Curso Básico de Metodología de los Radisótopos - C.I.N.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Curso Básico de Metodología de los Radisótopos - C.I.N."

Transcripción

1 Curso Básico de Metodología de los Radisótopos - C.I.N. Inestabilidad nuclear y Modos de decaimiento Dra. Q.F. Lourdes Mallo FUERZAS NUCLEARES Para que el núcleo sea estable debe existir una fuerza atractiva intensa que supere dicha repulsión electrostática: las fuerzas nucleares. PROPIEDADES: - Son fuerzas atractivas entre los nucleones. - Son de rango muy corto (~ 2x10-13 cm). Su valor es aproximadamente constante hasta una distancia del orden de m, cayendo bruscamente a 0 a distancias mayores. 1

2 -Son extremadamente intensas (100 veces mayores que las fuerzas electromagnéticas y 1035 veces superiores a la gravedad). - Son independientes de la carga. - Se producen por intercambio de partículas virtuales llamadas gluones (del inglés glue, pegamento). - Dichos gluones no existen en el núcleo sino que aparecen y desaparecen en períodos cortos. Se han descubierto 4 tipos de interacciones fundamentales en nuestro Universo. - La gravitatoria: Es la que tiene mayor impacto a grandes distancias. Tiene carácter de atracción y, en comparación con el resto de las interacciones, es la mas débil. Intercambia una partícula virtual llamada gravitón. - La electromagnética: actúa entre partículas con carga eléctrica. Incluye a la fuerza electrostática, que actúa entre cargas en reposo, y el efecto combinado de las fuerzas eléctrica y magnética, que actúan entre cargas que se mueven una respecto a la otra. La partícula virtual intercambiada es el fotón. 2

3 La nuclear fuerte: es despreciable a distancias mayores que el núcleo atómico, por lo que no se aprecia en la vida diaria. No obstante, todo depende de ellas, ya que es la que permite unirse a los quarks para formar los protones y neutrones, entre otros mantiene unidos los bloques fundamentales con los que el universo está formado. La partícula virtual intercambiada es el el gluón. La nuclear débil: también es despreciable a distancias mayores que el núcleo atómico, es veces menos potente que la interacción fuerte y es responsable de que los quarks y otras partículas decaigan a partículas más livianas, así como de producir desintegraciones beta. La partícula virtual intercambiada es el bosón. ESTABILIDAD NUCLEAR - El núcleo es intrínsecamente inestable debido a la repulsión electrostática entre los protones. - El balance repulsión-atracción determina si un nucleido es estable o radiactivo. - La relación entre N y Z es de fundamental importancia en dicho balance. - Cada elemento puede tener varios nucleidos estables. Estos nucleidos constituyen el cinturón de estabilidad. 3

4 Cinturón de estabilidad - Si Z < 20 N/Z 1 14 N N/Z = Si 20 < Z < 83 1 < N/Z < Sn N/Z = Si Z > 83: ningún nucleido es estable Bi N/Z = 1.52 Los nucleidos que caen fuera del cinturón de estabilidad sufren transformaciones que dan al lugar al fenómeno de radiactividad. Sin embargo, aún para los nucleidos radiactivos la existencia del núcleo como tal es más favorable que la separación en los nucleones que lo constituyen. 4

5 - La masa de un átomo es siempre menor que la suma de las masas de las partículas que lo constituyen. - Esa diferencia se denomina defecto de masa y es equivalente a la cantidad de energía que el núcleo gasta en mantener juntos a sus nucleones. Átomo de 6 3 Li La teoría de la relatividad establece que la masa es una forma de energía y la teoría de conservación de la energía se extiende a la suma de ambas magnitudes. El equivalente entre masa y energía está dado por E = mc 2 Se cumple que E (MeV) = m (umas) x

6 La masa de un átomo es siempre menor que la suma de las masas de las partículas que lo constituyen. Esa diferencia se denomina defecto de masa y es equivalente a la cantidad de energía que el núcleo gasta en mantener juntos a sus nucleones (energía de ligadura). La energía de ligadura/nucleón es una medida de la estabilidad del núcleo. * 12 C EJEMPLOS m 12 C = 6 x (m p + m n + m e ) = umas Convirtiendo la masa en energía, 1 uma MeV E l 12 C = x = MeV E l /nucleón 12 C = /12 = 7.68 MeV/nucleón * 14 C m 14 C = 6 x (m p + m e )+ 8 x m n = umas. E l 14 C = MeV E l /nucleón 14 C = 7.52 MeV/nucleón 6

7 ENERGIA DE LIGADURA POR NUCLEON vs A PARA NUCLEIDOS DE A<11 OBSERVACIONES La El/A de los nucleidos aumenta al aumentar el número de nucleones. La El/A de los nucleidos con Z y N par es más alta que la de sus vecinos. CONCLUSIONES La fusión de 2 núcleos livianos para dar un núcleo mayor es un proceso que libera energía. Existen números mágicos de nucleones que favorecen la estabilidad del núcleo. Este es un argumento a favor del modelo de capas para la estructura nuclear. 7

8 ENERGIA DE LIGADURA POR NUCLEON vs A PARA NUCLEIDOS DE A>11 OBSERVACIONES La El/A presenta un máximo para A ~ 60. En esa zona se encuentran los nucleidos más abundantes en la corteza terrestre. La El/A disminuye hacia ambos lados de dicho máximo. CONCLUSIONES Los nucleidos más abundantes son los más estables. Su mayor El/A es un reflejo de esa estabilidad. La fisión de 1 núcleo pesado para dar 2 núcleos menores pero de mayor El/A es un proceso que libera energía. 8

9 RADIACTIVIDAD La radiactividad es un fenómeno espontáneo de transformación de un nucleido en otro, con emisión de partículas o radiación, y energía. Cuando N/Z cae fuera del cinturón de estabilidad el nucleido es radiactivo (radionucleido). Al radionucleido que experimenta el proceso se le denomina "padre" (P) y al decaer se convierte en el nucleido "hijo" (H), el cual puede ser estable o ser también radiactivo. La radiactividad no depende de la naturaleza física o química de los átomos, es una propiedad de su núcleo. TIPOS DE RADIACIÓN 9

