERA CPC. Oscar Suzuki Muroy HUANCAYO - PERÚ TABLA DE CONVERSIONES UNIVERSIDAD PERUANA LOS ANDES Educació a Distacia. Huacayo. Impresió

Más detalles

Modulo IV. Inversiones y Criterios de Decisión. Inversión en la empresa. Análisis de Inversiones

Modulo IV. Inversiones y Criterios de Decisión. Inversión en la empresa. Análisis de Inversiones Modulo IV Iversioes y Criterios de Decisió Aálisis de Iversioes 1. Iversió e la empresa 2. Métodos aproximados de valoració y selecció de iversioes 3. Criterio del valor actualizado eto (VAN) 4. Criterio

Más detalles

Planificación contra stock

Planificación contra stock Plaificar cotra stock 5 Plaificació cotra stock Puede parecer extraño dedicar u tema al estudio de métodos para plaificar la producció de empresas que trabaja cotra stock cuado, actualmete, sólo se predica

Más detalles

FORMULAS PARA EL PRODUCTO : CREDITO CONSUMO

FORMULAS PARA EL PRODUCTO : CREDITO CONSUMO FORMULAS PARA EL PRODUCTO : CREDITO CONSUMO DEFINICIONES Crédito de Cosumo: So aquellos créditos que se otorga a persoas aturales co igresos depedietes o idepedietes co la fialidad de ateder gastos de

Más detalles

5. Crecimiento, decrecimiento. y Economía

5. Crecimiento, decrecimiento. y Economía 5. Crecimieto, decrecimieto y Ecoomía Matemáticas aplicadas a las Ciecias Sociales I. Sucesioes. Matemática fiaciera 3. Fució epoecial y logarítmica 4. Modelos de crecimieto 80 Crecimieto, decrecimieto

Más detalles

FORMULAS PARA EL PRODUCTO: CREDITO A LA MICROEMPRESA

FORMULAS PARA EL PRODUCTO: CREDITO A LA MICROEMPRESA FORMULAS PARA EL PRODUCTO: CREDITO A LA MICROEMPRESA DEFINICIONES: CRÉDITO A LA MICROEMPRESA: So aquellos créditos que se otorga a persoas aturales y jurídicas que realiza algua actividad ecoómica por

Más detalles

SISTEMA DE EDUCACIÓN ABIERTA

SISTEMA DE EDUCACIÓN ABIERTA --- UNIVERSIDAD LOS ÁNGELES DE CHIMBOTE SISTEMA DE EDUCACIÓN ABIERTA DOCENTE : Julio Lezama Vásquez. E-MAIL : fervas@yahoo.es TELÉFONO : 044-9906504 ATENCIÓN AL ALUMNO : sea@uladech.edu.pe TELEFAX : 043-327846

Más detalles

SUCESIONES Y SERIES página 205 SUCESIONES Y SERIES. 12.1 Una sucesión es un conjunto de números ordenados bajo cierta regla específica.

SUCESIONES Y SERIES página 205 SUCESIONES Y SERIES. 12.1 Una sucesión es un conjunto de números ordenados bajo cierta regla específica. págia 05. Ua sucesió es u cojuto de úmeros ordeados bajo cierta regla específica. E muchos problemas cotidiaos se preseta sucesioes, como por ejemplo los días del mes, ya que se trata del cojuto {,,, 4,

Más detalles

CARERRA DE CONTABILIDAD SEPARATA DE MATEMÁTICAS FINANCIERAS. Año 2011

CARERRA DE CONTABILIDAD SEPARATA DE MATEMÁTICAS FINANCIERAS. Año 2011 CARERRA DE CONTABILIDAD SEPARATA DE MATEMÁTICAS FINANCIERAS Año 20 El presete documeto es ua recopilació de iformació obteida e libros de autores prestigiosos y diversos sitios de iteret. El uso de este

Más detalles

MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO

MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA MECANICA MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO FERNANDO ESPINOSA FUENTES Necesidad del reemplazo. Si se matiee u riesgo durate u tiempo

Más detalles

Calculo de la deuda a plazo (PAGO) 1) Método de cuota nivelada.

