El Transistor de Efecto de Campo (FET)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "El Transistor de Efecto de Campo (FET)"

Transcripción

1 El Trasistor de Efecto de Camo (FET) J.I.Huirca, R.A. Carrillo Uiversidad de La Frotera. ecember 10, 2011 Abstract El FET es u disositivo activo que oera como ua fuete de corriete cotrolada or voltaje. Los más comues so los trasistores de comuerta aislada llamados MOFET y los de comuerta de uió llamados JFET. Posee cuatro zoas de oeració, ohmica o lieal, saturació, corte y rutura. 1 Itroducció El Trasistor de Efecto de Camo ( Field E ect Trasistor) es u disositivo semicoductor cuyo fucioamieto se basa e el cotrol de la corriete or medio de u camo eléctrico. Estos fuero rouestos iicialmete e su versió JFET or W. hockley e Características eerales El FET tiee tres termiales: Fuete (ource), reador (rai) y Comuerta (ate). Este último es el termial de cotrol. El voltaje alicado etre la comuerta y la fuete cotrolará la corriete etre la fuete y el dreador. Es u disositivo uiolar, ues, la corriete es trasortada or ortadores de ua olaridad, será caal N si la corriete se debe a e, o caal P, si la corriete se debe a h. Vetajas Alta imedacia de etrada [] : Ideal como etaa de etrada ara todo amli cador. Mejor estabilidad a T o que el BJT. Niveles de ruido más bajo. Tecología de fabricació más secilla esvetajas 1

2 Resuesta e frecuecia o muy acetable, debido a su alta caacidad de etrada. No osee buea liealidad. Muy sesibles a descargas electrostáticas. 1.2 Tios de FET e uerta aislada, MOFET (Metal - Oxide - emicoductor FET). e uerta de uió, MEFET o bie, JFET (juctio FET). FET Puerta Aislada MOFET JFET Puerta de Uió MEFET Eriquecimieto Emobrecimieto Caal N Caal P Caal N Caal P Caal N Caal P Figure 1: Tios de FET. 2 El MOFET de eriquecimieto caal Tambié recibe el ombre de MOFET de Acumulació, Icremetal o Acrecetamieto. El símbolo se muestra e la Fig. 2b. i el sustrato está uido a la fuete, se simli ca de acuerdo a la Fig. 2 c - d. ustrato ustrato (c) (d) Figure 2: MOFET caal. ímbolo. (c) imbolo, sustrato uido a la fuete. (d) ímbolo abreviado del MOFET. 2

3 2.1 Fucioamieto e acuerdo el diagrama de la Fig. 2a, la comuerta está aislada or ua elícula de io 2 (ióxido de silicio), el trasistor se olariza de acuerdo a la Fig. 3a. i v i v v v Figure 3: Polarizació del MOFET. El aálisis se realiza de acuerdo a la variació del voltaje e la comuerta y el voltaje v. Para v = 0, de acuerdo a la Fig. 4a se observa dos juturas, sustrato-dreador y sustrato-fuete, dode la rimera está olarizada iversa debido a v, así i = 0, or lo tato se dice que el trasistor está e corte. El MOFET ermaecerá e corte ara valores de v meores al voltaje umbral V T. v = 0 i v > V T i v > V T i v v v > v _ V T (c) Figure 4: v = 0. Formació del caal. Estragulamieto del caal. i se icremeta v, la tesió ositiva e la comuerta, de acuerdo a la Fig. 4b, ésta atrae a los e del sustrato ubicado etre los termiales y, lo que imlica que dichos e se acumula e la suer cie iferior de la comuerta (), formádose u caal coductor tio, roduciédose ua corriete i ara v > V T. Al aumetar lévemete v, la corriete i aumeta de acuerdo a (1), lo cual ocurre mietras v < (v V T ). i = k 2 (v V T ) v v 2 (1) Esta zoa se cooce como zoa ohmica o lieal, si embargo, al aumetar v, el caal se emieza a estrechar hasta que se roduce el estragulamieto 3

4 v 1 (ich-o ) como se idica e la Fig. 4c. Esto ocurre ara valores de v = v V T : ado que se roduce u aumeto de la resistecia del caal, ara u uevo aumeto de v, el aumeto de i será equeño, or lo tato el FET se ecuetra e saturació y su comortamieto estará dado or (2). i = k (v V T ) 2 (2) ode k deede de la estructura física del FET. La curva idicada e la Fig. 5 muestra el comortamieto de la ecuació (1) y (2) ara u valor v jo mayor que V T, e fució de v. i v < v - V T v > v - V T Ohmica aturació v Figure 5: Zoa ohmica y saturació. La curva i v se idica e la 6a. Para distitos valores de v es osible obteer distitas curvas i v, luego ara valores de v 3 > v 2 > v 1 se tedrá las curvas de la Fig. 6b. i i Regió Óhmica Regió aturació v 3 v 2 V T v Corte v Figure 6: Curva i v. Curva i v del MOFET de acumulació. 2.2 Características del MOFET de Eriquecimieto No existe I : 4

5 e utiliza ara fabricació de circuitos itegrados. Requiere ua v > 0. Para caal, v T > 0 y v > 0; ara caal, V T < 0 y v < 0: Para v > v T ) i = k (v V T ) 2, dode k es ua costate deediete del método de fabricació, su dimesió es [ ma V ]: 2 3 El JFET caal ea el JFET caal de la Fig. 7. Caal Figure 7: Estructura de u JFET. ímbolo. La oeració del JFET se realiza mediate u circuito extero como se muestra e la Fig. 8. e alica ua fuete de tesió V, al dreaje y ua fuete de tesió a la comuerta, V. La fuete V rovoca ua tesió v, la cual hace circular ua corriete de dreaje i hacia la fuete, la que será idetica a la corriete de la fuete. La tesió v que es igual la V, crea ua regió desértica e el caal, que reduce el acho de éste y or lo tato aumeta la resistecia etre el dreaje y fuete, como la jutura comuerta - fuete está olarizada iversa, etoces la corriete or la comuerta es cero. V V V Caal V Figure 8: Polarizació del JFET. Cosiderado V = 0 y u equeño otecial e el dreaje como se idica e la Fig. 9a, los e uirá desde la fuete hasta el dreador, así existirá ua 5