10 Existen 5 tipos de decaimiento radiactivo: - alfa ( ) (Núcleos de Helio) - - beta ( ) + - gamma ( ) Captura electrónica (CE) El modo de decaimiento más probable será aquel que acerque ese radionucleido a la estabilidad. EMISIÓN ALFA Los radionucleidos con Z > 83 deben disminuir rápidamente la cantidad total de nucleones para acercarse a la estabilidad. Emiten una partícula A Z A-4 X Y + He + E Z Partícula m = masa (P) masa (H) + m ( 4 He) > 0 10

11 Ese defecto de masa m debe ser positivo para que la emisión suceda, y la energía liberada en la reacción se calcula según la ecuación de Einstein: E = m. c 2 siendo c = velocidad de la luz Si m está en umas, la energía liberada (en Mev) es de E = m x 931,5 ( MeV ) 11

12 m = m 234 U m 230 Th m 4 He > 0 EMISIÓN - Si N/Z >estabilidad n p + + e - - A Z A X Y + e + + E 0 Z

13 Los electrones emitidos no son monoenergéticos, como se esperaría, sino que presentan un espectro continuo de energía con E max. = mc 2. La energía más probable es aprox. 1/3 E max. Cómo se conserva la energía? 13

14 La emisión concomitante de una partícula neutra y de masa muy pequeña, el antineutrino, que comparte la energía total con el electrón es la explicación del espectro - La emisión - puede ir también acompañada de uno o varios rayos. m = m (P) m (H) 14

15 Según el modelo de los quarks: EMISIÓN + Si N/Z < estabilidad + p+ n + e+ + A Z X A Z-1 Y e + + E 15

16 m = m (P) m(h) 2 m e - - El espectro del positrón es análogo al ya visto para el electrón en la emisión -, debido a la emisión conjunta de un neutrino. - El positrón emitido al encontrarse con algún electrón del medio, experimenta el fenómeno de aniquilación produciéndose la emisión simultánea de 2 rayos de 511 kev cada uno. - Esta radiación de aniquilación siempre está presente cuando hay emisión de positrones. 16

17 Aniquilación de positrones CAPTURA ELECTRÓNICA Si N/Z < estabilidad Otra alternativa es el decaimiento por captura electrónica Implica la captura de un electrón orbital por parte de un protón nuclear, transformándose ambos en un neutrón, con emisión de un neutrino y energía. 17

18 El número total de nucleones permanece constante mientras que el número atómico disminuye en una unidad A Z 0 A X + e - Y + + E -1 Z-1 m = m (P) m (H) I + -1 e 52 Te + + E El hueco en las capas electrónicas es llenado por otros electrones más externos, produciéndose la emisión concomitante de rayos X característicos. 18

19 EMISION - Se produce cuando el núcleo se encuentra en estado excitado. - Implica la emisión del exceso de energía como un cuanto de radiación electromagnética. - No produce cambio ni en el número de nucleones ni en el número atómico. 99m Tc 99 Tc + E + -La emisión gamma es un cuanto de alta energía y carece de masa. -Surge por reacomodamiento de niveles energéticos nucleares E = E2 - E1 = E -Es similar a la emisión de Rayos X pero éstos se producen por transiciones de los electrones periféricos y por eso suelen ser de menor energía (< 100 KeV ). - En ciertos casos la diferencia entre 2 estados energéticos nucleares no aparece como un cuanto sino que es transferido a un electrón orbital, el cual escapa del átomo, bajo la forma de electrones monoenergéticos llamados electrones de conversión 19

20 ELECTRONES AUGER Cuando un electrón es arrancado de una de las capas internas de un átomo, dejando una vacante o hueco, un electrón de un nivel de energía externo ocupa esta vacante, liberándose energía. Este exceso de energía generalmente se libera por la emisión de un fotón (Rayos X), aunque también puede ser transferida a otro electrón, llamado electrón Auger, el cual es eyectado del átomo. En la conversión interna, la energía que se utiliza en expulsar al electrón procede de la desexcitación del NÚCLEO. En el caso de la emisión de electrones Auger, la energía necesaria para producir dicha emisión proviene de una transición entre niveles electrónicos de la PERIFERIA DEL ATOMO 20

21 RESUMEN DE LOS MODOS DE DECAIMIENTO ANALIZADOS 21

22 TABLA DE RADIONUCLEIDOS Los nucleidos estables aparecen en negro. En los radionucleidos, el color del recuadro indica qué tipo de emisor es: celeste ( - ), rosado ( + o CE), amarillo ( ), verde (fisión espontánea), blanco (transiciones isoméricas). Cuando se trata de un nucleido que decae por más de un camino, el área total del recuadro está dividida diagonalmente a la mitad o en un ángulo y el tamaño del sector de cada color, se relaciona con la probabilidad de ese modo de decaimiento. 22

23 ESQUEMAS DE DECAIMIENTO 23

INTERACCION DE LA RADIACION CON LA MATERIA

INTERACCION DE LA RADIACION CON LA MATERIA Pág. 1 de 11 INTERACCION DE LA RADIACION CON LA MATERIA Cuando se habla de reacciones nucleares se hace referencia a todo tipo de interacción con los núcleos atómicos. Un tema más general, que engloba

Más detalles

Física Nuclear y Reacciones Nucleares

Física Nuclear y Reacciones Nucleares Slide 1 / 34 Física Nuclear y Reacciones Nucleares Slide 2 / 34 Protón: La carga de un protón es 1,6 x10-19 C. La masa de un protón es 1,6726x10-27 kg. Neutrones: El neutrón es neutro. La masa de un neutrón

Más detalles

La radiación es el transporte o la propagación de energía en forma de partículas u

La radiación es el transporte o la propagación de energía en forma de partículas u La radiación es el transporte o la propagación de energía en forma de partículas u ondas. Si la radiación es debida a fuerzas eléctricas o magnéticas se llama radiación electromagnética. Pero la materia

Más detalles

Actividad: Cuál es la diferencia entre una reacción nuclear y una reacción química?