Calculo de la deuda a plazo (PAGO) 1) Método de cuota nivelada. Amortizació: Viee del latí Morti; Muerte, e el mercado fiaciero la expresió amortizació se utiliza para deomiar el proceso mediate el cual se extigue gradualmete ua deuda por medio de pagos o aboos periódicos

Más detalles

TEMA 5: INTERPOLACIÓN

TEMA 5: INTERPOLACIÓN 5..- ITRODUCCIÓ TEMA 5: ITERPOLACIÓ Supogamos que coocemos + putos (x,y, (x,y,..., (x,y, de la curva y = f(x, dode las abscisas x k se distribuye e u itervalo [a,b] de maera que a x x < < x b e y k = f(x

Más detalles

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS)

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS) Los valores icluidos e u grupo de datos usualmete varía e magitud; alguos de ellos so pequeños y otros so grades. U promedio es u valor simple, el cual es cosiderado como el valor más represetativo o típico

Más detalles

Valoración de permutas financieras de intereses (IRS) *

Valoración de permutas financieras de intereses (IRS) * Valoració de permutas fiacieras de itereses (IRS) * JOSÉ E. ROMERO FERNÁNDEZ Agecia Estatal de Admiistració Tributaria SUMARIO 1. INTRODUCCIÓN. 2. INSTRUMENTOS FINANCIEROS DERIVADOS. 3. LOS MERCADOS. 4.

Más detalles

ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES

ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES Las medidas de PML a ser implemetadas, se recomieda e base a las opcioes de PML calificadas como ecoómicamete factibles.

Más detalles

OPERACIONES ALGEBRAICAS FUNDAMENTALES

OPERACIONES ALGEBRAICAS FUNDAMENTALES MATERIAL DIDÁCTICO DE PILOTAJE PARA ÁLGEBRA 2 OPERACIONES ALGEBRAICAS FUNDAMENTALES ÍNDICE DE CONTENIDO 2. Suma, resta, multiplicació y divisió 6 2.1. Recoociedo la estructura de moomios y poliomios 6

Más detalles

Sucesiones numéricas.

Sucesiones numéricas. SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El

Más detalles

ALGORITMOS Y DIAGRAMAS DE FLUJO

ALGORITMOS Y DIAGRAMAS DE FLUJO ALGORITMOS Y DIAGRAMAS DE LUJO Elabore diagramas de flujo para expresar la solució de los problemas que se preseta a cotiuació. Auque sólo se pida explícitamete e alguos casos, es ecesario que Ud. siempre

Más detalles

Tema 9. Inferencia Estadística. Intervalos de confianza.

Tema 9. Inferencia Estadística. Intervalos de confianza. Tema 9. Iferecia Estadística. Itervalos de cofiaza. Idice 1. Itroducció.... 2 2. Itervalo de cofiaza para media poblacioal. Tamaño de la muestra.... 2 2.1. Itervalo de cofiaza... 2 2.2. Tamaño de la muestra...

Más detalles

CONCEPTOS BÁSICOS DE DIRECCIÓN FINANCIERA: SELECCIÓN DE INVERSIONES. Mercedes Fernández mercedes@upucomillas.es

CONCEPTOS BÁSICOS DE DIRECCIÓN FINANCIERA: SELECCIÓN DE INVERSIONES. Mercedes Fernández mercedes@upucomillas.es CONCEPTOS BÁSICOS DE DIRECCIÓN FINANCIERA: SELECCIÓN DE INVERSIONES Mercedes Ferádez mercedes@upucomillas.es CONTENIDO El valor temporal del diero. Selecció de iversioes CONTENIDO El valor temporal del

Más detalles

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ANÁLISIS EXPLORATORIO DE DATOS Ejemplos y ejercicios de Aálisis Exploratorio de Datos Descripció estadística de ua variable. Ejemplos y ejercicios..1 Ejemplos. Ejemplo.1 Se ha medido el grupo saguíeo de

Más detalles

Sistemas Automáticos. Ing. Organización Conv. Junio 05. Tiempo: 3,5 horas

Sistemas Automáticos. Ing. Organización Conv. Junio 05. Tiempo: 3,5 horas Sistemas Automáticos. Ig. Orgaizació Cov. Juio 05. Tiempo: 3,5 horas NOTA: Todas las respuestas debe ser debidamete justificadas. Problema (5%) Ua empresa del sector cerámico dispoe de u horo de cocció