6 v = 0 Caal V V Figure 9: Fucioamieto del JFET. corriete i. La corriete e la comuerta será cero, ues la jutura - está olarizada iversa. La itesidad de la corriete deederá de v. Mietras aumeta v, la corriete i alcaza la saturació. i v sigue aumetado i será costate. La corriete de saturació ara v = 0, se deomia I. Haciedo v más egativo, se crea ua regió desértica (regió dode o existe ortadores) y se cierra ara u valor de i meor al de saturació. i i I 0 I -1-2 v v V Figure 10: Curva i v. Característica i v. i v dismiuye más, se alcaza u valor de v desués del cual i se hace cero, si imortar el valor de v. este valor se llama v OF F, o tesió de estragulamieto (V ). Para el JFET el V es egativo. La ecuació de chockley idicada e (3) describe la característica i v del JFET, la cual se idica grá camete e la Fig. 10b. i = I 1 2 v (3) V ode I es la corriete de saturació iversa y V ; la tesió de estragulació del caal. Bastará coocer I y V ;los cuales so roorcioados or el fabricate, ara que la característica quede determiada. La corriete I es fució de la T o. V < 0 ara JFET caal y V > 0 ara JFET caal 6

7 i I = v -3 v Figure 11: Ejemlo de curva i v ; i v.. La Curva de la Fig. 11, etrega ua descrició comleta del disositivo, e ella se dibuja la ecuació de chockley e cojuto co la curva de salida. 4 Polarizació Básica del JFET 4.1 iseño ea el circuito de olarizació, diseñar ara I Q = 3, v = 4 [V ] ; I = 5, V = 10 [V ] y V = 4 [V ] : R R i i V V Figure 12: Circuito de Polarizació ja ara el FET. Plateado la ua ecuació e la etrada, se tiee V = i R v (4) Plateado ua ecuació e la salida V = i R v (5) ado que i = 0, etoces V = v : Mediate la ecuació de chockley se determia v. 7

8 3 = 5 1 v = 4 r 3 5 1! 2 v (6) 4 [V ] = 0:901 [V ] (7) Así se tiee que V = 0:901 [V ] ; luego de la ecuació de salida v R = V = i 10 [V ] 4 [V ] 3 = 2 [K] (8) El valor de R se cosidera u valor alto, comumete 1 [M] : El uto de oeracio se muestra e la Fig. 13. i 5 0V 3-0.9V v v Figure 13: Ejemlo uto de oeració. 5 Coclusioes El FET es u disositivo activo que fucioa como ua fuete de corriete cotrolada or voltaje. Básicamete el voltaje e la comuerta v, cotrola la corriete i etre el dreador y la fuete. Para el JFET, la ecuació que da cueta del comortamieto es la ley de chockley, e la cual al corriete I, llamada corriete de saturació será la máxima ermitida (ara el JFET caal ), el voltaje V (tambié llamado V OF F ) ermite establecer el rago del voltaje v y delimita el corte del trasistor. Para el MOFET de eriquecimieto se utiliza la relació e la regió de saturació como ecuació ara la zoa activa, dode la el voltaje umbral V T, establece el valor míimo del voltaje e la comuerta, la costate K de fabricació será cosiderada como dato del fabricate. 8

El Transistor de Juntura Bipolar (BJT)

El Transistor de Juntura Bipolar (BJT) l Trasistor de Jutura iolar (JT) J,I. Huircá, R.A. arrillo Uiversidad de La Frotera December 9, 2011 Abstract l Trasistor de Jutura iolar (JT) es u disositivo activo de tres termiales, ase, olector y misor,

Más detalles

1.3- Amplificadores con un transistor de efecto de campo

1.3- Amplificadores con un transistor de efecto de campo 1.3- Amplificadores co u trasistor de efecto de campo 1.3.1- Cofiguracioes básicas y polarizació 1.3.- Modelo de señal pequeña del JFET 1.3.3- Amplificador fuete comú 1.3.4- Amplificador compuerta comú

Más detalles

Capítulo I. La importancia del factor de potencia en las redes. eléctricas

Capítulo I. La importancia del factor de potencia en las redes. eléctricas La importacia del factor de potecia e las redes eléctricas. Itroducció Las fuetes de alimetació o geeradores de voltaje so las ecargadas de sumiistrar eergía e las redes eléctricas. Estas so de suma importacia,

Más detalles

PRUEBAS DE HIPÓTESIS

PRUEBAS DE HIPÓTESIS PRUEBAS DE HIPÓTESIS E vez de estimar el valor de u parámetro, a veces se debe decidir si ua afirmació relativa a u parámetro es verdadera o falsa. Vale decir, probar ua hipótesis relativa a u parámetro.

Más detalles

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato.

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato. UH ctualizació de oocimietos de Matemáticas ara Tema Poliomios y otras eresioes algebraicas Estos cocetos está etraídos del libro Matemáticas de achillerato McGrawHill Poliomios: oeracioes co oliomios

Más detalles

2.1 - F.e.m de las máquinas de corriente alterna lineales planas

2.1 - F.e.m de las máquinas de corriente alterna lineales planas - CÁLCULO PARAMÉTRICO DE MÁQUINAS LINEALES.1 - F.e.m de las máquias de corriete altera lieales laas El valor medio de la.e.m. iducida e ua esira de aso diametral, ideedietemete de la orma esacial o de

Más detalles

11. TRANSFORMADOR IDEAL

11. TRANSFORMADOR IDEAL . TAFOMADO DEA.. TODUCCÓ Cuado el flujo magético producido por ua bobia alcaza ua seguda bobia se dice que existe etre las dos bobias u acople magético, ya que el campo magético variable que llega a la