Actividad: Cuál es la diferencia entre una reacción nuclear y una reacción química? Cuál es la diferencia entre una reacción nuclear y una reacción química? Nivel: 4º medio Subsector: Ciencias químicas Unidad temática: Actividad: Cuál es la diferencia entre una reacción nuclear y una

Más detalles

Espectrometría de Radiación gamma

Espectrometría de Radiación gamma Espectrometría de Radiación gamma B.C. Paola Audicio Asistente de Radiofarmacia, CIN Fundamento La espectrometría gamma consiste en la obtención del espectro de las radiaciones gamma emitidas por los radionucleidos.

Más detalles

ESPECTROMETRÍA DE RAYOS GAMMA DE MUESTRAS DE AU 198 USANDO UN DETECTOR DE INa(TI)

ESPECTROMETRÍA DE RAYOS GAMMA DE MUESTRAS DE AU 198 USANDO UN DETECTOR DE INa(TI) ESPECTROMETRÍA DE RAYOS GAMMA DE MUESTRAS DE AU 198 USANDO UN DETECTOR DE INa(TI) Llaneza, Natalia Orso, josé A. Resumen: Se utilizan varias muestras radiactivas de Au 198 para obtener su periodo de semidesintegración

Más detalles

Tema 7. APLICACIONES DE LA FISICA NUCLEAR

Tema 7. APLICACIONES DE LA FISICA NUCLEAR Tema 7. APLICACIONES DE LA FISICA NUCLEAR Fisión nuclear Reactores de fisión Fusión nuclear. Reactores de fusión Aceleradores de partículas Aplicaciones de las radiaciones Introducción a las partículas

Más detalles

CONOCIMIENTO DEL MEDIO EN EDUCACIÓN INFANTIL

CONOCIMIENTO DEL MEDIO EN EDUCACIÓN INFANTIL CONOCIMIENTO DEL MEDIO EN EDUCACIÓN INFANTIL Francisco Javier Navas Pineda javier.navas@uca.es Tema 2. La energía 1 ÍNDICE 1. Introducción 2. Tipos de Interacciones 3. Fuerzas 4. Tipos de Energía 5. Formas

Más detalles

Instituto de Energía y Desarrollo Sustentable ENERGÍA. CONOCIMIENTOS MÍNIMOS Energía desde la Física IEDS CNEA

Instituto de Energía y Desarrollo Sustentable ENERGÍA. CONOCIMIENTOS MÍNIMOS Energía desde la Física IEDS CNEA Instituto de Energía y Desarrollo Sustentable ENERGÍA CONOCIMIENTOS MÍNIMOS Energía desde la Física IEDS CNEA 09 1. CONCEPTOS BÁSICOS DE MECÁNICA: FUERZA Y MASA La segunda ley de Newton proporciona significados

Más detalles

Resolución PRÁCTICO 9

Resolución PRÁCTICO 9 Resolución PRÁCTICO 9 1- Complete las siguientes ecuaciones nucleares, remplazando las X por los símbolos o números correspondientes (Nota: X toma diferentes números y símbolos en cada una de las situaciones):

Más detalles

Procesos nucleares en estrellas

Procesos nucleares en estrellas Procesos nucleares en estrellas # Interior estelar compuesto por núcleos de los distintos elementos # Temperaturas interior estelar Parte de los núcleos con energía térmicas (E cin ) que sobrepasan las

Más detalles

Actividad y Leyes del Decaimiento Radiactivo

Actividad y Leyes del Decaimiento Radiactivo ctividad y Leyes del Decaimiento Radiactivo Características del Fenómeno de la Transformación Radiactiva Se denomina radiactividad al proceso de transformación espontánea nea de núcleos atómicos mediante

Más detalles

FÍSICA NUCLEAR NÚCLEO ATÓMICO. desintegración. desintegración

FÍSICA NUCLEAR NÚCLEO ATÓMICO. desintegración. desintegración FÍSIC NUCLER En esta Unidad analizaremos algunos fenómenos que tienen lugar en el núcleo de los átomos. Después de revisar las partículas que forman el núcleo atómico, se presentan las características

Más detalles

ESTRUCTURA DE LA MATERIA VICENTE PUCHADES PUCHADES. SERVICIO DE RADIOFÍSICA Y PROTECCIÓN RADIOLÓGICA DEL HGU SANTA LUCÍA. CARTAGENA.

ESTRUCTURA DE LA MATERIA VICENTE PUCHADES PUCHADES. SERVICIO DE RADIOFÍSICA Y PROTECCIÓN RADIOLÓGICA DEL HGU SANTA LUCÍA. CARTAGENA. ESTRUCTURA DE LA MATERIA VICENTE PUCHADES PUCHADES. SERVICIO DE RADIOFÍSICA Y PROTECCIÓN RADIOLÓGICA DEL HGU SANTA LUCÍA. CARTAGENA. INDICE Qué es la materia? Modelos de la materia Fuerzas Fundamentales

Más detalles

Esta parte de la Física estudia el comportamiento de los núcleos atómicos. Física nuclear

Esta parte de la Física estudia el comportamiento de los núcleos atómicos. Física nuclear Esta parte de la Física estudia el comportamiento de los núcleos atómicos Física nuclear CORTEZA Electrones NÚCLEO Protones Neutrones PARTÍCULA CARGA MASA Electrón (e - ) -1,6.10-19 C 9,1.10-31 kg Protón

Más detalles

CONCEPTOS BASICOS SOBRE RADIACTIVIDAD

CONCEPTOS BASICOS SOBRE RADIACTIVIDAD Campaña Energía Marzo 2005 CONCEPTOS BASICOS SOBRE RADIACTIVIDAD 1. Radiactividad natural y artificial La radioactividad es un fenómeno natural por el cual ciertos átomos cambian su estructura. La comprensión

Más detalles

FÍSICA NUCLEAR. I WANT TO KNOW GOD S THOUGHTS; THE REST ARE DETAILS (Albert Einstein )

FÍSICA NUCLEAR. I WANT TO KNOW GOD S THOUGHTS; THE REST ARE DETAILS (Albert Einstein ) FÍSICA NUCLEAR I WANT TO KNOW GOD S THOUGHTS; THE REST ARE DETAILS (Albert Einstein. 879 955) . INTRODUCCIÓN. RESEÑA HISTÓRICA Radiactividad propiedad de los núcleos atómicos de ciertos isótopos de modificar

Más detalles

Fuentes Radiactivas. Laura C. Damonte 2014

Fuentes Radiactivas. Laura C. Damonte 2014 Fuentes Radiactivas Laura C. Damonte 2014 Fuentes de radiación La radiactividad es parte natural de nuestro medio ambiente. nuestro planeta ha sido radiactivo desde su creación y los radionucleídos se

Más detalles

Slide 1 / 33. Slide 2 / 33. Slide 3 / El número atómico es equivalente a cuál de los siguientes? A El número de neutrones del átomo.

