REVISTA INVESTIGACION OPERACIONAL Vol. 22, No. 2, 2001

Tamaño: px
Comenzar la demostración a partir de la página:

Download "REVISTA INVESTIGACION OPERACIONAL Vol. 22, No. 2, 2001"

Transcripción

1 REVISA INVESIGACION OPERACIONAL Vol., No., SOLUCIONES A DIFERENES PROBLEMAS DENRO DEL CAMPO DE LA COMUNICACION ESADISICA J. Navarro Moreo, J.C. Ruz Mola y R.M. Ferádez Alcalá, Deparameo de Esadísca e Ivesgacó Operacoal, Uversdad de Jae, España RESUMEN E esa comucacó se raa dversos problemas muy comues e el ámbo de la geería, proporcoado a esos solucoes fáclmee mplemeables desde u puo de vsa prácco. E cocreo, se aborda los problemas de esmar u fucoal de ua señal aleaora que vee perurbada por u rudo blaco, y el de deecar ua señal, aleaora o deermísca, e rudo Gaussao. Para ello, e prmer lugar se preseará los deomados desarrollos aproxmavos po Karhue-Loève de u proceso esocásco, y poserormee hacedo uso de sus excelees propedades desde u puo de vsa compuacoal, se aplcará a los problemas aerores obeédose las dferees solucoes. Palabras clave: desarrollos aproxmavos po Karhue-Loève, esmacó e meda cuadráca, deeccó de ua señal e rudo Gaussao. ABSRAC hs paper addresses dffere problems wh are very commo commucao egeerg. I parcular, he problem of esmag a fucoal of a sgal process o he bass of osy observaos ad he problem of deecg a deermsc sgal Gaussa ose are cosdered. For hs purpose, frsly, we show he approxmae Karhue-Loève expasos of a sochasc process. Aferwards, hese expasos are appled o solve he prevous problems, obag soluos whch are compuaoally feasble ad ca be easly mplemeed o a compuer. Key words: developmes approxmae ype Karhue-Loève, esmae quadrac sockg, deeco of a sg ose Gaussao. MSC: 6G.. DESARROLLOS APROXIMAIVOS Sea u proceso de segudo orde {x(), [,]} defdo sobre el espaco de probabldad (Ω, B, P), cerado, couo e meda cuadráca y co fucó de covaraza R(,s). Eoces: (a) La fucó de covaraza adme el sguee desarrollo (eorema de Mercer): R(,s) φ ) φ (s),s [,] ( sedo la covergeca absolua y uforme e [,] [,]. Las cosaes y las fucoes φ () so los auovalores y auofucoes propos, respecvamee, de la sguee ecuacó egral de Fredholm: φ ) R(,s) φ (s)ds () ( (b) El proceso x() ee la sguee represeacó (desarrollo de Karhue-Loève): x() b φ () [,] dode la aeror sere coverge e meda cuadráca uformemee e [,], y b se defe: b φ ()x()d m.c. () 5

2 Desde u puo de vsa prácco, el desarrollo de Karhue-Loève presea la dfculad de que o exse u méodo geeral para resolver la ecuacó egral (). Ua alerava cosse e ulzar procedmeos umércos: el méodo de Raylegh-Rz (Baker, 977). A parr de u cojuo de k fucoes {ϕ (), ϕ (),...,ϕ k (),...}, exraídas de u ssema oroormal compleo de L [,] arbraro, ese méodo perme obeer las auofucoes aproxmadas. k φ,k () ajϕj(),..., k,,... j dode los coefcees a j y los auovalores aproxmados, k se obee a parr del sguee problema de auovalores: Aa Ba,...,,k sedo los elemeos de las marcez A (A j ) y B (B j ) de la forma: A,j R(, s) ϕ (s) ϕ ()dds,,j,...,k j y los auovecores: a (a,..., a k ),,...,. B,j ϕ (s) ϕ ()d δ,,j,...,k j El méodo de Raylegh-Rz garaza la covergeca de los auovalores y auofucoes aproxmados e el sguee sedo: φ() φ () y, cuado k, dode deoa a la orma defda e L [,]. Basado e esos auovalores y auofucoes aproxmados se cosruye el sguee desarrollo e sere aproxmavo po Karhue-Loève, deomado desarrollo aproxmado: j dode k y x () b φ () [,] b φ ()x() d (m.c.),,...,, so v.a. co E[ b b j,k ] δj. Guérrez e al. (99) ha demosrado que x() x () H [,] dode H es la orma defda e el subespaco H(x) de L (Ω,B,P) geerado por las varables aleaoras x(). La prcpal objecó de las auofucoes aproxmadas φ () es que o coverge de forma puual ecesaramee a las verdaderas φ (). Para salvar ese problema, e Ruz-Mola e al. (999a) se defe u uevo po de auofucó aproxmada, deomada auofucó modfcada, de la forma: y se demuesra que φˆ () R(, s) φ (s) ds [,] 6

3 (a) ˆ k φ () φ (), dode. deoa a la orma del supremo e [,]. (b) ˆ k R(,s) φ ()ˆ φ (s), e [,] [,]. (c) A parr de las φ ˆ, k( ) se puede defr u uevo desarrollo aproxmavo, deomado desarrollo modfcado, de la forma: que verfca () b φ ˆ () xˆ [,] (3) x() xˆ () H k uformemee e [,]. m (d) S R(,s) exse y es coua e [,] [,], eoces la dervada m-ésma e el sedo de la m m s meda cuadráca de x(), x (m) (), puede aproxmarse de la sguee forma: x (m) () xˆ (m) () H uformemee e [,], sedo dode ˆ (m φ ) () es la dervada m-ésma de φ ˆ ( ). k (m) (m) () b φ ˆ () xˆ (4), E cosecueca, el méodo de Raylegh-Rz proporcoa ua base para cosrur desarrollos e sere aproxmavos co propedades muy smlares al de Karhue-Loève y que puede susur a ese e aquellos casos e que la resolucó de la ecuacó () sea dfícl. Noa. E la cosruccó de los aerores desarrollos e sere aproxmavos o es exclusvamee ecesaro el uso del méodo de Raylegh-Rz para el cálculo de los auovalores y auofucoes aproxmados. Puede aplcarse cualquer méodo umérco, al como el méodo de colocacó, de forma que se garace la covergeca de los auovalores y auofucoes aproxmados obedos a los verdaderos. Las razoes de ulzar de parda el méodo de Raylegh-Rz se debe a la propedad adcoal de acoacó sobre los auovalores aproxmados que ee ese, e la que se garaza que ; y al esudo efecuado e Guérrez e al. (99), e el cual se realza u aálss comparavo de ese méodo co el de colocacó, obeédose uos mejores resulados co el prmero. Co el objeo de abrevar la oacó, a parr de ahora omremos el subídce k e φ ˆ, φ, y b.. ESIMACION LINEAL La prmera aplcacó de los desarrollos aproxmavos se ecuera e el problema clásco de esmacó leal ópma de ua señal aleaora erferda por rudo blaco.la formulacó de ese problema puede realzarse de la sguee maera. Cosderemos u proceso esocásco de segudo orde {x(), [,]}, cerado y couo e meda cuadráca. Supogamos que ese proceso o es accesble drecamee al 7

