Factorización de polinomios. Sandra Schmidt Q. Escuela de Matemática Instituto Tecnológico de Costa Rica

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica"

Transcripción

1 Artículo de sección Revist digitl Mtemátic, Educción e Internet (www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero Fctorizción de polinomios. Sndr Schmidt Q. Escuel de Mtemátic Instituto Tecnológico de Cost Ric 1.1 Introducción Se present quí l fctorizción de polinomios, concentrándose especilmente en fctorizción de polinomios utilizndo ls fórmuls notles y llegndo por medio de ells l fórmul generl pr fctorizr polinomios de grdo dos. Págin 1 de 20 Los polinomios son expresiones lgerics donde se cominn monomios trvés de l dición y sustrcción. Pero, qué cos son los monomios? Pues ien, son expresiones donde se cominn vriles, representds por letrs de nuestro ecedrio y números reles. Sin emrgo, est cominción no es l zr. Pr que se monomio los exponentes de ls vriles deen ser positivos y es el producto quien une vriles y números reles.

2 Según lo que se define nteriormente como monomio, responde: de ls expresiones siguientes cuáles corresponden monomios? 1. 3xy 2. 5x 2 + 3x x 2 y L cominción de dos monomios por dición o sustrcción se le suele llmr inomio. Si se cominn tres monomios por dición o sustrcción se les llm trinomios. Bueno, el sunto de los nomres se puede simplificr si les llmmos simplemente polinomios. Ahor, otr vez responde según l informción nterior: de ls expresiones siguientes cuáles corresponden polinomios? 1. 3z 3 8z + y 2. 5x 2 + 3x x 3y x x x 3 z y 2 8y Págin 2 de 20 Podemos tener polinomios en vris vriles o polinomios en un vrile. Trtremos solmente los polinomios en un vrile. Además, muchs veces pr simplificr el lenguje escrito les ponemos nomres tles como: p(x),q(x),r(x), etcéter, con minúscul y otrs con myúscul: P(x), Q(x), R(x). Ejemplos de lo nterior son: ) P(x) = 5x 2 + 3x 4

3 ) Q(x) = 3x 5 1 c) q(x) = 2x 4 + 3x Por hor nos interes l fctorizción de polinomios de grdo dos. Estudiremos esto por csos. Por cierto, qué signific fctorizr un polinomio? Fctorizr un polinomio es descomponerlo en dos o más polinomios llmdos fctores, de tl modo que l multiplicrlos entre sí se oteng el polinomio originl. 1.2 Fctorizción por fctor común Oserv lo que hy en común en l representción siguiente, tom en cuent que ls estrells representn vlores reles: + Págin 3 de 20 L estrell zul se repite en mos sumndos, por lo que podemos escriir l expresión nterior como sigue: + ( )

4 Est visulizción nos yud recordr l propiedd distriutiv de l dición con respecto l multiplicción. L cul estlece que: Vemos otros ejemplos. c + c = ( + )c + L estrell zul se repite, por lo menos, dos veces en cd sumndo, sí podemos representr es expresión, nuevmente por l propiedd distriutiv de l dición con respecto l multiplicción, de l mner siguiente: + ( ) Uno más: + - Págin 4 de 20 Luego tendrímos: + - ( )

5 Ahor, utilizndo l representción simólic del álger, consider que l ilustrción nterior, figur (3) y figur(4), se puede expresr sí: 9x 2 12x 3 = (9 12x)x 2 Esto que hemos estdo hciendo corresponde l fctorizción por fctor común. Ahor respondmos l siguiente pregunt: por qué tmién se cumple que 9x 2 12x 3 = x 2 (9 12x)?. Oservemos hor ls representciones de l figur (5) y l figur (6), dees tener que: 9x 3 12x x 5 = ( 9 12x + 16x 2) x 3 (I) Podrímos entonces tener l regl siguiente: Ejemplos: Fctorizndo por fctor común signific: que dee her un vrile que se repite en todos los sumndos del polinomio y el fctor común será quell vrile común con el menor exponente. Págin 5 de 20 ) y + 6 = ( 2 ) (y) + (3) = ( 2 y + 3) ) = 1 3 (52 ) ( 4 3 ) 1 3 ( ) = 1 3 ( ) c) x(y z) w(z y) = x(z y) w(z y) = (z y)( x w)

6 L fctorizción de polinomios puede relizrse cominndo diferentes tipos de fctorizción. El ejemplo (I) nos permitió fctorizr por fctor común pero, será posile fctorizr el polinomio de grdo dos que se encuentr dentro de los préntesis? L respuest es sí. 1.3 Fctorizción por fórmuls notles o productos notles Antes de seguir delnte recordemos uns fórmuls, que generlmente llmmos fórmuls notles o productos notles. Aplicndo l distriutividd puedes verificr los productos. 1. ( + ) 2 = ( + )( + ) = ( ) 2 = ( )( ) = Continuemos l fctorizción por fórmuls notles o productos notles. Un primer fctorizción que se present en (I) es: P(x) = 9x 3 24x x 5 = ( 9 24x + 16x 2) x 3 Págin 6 de 20 Vimos que corresponde l fctorizción por fctor común, sin emrgo, no es un fctorizción complet. Dentro del préntesis tenemos un trinomio de grdo dos, l cul llmremos R(x) = 9 24x + 16x 2. Éste se prece :

7 pues por lo tnto se tiene que: = ( )( ) R(x) = 9 12x + 16x 2 = 3 2 2(3)(4x) + (4x) 2 R(x) = (3 4x)(3 4x) = (3 4x) 2 Introducción Ahor podemos decir que P(x) = 9x 3 24x x 5 se fctoriz completmente como: P(x) = (3 4x)(3 4x)x 3 Fctorizr utilizndo fórmuls notles o productos notles es en relidd reconocer l form de cd uno de los componentes de un trinomio de grdo dos. Más delnte veremos que estos componentes no están completos por lo que se hce necesrio recurrir otros métodos de fctorizción. Págin 7 de 20 Ejemplos: ) R(x) = 4x 2 4x + 1 = (2x) 2 2(2x)(1) = (2x 1)(2x 1) = (2x 1) 2 ) Q(x) = x 2 22x = x 2 2(x)(11) + (11) 2