Slide 1 / 33. Slide 2 / 33. Slide 3 / El número atómico es equivalente a cuál de los siguientes? A El número de neutrones del átomo. Slide 1 / 33 Slide 2 / 33 3 El número atómico es equivalente a cuál de los siguientes? Slide 3 / 33 A El número de neutrones del átomo. B El número de protones del átomo C El número de nucleones del átomo.

Más detalles

Núcleo. Inestabilidad nuclear

Núcleo. Inestabilidad nuclear Capítulo 3 Núcleo. Inestabilidad nuclear Repeler significa rechazar Ejemplos - repelente para mosquitos - se repelen las cargas de igual signo. Durante mucho tiempo, los fenómenos conocidos, pudieron explicarse

Más detalles

PAU Setembro 2010 FÍSICA

PAU Setembro 2010 FÍSICA PAU Setembro 010 Código: 5 FÍSICA Puntuación máxima: Cuestiones 4 puntos (1 cada cuestión, teórica o práctica). Problemas 6 puntos (1 cada apartado). No se valorará la simple anotación de un ítem cómo

Más detalles

FÍSICA 2º BACHILLERATO

FÍSICA 2º BACHILLERATO FÍSICA 2º BACHILLERATO Introducción Siguiendo las instrucciones de la Comisión Interuniversitaria de Acceso a las Universidades Andaluzas, se han elaborado las directrices y orientaciones generales de

Más detalles

INSTITUCIÓN EDUCATIVA MARIANO OSPINA PÉREZ TALLER DE TECNOLOGÍA GRADO 7 3P

INSTITUCIÓN EDUCATIVA MARIANO OSPINA PÉREZ TALLER DE TECNOLOGÍA GRADO 7 3P 1 La energía es la capacidad de los cuerpos para producir trabajo. Trabajo es la fuerza necesaria para producir movimiento. Hay muchos tipos de energía, aquí intentaremos enumerar la mayoría de ellos con

Más detalles

ÁREA ACADÉMICA DE QUÍMICA INTRODUCCIÓN A LA SEGURIDAD RADIOLÓGICA MONOGRAFÍA QUE PARA OBTENER EL TITULO DE LICENCIADO EN QUÍMICA P R E S E N T A

ÁREA ACADÉMICA DE QUÍMICA INTRODUCCIÓN A LA SEGURIDAD RADIOLÓGICA MONOGRAFÍA QUE PARA OBTENER EL TITULO DE LICENCIADO EN QUÍMICA P R E S E N T A UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO INSTITUTO DE CIENCIAS BÁSICAS E INGENIERÍA ÁREA ACADÉMICA DE QUÍMICA MONOGRAFÍA QUE PARA OBTENER EL TITULO DE LICENCIADO EN QUÍMICA P R E S E N T A JOSÉ LUIS

Más detalles

TEMA 8: Espectroscopía Fotoelectrónica de rayos X (XPS)

TEMA 8: Espectroscopía Fotoelectrónica de rayos X (XPS) TEMA 8: Espectroscopía Fotoelectrónica de rayos X (XPS) 8.1 Descripción de la técnica. 8.2 Interacción de la radiación X sobre la materia. 8.3 Energía de enlace y ajuste químico. 8.4 Características de

Más detalles

DEPARTAMENTO DE : FÍSICA Y QUÍMICA CURSO 14-15 OBJETIVOS Y CONTENIDOS NO ALCANZADOS EN FÍSICA 2º BACHILLERATO

DEPARTAMENTO DE : FÍSICA Y QUÍMICA CURSO 14-15 OBJETIVOS Y CONTENIDOS NO ALCANZADOS EN FÍSICA 2º BACHILLERATO El informe sobre los objetivos y contenidos no alcanzados se ha elaborado teniendo como referencia la ORDEN de 15 de diciembre de 2008, (Artículo 7).por la que se regula la evaluación de bachillerato en

Más detalles

Tema 1: Núcleo atómico y Desintegración

Tema 1: Núcleo atómico y Desintegración Tema 1: Núcleo atómico y Desintegración Núcleo atómico. Radiactividad. Modos de Decaimiento N ú c l e o t ó m i c o El núcleo atómico es la parte del átomo que contiene toda la carga positiva y la mayoría

Más detalles

Química General III. Tema 13. Química Nuclear. Sulfato doble de K y U, emite radiación fuente de rayos radiactivos.

Química General III. Tema 13. Química Nuclear. Sulfato doble de K y U, emite radiación fuente de rayos radiactivos. Química General III. Tema 3. Química Nuclear Introducción. Reacción Química Wilhelm Röntgen Henri Becquerel solo 896 895 participan electrones. Rayos X Sulfato doble de K y U, emite radiación fuente de

Más detalles

ACTIVIDADES TEMAS 12 Y 13: ESTRUCTURA ATÓMICA, SISTEMA PERIÓDICO

ACTIVIDADES TEMAS 12 Y 13: ESTRUCTURA ATÓMICA, SISTEMA PERIÓDICO ACTIVIDADES TEMAS Y : ESTRUCTURA ATÓMICA, SISTEMA PERIÓDICO Según el modelo atómico de Bohr, cómo se ordenan los distintos niveles de energía en los que pueden encontrarse los electrones? El orden de los