4 vesgador so que aparece erferdo por u rudo blaco v() co parámero de varaza r > e depedee de x(). De esa forma, el vesgador observa realmee u proceso que respode a u modelo del po: y() x() + v() [,] El problema cosse e esmar x() e el sedo de que se mmce el error e meda cuadráca, a parr de la formacó proporcoada por y() y ulzado u esmador de la forma: xˆ( / ) h(, τ)y( τ) dτ Puede comprobarse (Va rees, 968) que el mpulso de respuesa h que proporcoa u esmador ópmo debe sasfacer la sguee ecuacó egral: rh (, τ) + h(,s)r( τ,s)ds R(, τ) τ (5) La resolucó de la aeror ecuacó egral es dfícl e geeral. Por ello, cosderado el desarrollo e sere modfcado (3), e Navarro-Moreo e al () se propoe el sguee esmador subópmo: sedo (, τ ) la solucó de la ecuacó egral: ĥ xˆ ( / ) ĥ(, τ)y( τ) dτ (6) r ĥ (, τ) + ĥ (,s)rˆ ( τ,s)ds Rˆ (, τ) τ ) y Rˆ (,s) φˆ ()ˆ φ (s es la fucó de covaraza del desarrollo modfcado. La veaja de esa ecuacó sobre (5) es que se puede resolver fáclmee, obeédose la sguee solucó: ĥ (, τ) r ˆ Φ () Λ + r ˆ ˆ ˆ (s) (ds) Φ Φ Φ( τ) τ (7) sedo ˆ Φ ( ) u vecor co erada -ésma la auofucó modfcada Φ ˆ () y Λ ua marz dagoal co elemeos los auovalores aproxmados, co,..,. Puede comprobarse (Navarro-Moreo e al., ) que se verfca (a) xˆ( / ) xˆ ( / ) uformemee e [,]. H (b) E[ x() ( / ) ] E[ x() xˆ( / ) ] + α β () xˆ ˆ dode y( τ ) ˆ H α y β() h(,.) ĥ(,.) uformemee e [,]. 8

5 Noa. El flro subópmo (6) geeralza al propueso por ruz-mola y Valderrama (996) basado e el desarrollo aproxmado, evado el problema de la cosae acualzacó de las auofucoes aproxmadas coforme el sae de esmacó varía. Noa 3. E Navarro-Moreo e al. () se geeralza la expresó del esmador (6) al caso e el que eresa esmar u fucoal de la señal. E parcular, basádose e (4) se propoe el sguee esmador subópmo para la dervada x (m) (): xˆ [m] ( / ) ĥ (, τ)y( τ) dτ [m] sedo ĥ [m] (, τ) r Φˆ (m) () Λ + r Φˆ (s) Φ ˆ (s)ds Φˆ ( τ) para τ, co ˆ (m Φ ) () u vecor co erada -ésma ˆ (m Φ ) (). 3. DEECCION DE UNA SEÑAL DEERMINISICA La seguda aplcacó que propoemos esá ecuadrada dero del campo de la deeccó de señales. El problema de deecar ua señal coocda e rudo Gaussao puede formularse de la sguee maera: ua señal deermísca s() es rasmda e u período de empo [,]. La rasmsó esá deerorada por u rudo cerado Gaussao x() co fucó de covaraza R(,s). Así, la señal recbda vee dada por ua de las sguees hpóess: H : y() x() H : y() s() + x() Se supoe que la señal s() es coua y que la fucó de covaraza R(,s) es defda posva y coua. El procedmeo habual para resolver ese problema es rasformar el proceso observacó {y(), [,]} e u cojuo umerable de v.a. { } y a parr de las que se ha de cosrur el esadísco de decsó ópmo. Esas v.a., deomadas coordeadas observables, puede ser obedas a ravés del desarrollo de Karhue-Loève del rudo: x() b φ(). De esa forma, el problema aeror puede expresarse equvaleemee: dode b esá defdas e () y s φ H : y b,,... H : y s + b,,... )s()d, asocadas a H y H, respecvamee. Se demuesra (Poor, 994) que equvalees y (,,.... Sea P y P las meddas de probabldad s s (y) y / s < eoces P y P so dp log (8) dp 9

6 e el sedo de la meda cuadráca, dode y φ ( )s() d (m.c.),,,.... Desde el puo de vsa prácco, la mplemeacó del ssema de deeccó aeror presea dos coveees. Por ua pare la o fud del desarrollo e sere (8), y por ora su explíca depedeca sobre los auovalores y auofucoes de R(,s). Para resolver el prmero de ellos se realza u rucameo del desarrollo (8) e u érmo M, de maera que la cadad s /, sea rascedee. Para la, M+ resolucó del segudo e Ruz-Mola e al. (999b) se propoe ua solucó alerava basada e el desarrollo modfcado de x() (3). Así, la fucó dode y log (9) s s f (y) y φ ()y() d (m.c.) y s φ ()s()d, puede ser ulzada para aproxmar (8). Se demuesra (Ruz-Mola, 999b) que s se verfca que s / <, eoces dp log (y) log f(y) dp H bajo H y H. Además, el error po I que se comee ulzado (9) vee dado por logσ d Φ + d α y el error po II dode d s / y Φ logσ d Φ d β deoa la fucó de dsrbucó de ua v.a. N(,). Noa 4. E Ruz-Mola e al. (999b) puede ecorarse solucoes para el caso más geeral e el que la señal a deecar es aleaora. 4. EJEMPLO A modo lusravo vamos a cosderar que x() es el proceso de Weer esádar defdo e el ervalo [,], co lo cual, R(,s) m(,s), co,s [,]. Puede comprobarse (Va rees, 968) que los auovalores y auofucoes correspodees so de la forma: φ se( (.5) ) ((.5) π) π A couacó, aplcaremos los resulados obedos aerormee a ese proceso. E prmer lugar, os ceraremos e el problema de esmacó leal. Para ello, supodremos que el proceso de observacó es y() x() + v() [,] 3

7 dode v() es u rudo blaco, cerado, depedee de x() y co parámero de varaza r. Es secllo demosrar que el mpulso de respuesa asocado al esmador ópmo vee dado por τ τ e e h(, τ ) τ e + e y el error cuadráco medo que se comee es gual a h(,). Segudamee, vamos a obeer el mpulso de respuesa aproxmado (7) a parr de los auovalores y auofucoes aproxmados de R(,s). Para aplcar el méodo de Raylegh-Rz vamos a cosderar u ssema de fucoes rgoomércas, del cual seleccoaremos k 5 fucoes. Después se verá que ese valor es sufcee. Eoces, deoado ϕ ),..., ϕ (), cos(π), se(π), cos(4π), se(4π) ( ) ( ) ( 5 y resolvedo el problema de auovalores asocado, se obee las sguees auofucoes aproxmadas φ.9 () φ.68 () φ.5 3 () φ () φ () ϕ().873 ϕ().755 ϕ 3().7853 ϕ4().4956 ϕ5() Los auovalores aproxmados y verdaderos so E las Fguras y se compara gráfcamee las dos prmeras auofucoes verdaderas co las correspodees aproxmadas y modfcadas Fgura. Prmera auofucó verdadera (líea egra), aproxmada (líea grs) y modfcada (puos). 3

8 Fgura. Seguda auofucó verdadera (líea egra), aproxmada (líea grs) y modfcada (puos) El úmero k 5 de fucoes es sufcee, debdo a que co lo cual el desarrollo modfcado co 5 explca u 9.98 % de la eergía meda del proceso de Weer. 5 A parr de esos auovalores y auofucoes aproxmados el mpulso de respuesa aproxmado (7) puede ser obedo fáclmee. E las Fguras 3 y 4 puede observarse el comporameo de ĥ (, τ ) free a h(,τ) para.6 y.8, respecvamee; y e la Fgura 5 se compara el error cuadráco medo que se comee co el esmador ópmo y el error del esmador subópmo (6) Fgura 3. Impulso de respuesa ópmo (líea egra) y aproxmado (puos) para.6. Falmee, se va a cosderar el problema de deecar la señal deermísca s() se(.5π) erferda por el proceso de Weer esádar. E la Fgura 6, se represea la poeca obeda co el esadísco de deeccó ópmo (8) y la poeca asocada co (9). 3