8 1.4 Fctorizción por grupción Alguns veces tenemos polinomios que tienen cutro términos, como por ejemplo: Q(x) = 18x x 2 15x 10 El polinomio no tiene fctor común, sin emrgo en lgunos csos, se pueden hcer grupos, en este cso hremos dos grupos: 18x x 2 y 15x 10 entonces podemos relizr pr cd un de ls expresiones un fctorizción por fctor común: sí: 6x 2 (3x + 2) y 5(3x + 2) Q(x) = 6x 2 (3x + 2) 5(3x + 2) = (3x + 2)(6x 2 5) Q ( x) = 6x 2 ( 3x+ 2) 5( 3x+ 2) Págin 8 de 20 Q ( x)= ( 3 x+2) ( 6x 2 5)

9 Entonces como el nomre lo dice, fctorizción por grupción signific hcer grupos, pero ten cuiddo, no es culquier tipo de grupos. Bueno hst quí tenemos un fctorizción pr Q(x). Ahor, l pregunt es si es l fctorizción complet de Q(x), l respuest es no. El fctor de segundo grdo del polinomio es fctorizle, sin emrgo, ntes de ver su fctorizción echemos un mird l propiedd siguiente: 2 2 = ( )( + ) Ést se conoce generlmente como otro de los productos notles o fórmuls notles. Un justificción pr est propiedd se muestr continución. Considere ls representciones siguientes: Págin 9 de 20 Diujemos un cudrdo cuyo ldo mide dentro de un cudrdo donde l medid del ldo es (como lo muestr l figur de l derech) cuy áre es

10 Ahor, si recortmos un cudrdo de ldo, el áre de l figur restnte será 2 2. (8) Así, l juntr ls secciones A y B de tl form que otengmos... B - A - Págin 10 de un rectángulo cuyos ldos tienen medids + y su áre estrá dd por ( + )( ). (9) - A B - +

11 Por último si oservs lo expuesto en ls figurs (8) y (9) podemos concluir: 2 2 = ( + )( ) Otr mner desde el punto de vist lgerico, de visulizr est propiedd es recurriendo l distriutividd, prtiendo de l derech de (II) : (II) ( - ) ( + ) = = 2-2 Ahor, volviendo l polinomio en (10), es decir, Q(x) = (3x + 2)(6x 2 5) tenemos que 6 = ( 6) 2 y 5 = ( 5) 2 entonces: (6x 2 5) = ( 6x) 2 ( 5) 2 = ( 6x 5)( 6x + 5) A l últim fctorizción se le suele llmr fctorizción por diferenci de cudrdos. Podemos ver entonces que l fctorizción complet de Q(x) es: Págin 11 de 20 Q(x) = (3x + 2)( 6x 5)( 6x + 5) 1.5 Fctorizción de un polinomio de segundo grdo en un vrile

12 Hy polinomios que tienen crcterístics prticulres como los de grdo dos, que pueden ser fctorizdos utilizndo otrs técnics demás de ls que y hemos visto. Veremos en est sección dos mners un por inspección y l otr llmd fctorizción por fórmul generl. 1.6 Fctorizción por inspección L fctorizción de un polinomio de segundo grdo en un vrile en el conjunto de los números reles puede relizrse, cundo es posile, utilizndo l inspección, en P(x) = x 2 + x + c y Q(x) = x 2 + x + c, donde,, c representn números reles. Así, se P(x) = x 2 + x + c, con, c R. Note que si desrrollmos el producto P(x) = (x + A)(x + B) = x 2 + (A + B)x + A B, nos llev l regl siguiente: Págin 12 de 20 Si el polinomio P(x) se fctoriz entonces l sum de A y B es igul y el producto de A y B es igul c. Vemos como funcion, ) Se P(x) = x 2 + 7x + 12.

13 Oserve que ls constntes 7 y 12 son positivs, por lo que A y B, son mos positivos. Ls posiiliddes de 7 y 12 son como se muestr en l tl siguiente: 12 A B A+ B Est es nuestr escogenci Por lo tnto P(x) = (x + 4)(x + 3) Págin 13 de 20 ) Se Q(x) = x 2 + 5x 24. Oserve que ls constntes 5 y 24, un es positiv y otr negtiv por lo que: A es positivo y myor que B, el cul dee ser negtivo. Hgmos un tl:

14 24 A B A+ B 6+ ( 4) 8 ( 3) ( ) Est es nuestr escogenci Por lo tnto P(x) = (x + 8)(x 3) c) Se M(x) = x 2 3x 10. Oserve que ls constntes 3 y 10 ms negtivs por lo que: A es positivo y menor que B,en vlor soluto, el cul dee ser negtivo. Hgmos un tl: 10 3 A B B A+ + ( ) ( ) Págin 14 de 20 Est es nuestr escogenci Por lo tnto P(x) = (x + 2)(x 5)

15 d) Se M(x) = x 2 10x Oserve que ls constntes y un es negtiv y otr positiv por lo que: es positivo y menor que, el cul dee ser negtivo. Hgmos un tl: 21 A B A+ B 7+ ( 3) ( ) Por lo tnto M(x) = (x 7)(x 3) Est es nuestr escogenci En generl, relizr l inspección en el cso, P(x) = x 2 + x + c, con,, c R no es práctico, pues consiste en relizr un serie de prues hst encontrr los vlores que corresponden. Este cso no se present quí. Sin emrgo, vmos estudir un procedimiento mucho menos complicdo y que llmremos fctorizción por fórmul generl. Págin 15 de 20