Más detalles

Física Nuclear y Reacciones Nucleares Problemas de Práctica Multiopción 1 El núcleo atómico se compone de: A electrones

Física Nuclear y Reacciones Nucleares Problemas de Práctica Multiopción 1 El núcleo atómico se compone de: A electrones Slide 1 / 58 Física Nuclear y Reacciones Nucleares Problemas de Práctica Slide 2 / 58 Multiopción 1 l núcleo atómico se compone de: Slide 3 / 58 electrones protones protones y electrones protones y neutrones

Más detalles

1) Nucleosíntesis primigenia 2) Nucleosíntesis estelar Alta masa Baja masa Binarias de baja masa 3) Nucleosíntesis interestelar 1

1) Nucleosíntesis primigenia 2) Nucleosíntesis estelar Alta masa Baja masa Binarias de baja masa 3) Nucleosíntesis interestelar 1 TERCERA CLASE CONTENIDO ORIGEN DE LOS ELEMENTOS QUIMICOS 1) Nucleosíntesis primigenia 2) Nucleosíntesis estelar Alta masa Baja masa Binarias de baja masa 3) Nucleosíntesis interestelar 1 En el Universo

Más detalles

Núcleo Atómico. El núcleo es una masa muy compacta formada por protones y neutrones.

Núcleo Atómico. El núcleo es una masa muy compacta formada por protones y neutrones. Núcleo Atómico Profesor: Robinson Pino H. 1 COMPONENTES DEL NÚCLEO ATÓMICO El núcleo es una masa muy compacta formada por protones y neutrones. PROTÓN PROTÓN(p + ) Es una partícula elemental con carga

Más detalles

Solución de los problemas del Capítulo 1

Solución de los problemas del Capítulo 1 Nota: los valores de las constantes que puede necesitar para los cálculos están dados en la bibliografía de referencia. Complete la siguiente tabla Qué información mínima se necesita para caracterizar

Más detalles

RADIOACTIVIDAD - (2015)

RADIOACTIVIDAD - (2015) RADIOACTIVIDAD - (2015) A- CONCEPTOS GENERALES SOBRE RADIACTIVIDAD B- ISÓTOPOS C- TIPOS Y PROPIEDADES DE LAS RADIACCIONES D- REACCIONES NUCLEARES E- VIDA MEDIA A- CONCEPTOS GENERALES SOBRE RADIACTIVIDAD

Más detalles

TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS

TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1. CONCEPTO DE TRABAJO: A) Trabajo de una fuerza constante Todos sabemos que cuesta trabajo tirar de un sofá pesado, levantar una pila de libros

Más detalles

Es el principal elemento químico, indispensable para que éxista la vida, está presente casi en todas las combinaciones conocidas y por sus

Es el principal elemento químico, indispensable para que éxista la vida, está presente casi en todas las combinaciones conocidas y por sus Es el principal elemento químico, indispensable para que éxista la vida, está presente casi en todas las combinaciones conocidas y por sus características, sabemos que tiene 8 protones en el núcleo. Número

Más detalles

Entrevista de Eduard Punset con John Ellis, físico teórico del Centro Europeo para la Física de Partículas (CERN). Ginebra, septiembre de 2008.

Entrevista de Eduard Punset con John Ellis, físico teórico del Centro Europeo para la Física de Partículas (CERN). Ginebra, septiembre de 2008. Entrevista de Eduard Punset con John Ellis, físico teórico del Centro Europeo para la Física de Partículas (CERN). Ginebra, septiembre de 2008. Vídeo del programa: http://www.smartplanet.es/redesblog/?p=263

Más detalles

APUNTES DE PROTECCIÓN RADIOLÓGICA

APUNTES DE PROTECCIÓN RADIOLÓGICA APUNTES DE PROTECCIÓN RADIOLÓGICA PROFESOR LUIS VALLEJO DELGADO DEPARTAMENTO DE FÍSICA CENTRO REGIONAL DE ESTUDIOS Y EDUCACIÓN AMBIENTAL (CREA) UNIVERSIDAD DE ANTOFAGASTA INDICE INTRODUCCIÓN I. LA ESTRUCTURA

Más detalles

DESINTEGRACIONES RADIACTIVAS

DESINTEGRACIONES RADIACTIVAS DESINTEGRACIONES RADIACTIVAS CONTENIDOS Producción y desintegración. Masa y actividad. Periodo de semidesintegración Vida media. Actividad. Unidades. Series Radiactivas. 1 ISÓTOPOS 2 LEY DE DESINTEGRACIÓN

Más detalles

producción de energía en las estrellas interiores estelares

producción de energía en las estrellas interiores estelares producción de energía en las estrellas interiores estelares porqué brillan las estrellas? la energía emitida por las estrellas tiene su origen en reacciones termonucleares que tienen lugar en su interior

Más detalles

RADIACTIVIDAD. Introducción

RADIACTIVIDAD. Introducción RADIACTIVIDAD Introducción El descubrimiento de la radiactividad en 1986 por Henry Becquerel, y el posterior estudio emprendido por él mismo y por el matrimonio Curie, puso de manifiesto que los elementos

Más detalles

SISTEMA DE DETECCIÓN Y ESTUDIO DEL NIVEL DE RADIACIÓN DE NUESTRO ENTORNO. Alba Cortés Coego Iria Míguez González. Aulas Tecnópole 4º E.S.O.

SISTEMA DE DETECCIÓN Y ESTUDIO DEL NIVEL DE RADIACIÓN DE NUESTRO ENTORNO. Alba Cortés Coego Iria Míguez González. Aulas Tecnópole 4º E.S.O. 2012 SISTEMA DE DETECCIÓN Y ESTUDIO DEL NIVEL DE RADIACIÓN DE NUESTRO ENTORNO Aulas Tecnópole Alba Cortés Coego Iria Míguez González 4º E.S.O. SISTEMA DE DETECCIÓN Y ESTUDIO DEL NIVEL DE RADIACIÓN DE NUESTRO

Más detalles

INSTITUTO NACIONAL Dpto. de Física Prof: Aldo Scapini G.