Más detalles

2 Concepto de Capital Financiero. 3 Comparación de capitales financieros. 3 Ley financiera. 8 Capitalización simple. 14 Capitalización compuesta

2 Concepto de Capital Financiero. 3 Comparación de capitales financieros. 3 Ley financiera. 8 Capitalización simple. 14 Capitalización compuesta MODULO : FUNDAMENTOS DE LA INVERSIÓN Ídice oceptos básicos de la iversió 2 ocepto de apital Fiaciero 3 omparació de capitales fiacieros 3 Ley fiaciera apitalizació 8 apitalizació simple 4 apitalizació

Más detalles

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios Poliomios Defiició de poliomio y sus propiedades U poliomio puede expresarse como ua suma de productos de fucioes de x por ua costate o como ua suma de térmios algebraicos; es decir U poliomio e x es ua

Más detalles

2 Concepto de Capital Financiero. 3 Comparación de capitales financieros. 3 Ley financiera. 8 Capitalización simple. 14 Capitalización compuesta

2 Concepto de Capital Financiero. 3 Comparación de capitales financieros. 3 Ley financiera. 8 Capitalización simple. 14 Capitalización compuesta MÓDULO : FUNDAMENTOS DE LA INVERSIÓN Ídice Coceptos básicos de la iversió Cocepto de Capital Fiaciero 3 Comparació de capitales fiacieros 3 Ley fiaciera Capitalizació 8 Capitalizació simple 4 Capitalizació

Más detalles

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON págia 171 Los productos otables tiee la fialidad de obteer el resultado de ciertas multiplicacioes si hacer dichas multiplicacioes. Por ejemplo, cuado se desea multiplicar los biomios cojugados siguietes:

Más detalles

QUÉ HACE CALIFORNIA CREDIT UNION CON SU INFORMACIÓN PERSONAL?

QUÉ HACE CALIFORNIA CREDIT UNION CON SU INFORMACIÓN PERSONAL? Rev. 12/26/12 DATOS Por qué? Qué? QUÉ HACE CALIFORNIA CREDIT UNION CON SU INFORMACIÓN PERSONAL? Las istitucioes fiacieras elige la maera e que comparte su iformació persoal. La ley federal otorga a los

Más detalles

PRUEBAS DE HIPÓTESIS

PRUEBAS DE HIPÓTESIS PRUEBAS DE HIPÓTESIS E vez de estimar el valor de u parámetro, a veces se debe decidir si ua afirmació relativa a u parámetro es verdadera o falsa. Vale decir, probar ua hipótesis relativa a u parámetro.

Más detalles

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Por: Lic. Eleazar J. García. República Bolivariaa de Veezuela Tiaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Usted está familiarizado co alguas operacioes iversas. La adició y la sustracció so operacioes

Más detalles

UNIDAD 8 MODELO DE ASIGNACIÓN. características de asignación. método húngaro o de matriz reducida.

UNIDAD 8 MODELO DE ASIGNACIÓN. características de asignación. método húngaro o de matriz reducida. UNIDAD 8 MODELO DE ASIGNACIÓN características de asigació. método húgaro o de matriz reducida. Ivestigació de operacioes Itroducció U caso particular del modelo de trasporte es el modelo de asigació,

Más detalles

Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo

Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo Modelos lieales e Biología, 5ª Curso de Ciecias Biológicas Clase 8/10/04 Estimació y estimadores: Distribucioes asociadas al muestreo Referecias: Cualquiera de los textos icluidos e la bibliografía recomedada

Más detalles

INICIACIÓN TEORICO-PRÁCTICA A LAS MATEMÁTICAS FINANCIERAS II: CONSTITUCIÓN, PRÉSTAMOS Y EMPRÉSTITOS

INICIACIÓN TEORICO-PRÁCTICA A LAS MATEMÁTICAS FINANCIERAS II: CONSTITUCIÓN, PRÉSTAMOS Y EMPRÉSTITOS INICIACIÓN TEORICO-PRÁCTICA A LAS MATEMÁTICAS FINANCIERAS II: CONSTITUCIÓN, PRÉSTAMOS Y EMPRÉSTITOS Autor: Profesor de la Uiversidad de Graada (Dpto. Ecoomía Fiaciera y Cotabilidad) Profesor Tutor del

Más detalles

SOLUCIÓN ACTIVIDADES UNIDAD 7

SOLUCIÓN ACTIVIDADES UNIDAD 7 SOLUCIÓN ACTIVIDADES UNIDAD 7 1.- Qué es ua fuete fiaciera?.- Cuál es la diferecia etre los fodos propios y los fodos ajeos? La forma de obteer recursos fiacieros la empresa para llevar a cabo sus iversioes.