16 1.7 Fctorizción por fórmul generl Estudir l fórmul generl requiere conocer un specto importnte que se relcion con l fctorizción de polinomios. Éste es el Teorem del fctor. Teorem 1.1 (Teorem del Fctor) Se c R y P(x) un polinomio entonces P(c) = 0 si y solo sí (x c) es un fctor de P(x). Un polinomio de grdo dos en form generl es: P(x) = x 2 + x + c, con,, c R. Fctorizrlo implic utilizr lgun de ls fórmuls notles o productos notles que mencionmos nteriormente, sí: ( x 2 + x + c = x 2 + x + c ) [ ( ) = x 2 + 2(x) + c ] ( = x + ) 2 ( ) 2 2 c ( completndo cudrdos Oserve que x + ) 2 ( ) ( ) 2 = x 2 + 2(x) + Págin 16 de 20

17 = = = x + + ( ( x + + ( ) 2 c )( 2 4c x c )( x + x + ( ) 2 4c x 2 4c ) ) 2 c Oserv que l fctorizción de P(x) = x 2 + x + c y está hech, por lo que sus ceros son: x = + 2 4c y x = 2 4c lo cul conocemos como l fórmul generl pr fctorizr un polinomio de grdo dos en el conjunto de los números reles. Formlizndo lo nterior tenemos, Teorem 1.2 Se P(x) = x 2 + x + c, con,, c R y se = 2 4c, llmdo discriminnte, ) Si > 0 entonces P(x) = x 2 + x + c posee dos ceros distintos: x = + 2 4c y por el teorem del fctor se tiene que: ( P(x) = x + )( 2 4c x ) 2 4c. (III) y x = 2 4c Págin 17 de 20

18 ) Si = 0 entonces P(x) posee dos ceros igules, x = y por el teorem del fctor se tiene que: ( P(x) = x )( x ). c) Si < 0 entonces P(x) no posee ceros en el conjunto de los números reles, por lo que no serí posile fctorizrlo en este conjunto. Algunos ejemplos: Fctoriz en el conjunto de los números reles los polinomios siguientes.. P(x) = 3x 2 4x 1 Como = ( 4) 2 4(3)( 1) = 28 entonces tiene dos ceros distintos, ser: Luego P(x) = 3 x = ( 4) (3) x = ( 4) (3) ( x )( = (3) = (3) x ) = (3) = (3). = = y Págin 18 de 20

19 . Q(x) = 4x 2 + 4x + 1 Como = ( 4) 2 4(4)(1) = 0 entonces tiene dos ceros igules, ser: x = (4) 2(4) = 1 2 ( Luego Q(x) = 4 x 1 )( x 1 ) = (2x + 2)(2x + 2). 2 2 c. R(x) = 2x 2 + 2x 6 Como = (2) 2 4( 2)( 6) = 44 entonces no es posile fctorizr R(x) en el conjunto de los números reles. [1] Swokowski,Erl. Cálculo con Geometrí Anlític. Grupo Editoril Ieroméricn. 2d edición. México [2] Spiegel, Murry. Theory nd Prolems of College Alger. McGrw-Hill; 2d edition Págin 19 de 20

1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN

1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN http://www.cepmrm.es ACFGS - Mtemátics ESG - /0 Pág. de Polinomios: Teorí ejercicios. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN Tnto en mtemátics, como en físic, en economí, en químic,... es corriente el

Más detalles

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3 Máximo común divisor El máximo común divisor de dos números nturles y es el número más grnde que divide tnto como. se denot mcd,. Lists: (tl vez, el más intuitivo, pero el menos eficiente) Encontrr mcd

Más detalles

El conjunto de los números naturales tiene las siguientes características

El conjunto de los números naturales tiene las siguientes características CAPÍTULO Números Podemos decir que l noción de número nció con el homre. El homre primitivo tení l ide de número nturl y prtir de llí, lo lrgo de muchos siglos e intenso trjo, se h llegdo l desrrollo que

Más detalles

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g).

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g). 64 Tercer Año Medio Mtemátic Ministerio de Educción Actividd 3 Resuelven inecuciones y sistems de inecuciones con un incógnit; expresn ls soluciones en form gráfic y en notción de desigulddes; nlizn ls

Más detalles

7. Integrales Impropias

7. Integrales Impropias Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Dierencil e Integrl 08-2 Bsdo en el punte del curso Cálculo (2d semestre), de Roerto Cominetti, Mrtín Mtml y Jorge

Más detalles

ACTIVIDADES DE APRENDIZAJE Nº 5... 112

ACTIVIDADES DE APRENDIZAJE Nº 5... 112 FACULTAD DE INGENIERÍA - UNJ Unidd : olinomios UNIDAD olinomios Introducción - Epresiones lgebrics - Clsificción de ls epresiones lgebrics - Epresiones lgebrics enters 7 - Monomios 7 - Grdo de un monomio

Más detalles

Taller de Matemáticas I

Taller de Matemáticas I Tller de Mtemátics I Semn y Tller de Mtemátics I Universidd CNCI de México Tller de Mtemátics I Semn y Temrio. Los números positivos.. Representción de números positivos... Frcciones... Decimles... Porcentjes..4.

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

Taller de Álgebra. 0, 1, 2, 3, 4, 5, los llamamos enteros no negativos o números naturales 0.5, 0.333, 0.75, 0.875, 4.333

Taller de Álgebra. 0, 1, 2, 3, 4, 5, los llamamos enteros no negativos o números naturales 0.5, 0.333, 0.75, 0.875, 4.333 Tller de Álger. Dr. Blnc M. Prr UIA Tijun 0. Números reles rect numéric. Números reles son todos los números que representmos en l rect numéric. A cd punto de l rect corresponde un número rel pr cd número

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS EXPRESIONES ALGEBRAICAS. POLINOMIOS A. EXPRESIONES ALGEBRAICAS. Cundo se quiere indicr un número no conocido, un cntidd o un expresión generl de l medid de un mgnitud (distnci, superficie, volumen, etc

Más detalles

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

Repaso de vectores. Semana 2 2. Empecemos! Qué sabes de...? El reto es... Repaso de vectores

Repaso de vectores. Semana 2 2. Empecemos! Qué sabes de...? El reto es... Repaso de vectores Semn 2 2 Repso de vectores Repso de vectores Empecemos! Estimdo prticipnte, en est sesión tendrás l oportunidd de refrescr tus seres en cunto l tem de vectores, los cules tienen como principl plicción

Más detalles

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a.