Más detalles

2. Tecnologías del silicio

2. Tecnologías del silicio 2. Tecologías del silicio 2.1. Itroducció. 2.2. Familias lógicas 2.3. Trasistores MOS, riciio de fucioamieto 2.4. Iversores MOS y CMOS. 2.5. Tecologías CMOS 2. Tecologías del silicio 2.1. Itroducció. 2.2.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 7: CONTRASTE DE HIPÓTESIS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 7: CONTRASTE DE HIPÓTESIS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 214 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 7: CONTRASTE DE HIPÓTESIS Juio, Ejercicio 4, Oció B Reserva 2, Ejercicio 4, Oció B Reserva 4, Ejercicio

Más detalles

ANÁLISIS Y RESOLUCIÓN DE CIRCUITOS

ANÁLISIS Y RESOLUCIÓN DE CIRCUITOS NÁLSS Y ESOLCÓN DE CCTOS. Las Leyes de Kirchhoff..- Euciado de las Leyes de Kirchhoff. Defiició de Nodo y Lazo Cerrado. Las Leyes de Kirchhoff so el puto de partida para el aálisis de cualquier circuito

Más detalles

MODELADO SIMPLE DEL TRANSISTOR MOS PARA TECNOLOGIA 1.2µm. A. Herrera-Favela y F. Sandoval-Ibarra

MODELADO SIMPLE DEL TRANSISTOR MOS PARA TECNOLOGIA 1.2µm. A. Herrera-Favela y F. Sandoval-Ibarra MODELADO SIMPLE DEL TRANSISTOR MOS PARA TECNOLOGIA.2µm A. Herrera-Favela y F. Sadoval-Ibarra Electroics Desig Grou CINESTA, Guadalajara Uit Prol. Lóez-Mateos Sur 590, 45235 Guadalajara JAL. (México) aherrera@gdl.civestav.mx

Más detalles

MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO

MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA MECANICA MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO FERNANDO ESPINOSA FUENTES Necesidad del reemplazo. Si se matiee u riesgo durate u tiempo

Más detalles

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Por: Lic. Eleazar J. García. República Bolivariaa de Veezuela Tiaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Usted está familiarizado co alguas operacioes iversas. La adició y la sustracció so operacioes

Más detalles

TEMA 5: INTERPOLACIÓN

TEMA 5: INTERPOLACIÓN 5..- ITRODUCCIÓ TEMA 5: ITERPOLACIÓ Supogamos que coocemos + putos (x,y, (x,y,..., (x,y, de la curva y = f(x, dode las abscisas x k se distribuye e u itervalo [a,b] de maera que a x x < < x b e y k = f(x

Más detalles

RENDIMIENTO INTRODUCCIÓN BALANCE DE ENERGÍA RENDIMIENTO DE COMBUSTIÓN TABLAS DE COMBUSTIBLES RENDIMIENTO ESTACIONAL TECNOLOGÍA DE LA COMBUSTIÓN

RENDIMIENTO INTRODUCCIÓN BALANCE DE ENERGÍA RENDIMIENTO DE COMBUSTIÓN TABLAS DE COMBUSTIBLES RENDIMIENTO ESTACIONAL TECNOLOGÍA DE LA COMBUSTIÓN RENDIMIENTO INTRODUCCIÓN BALANCE DE ENERGÍA RENDIMIENTO DE COMBUSTIÓN TABLAS DE COMBUSTIBLES REAL DECRETO 275/1995 DE 24 DE FEBRERO DIRECTIVA DEL CONSEJO 92/42/CEE RENDIMIENTO ESTACIONAL 1 INTRODUCCIÓN

Más detalles

REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL

REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL 375 REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL 376 Revisió de alguos idicadores para medir desigualdad Medidas de Desigualdad Para medir el grado de desigualdad e la

Más detalles

Figura 9.1: Respuesta típica al escalón unitario de un sistema de control. Análisis de Sistemas Lineales 95 Ing. Eduardo Interiano

Figura 9.1: Respuesta típica al escalón unitario de un sistema de control. Análisis de Sistemas Lineales 95 Ing. Eduardo Interiano (VSHFLILFDFLRQHVHQHOGRPLQLRGHOWLHPSR E capítulos ateriores se ha estudiado la respuesta de estado estable de los sistemas lieales ( cuado tæ ), estudiaremos ahora la respuesta trasitoria. La respuesta

Más detalles

7 Energía electrostática Félix Redondo Quintela y Roberto Carlos Redondo Melchor Universidad de Salamanca

7 Energía electrostática Félix Redondo Quintela y Roberto Carlos Redondo Melchor Universidad de Salamanca 7 Eergía electrostática Félix Redodo Quitela y Roberto Carlos Redodo Melchor Uiersidad de alamaca Eergía electrostática de ua distribució de carga eléctrica Hasta ahora hemos supuesto distribucioes de

Más detalles

Las funciones de Cobb-Douglas como base del espacio vectorial de funciones homogéneas

Las funciones de Cobb-Douglas como base del espacio vectorial de funciones homogéneas Las fucioes de Cobb-Douglas como base del esacio vectorial de fucioes homogéeas Zuleyka Díaz Martíez Mª Pilar García Pieda José Atoio Núñez del Prado Uiversidad Comlutese de Madrid Facultad de Ciecias

Más detalles

Ejercicios Resueltos ADC / DAC

Ejercicios Resueltos ADC / DAC Curso: Equipos y Sistemas de Cotrol Digital Profesor: Felipe Páez M. Programa: Automatizació, espertio, 010 Problemas Resueltos: Ejercicios Resueltos ADC / DAC ersió 1.1 1. Se tiee u DAC ideal de 10 bits,

Más detalles

Objetivos. Transistor MOSFET ELEMENTOS ACTIVOS EL-2207 I SEMESTRE 2007

Objetivos. Transistor MOSFET ELEMENTOS ACTIVOS EL-2207 I SEMESTRE 2007 Objetivos Transistor MOFET ELEMENTO ACTO EL07 EMETRE 007 El transistor de efecto de camo MOFET y la tecnología CMO (6 semanas Construcción, símbolo, clasificación. Funcionamiento. Curvas características

Más detalles

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS)