INSTITUTO NACIONAL Dpto. de Física Prof: Aldo Scapini G. GUÍA DE ENERGÍA Nombre:...Curso:... En la presente guía estudiaremos el concepto de Energía Mecánica, pero antes nos referiremos al concepto de energía, el cuál desempeña un papel de primera magnitud tanto

Más detalles

ANÀLISIS TERMODINÀMICO DE LAS CAUSAS DEL CALENTAMIENTO GLOBAL Y CAMBIO CLIMÀTICO

ANÀLISIS TERMODINÀMICO DE LAS CAUSAS DEL CALENTAMIENTO GLOBAL Y CAMBIO CLIMÀTICO ANÀLISIS TERMODINÀMICO DE LAS CAUSAS DEL CALENTAMIENTO GLOBAL Y CAMBIO CLIMÀTICO Los científicos no pueden establecer con objetividad las causas del calentamiento global en la tierra porque generalmente

Más detalles

El origen de los elementos

El origen de los elementos El origen de los elementos Álvaro Tolosa Delgado [alvarotolosa@hotmail.com] Índice 1. Conceptos 2. Nucleosíntesis primordial 3. Nucleosíntesis estelar 4. Nucleosíntesis explosiva 5. Conclusión 1. Introducción

Más detalles

Tema 3. Relaciones periódicas entre los elementos

Tema 3. Relaciones periódicas entre los elementos Tema 3. Relaciones periódicas entre los elementos. Desarrollo de la tabla periódica. Clasificación de los elementos. Variaciones periódicas de propiedades físicas: carga nuclear efectiva, radio atómico,

Más detalles

UNIDAD DE SEGURIDAD NUCLEAR, PROTECCION RADIOLOGICA Y GESTION AMBIENTAL

UNIDAD DE SEGURIDAD NUCLEAR, PROTECCION RADIOLOGICA Y GESTION AMBIENTAL UNIDAD DE SEGURIDAD NUCLEAR, PROTECCION RADIOLOGICA Y GESTION AMBIENTAL PROYECTO: ESTRATEGIA NACIONAL PARA LA PREVENCION, ATENCION Y MONITOREO DE RIESGOS RADIOLOGICOS CURSO DE PROTECCION RADIOLÓGICA PARA

Más detalles

LABORATORIO DE NUCLEAR GUIÓN DE PRÁCTICA ALFA GUIÓN DEL LABORATORIO

LABORATORIO DE NUCLEAR GUIÓN DE PRÁCTICA ALFA GUIÓN DEL LABORATORIO GUIÓN DEL LABORATORIO 0. - ESTUDIO TEÓRICO DE LA CADENA DE DESINTEGRACIONES DEL 226 Ra Antes de iniciar el estudio experimental del espectro de emisión alfa de una muestra que contiene 226 Ra, conviene

Más detalles

PCPI Ámbito Científico-Tecnológico LA ENERGÍA

PCPI Ámbito Científico-Tecnológico LA ENERGÍA LA ENERGÍA La energía es una propiedad de los cuerpos que permite que se produzcan cambios en ellos mismos o en otros cuerpos. Es la capacidad que tiene un cuerpo de realizar un trabajo. En el SI la unidad

Más detalles

MOMENTO LINEAL OBJETIVOS

MOMENTO LINEAL OBJETIVOS MOMENTO LINEAL OBJETIVOS Comprender el significado físico de momento lineal o cantidad de movimiento como medida de la capacidad de un cuerpo de actuar sobre otros en choques. ( movimientos unidimensionales)

Más detalles

J.M.L.C. IES Aguilar y Cano ALGUNOS DERECHOS RESERVADOS

J.M.L.C. IES Aguilar y Cano ALGUNOS DERECHOS RESERVADOS La radiactividad o radioactividad es un fenómeno físico natural, por el cual algunas sustancias o elementos químicos llamados radiactivos, emiten radiaciones que tienen la propiedad de impresionar placas

Más detalles

ÁTOMO ~ m NÚCLEO ~ mnucleón < m. MATERIA ~ 10-9 m. Átomo FÍSICA MATERIALES PARTÍCULAS

ÁTOMO ~ m NÚCLEO ~ mnucleón < m. MATERIA ~ 10-9 m. Átomo FÍSICA MATERIALES PARTÍCULAS ESTRUCTURA DE LA MATERIA Grupo D CURSO 20011 2012 EL NÚCLEO ATÓMICO DE QUÉ ESTÁN HECHAS LAS COSAS? MATERIA ~ 10-9 m Átomo FÍSICA MATERIALES ÁTOMO ~ 10-10 m NÚCLEO ~ 10-14 mnucleón < 10-15 m Electrón Protón

Más detalles

Fortalecimiento de la Enseñanza de las Ciencias Naturales en la Educación Secundaria. -Córdoba-

Fortalecimiento de la Enseñanza de las Ciencias Naturales en la Educación Secundaria. -Córdoba- Segundo Encuentro Jurisdiccional Fortalecimiento de la Enseñanza de las Ciencias Naturales en la Educación Secundaria. -Córdoba- 10 y 11 de junio 2014 1 En general se presta poca atención al conocimiento

Más detalles

MATERIA Y ENERGÍA (Física)

MATERIA Y ENERGÍA (Física) MATERIA Y ENERGÍA (Física) 1. Tema 1: Conceptos generales. 1. La materia. Propiedades macroscópicas y su medida 2. Estructura microscópica de la materia 3. Interacción gravitatoria y electrostática 4.

Más detalles

Conservación de la Energía Mecánica NOMBRE: CURSO:

Conservación de la Energía Mecánica NOMBRE: CURSO: NOMBRE: CURSO: La ley de conservación de la energía mecánica nos dice que la energía de un sistema aislado de influencias externas se mantiene siempre constante, lo que ocurre es una simple transformación

Más detalles

Del Sistema Solar al Universo A of B. Astronomía básica

Del Sistema Solar al Universo A of B. Astronomía básica Del Sistema Solar al Universo A of B Astronomía básica EL SISTEMA SOLAR El Sistema Solar Es un grupo de objetos que están presos y no pueden escapar de la vecindad del Sol, por su mutua atracción gravitatoria

Más detalles

COSMOGONÍA DE ANAXIMANDRO DE MILETO (610-546 ac) La tierra es plana. El borde era un abismo sin fin, plagado de monstruos.