9 Fgura 4. Impulso de respuesa ópmo (líea egra) y aproxmado (puos ) para Fgura 5. Error del esmador ópmo (líea egra) y error del esmador subópmo (puos) Fgura 6. Poeca del ssema de deeccó ópmo (líea egra) y poeca del ssema subópmo (puos). 33

10 REFERENCIAS BAKER, C..H. (977): he Numercal reame of Iegral Equaos, Oxford Uversy Press, Oxford. GUIERREZ, R.; J.C. RUIZ MOLINA ad M.J. VALDERRAMA (99): "O he Numercal Expaso of a Secod Order Sochasc Process", Appl. Sochasc Models Daa Aal. 8(), NAVARRO MORENO, J.;.J.C. RUIZ MOLINA ad M.J. VALDERRAMA (): "A Soluo o Lear Esmao Problems Usg Approxmae Karhue-Loève Expasos", IEEE, ras. Iformao heory, 46(4). POOR, H.V. (994): A Iroduco o Sgal Deeco ad Esmao, Sprger-Verlag, New York. RUIZ MOLINA, J.C.; J. NAVARRO ad M.J. VALDERRAMA (999a): "Dffereao of he Modfed Approxmave Karhue-Loève Expaso of a Sochasc Process", Sas. Prob. Le., RUIZ MOLINA, J.C.; J. NAVARRO MORENO ad A. OYA (999b): "Sgal Deeco Usg Approxmave Karhue-Loève Expasos", Sujeo a revsó e IEEE, ras. Iformao heory. RUIZ MOLINA, J.C. ad M.J. VALDERRAMA (996): "O he Dervao of a Subopmal Fler for Sgal Esmao", Sas. Prob. Le., 8, * VAN REES, H.L. (968): Deeco, Esmao ad Modulao heory, Par I, Wley, New York. 34

Figura 1. Figura 2. Para realizar este análisis asumiremos las siguientes condiciones:

Figura 1. Figura 2. Para realizar este análisis asumiremos las siguientes condiciones: Coverdor PUH PU El coverdor Push Pull es u coverdor que hace uso de u rasformador para eer aslameo ere la esó de erada y la esó de salda. Posee además ua ducaca magezae propa del rasformador que como al

Más detalles

1.1.- Concepto Definición de cono Definición de función homogénea Interpretación económica de la función homogénea

1.1.- Concepto Definición de cono Definición de función homogénea Interpretación económica de la función homogénea Fucoes homogéeas FUNCIONES HOMOGÉNEAS (ESQUEMA).- Cocepo y propedades...- Cocepo Defcó de coo Defcó de fucó homogéea Ierpreacó ecoómca de la fucó homogéea..- Propedades (Operacoes co fucoes homogéeas)

Más detalles

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN - INTRODUCCIÓN E este tema se tratará de formalzar umércamete los resultados de u feómeo aleatoro Por tato, ua varable aleatora es u valor umérco que correspode

Más detalles

TEMA 5: CAPITALIZACIÓN COMPUESTA ÍNDICE

TEMA 5: CAPITALIZACIÓN COMPUESTA ÍNDICE Maemácas Faceras Prof. Mª Mercedes Rojas de Graca TEMA 5: APITALIZAIÓN OMPUESTA ÍNDIE. APITALIZAIÓN OMPUESTA..... ONEPTO..... DESRIPIÓN DE LA OPERAIÓN....3. ARATERÍSTIAS DE LA OPERAIÓN....4. DESARROLLO

Más detalles

estimación de la estructura de Tasas nominales de chile: aplicación del modelo dinámico nelson-siegel

estimación de la estructura de Tasas nominales de chile: aplicación del modelo dinámico nelson-siegel Volume 4 - º / dcembre 0 estmacó de la estructura de Tasas omales de chle: aplcacó del modelo dámco elso-segel Rodrgo Alaro A. * Sebasá Becerra C. ** Adrés Sager T. *** I. IroduccIó La esmacó de la esrucura

Más detalles

REVISTA INVESTIGACION OPERACIONAL Vol. 23, No.2, 2002

REVISTA INVESTIGACION OPERACIONAL Vol. 23, No.2, 2002 REVISTA INVESTIGACION OPERACIONAL Vol. 23, No.2, 2002 UN SISTEMA BASADO EN CASOS PARA LA TOMA DE DECISIONES EN CONDICIONES DE INCERTIDUMBRE Ilaa Guérrez Maríez, Rafael E. Bello Pérez y Adrés Tellería Rodríguez

Más detalles

Modelación hidrológica empleando isoyetas de relieve, una aproximación geoestadística

Modelación hidrológica empleando isoyetas de relieve, una aproximación geoestadística lmae Varably ad hage Hydrologcal Impacs Proceedgs of he Ffh FRIND World oferece held a Havaa uba November 006 IAHS Publ. 308 006. 6 odelacó hdrológca empleado soyeas de releve ua aproxmacó geoesadísca

Más detalles

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU APLICACIÓN EN PROBLEMAS DE INGENIERÍA Clauda Maard Facultad de Igeería. Uversdad Nacoal de Lomas de Zamora Uversdad CAECE Bueos Ares. Argeta. maard@uolsects.com.ar

Más detalles

Una Propuesta de Presentación del Tema de Correlación Simple

Una Propuesta de Presentación del Tema de Correlación Simple Ua Propuesta de Presetacó del Tema de Correlacó Smple Itroduccó Ua Coceptualzacó de la Correlacó Estadístca La Correlacó o Implca Relacó Causa-Efecto Vsualzacó Gráfca de la Correlacó U Idcador de Asocacó:

Más detalles

Taller de Preparación para el examen Models Life Contingencies (MLC) de la SOA.

Taller de Preparación para el examen Models Life Contingencies (MLC) de la SOA. Taller de Preparacó para el eame Models Lfe Cogeces MLC de la SO. Trdad Gozález Bolla El presee es u forme del rabajo desarrollado durae el aller de preparacó para el eame MLC de SO ue uo lugar e la Faculad

Más detalles

VOLUMEN IV CAPITULO 3 METODOLOGÍA PARA LA ACTULIZACIÓN DE LAS CURVA DE COSTOS ÓPTIMOS DE RACIONAMIENTO DE ELECTRICIDAD Y GAS NATURAL

VOLUMEN IV CAPITULO 3 METODOLOGÍA PARA LA ACTULIZACIÓN DE LAS CURVA DE COSTOS ÓPTIMOS DE RACIONAMIENTO DE ELECTRICIDAD Y GAS NATURAL ESTUDO DE OSTOS DE RAONAMENTO DE ELETRDAD Y GAS NATURAL Volume V apulo 3 forme Fal Revsó. VOLUMEN V APTULO 3 METODOLOGÍA PARA LA ATULZAÓN DE LAS URVA DE OSTOS ÓPTMOS DE RAONAMENTO DE ELETRDAD Y GAS NATURAL

Más detalles

RESUMEN. Códigos de campo JEL: F0 C6 SUMMARY

RESUMEN. Códigos de campo JEL: F0 C6 SUMMARY RESUMEN El ema raado e ese rabao se emarca dero del esquema de Cueas Saéle del Tursmo. Maemácamee se desarrolla u ssema de ecuacoes e dferecas. Se pare de la ecuacó macroecoómca fudameal e equlbro para

Más detalles

Una Estrategia de Acumulación de Reservas Mediante Opciones de Venta de Dólares. El Caso de Banco de México

Una Estrategia de Acumulación de Reservas Mediante Opciones de Venta de Dólares. El Caso de Banco de México Ua Esraega de Acumulacó de Reservas Medae Opcoes de Vea de Dólares. El Caso de Baco de Méxco INDICE I. REUMEN... II. INTRODUCCIÓN...3 III. IV. OPCIONE DE VENTA DE DÓLARE...4 III.. PRINCIPALE CARACTERÍTICA...4

Más detalles

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA Lus Fraco Martí {lfraco@us.es} Elea Olmedo Ferádez {olmedo@us.es} Jua Mauel Valderas Jaramllo {valderas@us.es}

Más detalles

6.2.- Funciones cóncavas y convexas

6.2.- Funciones cóncavas y convexas C APÍTULO 6 PROGRAMACIÓN NO LINEAL 6..- Itroduccó a la Programacó No Leal E este tema vamos a cosderar la optmzacó de prolemas que o cumple las codcoes de lealdad, e e la fucó ojetvo, e e las restrccoes.