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS) Los valores icluidos e u grupo de datos usualmete varía e magitud; alguos de ellos so pequeños y otros so grades. U promedio es u valor simple, el cual es cosiderado como el valor más represetativo o típico

Más detalles

OBJETIVOS. Objetivos Generales. Objetivos Específicos. Profesora: María Martel Escobar. Una función f es creciente (estrictamente) si x, y Dom(f), con

OBJETIVOS. Objetivos Generales. Objetivos Específicos. Profesora: María Martel Escobar. Una función f es creciente (estrictamente) si x, y Dom(f), con Curso -3 OBJETIVOS Objetivos Geerales Itroducir el cálculo de fucioes de ua variable como fudameto del aálisis ecoómico margial y los problemas de optimizació. Matemáticas Empresariales Doble Grado e ADE

Más detalles

Análisis en el Dominio de la Frecuencia. Análisis en el Dominio de la Frecuencia. Sistemas de Control. Análisis en el Dominio de la Frecuencia

Análisis en el Dominio de la Frecuencia. Análisis en el Dominio de la Frecuencia. Sistemas de Control. Análisis en el Dominio de la Frecuencia Aálisis e el Domiio de la Frecuecia Sistemas de Cotrol El desempeño se mide por características e el domiio del tiempo Respuesta e el tiempo es díficil de determiar aalíticamete, sobretodo e sistemas de

Más detalles

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor.

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Fucioes y derivada. 5. Aproimació de fucioes: poliomios de Taylor y teorema de Taylor. Alguas veces podemos aproimar fucioes complicadas mediate otras

Más detalles

OPERACIONES ALGEBRAICAS FUNDAMENTALES

OPERACIONES ALGEBRAICAS FUNDAMENTALES MATERIAL DIDÁCTICO DE PILOTAJE PARA ÁLGEBRA 2 OPERACIONES ALGEBRAICAS FUNDAMENTALES ÍNDICE DE CONTENIDO 2. Suma, resta, multiplicació y divisió 6 2.1. Recoociedo la estructura de moomios y poliomios 6

Más detalles

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ANÁLISIS EXPLORATORIO DE DATOS Ejemplos y ejercicios de Aálisis Exploratorio de Datos Descripció estadística de ua variable. Ejemplos y ejercicios..1 Ejemplos. Ejemplo.1 Se ha medido el grupo saguíeo de

Más detalles

TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (Parte I)

TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (Parte I) TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (Parte I) Tema 6- Parte 1 1 EL MÉTODO de la TASA de DESCUENTO AJUSTADA al RIESGO : a = k + p E presecia de iflació a = k + p ( 1 + a ) = ( 1 + a )(

Más detalles

Este centro consta de 20 cuartos sencillos, 12 cuartos dobles, 7 corredores y 4 salas de sesiones.

Este centro consta de 20 cuartos sencillos, 12 cuartos dobles, 7 corredores y 4 salas de sesiones. reguta 6 utos Ua empresa de limpieza cotrata persoal e forma putual depediedo de las solicitudes de trabajo de sus clietes. ara el iicio de ua coferecia iteracioal, u cliete platea la limpieza a fodo del

Más detalles

Capitulo 2. Filtros. 2.1 Antecedentes

Capitulo 2. Filtros. 2.1 Antecedentes Capitulo. Filtros.. Atecedetes U filtro es u elemeto que tiee como fució separar compoetes que se ecuetra mezclados, ser capaz de rechazar los ideseables y así daros como resultado úicamete los deseados.

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central EYP14 Estadística para Costrucció Civil 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los

Más detalles

Tema III: La Elección de Inversiones. Economía de la Empresa: Financiación. Prof. Francisco Pérez Hernández

Tema III: La Elección de Inversiones. Economía de la Empresa: Financiación. Prof. Francisco Pérez Hernández Tema III: La Elecció de Iversioes Ecoomía de la Empresa: Fiaciació Prof. Fracisco Pérez Herádez La Elecció de Iversioes Para ayudar a la elecció de distitas operativas de iversió, se puede seguir distitos

Más detalles

Propuesta de un modelo para la gestión de los neumáticos de una flota de vehículos

Propuesta de un modelo para la gestión de los neumáticos de una flota de vehículos 5 th Iteratioal oferece o Idustrial Egieerig ad Idustrial Maageet XV ogreso de Igeiería de Orgaizació artagea, 7 a 9 de Setiebre de 2 Prouesta de u odelo ara la gestió de los euáticos de ua flota de vehículos

Más detalles

TEMA 6. TRANSISTOR BIPOLAR DE PUERTA AISLADA (IGBT)

TEMA 6. TRANSISTOR BIPOLAR DE PUERTA AISLADA (IGBT) INTROUCCIÓN ección de una celdilla elemental Fuente Puerta TEMA 6. TRANITOR BIPOLAR E PUERTA AILAA (IBT) 6.1. INTROUCCIÓN 6.2. TECNOLOÍA E FABRICACIÓN Y CURVA CARACTERÍTICA I-V 6.3. FUNCIONAMIENTO EL TRANITOR

Más detalles

Modulo IV. Inversiones y Criterios de Decisión. Inversión en la empresa. Análisis de Inversiones

Modulo IV. Inversiones y Criterios de Decisión. Inversión en la empresa. Análisis de Inversiones Modulo IV Iversioes y Criterios de Decisió Aálisis de Iversioes 1. Iversió e la empresa 2. Métodos aproximados de valoració y selecció de iversioes 3. Criterio del valor actualizado eto (VAN) 4. Criterio

Más detalles

Sistemas Automáticos. Ing. Organización Conv. Junio 05. Tiempo: 3,5 horas

Sistemas Automáticos. Ing. Organización Conv. Junio 05. Tiempo: 3,5 horas Sistemas Automáticos. Ig. Orgaizació Cov. Juio 05. Tiempo: 3,5 horas NOTA: Todas las respuestas debe ser debidamete justificadas. Problema (5%) Ua empresa del sector cerámico dispoe de u horo de cocció