COSMOGONÍA DE ANAXIMANDRO DE MILETO (610-546 ac) La tierra es plana. El borde era un abismo sin fin, plagado de monstruos. COSMOGONÍA DE ANAXIMANDRO DE MILETO (610-546 ac) La tierra es plana. El borde era un abismo sin fin, plagado de monstruos. MONSTRUOS DEL ABISMO DEL BORDE DE LA TIERRA COSMOGONÍA DE EUDOXUS DE CNIDUS Y

Más detalles

POTENCIAL CRITICO: Energía mínima para hacer saltar un electrón desde su orbital normal al inmediato superior expresado en ev.

POTENCIAL CRITICO: Energía mínima para hacer saltar un electrón desde su orbital normal al inmediato superior expresado en ev. MECANISMOS DE CONDUCCION ELECTRICA EN GASES Para estudiar el proceso de conducción en gases tenemos que considerar que el gas se encuentra contenido en una ampolla de vidrio, la cual está ocupada únicamente

Más detalles

Z, ( a veces se suprime Z),donde X es el símbolo químico del elemento. Así por ejemplo tenemos los isótopos del carbono:

Z, ( a veces se suprime Z),donde X es el símbolo químico del elemento. Así por ejemplo tenemos los isótopos del carbono: RADIACTIVIDAD El núcleo atómico está constituido por nucleones: Z protones y N neutrones, ( en total A ). Como sabemos los nucleones son partículas elementales y están constituidos por la agrupación de

Más detalles

IES Menéndez Tolosa Física y Química - 4º ESO Trabajo y energía - Energías cinética y potencial con soluciones

IES Menéndez Tolosa Física y Química - 4º ESO Trabajo y energía - Energías cinética y potencial con soluciones IES Menéndez Tolosa Física y Química - 4º ESO Trabajo y energía - Energías cinética y potencial con soluciones Define la unidad de energía en el sistema internacional (S.I.). Escribe otras unidades de

Más detalles

LA ENERGÍA DEL SOL Y LAS ESTRELLAS Simón García

LA ENERGÍA DEL SOL Y LAS ESTRELLAS Simón García LA ENERGÍA DEL SOL Y LAS ESTRELLAS Simón García La energía del Sol y las estrellas. Átomos. La interacción de la luz y la materia. Espectros estelares. La estructura del Sol. La atmósfera solar. Brillo

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA

PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA CURSO 01-013 CONVOCATORIA: JUNIO MATERIA: FÍSICA De las dos opciones propuestas, sólo hay que desarrollar una opción

Más detalles

INTRODUCCIÓN A RADIACTIVIDAD

INTRODUCCIÓN A RADIACTIVIDAD INTRODUCCIÓN A RADIACTIVIDAD Que es un átomo? Qué partículas se encuentran en el átomo? En que zonas? Es la unidad más pequeña de un elemento químico que no es posible dividir mediante procesos químicos.

Más detalles

FISICA Y QUÍMICA 4º ESO 1.- TRABAJO MECÁNICO.

FISICA Y QUÍMICA 4º ESO 1.- TRABAJO MECÁNICO. 1.- TRABAJO MECÁNICO. Si a alguien que sostiene un objeto sin moverse le preguntas si hace trabajo, probablemente te responderá que sí. Sin embargo, desde el punto de vista de la Física, no realiza trabajo;

Más detalles

Resultado: a) K ps = 6,81 10 11 M 4 ; b) No hay precipitado.

Resultado: a) K ps = 6,81 10 11 M 4 ; b) No hay precipitado. PRUEBA GENERAL OPCIÓN A PROBLEMA.- La solubilidad del Cr(OH) 3 es 0,13 mg ml 1 : a) Determina la constante de solubilidad K ps del hidróxido de cromo (III). b) Se tiene una disolución de CrCl 3 de concentración

Más detalles

Guía para el docente El movimiento Energía mecánica. Guía para el docente

Guía para el docente El movimiento Energía mecánica. Guía para el docente Guía para el docente Descripción curricular: - Nivel: 2º medio - Subsector: iencias Físicas - Unidad temática: - alabras claves: Energía, Energía potencial, energía cinética, conservación de la energía,

Más detalles

POTENCIAL ELECTRICO. 1. Establezca la distinción entre potencial eléctrico y energía potencial eléctrica.

POTENCIAL ELECTRICO. 1. Establezca la distinción entre potencial eléctrico y energía potencial eléctrica. POTENCIAL ELECTRICO 1. Establezca la distinción entre potencial eléctrico y energía potencial eléctrica. Energía potencial eléctrica es la energía que posee un sistema de cargas eléctricas debido a su

Más detalles

Oposiciones Secundaria Física y Química Antonio Abrisqueta García, 1999 Temario Específico Tema 37

Oposiciones Secundaria Física y Química Antonio Abrisqueta García, 1999 Temario Específico Tema 37 TEMAS DE FÍSICA Y QUÍMICA (Oposiciones de Enseñanza Secundaria) ------------------------------------------------------------------------------- TEMA 37 ENERGÍA NUCLEAR. PRINCIPIO DE CONSERVACIÓN MASA-ENERGÍA.