Más detalles

UNIDAD 7.- Matrices (tema 1 del libro) = MATRICES

UNIDAD 7.- Matrices (tema 1 del libro) = MATRICES UNIDD.- Marces (ema del lbro). MTRICES Ua mar se puede eeder como ua abla de úmeros ordeados e flas columas Defcó.- Se llama mar de dmesó m a u cojuo de úmeros reales dspuesos e m flas columas de la sguee

Más detalles

Introducción a la Estadística Descriptiva

Introducción a la Estadística Descriptiva Iroduccó a la Esadísca Descrpva ª Edcó Carla Re Graña María Raml Díaz ITRODUCCIÓ A LA ESTADÍSTICA DESCRIPTIVA. ª Edcó o esá permda la reproduccó oal o parcal de ese lbro, su raameo formáco, la rasmsódeguaformaoporcualquermedo,aseaelecróco,mecáco,porfoocopa,por

Más detalles

Reglas para el manejo de los índices de deuda de la BNV. Bolsa Nacional de Valores Version 4.4 13/07/2005

Reglas para el manejo de los índices de deuda de la BNV. Bolsa Nacional de Valores Version 4.4 13/07/2005 Reglas para el maejo de los ídces de deuda de la BV Bolsa acoal de Valores Verso 4.4 3/07/005 ága de 6 COTEIDO ITRODUCCIÓ... 4. erspecva geeral... 4 MAEJO DE LOS ÍDICES... 6. Comé de Ídces de íulos de

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria Matemátcas EJERCICIOS RESUELTOS: Números Complejos Elea Álvare Sá Dpto. Matemátca Aplcada y C. Computacó Uversdad de Catabra Igeería de Telecomucacó Fudametos Matemátcos I Ejerccos: Números Complejos Iterpretacó

Más detalles

1.1 INTRODUCCION & NOTACION

1.1 INTRODUCCION & NOTACION 1. SIMULACIÓN DE SISEMAS DE COLAS Jorge Eduardo Ortz rvño Profesor Asocado Departameto de Igeería de Sstemas e Idustral Uversdad Nacoal de Colomba jeortzt@ual.edu.co 1.1 INRODUCCION & NOACION Clete Servdor

Más detalles

Un generador matricial de claves frente a Blum Blum Shub.

Un generador matricial de claves frente a Blum Blum Shub. U geerador marcal de claves free a lum lum Sub. Rafael Álvarez, Joa-Josep Clme, eadro Torosa 3 y oo Zamora 4 Deparame de Cèca de la Compuacó Iel lgèca rfcal. Uversa d'laca, Campus de Sa Vce, p.correus

Más detalles

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es (Feb03-ª Sem) Problema (4 putos). Se dspoe de u semcoductor tpo P paraleppédco, cuya dstrbucó de mpurezas es ( x a) l = A 0 dode A y 0 so mpurezas/volume, l es u parámetro de logtud y a la poscó de ua

Más detalles

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1 RENTILIDD Y RIESGO DE CRTERS Y CTIVOS TEM 3- I FUNTMENTOS DE DIRECCIÓN FINNCIER Fudametos de Dreccó Facera Tema 3- arte I RIESGO y RENTILIDD ( decsoes de versó productvas) EXISTENCI DE RIESGO ( los FNC

Más detalles

V Muestreo Estratificado

V Muestreo Estratificado V Muestreo Estratfcado Dr. Jesús Mellado 10 Certas poblacoes que se desea muestrear, preseta grupos de elemetos co característcas dferetes, s los grupos so pleamete detfcables e su peculardad y e su tamaño,

Más detalles

LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS

LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS Mercedes Alvargozález Rodríguez - malvarg@ecoo.uov.es Uversdad de Ovedo Reservados todos los derechos. Este documeto ha sdo extraído del

Más detalles

Distribución conjunta de variables aleatorias

Distribución conjunta de variables aleatorias FCEyN - Estadístca para Quíca - do. cuat. 006 - Marta García Be Dstrbucó cojuta de varables aleatoras E uchos probleas práctcos, e el so expereto aleatoro, teresa estudar o sólo ua varable aleatora so

Más detalles

CÁLCULO DEL ANCHO DE BANDA EFECTIVO PARA UN FLUJO MARKOVIANO CON TASAS DE TRANSFERENCIA CONTINUAS

CÁLCULO DEL ANCHO DE BANDA EFECTIVO PARA UN FLUJO MARKOVIANO CON TASAS DE TRANSFERENCIA CONTINUAS CÁLCULO DEL ANCHO DE BANDA EFECTIVO PARA UN FLUJO MARKOVIANO CON TASAS DE TRANSFERENCIA CONTINUAS Beatrz Marró Uversdad Nacoal del Sur, beatrz.marro@us.edu.ar Resume: El objetvo de este trabajo es geeralzar

Más detalles

INTEGRAL DE LÍNEA EN EL CAMPO COMPLEJO

INTEGRAL DE LÍNEA EN EL CAMPO COMPLEJO INTEGRAL DE LÍNEA EN EL AMPO OMPLEJO ARRERA: Igeería Electromecáca ASIGNATURA: DOENTES: Ig. Norberto laudo MAGGI Ig. Horaco Raúl DUARTE INGENIERÍA ELETROMEÁNIA INTEGRAL DE LÍNEA EN EL AMPO OMPLEJO ONEPTOS

Más detalles

Sistemas Productivos

Sistemas Productivos Ssemas Producvos º Elemeos de dseño del proceso producvo A la hora de dseñar ua udad producva, hay que realzar ua sere de decsoes esraégcas que cluye ecesaramee:. Localzacó de la plaa: lugar dode físcamee

Más detalles

6. ESTIMACIÓN PUNTUAL

6. ESTIMACIÓN PUNTUAL Defcoes 6 ESTIMACIÓN PUNTUAL E la práctca, los parámetros de ua dstrbucó de probabldad se estma a partr de la muestra La fereca estadístca cosste e estmar los parámetros de ua dstrbucó; y e evaluar ua

Más detalles

Trabajos. Temario. Tema 6. El diodo. Tema 6: El diodo. Tema 6. El diodo. Introducción. Objetivos:

Trabajos. Temario. Tema 6. El diodo. Tema 6: El diodo. Tema 6. El diodo. Introducción. Objetivos: emaro rabajos. odo 7. El rassor. Magesmo 9. duccó elecromagéca. rcuos de corree alera. Odas elecromagécas. lcacoes ócas odo. odo Zeer. odo LE 3. Foododo. odo úel 5. odo Schoky El rassor. El JFE, fudameos

Más detalles

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo:

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo: PRÁCTICA SUMAS DE RIEMAN Práctcas Matlab Práctca Objetvos Calcular tegrales defdas de forma aproxmada, utlzado sumas de Rema. Profudzar e la compresó del cocepto de tegracó. Comados de Matlab t Calcula

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA A. MEDIDAS DE TENDENCIA CENTRAL B. MEDIDAS DE VARIABILIDAD C. MEDIDAS DE FORMA RESUMEN: A. MEDIDAS DE TENDENCIA CENTRAL So estadígrafos de poscó que so terpretados como valores

Más detalles

Sobre los Efectos de la Política Monetaria en Colombia.