Más detalles

2. LEYES FINANCIERAS.

2. LEYES FINANCIERAS. TEMA 1: CONCEPTOS PREVIOS 1. INTRODUCCIÓN. Se va a aalizar los itercambios fiacieros cosiderado u ambiete de certidumbre. El itercambio fiaciero supoe que u agete etrega a otro u capital (o capitales),

Más detalles

CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS

CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS Curso Preparació y Evaluació Social de Proyectos Sistema Nacioal de Iversioes Divisió de Evaluació Social de Iversioes MINISTERIO DE DESARROLLO SOCIAL

Más detalles

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios Poliomios Defiició de poliomio y sus propiedades U poliomio puede expresarse como ua suma de productos de fucioes de x por ua costate o como ua suma de térmios algebraicos; es decir U poliomio e x es ua

Más detalles

TEMA 5 COMPARACIÓN DE LOS CRITERIOS TIR y VAN. Grupo F. Curso 2009/2010

TEMA 5 COMPARACIÓN DE LOS CRITERIOS TIR y VAN. Grupo F. Curso 2009/2010 TEMA 5 COMPARACIÓN DE LOS CRITERIOS TIR y VAN Curso 009/00 Direcció Fiaciera I (009-00) Icoveietes de la TIR.. Icosistecias e la obteció de la TIR: múltiples solucioes y o existecia de solució.. Posibilidad

Más detalles

Capítulo 2. Operadores

Capítulo 2. Operadores Capítulo 2 Operadores 21 Operadores lieales 22 Fucioes propias y valores propios 23 Operadores hermitiaos 231 Delta de Kroecker 24 Notació de Dirac 25 Operador Adjuto 2 Operadores E la mecáica cuática

Más detalles

Medios de Transmisión

Medios de Transmisión 39 Medios de Trasmisió 3. Fibra Optica La fibra óptica trasporta iformació e forma de u haz de luz que fluctúa e su itesidad. Luz es ua oda electromagética que se propaga a ua frecuecia mayor que la que

Más detalles

MEDIDAS DE RESUMEN. Jorge Galbiati Riesco

MEDIDAS DE RESUMEN. Jorge Galbiati Riesco MEDIDAS DE RESUMEN Jorge Galbiati Riesco Las medidas de resume sirve para describir e forma resumida u cojuto de datos que costituye ua muestra tomada de algua població. Podemos distiguir cuatro grupos

Más detalles

ESTADÍSTICA BÁSICA. Discretas. Función de masa de probabilidad: P(X=x i ) Sólo se toma un conjunto finito valores {x 1, x 2,...}

ESTADÍSTICA BÁSICA. Discretas. Función de masa de probabilidad: P(X=x i ) Sólo se toma un conjunto finito valores {x 1, x 2,...} ESTADÍSTICA BÁSICA 1.) Coceptos básicos: Estadística: Es ua ciecia que aaliza series de datos (por ejemplo, edad de ua població, altura de u equipo de balocesto, temperatura de los meses de verao, etc.)

Más detalles

Sucesiones numéricas.

Sucesiones numéricas. SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El

Más detalles

Valoración de permutas financieras de intereses (IRS) *

Valoración de permutas financieras de intereses (IRS) * Valoració de permutas fiacieras de itereses (IRS) * JOSÉ E. ROMERO FERNÁNDEZ Agecia Estatal de Admiistració Tributaria SUMARIO 1. INTRODUCCIÓN. 2. INSTRUMENTOS FINANCIEROS DERIVADOS. 3. LOS MERCADOS. 4.

Más detalles

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2)

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2) Trasformada Z La trasformada Z es u método tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas cotiuos

Más detalles

Señales y sistemas discretos (1) Transformada Z. Definiciones

Señales y sistemas discretos (1) Transformada Z. Definiciones Trasformada Z La trasformada Z es u método para tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas

Más detalles

TRANSISTORES DE EFECTO DE CAMPO

TRANSISTORES DE EFECTO DE CAMPO Tema 7 TRANITORE E EFECTO E CAMPO 1.- Introducción. 2.- Transistores de unión de efecto de campo (JFET) 2.1.- Estructura básica. 2.2.- ímbolos. 2.3.- Principio de funcionamiento. 2.3.1.- Influencia de.

Más detalles

TEORÍA DE LÍNEAS DE ESPERA (COLAS)

TEORÍA DE LÍNEAS DE ESPERA (COLAS) TEORÍA DE ÍEAS DE ESERA COAS Cojuto de modelos matemáticos ue describe sistemas específicos de líeas de espera o colas, usados e la toma de decisioes al ecotrar el estado estable o estacioario del sistema

Más detalles

UNIDAD 8 MODELO DE ASIGNACIÓN. características de asignación. método húngaro o de matriz reducida.

UNIDAD 8 MODELO DE ASIGNACIÓN. características de asignación. método húngaro o de matriz reducida. UNIDAD 8 MODELO DE ASIGNACIÓN características de asigació. método húgaro o de matriz reducida. Ivestigació de operacioes Itroducció U caso particular del modelo de trasporte es el modelo de asigació,

Más detalles

Para construir intervalos de confianza recordemos la distribución muestral de la proporción muestral $p :

Para construir intervalos de confianza recordemos la distribución muestral de la proporción muestral $p : Itervalos de Cofiaza para ua proporció Cuado hacemos u test de hipótesis decidimos sobre u valor hipotético del parámetro. Qué proporció de mujeres espera compartir las tareas de la casa co su pareja?