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a. INSTITUTO VALLADOLID PREPARATORIA Págin 11 7 LA HIPÉRBOLA 7.1 DEFINICIONES L hipérol es el lugr geométrico de todos los puntos cuy diferenci de distncis dos puntos fijos, llmdos focos, es constnte e igul.

Más detalles

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES Digrms en Bloques Un sistem de control puede constr de ciert cntidd de componentes. Pr mostrr ls funciones que reliz cd componente se costumr usr representciones esquemátics denominds Digrm en Bloques.

Más detalles

1. Cuales son los números naturales?

1. Cuales son los números naturales? Guí de mtemátics. Héctor. de bril de 015 1. Cules son los números nturles? Los números nturles son usdos pr contr (por ejemplo, hy cinco moneds en l mes ) o pr imponer un orden (por ejemplo,. Es t es l

Más detalles

Integrales impropias

Integrales impropias Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección

Más detalles

x 2 + ( x + 1 ) 2 + ( x + 2 ) 2 = 365 x 2 + x 2 + 2 x + 1 + x 2 + 4x + 4 = 365 3 x 2 + 6x 360 = 0

x 2 + ( x + 1 ) 2 + ( x + 2 ) 2 = 365 x 2 + x 2 + 2 x + 1 + x 2 + 4x + 4 = 365 3 x 2 + 6x 360 = 0 Ecuciones cudrátics con un incógnit Sen, 1 y los tres números nturles consecutivos uscdos. El prolem nos indic que ( 1 ) ( ) 365 Un número con misterio! El número 365 tiene l crcterístic de ser l sum de

Más detalles

CURSO DE MATEMÁTICA 1. Facultad de Ciencias

CURSO DE MATEMÁTICA 1. Facultad de Ciencias CURSO DE MATEMÁTICA 1. Fcultd de Ciencis Reprtido Teórico 1 Mrzo de 2008 1. Conceptos Básicos de Funciones Definiciones 1. Si A y B son conjuntos no vcíos, un función de A en B es un correspondenci tl

Más detalles

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles

Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff.

Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff. Resolución de circuitos complejos de corriente continu: Leyes de Kirchhoff. Jun P. Cmpillo Nicolás 4 de diciemre de 2013 1. Leyes de Kirchhoff. Algunos circuitos de corriente continu están formdos por

Más detalles

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,

Más detalles

CURSO PROPEDÉUTICO 2013 B

CURSO PROPEDÉUTICO 2013 B CURSO PROPEDÉUTICO 01 B INSTITUTO TECNOLÓGICO SUPERIOR DE ZAPOPAN Fís. Edgr I. Sánchez Rngel L.P. Alm Luz Rndeles Gómez M en C. Frncisco Jvier Villseñor Pérez Mtr. A. Lizette Gutiérrez Gutiérrez Profs.

Más detalles

Los números reales. 1.4 Orden de los números reales CAPÍTULO

Los números reales. 1.4 Orden de los números reales CAPÍTULO 1 CAPÍTULO 1 Los números reles 1 1.4 Orden de los números reles Un número que pertenezc los reles. 2 R / es positivo si está l derech del cero; esto se denot sí: > 0 o bien 0 < : 0 Un número que pertenezc

Más detalles

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr

Más detalles

Los Números Racionales

Los Números Racionales Cpítulo 12 Los Números Rcionles El conjunto de los números rcionles constituyen un extesión de los números enteros, en el sentido de que incluyen frcciones que permiten resolver ecuciones del tipo x =

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

UNIVERSIDAD NACIONAL DE SAN LUIS FACULTAD DE CIENCIAS ECONÓMICAS JURÍDICAS y SOCIALES DEPARTAMENTO DE CIENCIAS BASICAS AREA DE MATEMATICA

UNIVERSIDAD NACIONAL DE SAN LUIS FACULTAD DE CIENCIAS ECONÓMICAS JURÍDICAS y SOCIALES DEPARTAMENTO DE CIENCIAS BASICAS AREA DE MATEMATICA UNIVERSIDAD NACIONAL DE SAN LUIS FACULTAD DE CIENCIAS ECONÓMICAS JURÍDICAS SOCIALES DEPARTAMENTO DE CIENCIAS BASICAS AREA DE MATEMATICA UNIDAD Nº. NÚMEROS REALES. UNIVERSIDAD NACIONAL DE SAN LUIS FACULTAD

Más detalles

Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso

Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso Colegio Técnico Ncionl Arq. Rúl Mrí Benítez Perdomo Mtemátic Primer Curso Rdicción Se un número rel culquier, n un número nturl mor que 1, se llm ríz n esim de todo número rel, que stisfce l ecución n

Más detalles

A modo de repaso. Preliminares

A modo de repaso. Preliminares UNIDAD I A modo de repso. Preliminres Conjuntos numéricos. Operciones. Intervlos. Conjuntos numéricos Los números se clsificn de cuerdo con los siguientes conjuntos: Números nturles.- Son los elementos

Más detalles

GUIA Nº: 7 PRODUCTOS NOTABLES

GUIA Nº: 7 PRODUCTOS NOTABLES CORPORACION UNIFICADA NACIONAL DE EDUCACIÓN SUPERIOR CUN DEPARTAMENTO DE INGENIERIAS Y CIENCIAS BÁSICAS FUNDAMENTOS DE MATEMATICAS PRODUCTOS NOTABLES Y FACTORIZACION GUIA Nº: 7 PRODUCTOS NOTABLES Productos

Más detalles

7.1. Definición de integral impropia y primeras propiedades

7.1. Definición de integral impropia y primeras propiedades Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,

Más detalles

1. Indicar el lenguaje aceptado por los siguientes autómatas :

1. Indicar el lenguaje aceptado por los siguientes autómatas : Universidd Rey Jun Crlos Grdo en Ingenierí de Computdores Máquins Secuenciles, Autómts y Lengujes Hoj de Prolems: Autómts Finitos Determinists Nivel del ejercicio : ( ) ásico, ( ) medio, ( ) vnzdo.. Indicr