Sobre los Efectos de la Política Monetaria en Colombia. Sobre los Efecos de la Políca Moeara e Coloba. Lus F. Melo y lvaro J. Rascos acodelarepúblca February 9 4 bsrac E ese docueo esudaos alguos caales ecasos de aplfcacó y los efecos cuaavos de la políca oeara

Más detalles

Los principales métodos para la selección y valoración de inversiones se agrupan en dos modalidades: métodos estáticos y métodos dinámicos

Los principales métodos para la selección y valoración de inversiones se agrupan en dos modalidades: métodos estáticos y métodos dinámicos Dreccó Facera Pág Sergo Alejadro Herado Westerhede, Igeero e Orgazacó Idustral 5. INTRODUCCIÓN Los prcpales métodos para la seleccó y valoracó de versoes se agrupa e dos modaldades: métodos estátcos y

Más detalles

2. MATRICES Y DETERMINANTES

2. MATRICES Y DETERMINANTES Marices y Deermiaes 2. MTRICES Y DETERMINNTES SUMRIO: INTRODUCCIÓN OBJETIVOS INTRODUCCIÓN TEÓRIC 1.- Marices. 2.- Operacioes co Marices. 3.- Equivalecia de Marices. Trasformacioes Elemeales de Marices.

Más detalles

-Métodos Estadísticos en Ciencias de la Vida

-Métodos Estadísticos en Ciencias de la Vida -Métodos Estadístcos e Cecas de la Vda Regresó Leal mple Regresó leal smple El aálss de regresó srve para predecr ua medda e fucó de otra medda (o varas). Y = Varable depedete predcha explcada X = Varable

Más detalles

9. CIRCUITOS DE SEGUNDO ORDEN LC Y RLC

9. CIRCUITOS DE SEGUNDO ORDEN LC Y RLC 9. IUITOS DE SEGUNDO ODEN Y 9.. INTODUIÓN En el capíulo aneror mos como los crcuos ressos con capacancas o los crcuos ressos con nducancas enen arables que son calculadas medane ecuacones dferencales de

Más detalles

Juegos finitos n-personales como juegos de negociación

Juegos finitos n-personales como juegos de negociación Juegos ftos -persoales como uegos de egocacó A.M.Mármol L.Moro V. Rubales Departameto de Ecoomía Aplcada III. Uversdad de Sevlla. Avd. Ramó Caal.. 0-Sevlla. vrubales@us.es Resume Los uegos -persoales ftos

Más detalles

Tabla de Contenidos. 1 Conceptos básicos sobre regresión y correlación... 1. 2 Caracterización de rodales... 22

Tabla de Contenidos. 1 Conceptos básicos sobre regresión y correlación... 1. 2 Caracterización de rodales... 22 Tala de Coedo Preeacó... Cocepo áco ore regreó correlacó.... Supueo áco de regreó.... Lo upueo de regreó e Dedromería... 6. Emacó de lo parámero del modelo de regreó leal mple... 7.. El méodo de mímo cuadrado

Más detalles

Metodología Índice de Precios de Edificaciones Nuevas

Metodología Índice de Precios de Edificaciones Nuevas Meodología Ídce de recos de Edfcacoes Nuevas COLECCIÓN DOCUMENTOS - ACTUALIZACIÓN 29 Núm. 66 DEARTAMENTO ADMINISTRATIVO NACIONAL DE ESTADÍSTICA HÉCTOR MALDONADO GÓMEZ Drecor CARLOS EDUARDO SEÚLVEDA RICO

Más detalles

FUNCIONES EXPONENCIALES

FUNCIONES EXPONENCIALES 1 FUNCIONES EXPONENCIALES Las fucioes epoeciales iee muchas aplicacioes, e especial ellas describe el crecimieo de muchas caidades de la vida real. Defiició.-La fució co domiio odos los reales y defiida

Más detalles

PROBANDO GENERADORES DE NUMEROS ALEATORIOS

PROBANDO GENERADORES DE NUMEROS ALEATORIOS PROBADO GRADORS D UMROS ALATORIOS s mportate asegurarse de que el geerador usado produzca ua secueca sufcetemete aleatora. Para esto se somete el geerador a pruebas estadístcas. S o pasa ua prueba, podemos

Más detalles

CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO EXCEL

CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO EXCEL CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO ECEL D. Fracsco Parra Rodríguez. Jefe de Servco de Estadístcas Ecoómcas y Socodemográfcas. Isttuto Cátabro de Estadístca. Dª.

Más detalles

PRONÓSTICOS. Tema Nº 2 FACILITADOR LIC. ESP. MIGUEL OLIVEROS

PRONÓSTICOS. Tema Nº 2 FACILITADOR LIC. ESP. MIGUEL OLIVEROS UNIVERSIDAD DE LOS ANDES FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES ESCUELA DE ADMINISTRACIÓN Y CONTADURÍA PUBLICA DEPARTAMENTO DE CIENCIAS ADMINISTRATIVAS ADMINISTRACIÓN DE LA PRODUCCIÓN Y LAS OPERACIONES

Más detalles

IV. GRÁFICOS DE CONTROL POR ATRIBUTOS

IV. GRÁFICOS DE CONTROL POR ATRIBUTOS IV Gráfcos de Cotrol por Atrbutos IV GRÁFICOS DE CONTROL POR ATRIBUTOS INTRODUCCIÓN Los dagramas de cotrol por atrbutos costtuye la herrameta esecal utlzada para cotrolar característcas de caldad cualtatvas,

Más detalles

Curso 2006/07. Tema 9: Modelos con retardos distribuidos (I) 9.1. Análisis de los efectos dinámicos en un modelo con retardos distribuidos

Curso 2006/07. Tema 9: Modelos con retardos distribuidos (I) 9.1. Análisis de los efectos dinámicos en un modelo con retardos distribuidos Curso 26/7 Economería II Tema 9: Modelos con reardos dsrbudos (I) 1. Análss de los efecos dnámcos en un modelo de reardos dsrbudos 2. La dsrbucón de reardos Tema 9 1 9.1. Análss de los efecos dnámcos en

Más detalles

1. Una empresa estudia la evolución de los precios en euros de tres componentes (A, B, C) para una pieza en los últimos 5 años.

1. Una empresa estudia la evolución de los precios en euros de tres componentes (A, B, C) para una pieza en los últimos 5 años. Ejerccos Resuelos Números Ídces Faculad Cecas Ecoómcas y Emresarales Dearameo de Ecoomía Alcada Profesor: Saago de la Fuee Ferádez 1. Ua emresa esuda la evolucó de los recos e euros de res comoees (A,

Más detalles

Introducción a la Programación Lineal

Introducción a la Programación Lineal Itroduccó a la Programacó Leal Clauda Llaa Daza Garzó cldaza@uversa.et.co Trabajo de Grado para Optar por el Título de Matemátco Drector: Pervys Rego Rego Igeero Uversdad Nacoal de Colomba Fudacó Uverstara

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL Probabldad y Estadístca Meddas de tedeca Cetral MEDIDAS DE TENDENCIA CENTRAL E la udad ateror se ha agrupado la ormacó y además se ha dado ua descrpcó de la terpretacó de la ormacó, s embargo e ocasoes

Más detalles

7.1. Muestreo aleatorio simple. 7.2 Muestreo aleatorio estratificado. 7.3 Muestreo aleatorio de conglomerados. 7.4 Estimación del tamaño poblacional.