Más detalles

A = 1. Demuestra que P (1) es cierta. 2. Demuestra que si P (h) es cierta, entonces P (h + 1) es cierta.

A = 1. Demuestra que P (1) es cierta. 2. Demuestra que si P (h) es cierta, entonces P (h + 1) es cierta. . POTENCIAS DE MATRICES CUADRADAS E este capítulo vamos a tratar de expoer distitas técicas para hallar las potecias aturales de matrices cuadradas. Esta cuestió es de gra importacia y tiee muchas aplicacioes

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 04 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Reserva, Ejercicio 4, Opció A Reserva, Ejercicio 4, Opció

Más detalles

Transformaciones Lineales

Transformaciones Lineales Trasformacioes Lieales 1 Trasformacioes Lieales Las trasformacioes lieales iterviee e muchas situacioes e Matemáticas y so alguas de las fucioes más importates. E Geometría modela las simetrías de u objeto,

Más detalles

2. Calcular el interés que obtendremos al invertir 6.000 euros al 4% simple durante 2 años. Solución: 480 euros

2. Calcular el interés que obtendremos al invertir 6.000 euros al 4% simple durante 2 años. Solución: 480 euros . alcular el motate que obtedremos al captalzar 5. euros al 5% durate días (año cvl y comercal). Solucó: 5., euros (cvl); 5.,5 euros (comercal). 5. o ' 5,5 5,8 5,5 ' 5. 5.,5) 5,5) 5., 5.,5. alcular el

Más detalles

JOSU IMANOL DELGADO UGARTE MANUAL PRÁCTICO DE GESTIÓN DE TESORERÍA DE EMPRESAS

JOSU IMANOL DELGADO UGARTE MANUAL PRÁCTICO DE GESTIÓN DE TESORERÍA DE EMPRESAS JOSU IMANOL DELGADO UGARTE MANUAL PRÁCTICO DE GESTIÓN DE TESORERÍA DE EMPRESAS Í N D I C E Agradecimietos... Prólogo a cargo del Sr. D. Atoio Cacelo Aloso, Presidete de M.C.C.... Presetació... XI XIII

Más detalles

Programación Entera (PE)

Programación Entera (PE) Programació Etera (PE) E geeral, so problemas de programació lieal (PPL), e dode sus variables de decisió debe tomar valores eteros. Tipos de PE Cuado se requiere que todas las variables de decisió tome

Más detalles

MANUAL PARA CAMARÓGRAFOS DEL DE LOS TALLERES DE

MANUAL PARA CAMARÓGRAFOS DEL DE LOS TALLERES DE MANUAL PARA CAMARÓGRAFOS DEL DE LOS TALLERES DE PARA CAMARÓGRAFOS DEL DE LOS TALLERES DE FORMACIÓN DE LOS DIRECTIVOS SINDICALES. EVALUACIÓN DOCENTE DE CARÁCTER DIAGNÓSTICO FORMATIVA (ECDF) 2016 Este maual

Más detalles

CADENAS DE MARKOV. Métodos Estadísticos en Ciencias de la Vida

CADENAS DE MARKOV. Métodos Estadísticos en Ciencias de la Vida CADENAS DE MARKOV Itroducció U proceso o sucesió de evetos que se desarrolla e el tiempo e el cual el resultado e cualquier etapa cotiee algú elemeto que depede del azar se deomia proceso aleatorio o proceso

Más detalles

Global Venture Clasificadora de Riesgo

Global Venture Clasificadora de Riesgo 2 Global Veture Clasificadora de Riesgo L a clasificació de riesgo tiee como propósito pricipal el que los iversioistas y las istitucioes/empresas cuete co ua herramieta que les permita determiar los riesgos

Más detalles

DESCUENTO DESCUENTO SIMPLE DESCUENTO COMERCIAL SIMPLE

DESCUENTO DESCUENTO SIMPLE DESCUENTO COMERCIAL SIMPLE 1 OBJETIVOS Defiir escueto y valor actual. Distiguir las actualizacioes simples y compuestas. Ietificar los istitos tipos e escuetos. Demostrar fórmulas pricipales y erivaas. Resolver situacioes problemáticas.