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS Aplicciones de Trigonometrí de Triángulos Rectángulos Un triángulo tiene seis

Más detalles

INSTITUTO VALLADOLID PREPARATORIA página 1

INSTITUTO VALLADOLID PREPARATORIA página 1 INSTITUTO VALLADOLID PREPARATORIA págin 1 págin PRODUCTOS NOTABLES 1.- CONCEPTO Conviene recordr lguns definiciones ásics. Así como cundo Adlerto se dedic jugr, por ejemplo, el futol, se le llm futolist

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00

Más detalles

Cálculo Integral. Métodos de integración

Cálculo Integral. Métodos de integración Unidd Métodos de integrción álculo Integrl Métodos de integrción Universidd iert y Distnci de Méico Unidd Métodos de integrción Índice UNIDD MÉTODOS DE INTEGRIÓN Propósito de l unidd ompetenci especíic

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral 5 Mtemátics I : Cálculo integrl en I Tem 4 Aplicciones de l integrl 4. Áres de superficies plns 4.. Funciones dds de form explícit A l vist del estudio de l integrl definid relizdo en el Tem 3, prece rzonle

Más detalles

r = 1 1 Introducción a la Física Paralelos 10 y 13. Profesor RodrigoVergara R DESPLAZAMIENTO Y VECTORES

r = 1 1 Introducción a la Física Paralelos 10 y 13. Profesor RodrigoVergara R DESPLAZAMIENTO Y VECTORES 1 Introducción l Físic Prlelos 10 13. Profesor RodrigoVergr R DPLAZAMIT Y VCTR 1) Repso de trigonometrí Definir plicr ls 3 funciones trigonométrics ásics en triángulos rectángulos. Definir ls funciones

Más detalles

NÚMEROS RACIONALES ABSOLUTOS

NÚMEROS RACIONALES ABSOLUTOS NÚMEROS RACIONALES ABSOLUTOS Frcción: es un pr ordendo de números nturles con l segund componente distint de cero. (, ) pr ordendo frcción es un frcción N N EQUIVALENCIA DE FRACCIONES * Frcciones diferentes,

Más detalles

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}.

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}. UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 28/9 PRÁCTICA Nº Espcios vectoriles y Aplicciones Lineles II: Núcleo e imgen. Digonlizción. NÚCLEO E IMAGEN

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

INTEGRACIÓN. CÁLCULO DE

INTEGRACIÓN. CÁLCULO DE Cpítulo INTEGRACIÓN. CÁLCULO DE ÁREAS.. Introducción Si el problem del cálculo de l rect tngente llevó los mtemáticos del siglo XVII l desrrollo de ls técnics de l derivción, otro problem, el del cálculo

Más detalles

2. Cálculo de primitivas

2. Cálculo de primitivas 5. Cálculo de primitivs Definición. Se dice que un función F () es un primitiv de otr función f() sobre un intervlo (, b) si pr todo de (, b) se tiene que F () f(). Por ejemplo, l función F () es un primitiv

Más detalles

Aproximación e interpolación mediante polinomios

Aproximación e interpolación mediante polinomios LA GACETA DE LA RSME, Vol. 5.3 (2002), Págs. 621 627 621 Aproximción e interpolción medinte polinomios por Miguel Mrno y Mrt Mrcolini En este trbjo se muestr un relción entre los conceptos de interpolción

Más detalles

CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES

CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES FUNDAMENTOS DEL ÁLGEBRA CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES NOMBRE ID SECCIÓN SALÓN Prof. Evelyn Dávil Tbl de contenido TEMA A. CONJUNTOS NUMÉRICOS... REGLA PARA LA SUMA DE NÚMEROS REALES...

Más detalles

UNIDAD 3 Números reales

UNIDAD 3 Números reales . Curiosiddes sobre lgunos Pág. 1 de 4 Hy tres números de grn importnci en mtemátics y que, prdójicmente, nombrmos con un letr: El número designdo con l letr grieg π = 3,14159 (pi) relcion l longitud de

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

CAPÍTULO XII. INTEGRALES IMPROPIAS

CAPÍTULO XII. INTEGRALES IMPROPIAS CAPÍTULO XII. INTEGRALES IMPROPIAS SECCIONES A. Integrles impropis de primer especie. B. Integrles impropis de segund especie. C. Aplicciones l cálculo de áres y volúmenes. D. Ejercicios propuestos. 9

Más detalles

INSTITUTO VALLADOLID PREPARATORIA página 81

INSTITUTO VALLADOLID PREPARATORIA página 81 INSTITUTO VALLADOLID PREPARATORIA págin 81 págin 8 Si se divide un curt prte de un pstel l mitd se otiene un octv prte del mismo, lo que escrito en simologí mtemátic es Lo nterior es lo mismo que 1 1 4

Más detalles

Introducción a la integración numérica

Introducción a la integración numérica Tem 7 Introducción l integrción numéric Versión: 13 de ril de 009 7.1 Motivción L integrl definid de un función continu f : [, ] R R en el intervlo [, ], If) = fx) dx 7.1) es el áre de l región del plno

Más detalles

MÓDULO III ÁLGEBRA. 1. Conceptos preliminares

MÓDULO III ÁLGEBRA. 1. Conceptos preliminares . Conceptos preliminres MÓDULO III ÁLGEBRA BIBLIOGRAFÍA En mtemátic, cundo utilizmos letrs en vez de números, nos ubicmos en el terreno del Algebr. Con el Algebr trbjmos con un visión más generl que cundo

Más detalles

Cómo resolver inecuaciones de primer y segundo grado en el conjunto de los números reales?