7.1. Muestreo aleatorio simple. 7.2 Muestreo aleatorio estratificado. 7.3 Muestreo aleatorio de conglomerados. 7.4 Estimación del tamaño poblacional. 7 ELEMETOS DE MUESTREO COTEIDOS: OBJETIVOS: 7.. Muestreo aleatoro smple. 7. Muestreo aleatoro estratfcado. 7.3 Muestreo aleatoro de coglomerados. 7.4 Estmacó del tamaño poblacoal. Determar el dseño de

Más detalles

Tema 5. Análisis Transitorio de Circuitos de Primer y Segundo Orden

Tema 5. Análisis Transitorio de Circuitos de Primer y Segundo Orden Tema 5. Análss Transoro de Crcuos de Prmer y egundo Orden 5.1 Inroduccón 5.2 Crcuos C sn fuenes 5.3 Crcuos C con fuenes 5.4 Crcuos L 5.5 Crcuos LC sn fuenes v() 5.6 Crcuos LC con fuenes () C () C v( )

Más detalles

Introducción a la Transformada Wavelet DESCOMPOSICIÓN DE SEÑALES

Introducción a la Transformada Wavelet DESCOMPOSICIÓN DE SEÑALES Itroduccó a la Trasformada Wavelet DESCOMPOSICIÓN DE SEÑALES Trasformada Wavelet Curso 006 Itroduccó Para ua mejor compresó de los capítulos sguetes desarrollaremos aquí alguos coceptos matemátcos ecesaros

Más detalles

MARTINGALAS Rosario Romera Febrero 2009

MARTINGALAS Rosario Romera Febrero 2009 1 MARTINGALAS Rosario Romera Febrero 2009 1. Nocioes básicas De ició: Sea (; F; P ) u espacio de probabilidad y T 6= ; y sea (F t ) t2t ua ltració e F. Ua familia fx t g t2t de v.a. reales de idas sobre

Más detalles

Tomando como nivel de energía cero el nivel fundamental. Dada la diferencia de energía entre los niveles en la mayoría de los casos

Tomando como nivel de energía cero el nivel fundamental. Dada la diferencia de energía entre los niveles en la mayoría de los casos Capíulo. La fucó d pacó ) Spaacó d la fucó d pacó S ha dmosado aom - / k [.] La ía dl l s ual a: k [.] + + + [.] + S los ados d lbad o accoa [.4] - / k - / k... [.5] ) Fucó d pacó lcóca omado como l d

Más detalles

METODOLOGÍA ÍNDICE DE DISTRIBUCIÓN DE ENERGÍA ELÉCTRICA, GAS POR CAÑERÍA Y AGUA POTABLE (IDEGA) (Preliminar)

METODOLOGÍA ÍNDICE DE DISTRIBUCIÓN DE ENERGÍA ELÉCTRICA, GAS POR CAÑERÍA Y AGUA POTABLE (IDEGA) (Preliminar) MEODOLOGÍA ÍNDCE DE DSBUCÓN DE ENEGÍA ELÉCCA, GAS PO CAÑEÍA Y AGUA POABLE (DEGA) (Prelar) SUBDECCÓN ÉCNCA SUBDECCÓN DE OPEACONES Saago, 26 de Dcebre de 2007 CHDA/GGM/GMA/VM ÍNDCE. roduccó...3 2. Marco

Más detalles

INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA PARA ECONOMISTAS

INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA PARA ECONOMISTAS Uverstat de les Illes Balears Col.leccó Materals Ddàctcs INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA PARA ECONOMISTAS Joaquí Alegre Martí Magdalea Cladera Muar Palma, 00 ÍNDICE INTRODUCCIÓN: Qué es...? Qué

Más detalles

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna arte robabldad codcoal rof. María. tarell - robabldad codcoal.- Defcó Supogamos el expermeto aleatoro de extraer al azar s reemplazo dos bolllas de ua ura que cotee 7 bolllas rojas y blacas. summos que

Más detalles

SISTEMAS LINEALES E INVARIANTES EN EL TIEMPO

SISTEMAS LINEALES E INVARIANTES EN EL TIEMPO CAPÍTULO DOS SISTEMAS LINEALES E INVARIANTES EN EL TIEMPO. Iroducció E ese capíulo se iroduce y discue varias propiedades básicas de los sisemas. Dos de ellas, la liealidad y la ivariabilidad e el iempo,

Más detalles

Guía práctica para la realización de medidas y el cálculo de errores

Guía práctica para la realización de medidas y el cálculo de errores Laboratoro de Físca Prmer curso de Químca Guía práctca para la realzacó de meddas y el cálculo de errores Medda y Error Aquellas propedades de la matera que so susceptbles de ser meddas se llama magtudes;

Más detalles

Series de Fourier. 1. Tratamiento Digital de Señal. Series de Fourier

Series de Fourier. 1. Tratamiento Digital de Señal. Series de Fourier Series de Fourier. Traamieo Digial de Señal. Series de Fourier Series de Fourier. Preámbulo El aálisis de Fourier fue iroducido e 8 e la Théorie aalyiique de la chaleur para raar la solució de problemas

Más detalles

ENCUESTA DE SALARIOS AGRARIOS METODOLOGÍA

ENCUESTA DE SALARIOS AGRARIOS METODOLOGÍA SECRETARÍA GENERAL TÉCNICA MINISTERIO DE AGRICULTURA, ALIMENTACIÓN Y MEDIO AMBIENTE SUBDIRECCIÓN GENERAL DE ESTADÍSTICA ENCUESTA DE SALARIOS AGRARIOS METODOLOGÍA INTRODUCCIÓN: La Ecuesa de Salaros Agraros

Más detalles

Topología General Capítulo 0-2 -

Topología General Capítulo 0-2 - Topología Geeral Topología Geeral apítulo - - - - Topología Geeral apítulo - 3 - Breve reseña hstórca Sus orígees está asocados a la obra de Euler, ator y Möbus. La palabra topología había sdo utlzada

Más detalles

Ampliación de Redes de Telefonía Básica

Ampliación de Redes de Telefonía Básica Amplacó de Redes de Telefoía Básca Carlos D. Almeda Uversdad Nacoal de Asucó. Sa Lorezo, Paraguay cdad@eee.org Nlto R. Amarlla Uversdad Nacoal de Asucó. Sa Lorezo, Paraguay dmatest@copaco.com.py Bejamí

Más detalles

CRÉDITO AGRICOLA. Consideraciones del producto:

CRÉDITO AGRICOLA. Consideraciones del producto: Versón: CA-5.04. CRÉDITO AGRICOLA Consderacones del produco: Son crédos que se oorgan para fnancameno de acvdades agropecuaras y se basan en la capacdad de pago de los clenes y su hsoral credco. Se conceden

Más detalles

Consideraciones generales sobre dinámica estructural

Consideraciones generales sobre dinámica estructural Capíulo Consderacones generales sobre dnámca esrucural Inroduccón El obeo de la dnámca esrucural es el análss de esrucuras bao cargas dnámcas, es decr cargas que varían en el empo. Aunque la mayoría de

Más detalles

REVISTA INVESTIGACION OPERACIONAL Vol. 23, No. 3, 2002

REVISTA INVESTIGACION OPERACIONAL Vol. 23, No. 3, 2002 REVISTA INVESTIGACION OPERACIONAL Vol. 23, No. 3, 22 MATRICES ESCALONADAS Y METODOS PRIMAL DUAL DE PUNTO INTERIOR Alibei Kakes Cruz, Deparameo de Maemáica Aplicada, Faculad de Maemáica y Compuació, Uiversidad

Más detalles

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula:

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula: CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS I Meddas de localzacó Auque ua dstrbucó de frecuecas es certamete muy útl para teer ua dea global del comportameto de los datos, es geeralmete ecesaro