Más detalles

UD 9. LA INVERSIÓN EN LA EMPRESA

UD 9. LA INVERSIÓN EN LA EMPRESA UD 9. LA INVERSIÓN EN LA EMPRESA 1. LA FUNCIÓN FINANCIERA DE LA EMPRESA La empresa, tato para iiciar su actividad como para realizarla co eficiecia, ecesita recursos fiacieros. Para su fucioamieto, la

Más detalles

METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES

METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES La serie estadística de Ídice de Precios al por Mayor se iició e 1966, utilizado e

Más detalles

en. Intentemos definir algunas operaciones en

en. Intentemos definir algunas operaciones en OPERACIONES EN 8 E la secció aterior utilizamos fucioes de el primer couto y estudiar sus propiedades e Itetemos defiir alguas operacioes e Recordemos de cursos ateriores que tomamos al couto de los compleos

Más detalles

Tomado del libro Evaluación Financiera de Proyectos de Jhonny de Jesús Meza Orozco Editorial WAKUSARI Bogotá, Año 2004

Tomado del libro Evaluación Financiera de Proyectos de Jhonny de Jesús Meza Orozco Editorial WAKUSARI Bogotá, Año 2004 SERVICIO NACIONAL DE APRENDIZAJE SENA CENTRO AGROPECUARIO EL PORVENIR MÓDULO FORMULACIÓN Y EVALUACIÓN DE PROYECTOS PRODUCTIVOS TALLER 4 TEMA: Evaluació de proyectos de iversió OBJETIVO: Determiar la retabilidad

Más detalles

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2004

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2004 Solució del eame de Ivestigació Operativa de Sistemas de septiembre de 4 Problema (,5 putos: Ua marca de cereales para el desayuo icluye u muñeco de regalo e cada caja de cereales. Hay tres tipos distitos

Más detalles

ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS COCOS. (Resolución por JMEB.)

ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS COCOS. (Resolución por JMEB.) ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS OOS. (Resolució por JMEB.) 1. Defiició. El problema cosiste e calcular la catidad de cocos que había iicialmete e u motó que... ierto día se reuiero moos para recoger

Más detalles

Los sistemas operativos en red

Los sistemas operativos en red 1 Los sistemas operativos e red Objetivos del capítulo Coocer lo que es u sistema operativo de red. Ver los dos grupos e que se divide los sistemas oeprativos e red. Distiguir los compoetes de la arquitectura

Más detalles

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0 Tema 4 Series de Potecias Ua expresió de la forma a 0 + a 1 (x c) + a 2 (x c) 2 +... + a (x c) +... = recibe el ombre de serie de potecias cetrada e c. a (x c) Ua serie de potecias puede ser iterpretada

Más detalles

INFERENCIA ESTADÍSTICA. CONTRASTE DE HIPÓTESIS

INFERENCIA ESTADÍSTICA. CONTRASTE DE HIPÓTESIS INFERENCIA ESTADÍSTICA. CONTRASTE DE HIPÓTESIS 1. El peso medio de ua muestra aleatoria de 100 arajas de ua determiada variedad es de 272 g. Se sabe que la desviació típica poblacioal es de 20 g. A u ivel

Más detalles

Matemática Financiera Tasas de Interés y Descuento

Matemática Financiera Tasas de Interés y Descuento Matemática Fiaciera Tasas de Iterés y Descueto 3 Qué apredemos Noció fiaciera y matemática de las tasas de iterés y descueto. Iterpretació práctica. Distitos tipos de tasas: proporcioales, omiales, equivaletes

Más detalles

Matemáticas I - 1 o BACHILLERATO Binomio de Newton

Matemáticas I - 1 o BACHILLERATO Binomio de Newton Matemáticas I - o Bachillerato Matemáticas I - o BACHILLERATO El biomio de Newto es ua fórmula que se utiliza para hacer el desarrollo de la potecia de u biomio elevado a ua potecia cualquiera de expoete