Cómo resolver inecuaciones de primer y segundo grado en el conjunto de los números reales? 4 Cómo resolver inecuciones de primer y segundo grdo en el conjunto de los números reles? Prof. Jen-Pierre Mrcillou OBJETIVOS: L clculdor CASIO ClssPd 33 dispone del comndo solve] de los sumenús desplegles

Más detalles

FÓRMULA DE TAYLOR 1. Introducción formula de Taylor Brook Taylor 2. Objetivos Aproximación de funciones por polinomios f(x) P(x) f(x)

FÓRMULA DE TAYLOR 1. Introducción formula de Taylor Brook Taylor 2. Objetivos Aproximación de funciones por polinomios f(x) P(x) f(x) FÓRMULA DE TAYLOR. Itroducció Los poliomios igur etre ls ucioes más secills que se estudi e Aálisis. So decuds pr trjr e cálculos uméricos por que sus vlores se puede oteer eectudo u úmero iito de multipliccioes

Más detalles

Presentación Axiomática de los Números Reales

Presentación Axiomática de los Números Reales Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC. 1 Prte I Presentción Axiomátic de los Números Reles 1. Axioms de los Números Reles 1.1. Axioms de Cuerpo Aceptremos l existenci de un conjunto R cuyos elementos

Más detalles

TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL

TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL TEMA INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL. Funciones.. Incrementos rzones de cmbio. 3. Derivds 4. Derivds de orden superior. 5. Primitivs 6. Integrl definid. Este mteril puede descrgrse desde

Más detalles

M A T E M Á T I C A S. Números Reales. Fraccionarios Positivos Negativos MIXTOS: 3 ¼ 1

M A T E M Á T I C A S. Números Reales. Fraccionarios Positivos Negativos MIXTOS: 3 ¼ 1 M A T E M Á T I C A S Números Reles Enteros Rcionles Positivos Negtivos Nturles (,,,4,5,6... α) Primos (,,5,7,,,7) Pres (... 4,-,0,,4,6,..., ) Impres ( -...,-,-,0,,,5,..., ) Dígitos ( 0,,,,4,5,6,7,8,9

Más detalles

NOTAS TEÓRICAS II COTAS y EXTREMOS. AXIOMA del EXTREMO SUPERIOR Curso 2007

NOTAS TEÓRICAS II COTAS y EXTREMOS. AXIOMA del EXTREMO SUPERIOR Curso 2007 NOTAS TEÓRICAS II COTAS y EXTREMOS. AXIOMA del EXTREMO SUPERIOR Curso 2007 1 1. Intervlos Ddos dos números reles y,

Más detalles

c. m a t e m á t i c a s

c. m a t e m á t i c a s Guí de mtemátics ingeníeris Universidd Tecnológic de Agusclientes c. m t e m á t i c s Guí de estudio Educción...nuestr visión hci el futuro Eloro: M en C Mónic González Rmírez Guí de mtemátics ingeníeris

Más detalles

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES 5.1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. LÍMITES LATERALES 5.1.1. Concepto de tendenci Decimos que " tiende " si tom los vlores de un sucesión que se proim. Se

Más detalles

PRODUCTOS NOTABLES GUIA CIU NRO:

PRODUCTOS NOTABLES GUIA CIU NRO: Repúlic Bolivrin de Venezuel Ministerio de l Defens Universidd Ncionl Eperimentl Politécnic de l Fuerz Armd Núcleo Crcs Curso de Inducción Universitri CIU Cátedr: Rzonmiento Mtemático PRODUCTOS NOTABLES

Más detalles

accés a la universitat dels majors de 25 anys MATEMÀTIQUES UNIDAD DIDÁCTICA 4: LOGARITMOS

accés a la universitat dels majors de 25 anys MATEMÀTIQUES UNIDAD DIDÁCTICA 4: LOGARITMOS Unitt d ccés ccés l universitt dels mjors de 25 ns Unidd de cceso cceso l universidd de los mores de 25 ños UNIDAD DIDÁCTICA 4: LOGARITMOS ÍNDICE 1. Introducción 2. Potencis funciones eponenciles 3. Función

Más detalles

Normativa de señalización exterior e interior

Normativa de señalización exterior e interior Normtiv de señlizción exterior e interior 6 Normtiv de señlizción exterior e interior L señlizción es un sistem de informción cuyo ojetivo principl es loclizr un lugr determindo, y se en l ví púlic, el

Más detalles

MATRICES DE NÚMEROS REALES

MATRICES DE NÚMEROS REALES MTRICES. MTURITS Luis Gil Guerr.- DEFINICIÓN MTRICES DE NÚMEROS RELES Llmmos mtriz de números reles de orden m x n un conjunto ordendo de m. n números reles dispuestos en m fils y en n columns i m i m

Más detalles

Métodos de Integración I n d i c e

Métodos de Integración I n d i c e Métodos de Integrción I n d i c e Introducción Cmbio de Vrible Integrción por prtes Integrles de funciones trigonométrics Sustitución Trigonométric Frcciones prciles Introducción. En est sección, y con

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CONCEPTOS CLAVE: FUNCIONES, GRAFICA DE UNA FUNCIÒN, COMPOSICIÒN DE FUNCIONES, INVERSA DE UNA FUNCIÒN, LIMITE DE UNA FUNCIÒN, LIMITES LATERALES, TEOREMAS

Más detalles

Tema 4: Integrales Impropias

Tema 4: Integrales Impropias Prof. Susn López 1 Universidd Autónom de Mdrid Tem 4: Integrles Impropis 1 Integrl Impropi En l definición de un integrl definid f (x) se exigió que el intervlo [, b] fuese finito. Por otro ldo el teorem

Más detalles

X obtener las relaciones que deben

X obtener las relaciones que deben odelo. Ejercicio. Clificción áxi puntos ) ( punto) Dd l triz y l triz t z y x X otener ls relciones que deen cuplir x, y, z, t pr que l triz X verifique X X. ) (, puntos) Dr un ejeplo de l triz X distint

Más detalles

Ejemplo: Para indicar el conjunto (que llamaremos M), formado por los números 4, 6 y 8, escribimos: M = { 4, 6, 8}

Ejemplo: Para indicar el conjunto (que llamaremos M), formado por los números 4, 6 y 8, escribimos: M = { 4, 6, 8} NÚMEROS REALES. BREVE REPASO DE LA TEORÍA DE CONJUNTOS En est unidd utilizremos ls notciones l terminologí de conjuntos. L ide de conjunto se emple mucho en mtemátic se trt de un concepto básico del que