Más detalles

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANÁLISIS DE LA VARIANZA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANOVA Marta Alper Profesora Adjuta de Estadístca alper@fcym.ulp.edu.ar http://www.fcym.ulp.edu.ar/catedras/estadstca INTRODUCCION

Más detalles

Método de las Diferencias Finitas en el Dominio del Tiempo (FDTD)

Método de las Diferencias Finitas en el Dominio del Tiempo (FDTD) Méodos Numécos paa la esolucó de cuacoes feecales año 00 Méodo de las feecas Fas e el omo del Tempo FT. Resume l méodo de las feecas Fas e el omo del Tempo Fe ffeece Tme oma FT se ula paa esolve poblemas

Más detalles

ANÁLISIS DE FOURIER. m(el asterisco indica el conjugado complejo), se desea expandir una función arbitraria f (t) en una serie infinita de la forma

ANÁLISIS DE FOURIER. m(el asterisco indica el conjugado complejo), se desea expandir una función arbitraria f (t) en una serie infinita de la forma CAPÍULO RES ANÁLISIS DE FOURIER IEMPO CONINUO Iroducció La represeació de la señal de erada a u sisema (eediedo como sisema u cojuo de elemeos o bloques fucioales coecados para alcazar u objeivo deseado)

Más detalles

Estudio de eventos extremos enfocado a seguros y finanzas

Estudio de eventos extremos enfocado a seguros y finanzas Cuestoes Ecoómcas Vol. 0 No :3004 Estudo de evetos extremos efocado a seguros y fazas KLEVER MEJÍA ADRIANA UQUILLAS * Resume Muchos campos de la ceca modera y la geería tee que ldar co evetos que so poco

Más detalles

LA DISTRIBUCIÓN POISSON-BETA: APLICACIONES Y PROPIEDADES EN LA TEORÍA DEL RIESGO COLECTIVO

LA DISTRIBUCIÓN POISSON-BETA: APLICACIONES Y PROPIEDADES EN LA TEORÍA DEL RIESGO COLECTIVO LA DISTRIBUCIÓN POISSON-BETA: APLICACIONES Y PROPIEDADES EN LA TEORÍA DEL RIESGO COLECTIVO Emlo Gómez Déz 1, José María Saraba 2 y Fausto Preto 2 Resume E el presete trabao se estuda la dstrbucó Posso-Beta,

Más detalles

LOS NÚMEROS COMPLEJOS

LOS NÚMEROS COMPLEJOS LOS NÚMEROS COMPLEJOS por Jorge José Osés Reco Departameto de Matemátcas - Uversdad de los Ades Bogotá Colomba - 00 Cuado se estudó la solucó de la ecuacó de segudo grado ax bx c 0 se aaló el sgo del dscrmate

Más detalles

PRIMERA PRUEBA DE TÉCNICAS CUANTITATIVAS III. 14-Abril-2015. Grupo A

PRIMERA PRUEBA DE TÉCNICAS CUANTITATIVAS III. 14-Abril-2015. Grupo A PRIMERA PRUEBA DE TÉCICAS CUATITATIVAS III. 14-Abrl-015. Grupo A OMBRE: DI: 1. Se quere hacer u estudo sobre gasto e ropa e ua comarca dode el 41% de los habtates so mujeres. (1 puto) Se decde tomar ua

Más detalles

MATEMÁTICAS 1214, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES. 1. Para cada sucesión infinita abajo, determine si converge o no a un valor finito.

MATEMÁTICAS 1214, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES. 1. Para cada sucesión infinita abajo, determine si converge o no a un valor finito. MATEMÁTICAS 24, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES JOHN GOODRICK. Para cada sucesió ifiita abajo, determie si coverge o o a u valor fiito. (a) {! } e = (a): No coverge. El úmero e está etre

Más detalles

Paola Caymes-Scutari, Anna Morajko, Eduardo César, José G. Mesa, Genaro Costa, Tomàs Margalef, Joan Sorribes, Emilio Luque

Paola Caymes-Scutari, Anna Morajko, Eduardo César, José G. Mesa, Genaro Costa, Tomàs Margalef, Joan Sorribes, Emilio Luque Etoro de Desarrollo y Stozacó de Aplcacoes Master/Worker Paola Caymes-Scutar, Aa Morajko, Eduardo César, José G. Mesa, Gearo Costa, Tomàs Margalef, Joa Sorrbes, Emlo Luque Departameto de Arqutectura de

Más detalles

MATEMÁTICAS FINANCIERAS Y EVALUACIÓN DE PROYECTOS JAIRO TARAZONA MANTILLA CONSULTOR ASESOR DOCENTE FINANCIERO Y PROYECTOS

MATEMÁTICAS FINANCIERAS Y EVALUACIÓN DE PROYECTOS JAIRO TARAZONA MANTILLA CONSULTOR ASESOR DOCENTE FINANCIERO Y PROYECTOS MATEMÁTICAS FINANCIERAS Y EVALUACIÓN DE PROYECTOS JAIRO TARAZONA MANTILLA CONSULTOR ASESOR DOCENTE FINANCIERO Y PROYECTOS Bucaramaga, 2010 INTRODUCCIÓN El presete documeto es ua complacó de memoras de

Más detalles

GENERACION DE NUMEROS ALEATORIOS

GENERACION DE NUMEROS ALEATORIOS GENERACION DE NUMEROS ALEATORIOS U paso clave e smulacó es teer rutas que geere varables aleatoras co dstrbucoes especfcas: epoecal, ormal, etc. Esto es hecho e dos fases. La prmera cosste e geerar ua

Más detalles

TRANSFORMADA z Y DE FOURIER

TRANSFORMADA z Y DE FOURIER Uiversidad de Medoa Dr Ig Jesús Rubé Aor Mooya Aálisis de Señales OBJEIVOS: RANSFORMADA Y DE FOURIER - Expoer los cocepos de fucioes discreas e cuao a la visió del proceso de raamieo de señales que pare

Más detalles

Recuperación de la Información

Recuperación de la Información ssema de recuperacón de nformacón Recuperacón de la Informacón consula documenos mach Documenos Concepos Báscos relevane? ssema de recuperacón de nformacón palabras clave ndexado Las palabras clave (keywords)

Más detalles

LECCIONES DE ESTADÍSTICA

LECCIONES DE ESTADÍSTICA LECCIONES DE ESTADÍSTICA Estos aputes fuero realzados para mpartr el curso de Métodos Estadístcos y umércos e el I.E.S. A Xuquera I de Potevedra. Es posble que tega algú error de trascrpcó, por lo que

Más detalles

Fórmulas de de Derivación Numérica: Aproximación de de la la derivada primera de de una función

Fórmulas de de Derivación Numérica: Aproximación de de la la derivada primera de de una función Uversdad Poltécca de Madrd Igeería de Mas Fórmulas de de Dervacó Numérca: Aproxmacó de de la la dervada prmera de de ua fucó Prof. Alfredo López L Beto Prof. Carlos Code LázaroL Prof. Arturo dalgo LópezL

Más detalles

CAPITULO IV EQUILIBRIO VAPOR -LIQUIDO

CAPITULO IV EQUILIBRIO VAPOR -LIQUIDO CAITULO I EQUILIBRIO AOR -LIQUIDO ara evaluar el fuoameto de u sstema de separaó e etapas, es eesaro efetuar álulos de equlbro vapor-líqudo de balae de matera e ada etapa de separaó, utlado para ello ua

Más detalles

MOF - COMPETENCIA 1 FUNDAMENTOS DE LAS OPERACIONES FINANCIERAS

MOF - COMPETENCIA 1 FUNDAMENTOS DE LAS OPERACIONES FINANCIERAS MOF - OMPETENIA FUNDAMENTOS DE LAS OPERAIONES FINANIERAS apalzacó ompuesa. apalzacó Smple. Acualzacó ompuesa y Smple. Equvalecas Faceras. Aplcacoes de la apalzacó y del Descueo. Valores Medos: Ufcacó de

Más detalles

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor.