Más detalles

IES Fco Ayala de Granada Junio de 2013 (Reserva 2 Modelo 1 ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2013 (Reserva 2 Modelo 1 ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Graada Juio de 03 (Reserva Modelo ) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 03 MODELO (RESERVA ) OPCIÓN A EJERCICIO (A) ( 5 putos) U fabricate elabora

Más detalles

Planificación contra stock

Planificación contra stock Plaificar cotra stock 5 Plaificació cotra stock Puede parecer extraño dedicar u tema al estudio de métodos para plaificar la producció de empresas que trabaja cotra stock cuado, actualmete, sólo se predica

Más detalles

POTENCIA DE LA TURBINA Se puede demostrar que la potencia de la turbina está dada por la expresión:

POTENCIA DE LA TURBINA Se puede demostrar que la potencia de la turbina está dada por la expresión: 1 CENTRALES IRÁULICAS TURBINAS IRÁULICAS INTROUCCIÓN E el capítulo aterior se hizo referecia a la trasformació eergética que se preseta e la tubería La eergía potecial del agua se trasforma e eergía de

Más detalles

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª Sea a, b y eteros positivos tales que a b y ab Prueba que a b 4 Idica justificadamete cuádo se alcaa la igualdad Supogamos que el resultado a demostrar fuera falso

Más detalles

TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con:

TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con: TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA.- Itroducció E los problemas de Programació Lieal os ecotraremos co: - Fució Objetivo: es la meta que se quiere alcazar, y que será la fució a

Más detalles

Análisis en el Dominio del Tiempo para Sistemas Discretos

Análisis en el Dominio del Tiempo para Sistemas Discretos OpeStax-CNX module: m12830 1 Aálisis e el Domiio del Tiempo para Sistemas Discretos Do Johso Traslated By: Erika Jackso Fara Meza Based o Discrete-Time Systems i the Time-Domai by Do Johso This work is

Más detalles

ELEMENTOS DE ÁLGEBRA MATRICIAL

ELEMENTOS DE ÁLGEBRA MATRICIAL ELEMENTOS DE ÁLGEBRA MATRICIAL Ezequiel Uriel DEFINICIONES Matriz Ua matriz de orde o dimesió p- o ua matriz ( p)- es ua ordeació rectagular de elemetos dispuestos e filas y p columas de la siguiete forma:

Más detalles

Estimación puntual y por Intervalos de Confianza

Estimación puntual y por Intervalos de Confianza Capítulo 7 Estimació putual y por Itervalos de Cofiaza 7.1. Itroducció Cosideremos ua v.a X co distribució F θ co θ descoocido. E este tema vemos cómo dar ua estimació putual para el parámetro θ y cómo

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

Sistemas de colas. Objetivo teórico: Determinar la distribución del número de clientes en el sistema

Sistemas de colas. Objetivo teórico: Determinar la distribución del número de clientes en el sistema Sitema de cola Ua cola e produce cuado la demada de u ervicio por parte de lo cliete excede la capacidad del ervicio. Se eceita coocer (predecir) el ritmo de etrada de lo cliete y el tiempo de ervicio

Más detalles

5. Crecimiento, decrecimiento. y Economía

5. Crecimiento, decrecimiento. y Economía 5. Crecimieto, decrecimieto y Ecoomía Matemáticas aplicadas a las Ciecias Sociales I. Sucesioes. Matemática fiaciera 3. Fució epoecial y logarítmica 4. Modelos de crecimieto 80 Crecimieto, decrecimieto

Más detalles

MÁQUINA DE CORRIENTE CONTINUA. 10.1 Generalidades. 10.2 Generador de corriente continua

MÁQUINA DE CORRIENTE CONTINUA. 10.1 Generalidades. 10.2 Generador de corriente continua MÁQN CORRNT CONTN MÁQN CORRNT CONTN 0. Geeralidades La máquia de corriete cotiua puede ser utilizada tato como geerador o como motor, auque e la actualidad su uso está dado como motor, ya que la geeració

Más detalles

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0 Tema 4 Series de Potecias Ua expresió de la forma a 0 + a 1 (x c) + a 2 (x c) 2 +... + a (x c) +... = recibe el ombre de serie de potecias cetrada e c. a (x c) Ua serie de potecias puede ser iterpretada

Más detalles

Fluidos no newtonianos

Fluidos no newtonianos Fluidos o etoiaos Desde el puto de vista de la reología, los fluidos más secillos so los etoiaos, llamados así porque su comportamieto sigue la ley de Neto: El esfueo de corte es proporcioal al gradiete

Más detalles

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA CAPÍTULO I CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA El campo de la estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Motgomery

Más detalles

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- II FUNDAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- II FUNDAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1 RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- II FUNDAMENTOS DE DIRECCIÓN FINANCIERA Tema 3- Parte I Etapas del Modelo de Markowitz I. DETERMINACIÓN DEL CONJUNTO DE POSIBILIDADES DE INVERSIÓN - Se

Más detalles

Dada una secuencia g[n] se define su transformada Z (TZ) directa G(z), como. La relación entre la secuencia y su transformada se denota por:

Dada una secuencia g[n] se define su transformada Z (TZ) directa G(z), como. La relación entre la secuencia y su transformada se denota por: Tema 4. Trasformada Z. La trasformada Z para sistemas discretos desempeña u papel aálogo a la trasformada de Laplace para sistemas cotiuos. os va a permitir represetar la relació etrada salida de u sistema

Más detalles

Análisis de sistemas en el dominio de la frecuencia

Análisis de sistemas en el dominio de la frecuencia Aálisis de sistemas e el domiio de la frecuecia Prof. Mª Jesús de la Fuete Aparicio Dpt. Igeiería de Sistemas y Automática Facultad de Ciecias Uiversidad de Valladolid maria@autom.uva.es Domiio frecuecial

Más detalles

donde n e i, están en la misma unidad de tiempo. Por tanto, la expresión de los intereses ordinarios ó simples y pospagables :

donde n e i, están en la misma unidad de tiempo. Por tanto, la expresión de los intereses ordinarios ó simples y pospagables : 1 1. LEY FINANCIERA DE CAPITALIZACIÓN SIMPLE. 1.- Calcular los itereses producidos por u capital de 1800 colocado 10 días al 7% de iterés aual simple. a) Cosiderado el año civil. b) Cosiderado el año comercial.

Más detalles

Ejercicios Tema 4. Estructuras de Repetición

Ejercicios Tema 4. Estructuras de Repetición Ejercicios Tema 4. Estructuras de Repetició 1. Calcular el factorial de u úmero etero itroducido por teclado. 2. Calcular de la suma y la media aritmética de N úmeros reales. Solicitar el valor de N al

Más detalles

CONCEPTOS BÁSICOS DE PRESTAMOS.