Más detalles

CAPÍTULO 1. Rectas y ángulos

CAPÍTULO 1. Rectas y ángulos ÍTUO 1 Elementos ásicos de l Geometrí Rects y ángulos 1.1 En Geometrí hy ides ásics que todos entendemos pero que no definimos. Ésts son ls ides de unto, Rect, lno y Espcio. Señlmos un punto con un mrc

Más detalles

COLEGIO SAN FRANCISCO DE SALES Prof. Cecilia Galimberti

COLEGIO SAN FRANCISCO DE SALES Prof. Cecilia Galimberti COLEGIO SAN FRANCISCO DE SALES - 0 - Prof. Cecili Glimerti MATEMÁTICA AÑO B GUÍA N - NÚMEROS IRRACIONALES NUMEROS IRRACIONALES Conocemos hst hor distintos Conjuntos Numéricos: - Los n nturles: (, 8,.8),

Más detalles

2Unidad. Expresiones algebraicas. fraccionarias EN ESTA UNIDAD APRENDERÁS A: 68 Unidad 2

2Unidad. Expresiones algebraicas. fraccionarias EN ESTA UNIDAD APRENDERÁS A: 68 Unidad 2 Epresiones lgebrics Unidd frccionris EN ESTA UNIDAD APRENDERÁS A: Interpretr ls epresiones lgebrics frccionris como un generlizción de l opertori con frcciones numérics. Reconocer pr qué vlores un epresión

Más detalles

Los números enteros y racionales

Los números enteros y racionales Los números enteros y rcionles Objetivos En est quincen prenderás : Representr y ordenr números enteros Operr con números enteros Aplicr los conceptos reltivos los números enteros en problems reles Reconocer

Más detalles

departamento de electricidad y electrónica elektrika eta elektronika saila

departamento de electricidad y electrónica elektrika eta elektronika saila ALGORITMOS Y ESTRUCTURAS DE DATOS Convoctori de junio Curso 2000/2001 Soluciones propuests 1. (1 punto) L complejidd temporl de un cierto lgoritmo, en términos del tmño del prolem n, viene dd por l siguiente

Más detalles

TABLA DE DISTRIBUCIÓN DE FRECUENCIAS

TABLA DE DISTRIBUCIÓN DE FRECUENCIAS TABLA DE DISTRIBUCIÓN DE FRECUENCIAS L.C. y Mtro. Frncisco Jvier Cruz Ariz L.C. y Mtro. Frncisco Jvier Cruz Ariz TABLA DE DISTRIBUCIÓN DE FRECUENCIAS Un mner de simplificr los dtos es usr un tbl de frecuenci

Más detalles

1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas)

1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas) Tem : L integrl definid. Cálculo de primitivs. Aplicciones.. Cálculo de primitivs. Definición. Dds f, F : D R R, decimos que F es un primitiv de l función f si: F ( f(, D. Está clro que si F es un primitiv

Más detalles

(a + b) 2 = a 2 + 2ab + b 2

(a + b) 2 = a 2 + 2ab + b 2 PRODUCTOS NOTABLES. BINOMIO CUADRADO. REPRESENTACIÓN GRÁFICA DEL CUADRADO DE LA SUMA DE DOS CANTIDADES El cudrdo de l sum de dos cntiddes puede representrse geométricmente cundo los vlores son positivos.

Más detalles

Laboratorio N 7, Asíntotas de funciones.

Laboratorio N 7, Asíntotas de funciones. Universidd Diego Portles Fcultd de Ingenierí. Instituto de Ciencis Básics Asigntur: Cálculo I Lortorio N 7, Asíntots de funciones. Introducción. Ls síntots de un función son rects que seprn ls regiones

Más detalles

CONSIDERACIONES SOBRE LAS COMPUERTAS

CONSIDERACIONES SOBRE LAS COMPUERTAS Abril de 006 CONSDERACONES SOBRE LAS COMPUERTAS Cátedr de Mecánic de los Fluidos Escuel de ngenierí Mecánic Autores: ngeniero Edgr Blbstro ngeniero Gstón Bourges e-mil: gbourges@fcei.unr.edu.r 1 Abril

Más detalles

LÁMINA No. 1.1 LECTURA Y ESCRITURA DE UN NÚMERO

LÁMINA No. 1.1 LECTURA Y ESCRITURA DE UN NÚMERO 6 LÁMINA No. 1.1 REPRESENTACION GRÁFICA DE N N {0, 1,,, 4, 5,...} Propieddes de N: 1. Tiene primer elemento. 0 1 4 5... 1er elemento suc() último elemento. Todo número tiene sucesor. No existe último elemento

Más detalles

Toda expresión que conste de una expresión algebraica en su denominador y en el numerador.

Toda expresión que conste de una expresión algebraica en su denominador y en el numerador. TEMA : Epresiones Rcionles Contenio TEMA H: Epresiones Rcionles... Introucción epresiones rcionles... PRÁCTICA: Inic los vlores que no formn prte el conjunto solución... Simplificr Epresiones Rcionles...

Más detalles

INTEGRALES IMPROPIAS

INTEGRALES IMPROPIAS NOTAS PARA LOS ALUMNOS DE ANALISIS MATEMATICO III INTEGRALES IMPROPIAS Ing. Jun Scerdoti Deprtmento de Mtemátic Fcultd de Ingenierí Universidd de Buenos Aires V INDICE INTEGRALES IMPROPIAS.- PUNTOS SINGULARES

Más detalles

FUNDAMENTOS FÍSICOS DE LA INGENIERIA QUINTA SESIÓN DE PRÁCTICAS

FUNDAMENTOS FÍSICOS DE LA INGENIERIA QUINTA SESIÓN DE PRÁCTICAS DEPARTAMENTO DE FÍSICA APLICADA ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AGRÓNOMOS Y DE MONTES UNIERSIDAD DE CÓRDOBA FUNDAMENTOS FÍSICOS DE LA INGENIERIA QUINTA SESIÓN DE PRÁCTICAS 7.- Utilizción del Polímetro