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Fucioes y derivada. 5. Aproimació de fucioes: poliomios de Taylor y teorema de Taylor. Alguas veces podemos aproimar fucioes complicadas mediate otras

Más detalles

CURSO BÁSICO DE ANÁLISIS ESTADÍSTICO EN SPSS. FRANCISCO PARRA RODRÍGUEZ JUAN ANTONIO VICENTE VÍRSEDA MAURICIO BELTRÁN PASCUAL

CURSO BÁSICO DE ANÁLISIS ESTADÍSTICO EN SPSS. FRANCISCO PARRA RODRÍGUEZ JUAN ANTONIO VICENTE VÍRSEDA MAURICIO BELTRÁN PASCUAL CURSO BÁSICO DE ANÁLISIS ESTADÍSTICO EN SPSS. FRANCISCO PARRA RODRÍGUEZ JUAN ANTONIO VICENTE VÍRSEDA MAURICIO BELTRÁN PASCUAL EL PROGRAMA ESTADÍSTICO SPSS . EL PROGRAMA ESTADÍSTICO SPSS. INTRODUCCIÓN El

Más detalles

+12V +12V +12V 2K 15V. Problema 2: Determinar el punto de funcionamiento del transistor MOSFET del siguiente circuito: I(mA) D

+12V +12V +12V 2K 15V. Problema 2: Determinar el punto de funcionamiento del transistor MOSFET del siguiente circuito: I(mA) D PROBEMAS E IRUITOS ON TRANSISTORES Problema : eermnar los punos de funconameno de los dsposvos semconducores de los sguenes crcuos: +2V +2V +2V β= β= K β= β= (a) (b) (c) (d) Problema 2: eermnar el puno

Más detalles

ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral

ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral ÁLISIS D DTOS CULITTIVOS José Vcés Otero va Meda Moral ero 005 . COSTRUCCIÓ D U TL D COTIGCI Para aalzar la relacó de depedeca o depedeca etre dos varables cualtatvas omales o actores, es ecesaro estudar

Más detalles

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales ESTADÍSTICA DESCRIPTIVA Métodos Estadístcos Aplcados a las Audtorías Socolaborales Fracsco Álvarez Gozález fracsco.alvarez@uca.es Bajo el térmo Estadístca Descrptva se egloba las téccas que os permtrá

Más detalles

TEMA 3.- OPERACIONES DE AMORTIZACION : PRESTAMOS A INTERES VARIABLE 3.1.-CLASIFICACIÓN DE LOS PRÉSTAMOS A INTERÉS VARIABLE :

TEMA 3.- OPERACIONES DE AMORTIZACION : PRESTAMOS A INTERES VARIABLE 3.1.-CLASIFICACIÓN DE LOS PRÉSTAMOS A INTERÉS VARIABLE : Dpto. Ecoomía Facera y otabldad Pla de Estudos 994 urso 008-09. TEMA 3 Prof. María Jesús Herádez García. TEMA 3.- OPERAIONES DE AMORTIZAION : PRESTAMOS A INTERES VARIABLE 3..-LASIFIAIÓN DE LOS PRÉSTAMOS

Más detalles

10. Optimización no lineal

10. Optimización no lineal 0. Optzcó o lel Coceptos báscos Prcpos y teores pr l búsqued de óptos lobles Optzcó s restrccoes e desó Optzcó s restrccoes e desó > Modelos co restrccoes de uldd Codcoes de uh-tucker Alortos uércos báscos

Más detalles

Estadística de Precios de Vivienda

Estadística de Precios de Vivienda Esadísca de recos de Vvenda Meodología Subdreccón General de Esadíscas Madrd, febrero de 2012 Índce 1 Inroduccón 2 Objevos 3 Ámbos de la esadísca 3.1 Ámbo poblaconal 3.2 Ámbo geográfco 3.3 Ámbo emporal

Más detalles

Métodos Actuariales de Primas de Fianzas

Métodos Actuariales de Primas de Fianzas Méodos Acuaales de mas de Fazas o Ac. edo Agula Belá * pagula@csf.gob.mx Resume: La faza ee macadas dfeecas co las opeacoes de seguos. Los pocedmeos acuaales paa el cálculo de pmas de seguos, esula muy

Más detalles

Análisis de supervivencia. Albert Sorribas Grup de Bioestadística I Biomatemàtica Departament de Ciències Mèdiques Bàsiques Universitat de Lleida

Análisis de supervivencia. Albert Sorribas Grup de Bioestadística I Biomatemàtica Departament de Ciències Mèdiques Bàsiques Universitat de Lleida Análss de supervvenca Alber Sorrbas Grup de Boesadísca I Bomaemàca Deparamen de Cènces Mèdques Bàsques Unversa de Lleda Esquema general Inroduccón al análss de supervvenca Tpos de esudos El concepo de

Más detalles

COMENTARIOS Y ANÁLISIS DEL FACTOR DE PRODUCTIVIDAD PROPUESTO POR OSIPTEL PARA EL PLAN DE REGULACIÓN POR PRECIOS TOPE 2004 2007

COMENTARIOS Y ANÁLISIS DEL FACTOR DE PRODUCTIVIDAD PROPUESTO POR OSIPTEL PARA EL PLAN DE REGULACIÓN POR PRECIOS TOPE 2004 2007 OMNTARIOS Y ANÁLISIS DL FATOR D PRODUTIVIDAD PROPUSTO POR OSIPTL PARA L PLAN D RGULAIÓN POR PRIOS TOP 2004 2007 APLIAIÓN D LA VARIABL M por Davd. M. Sappgto RSUMN JUTIVO ste forme preseta ua evaluacó de

Más detalles

Análisis estadístico de datos muestrales

Análisis estadístico de datos muestrales Aálss estadístco de datos muestrales M. e A. Víctor D. Plla Morá Facultad de Igeería, UNAM Resume Represetacó de los datos de ua muestra: tablas de frecuecas, frecuecas relatvas y frecuecas relatvas acumuladas.

Más detalles

DISEÑO DE UN SISTEMA DE REPARTO A DOMICILIO CON VENTANAS DE TIEMPO INMEDIATAS MEDIANTE MODELACION CONTINUA

DISEÑO DE UN SISTEMA DE REPARTO A DOMICILIO CON VENTANAS DE TIEMPO INMEDIATAS MEDIANTE MODELACION CONTINUA DISEÑO DE UN SISTEM DE REPRTO DOMIILIO ON VENTNS DE TIEMPO INMEDITS MEDINTE MODELION ONTINU Robero Puldo Subercaeau. Ecuela de Igeería, Pofca Uverdad aólca de hle. Jua arlo Muñoz bogabr. Ecuela de Igeería,

Más detalles

CAPÍTULO III. METODOLOGÍA. De acuerdo con la clasificación de Amartya Sen (2001), las medidas de desigualdad se

CAPÍTULO III. METODOLOGÍA. De acuerdo con la clasificación de Amartya Sen (2001), las medidas de desigualdad se CAPÍTULO III. METODOLOGÍA III. Tpos de Medcó De acuerdo co la clasfcacó de Amartya Se (200), las meddas de desgualdad se puede catalogar e u setdo objetvo o ormatvo. E el setdo objetvo se utlza algua medda

Más detalles

V II Muestreo por Conglomerados

V II Muestreo por Conglomerados V II Muestreo por Coglomerados Dr. Jesús Mellado 31 Por alguas razoes aturales, los elemetos muestrales se ecuetra formado grupos, como por ejemlo, las persoas que vve e coloas de ua cudad, lo elemetos

Más detalles