CONCEPTOS BÁSICOS DE PRESTAMOS. GESTIÓN FINANCIERA. TEMA 8º. PRESTAMOS. 1.- Coceptos básicos de préstamos. CONCEPTOS BÁSICOS DE PRESTAMOS. Coceptos básicos de prestamos. Préstamo. U préstamo es la operació fiaciera que cosiste e la etrega,

Más detalles

ANEXO I ANEXO I CONCEPTOS SÍSMICOS BÁSICOS

ANEXO I ANEXO I CONCEPTOS SÍSMICOS BÁSICOS AEXO I COCEPTOS SÍSMICOS BÁSICOS E este aeo se compila alguos de los coceptos sísmicos básicos pero ecesarios. Se itroduce los tipos de movimietos vibratorios, así como su descripció y otació matemática.

Más detalles

Los sistemas operativos en red

Los sistemas operativos en red 1 Los sistemas operativos e red Objetivos del capítulo Coocer lo que es u sistema operativo de red. Ver los dos grupos e que se divide los sistemas oeprativos e red. Distiguir los compoetes de la arquitectura

Más detalles

SOLUCIÓN ACTIVIDADES UNIDAD 7

SOLUCIÓN ACTIVIDADES UNIDAD 7 SOLUCIÓN ACTIVIDADES UNIDAD 7 1.- Qué es ua fuete fiaciera?.- Cuál es la diferecia etre los fodos propios y los fodos ajeos? La forma de obteer recursos fiacieros la empresa para llevar a cabo sus iversioes.

Más detalles

TEMA 3 CARGAS ELÉCTRICAS Y ESTIMACIÓN DE LA DEMANDA. - 4) Calculo de la potencia demandada por cada tipo de receptor

TEMA 3 CARGAS ELÉCTRICAS Y ESTIMACIÓN DE LA DEMANDA. - 4) Calculo de la potencia demandada por cada tipo de receptor TEMA 3 CARGAS ELÉCTRICAS Y ESTIMACIÓN DE LA DEMANDA Coteido - 1) Clasificació de los receptores - 2) Tesioes Nomiales Normalizadas - 3) Cosideracioes geerales - 4) Calculo de la potecia demadada por cada

Más detalles

TRANSISTORES DE EFECTO DE CAMPO

TRANSISTORES DE EFECTO DE CAMPO Tema 7 TRANSISTORES DE EFECTO DE CAMPO 1.- Introducción. 2.- Transistores de unión de efecto de campo (JFET). 2.1.- Estructura Básica. 2.2.- Símbolos. 2.3.- Principio de funcionamiento. 2.3.1.- Influencia

Más detalles

LA TRANSFORMADA Z { } CAPÍTULO SEIS. T n n. 6.1 Introducción

LA TRANSFORMADA Z { } CAPÍTULO SEIS. T n n. 6.1 Introducción CAPÍTULO SEIS LA TRANSFORMADA Z 6. Itroducció E el Capítulo 5 se itrodujo la trasformada de Laplace. E este capítulo presetamos la trasformada Z, que es la cotraparte e tiempo discreto de la trasformada

Más detalles

GUÍA DE ESTUDIO ÁLGEBRA LINEAL

GUÍA DE ESTUDIO ÁLGEBRA LINEAL GUÍ DE ESUDIO ÁLGER LINEL ema 3. rasformacioes Lieales. QUÉ ES UN RNSFORMCIÓN? E térmios geerales, ua trasformació es ua fució que permite trasformar u vector que perteece a u espacio vectorial (domiio)

Más detalles

Tema 9. Inferencia Estadística. Intervalos de confianza.

Tema 9. Inferencia Estadística. Intervalos de confianza. Tema 9. Iferecia Estadística. Itervalos de cofiaza. Idice 1. Itroducció.... 2 2. Itervalo de cofiaza para media poblacioal. Tamaño de la muestra.... 2 2.1. Itervalo de cofiaza... 2 2.2. Tamaño de la muestra...

Más detalles

Teorías de falla bajo cargas estáticas

Teorías de falla bajo cargas estáticas Teorías de falla bajo cargas estáticas Carlos Armado De Castro P. Coteido: - Itroducció - Falla de materiales dúctiles - Falla de materiales frágiles. Itroducció La falla es la pérdida de fució de u elemeto

Más detalles

Matemáticas I - 1 o BACHILLERATO Binomio de Newton

Matemáticas I - 1 o BACHILLERATO Binomio de Newton Matemáticas I - o Bachillerato Matemáticas I - o BACHILLERATO El biomio de Newto es ua fórmula que se utiliza para hacer el desarrollo de la potecia de u biomio elevado a ua potecia cualquiera de expoete

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 4)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 4) IES Fco Ayala de Graada Sobrates de 8 (Modelo 4) Solució Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 8 (MODELO 4) OPCIÓN A EJERCICIO 1_A (3 putos) U joyero fabrica dos modelos

Más detalles

Soluciones Hoja de Ejercicios 2. Econometría I

Soluciones Hoja de Ejercicios 2. Econometría I Ecoometría I. Solucioes Hoja 2 Carlos Velasco. MEI UC3M. 2007/08 Solucioes Hoja de Ejercicios 2 Ecoometría I 1. Al pregutar el saldo Z (e miles de euros) de su cueta de ahorro cojuta a u matrimoio madrileño

Más detalles

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n)

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n) 1 Sucesioes De ició. Ua sucesió, a, es ua fució que tiee como domiio el cojuto de los úmeros aturales y como cotradomiio el cojuto de los úmeros reales: a : N! R. Se usa la siguiete otació: a () = a :

Más detalles

Límite de una función

Límite de una función Límite de ua fució SOLUCIONARIO Límite de ua fució LITERATURA Y MATEMÁTICAS El ocho Sharrif iba sacado los libros [de mi bolsa] y ordeádolos e ua pila sobre el escritorio mietras leía cuidadosamete los