Más detalles

MEDIDAS DE RESUMEN. Jorge Galbiati Riesco

MEDIDAS DE RESUMEN. Jorge Galbiati Riesco MEDIDAS DE RESUMEN Jorge Galbiati Riesco Las medidas de resume sirve para describir e forma resumida u cojuto de datos que costituye ua muestra tomada de algua població. Podemos distiguir cuatro grupos

Más detalles

Análisis de Señales y Sistemas Digitales. Concepto Algoritmo Implementación

Análisis de Señales y Sistemas Digitales. Concepto Algoritmo Implementación Aálisis de Señales y Sistemas Digitales FFT Cocepto Algoritmo Implemetació 2010 FFT Trasformada Rápida de Fourier Cocepto La trasformada rápida de fourier (FFT) es u algoritmo que permite él cálculo eficiete

Más detalles

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n)

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n) 1 Sucesioes De ició. Ua sucesió, a, es ua fució que tiee como domiio el cojuto de los úmeros aturales y como cotradomiio el cojuto de los úmeros reales: a : N! R. Se usa la siguiete otació: a () = a :

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 1999-2. - CONVOCATORIA: Juio MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo

Más detalles

Funciones, límites y continuidad.

Funciones, límites y continuidad. Fucioes, límites y cotiuidad. Guillermo Sáchez () Departameto de Ecoomia e Hª Ecoómica. Uiversidad de Salamaca. Actualizado : -- Sobre el estilo utilizado Mathematica las salidas (Ouput) por defecto las

Más detalles

Estimación puntual y por intervalos de confianza

Estimación puntual y por intervalos de confianza Ídice 6 Estimació putual y por itervalos de cofiaza 6.1 6.1 Itroducció.......................................... 6.1 6. Estimador........................................... 6. 6.3 Método de costrucció

Más detalles

FORMULAS Y EJEMPLOS EXPLICATIVOS PARA EL CALCULO DE INTERESES

FORMULAS Y EJEMPLOS EXPLICATIVOS PARA EL CALCULO DE INTERESES FORMULAS Y EJEMPLOS EXPLICATIVOS PARA EL CALCULO DE INTERESES Cosideracioes Las fórmulas detalladas tiee el objeto de iformar sobre el cálculo del iterés del crédito y la cuota a pagar La tasa de iterés

Más detalles

Tema 9 Teoría de la formación de carteras

Tema 9 Teoría de la formación de carteras Parte III Decisioes fiacieras y mercado de capitales Tema 9 Teoría de la formació de carteras 9.1 El problema de la selecció de carteras. 9. Redimieto y riesgo de ua cartera. 9.3 El modelo de la media-variaza.

Más detalles

UNIDAD 6: SISTEMAS DE ECUACIONES

UNIDAD 6: SISTEMAS DE ECUACIONES UNIDAD 6: SISTEMAS DE ECUACIONES ÍNDICE DE LA UNIDAD 1.- INTRODUCCIÓN.... 1 2.- SISTEMAS DE ECUACIONES LINEALES... 2 3.- CLASIFICACIÓN DE SISTEMAS.... 2 4.- EXPRESIÓN MATRICIAL DE UN SISTEMA... 2 5.- RESOLUCIÓN

Más detalles

Tema III: La Elección de Inversiones. Economía de la Empresa: Financiación. Prof. Francisco Pérez Hernández

Tema III: La Elección de Inversiones. Economía de la Empresa: Financiación. Prof. Francisco Pérez Hernández Tema III: La Elecció de Iversioes Ecoomía de la Empresa: Fiaciació Prof. Fracisco Pérez Herádez La Elecció de Iversioes Para ayudar a la elecció de distitas operativas de iversió, se puede seguir distitos

Más detalles

Estimación puntual y por Intervalos de Confianza

Estimación puntual y por Intervalos de Confianza Capítulo 7 Estimació putual y por Itervalos de Cofiaza 7.1. Itroducció Cosideremos ua v.a X co distribució F θ co θ descoocido. E este tema vemos cómo dar ua estimació putual para el parámetro θ y cómo

Más detalles

Este centro consta de 20 cuartos sencillos, 12 cuartos dobles, 7 corredores y 4 salas de sesiones.