Más detalles

PROBLEMAS DE PROGRAMACIÓN LINEAL (LP)

PROBLEMAS DE PROGRAMACIÓN LINEAL (LP) PROBLEMAS DE PROGRAMACIÓN LINEAL (LP) Plntemiento del prolem de progrmción Linel Un prolem de progrmción linel es cundo l función ojetivo es un función linel y ls restricciones son ecuciones lineles; l

Más detalles

Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a:

Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a: odelo. Proble B.- (Clificción ái puntos) Se consider el siste linel de ecuciones dependiente del práetro rel ) Discútse en función de los vlores del práetro R. b) Resuélvse pr.. l siste se clsific en función

Más detalles

Cristal. Estado Sólido. Estructura Cristalina. Red. Celdas. Red

Cristal. Estado Sólido. Estructura Cristalina. Red. Celdas. Red Estdo Sólido Estructurs Cristlins Cristl Un cristl es un rreglo periódico de átomos o grupos de átomos que es construido por l repetición infinit de estructurs unitris idéntics en el espcio. L estructur

Más detalles

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES www.mtesrond.net José A. Jiméne Nieto POTENCIAS Y LOGARITMOS DE NÚMEROS REALES. POTENCIAS DE NÚMEROS REALES.. Potencis de eponente entero L potenci de se un número rel eponente entero se define sí: n (

Más detalles

Efectuando la división (2x 2 = 1x y 6 2=3) se tiene III. PROBLEMAS QUE SE RESUELVEN UTILIZANDO ECUACIONES DE PRIMER GRADO CON UNA INCOGNITA.

Efectuando la división (2x 2 = 1x y 6 2=3) se tiene III. PROBLEMAS QUE SE RESUELVEN UTILIZANDO ECUACIONES DE PRIMER GRADO CON UNA INCOGNITA. TEORIA GENERAL DE LAS ECAUCIONES I. IGUALDADES Y ECUACIONES Ls igulddes son epresiones en donde precen el símolo = Ejemplos:. 5 + = 15-7. + 6 = 5 Alguns propieddes de ls igulddes que utilizremos son: Si

Más detalles

AUTOMATAS FINITOS Traductores

AUTOMATAS FINITOS Traductores Universidd de Morón Lengujes Formles y Autómts AUTOMATAS FINITOS Trductores AUTOMATAS FINITOS Un utómt finito es un modelo mtemático que posee entrds y slids. Un utomát finito recie los elementos tester

Más detalles

Vectores en R 2 y R 3

Vectores en R 2 y R 3 Vectores en R R 3 Vectores en R R 3 Mgnitudes esclres vectoriles H mgnitudes que quedn determinds dndo un solo número rel. Por ejemplo: l longitud de un regl, l ms de un cuerpo o el tiempo trnscurrido

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito

Más detalles

3.- Derivada e integral de funciones de variable compleja.

3.- Derivada e integral de funciones de variable compleja. 3.- Derivd e integrl de funciones de vrile complej. ) Derivds, funciones nlítics e interpretción geométric. ) Regls de diferencición. c) Ecuciones de uch-riemnn. d) Funciones rmónics. e) Integrción complej.

Más detalles

5. Integral y Aplicaciones

5. Integral y Aplicaciones Métodos Mtemáticos (Curso 203 204) Grdo en Óptic y Optometrí 29 5. Integrl y Aplicciones Primitiv de un función Un función F es un primitiv de f, en un intervlo I, si F (x) = f(x) pr todo x en I. Observción

Más detalles

Cómo resolver ecuaciones de primer y segundo grado en el conjunto de los números reales? Prof. Jean-Pierre Marcaillou

Cómo resolver ecuaciones de primer y segundo grado en el conjunto de los números reales? Prof. Jean-Pierre Marcaillou 3 Cómo resolver ecuciones de primer y segundo grdo en el conjunto de los números reles? Prof. Jen-Pierre Mrcillou OBJETIVOS: L clculdor CASIO ClssPd 33 dispone del comndo [solve] de los sumenús desplegles

Más detalles

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 4º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 4º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre Escuel Púlic Experimetl Descocetrd Nº Dr. Crlos Ju Rodríguez Mtemátic º Año Ciclo Básico de Secudri Teorí Nº Primer Trimestre Cojuto de los úmeros rcioles Los úmeros rcioles so quellos que puede ser expresdos

Más detalles

Curso ON LINE Tema 5. x + y + z = 5 1200x + 600y = 2000 + m z 1200x = 3 m z

Curso ON LINE Tema 5. x + y + z = 5 1200x + 600y = 2000 + m z 1200x = 3 m z Curso ON LINE Tem 5 Un gente inmobilirio puede relir tipos de operciones: vent de un piso nuevo, vent de un piso usdo lquiler. Por l vent de cd piso nuevo recibe un prim de. Si l operción es l vent de

Más detalles

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de

Más detalles

PROBLEMAS DE ELECTRÓNICA DIGITAL

PROBLEMAS DE ELECTRÓNICA DIGITAL Prolems de Eletróni Digitl 4º ESO PROLEMS DE ELECTRÓNIC DIGITL 1. En l gráfi siguiente se muestr l rterísti de l resisteni de un LDR en funión de l luz que reie. Qué tipo de mgnitud es est resisteni? 2.

Más detalles

Cuestionario Respuestas

Cuestionario Respuestas Cuestionrio Respuests Copright 2014, MtemtiTu Derehos reservdos 1) Un ineuión o desiguldd on un vrile (inógnit) es un enunido en que se presentn dos epresiones, l menos un on l vrile entre ells uno de

Más detalles

TRABAJO PRACTICO No 7. MEDICION de DISTORSION EN AMPLIFICADORES DE AUDIO

TRABAJO PRACTICO No 7. MEDICION de DISTORSION EN AMPLIFICADORES DE AUDIO TRBJO PRCTICO No 7 MEDICION de DISTORSION EN MPLIFICDORES DE UDIO INTRODUCCION TEORIC: L distorsión es un efecto por el cul un señl pur (de un únic frecuenci) se modific preciendo componentes de frecuencis

Más detalles