Más detalles

1. Demuestra que si p es un natural y p es compuesto, entonces existe un divisor m de p con 1 < m p.

1. Demuestra que si p es un natural y p es compuesto, entonces existe un divisor m de p con 1 < m p. Divisibilidad Matemática discreta Dados dos úmeros aturales a y b, escribiremos a b y leeremos a divide a b si existe u c N tal que ac = b. E este caso, decimos que a es u divisor de b o que b es divisible

Más detalles

Cómo usar este libro. Caraterísticas

Cómo usar este libro. Caraterísticas ROMANOS_MALVINO.qxd 20/12/2006 14:40 PÆgia xii ómo usar este libro araterísticas la séptima edició de Pricipios de lectróica se ha icorporado muchas uevas características para facilitar el estudio. La

Más detalles

Estadística Descriptiva

Estadística Descriptiva Igacio Cascos Ferádez Dpto. Estadística e I.O. Uiversidad Pública de Navarra Estadística Descriptiva Estadística ITT Soido e Image curso 2004-2005 1. Defiicioes fudametales La Estadística Descriptiva se

Más detalles

ESTUDIO DEL TRANSFORMADOR

ESTUDIO DEL TRANSFORMADOR ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIERSIDAD DE NAARRA Práctica º 1: Sistemas Eléctricos ESTUDIO DEL TRANSFORMADOR Sistemas Eléctricos 009-010. El Trasformador 3 ÍNDICE 1 Objetivo

Más detalles

Límite de una función

Límite de una función Límite de ua fució SOLUCIONARIO Límite de ua fució L I T E R A T U R A Y M A T E M Á T I C A S El ocho Sharrif iba sacado los libros [de mi bolsa] y ordeádolos e ua pila sobre el escritorio mietras leía

Más detalles

Máquinas Eléctricas I - G862

Máquinas Eléctricas I - G862 Máquia Eléctrica I - G86 Tema 3. Máquia Aícroa o de Iducció. Problema reuelto Miguel Ágel Rodríguez Pozueta Departameto de Igeiería Eléctrica y Eergé5ca Ete tema e publica bajo Licecia: Crea5ve Commo BY-

Más detalles

ASIGNATURA: MATEMATICAS FINANCIERAS

ASIGNATURA: MATEMATICAS FINANCIERAS APUNTES DOCENTES ASIGNATURA: MATEMATICAS FINANCIERAS PROFESORES: MARIN JAIMES CARLOS JAVIER SARMIENTO LUIS JAIME UNIDAD 3: EVALUACIÓN ECONÓMICA DE PROYECTOS DE INVERSIÓN EL VALOR PRESENTE NETO VPN Es ua

Más detalles

DETERMINACIÓN DE PORTAFOLIOS DE ACTIVOS FINANCIEROS, LA FRONTERA EFICIENTE Y LA LÍNEA DE MERCADO

DETERMINACIÓN DE PORTAFOLIOS DE ACTIVOS FINANCIEROS, LA FRONTERA EFICIENTE Y LA LÍNEA DE MERCADO DETERMINACIÓN DE PORTAFOLIOS DE ACTIVOS FINANCIEROS, LA FRONTERA EFICIENTE Y LA LÍNEA DE MERCADO Coteido: Resume ejecutivo I. Los estadígraos e la ormació de portaolios de activos iacieros II. Portaolios

Más detalles

MATEMÁTICAS Y TECNOLOGÍA CON CALCULADORA GRÁFICA 5. ESTADÍSTICA Y PROBABILIDAD CON LA FX 9860G SLIM

MATEMÁTICAS Y TECNOLOGÍA CON CALCULADORA GRÁFICA 5. ESTADÍSTICA Y PROBABILIDAD CON LA FX 9860G SLIM MATEMÁTICAS Y TECNOLOGÍA CON CALCULADORA GRÁFICA 5. ESTADÍSTICA Y PROBABILIDAD CON LA FX 9860G SLIM DIVISIÓN DIDÁCTICA MAURICIO CONTRERAS ESTADÍSTICA DESCRIPTIVA Y REGRESIÓN CON LA FX 9860G SLIM Itroducció

Más detalles

ESTIMACIÓN DE VARIANZAS Y PROPORCIONES POBLACIONALES MEDIANTE INTERVALOS DE CONFIANZA

ESTIMACIÓN DE VARIANZAS Y PROPORCIONES POBLACIONALES MEDIANTE INTERVALOS DE CONFIANZA UNP-Facultad de Igeiería Carreras: Ig. Electróica y Electricista CAPÍTUO 6 ESTIMACIÓN DE VARIANZAS PROPORCIONES POBACIONAES MEDIANTE INTERVAOS DE CONFIANZA 6.1 Itervalo de cofiaza ara la variaza de ua

Más detalles

Terapias para la depresión resistente a tratamiento. Revisión de las investigaciones

Terapias para la depresión resistente a tratamiento. Revisión de las investigaciones Terapias para la depresió resistete a tratamieto Revisió de las ivestigacioes Es apropiada si: Es esta iformació apropiada para mí o para la persoa a quie cuido? U médico u otro profesioal de salud le

Más detalles

Fórmula de Taylor. Si f es continua en [a,x] y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) = f(x) = f(a) + f '(c)(x a)

Fórmula de Taylor. Si f es continua en [a,x] y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) = f(x) = f(a) + f '(c)(x a) Aproimació de ua fució mediate u poliomio Cuado yf tiee ua epresió complicada y ecesitamos calcular los valores de ésta, se puede aproimar mediate fucioes secillas (poliómicas). El teorema del valor medio

Más detalles

TARIFAS ÓPTIMAS Y SUBSIDIOS CRUZADOS EN LOS PEAJES POR EL USO DE LAS REDES ELÉCTRICAS. *

TARIFAS ÓPTIMAS Y SUBSIDIOS CRUZADOS EN LOS PEAJES POR EL USO DE LAS REDES ELÉCTRICAS. * TARIFA ÓPTIMA Y UBIDIO CRUZADO EN LO PEAJE POR EL UO DE LA REDE ELÉCTRICA. * Pedro CALERO PÉREZ José Igacio ÁNCHEZ MACÍA Departameto de Ecoomía Aplicada Uiversidad de alamaca ** REUMEN La regulació actual

Más detalles