Este centro consta de 20 cuartos sencillos, 12 cuartos dobles, 7 corredores y 4 salas de sesiones. reguta 6 utos Ua empresa de limpieza cotrata persoal e forma putual depediedo de las solicitudes de trabajo de sus clietes. ara el iicio de ua coferecia iteracioal, u cliete platea la limpieza a fodo del

Más detalles

(PROBABILIDAD) (tema 15 del libro)

(PROBABILIDAD) (tema 15 del libro) (PROBABILIDAD) (tema 15 del libro) 1. EXPERIMENTOS ALEATORIOS. ESPACIO MUESTRAL. SUCESOS Defiició: U feómeo o experiecia se dice aleatorio cuado al repetirlo e codicioes aálogas o se puede predecir el

Más detalles

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA CAPÍTULO I CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA El campo de la estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Motgomery

Más detalles

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª Sea a, b y eteros positivos tales que a b y ab Prueba que a b 4 Idica justificadamete cuádo se alcaa la igualdad Supogamos que el resultado a demostrar fuera falso

Más detalles

PRUEBA A ( ) ( ) p z p z 0.4988 1 0.4988 0.4988 1 0.4988 0.4988 1.96,0.4988 + 1.96 = 0.4521, 0.5455 441 441

PRUEBA A ( ) ( ) p z p z 0.4988 1 0.4988 0.4988 1 0.4988 0.4988 1.96,0.4988 + 1.96 = 0.4521, 0.5455 441 441 PRUEBAS DE ACCESO A LA UNIVERSIDAD LOGSE CURSO 007-008 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC SS - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe respoder

Más detalles

Límite de una función

Límite de una función Límite de ua fució SOLUCIONARIO Límite de ua fució LITERATURA Y MATEMÁTICAS El ocho Sharrif iba sacado los libros [de mi bolsa] y ordeádolos e ua pila sobre el escritorio mietras leía cuidadosamete los

Más detalles

Ecuaciones de recurrencia

Ecuaciones de recurrencia Capítulo 6 Ecuacioes de recurrecia E argumetos lógicos o e algoritmos, cuado hay que dilucidar o resolver ua sucesió de casos, el matemático busca averiguar la estructura comú y la coexió de cada caso

Más detalles

MEDIDAS DE TENDENCIA CENTRAL CON EXCEL

MEDIDAS DE TENDENCIA CENTRAL CON EXCEL ) MEDIA ARITMÉTICA MEDIDAS DE TENDENCIA CENTRAL CON EXCEL Las medidas de tedecia cetral so medidas represetativas que como su ombre lo idica, tiede a ubicarse hacia el cetro del cojuto de datos, es decir,

Más detalles

CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS

CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS Curso Preparació y Evaluació Social de Proyectos Sistema Nacioal de Iversioes Divisió de Evaluació Social de Iversioes MINISTERIO DE DESARROLLO SOCIAL

Más detalles

1. Demuestra que si p es un natural y p es compuesto, entonces existe un divisor m de p con 1 < m p.

1. Demuestra que si p es un natural y p es compuesto, entonces existe un divisor m de p con 1 < m p. Divisibilidad Matemática discreta Dados dos úmeros aturales a y b, escribiremos a b y leeremos a divide a b si existe u c N tal que ac = b. E este caso, decimos que a es u divisor de b o que b es divisible

Más detalles

TEORÍA DE LÍNEAS DE ESPERA (COLAS)

TEORÍA DE LÍNEAS DE ESPERA (COLAS) TEORÍA DE ÍEAS DE ESERA COAS Cojuto de modelos matemáticos ue describe sistemas específicos de líeas de espera o colas, usados e la toma de decisioes al ecotrar el estado estable o estacioario del sistema

Más detalles

MATEMÁTICAS FINANCERAS

MATEMÁTICAS FINANCERAS MATEMÁTICAS FINANCERAS -Apoyadas co Microsoft Excel- (Versió prelimiar) Julio A. Sarmieto Sabogal Edgardo Cayó Fallo Bogotá D.C., Juio de 2005 Potificia Uiversidad Javeriaa Facultad de Ciecias Ecoómicas

Más detalles