Más detalles

Propiedades periódicas

Propiedades periódicas Propiedades periódicas 1.-Radio atómico 2.-Radio iónico 3.-Potencial de ionización. 4.-Afinidad electrónica 5.-Electronegatividad y carácter metálico. El estudio de la materia y de sus propiedades en el

Más detalles

1.99 x 10 30 kg (3.33 x 10 5 M o ) 6.96 x 10 5 km (109 R o ) 1410 kg m -3 3.90 J s -3 5800ºK 15,500,000ºK 25 dias

1.99 x 10 30 kg (3.33 x 10 5 M o ) 6.96 x 10 5 km (109 R o ) 1410 kg m -3 3.90 J s -3 5800ºK 15,500,000ºK 25 dias Características Generales - El Sol es una estrella normal, típica. Como esta cerca la podemos estudiar en gran detalle. No podemos ver su interior, pero basados en las observaciones superficiales y modelos

Más detalles

Departamento de Física y Química

Departamento de Física y Química 1 PAU Física, septiembre 2010. Fase general. OPCION A Cuestión 1.- Una partícula que realiza un movimiento armónico simple de 10 cm de amplitud tarda 2 s en efectuar una oscilación completa. Si en el instante

Más detalles

SEGUNDA ESPECIALIZACIÓN PROFESIONAL EN PROTECCIÓN RADIOLÓGICA. Convenio IPEN UNI

SEGUNDA ESPECIALIZACIÓN PROFESIONAL EN PROTECCIÓN RADIOLÓGICA. Convenio IPEN UNI SEGUNDA ESPECIALIZACIÓN PROFESIONAL EN PROTECCIÓN RADIOLÓGICA Convenio IPEN UNI INTRODUCCIÓN La Universidad Nacional de Ingeniería, ofrece a través de la Facultad de Ciencias, la Segunda Especialización

Más detalles

Preguntas de Multiopción

Preguntas de Multiopción Física Nuclear & Reacciones Nucleares Problemas de Practica AP Física B de PSI 1. El núcleo atómico se compone de: (A) electrones (B) protones (C) protones y electrones (D) protones y neutrones (E) neutrones

Más detalles

Colisión de dos partículas

Colisión de dos partículas Capítulo 14 Colisión de dos partículas 14.1 Descripción de un proceso de colisión en el sistema centro de masa En el capítulo anterior describimos la colisión de un proyectil contra un centro de fuerza

Más detalles

Tema 2. La radiación electromagnética (REM) Teledetección 2º Curso de IT en Topografía EPS Jaén

Tema 2. La radiación electromagnética (REM) Teledetección 2º Curso de IT en Topografía EPS Jaén Tema 2. La radiación electromagnética (REM) Teledetección 2º Curso de IT en Topografía EPS Jaén 1. Movimiento ondulatorio 2. La radiación electromagnética (REM) 3. El espectro electromagnético 4. Terminología

Más detalles

CAPÍTULO 3 EL MÉTODO DE ANÁLISIS EXERGÉTICO

CAPÍTULO 3 EL MÉTODO DE ANÁLISIS EXERGÉTICO 50 CAPÍTULO 3 EL MÉTODO DE ANÁLISIS EXERGÉTICO En este capítulo se desarrolla la metodología de análisis, cuya aplicación a una central termoeléctrica particular y el análisis de los resultados se llevan

Más detalles

2. MATERIA Y ENERGÍA 2.1. Introducción

2. MATERIA Y ENERGÍA 2.1. Introducción 2 MATERIA Y ENERGÍA 2.1. Introducción... 35 2.2. La materia. Estructura.... 36 2.2.1. Generalidades... 36 2.2.2. El átomo... 36 2.2.3. La unión entre los átomos: cristales y moléculas... 47 2.2.4. La materia

Más detalles

PARTÍCULAS. un mundo dentro de cada átomo

PARTÍCULAS. un mundo dentro de cada átomo PARTÍCULAS un mundo dentro de cada átomo CAOS O CAPRICHO? CAOS O CAPRICHO? CAOS O CAPRICHO? CAOS O CAPRICHO? CAOS O CAPRICHO? CAOS O CAPRICHO? PASIÓN POR EL ORDEN PASIÓN POR EL ORDEN Las propiedades de

Más detalles

QUE ES Y COMO MEDIR AL EFECTO LEIDENFROST?

QUE ES Y COMO MEDIR AL EFECTO LEIDENFROST? QUE ES Y COMO MEDIR AL EFECTO LEIDENFROST? Nadia Barreiro, Cecilia Laborde Facultad de ciencias Exactas y Naturales Universidad de Buenos Aires, Abril de 2009 El objetivo de este trabajo fue estudiar un

Más detalles

1 Estructura atómica de la materia.

1 Estructura atómica de la materia. Estructura atómica de la materia. Teoría cuántica Actividades del interior de la unidad. Serán iguales los espectros de emisión de dos elementos diferentes? Por qué? No, serán diferentes. Los espectros

Más detalles

Exámenes de Selectividad de Física

Exámenes de Selectividad de Física Exámenes de Selectividad de Física Enunciados de las pruebas correspondientes a los cursos 2005 a 2014 Universidades de Andalucía CURSO 2013-2014 CRITERIOS ESPECÍFICOS DE CORRECCIÓN El enunciado del ejercicio

Más detalles

Física nuclear. Ramón Niembro. Física Nuclear y de Partículas. Universidad de Cantabria. 4 o de física

Física nuclear. Ramón Niembro. Física Nuclear y de Partículas. Universidad de Cantabria. 4 o de física Física nuclear Ramón Niembro Ampliado por: Benito Marcote Física Nuclear y de Partículas Universidad de Cantabria 4 o de física Santander, 2010 Contenidos 1 Propiedades globales del núcleo 7 1.1 Introducción...................................

Más detalles

ÁTOMOS Y MOLÉCULAS. El modelo atómico de Dalton no logra explicar los fenómenos eléctricos.

ÁTOMOS Y MOLÉCULAS. El modelo atómico de Dalton no logra explicar los fenómenos eléctricos. ÁTOMOS Y MOLÉCULAS Un modelo científico es una representación aproximada de la realidad que es capaz de explicar todas las observaciones realizadas hasta el momento sobre un fenómeno determinado y que

Más detalles

PRÁCTICA 7: EQUILIBRIO ÁCIDO-BASE

PRÁCTICA 7: EQUILIBRIO ÁCIDO-BASE PRÁCTICA 7: EQUILIBRIO ÁCIDO-BASE FUNDAMENTOS Concepto de ácido y base Los ácidos y las bases constituyen una clase de compuestos químicos de gran interés. El concepto de ácido y base ha evolucionado a

Más detalles

El origen y la evolución del universo Julieta Fierro, Susana Deustua, Beatriz Garcia

El origen y la evolución del universo Julieta Fierro, Susana Deustua, Beatriz Garcia El origen y la evolución del universo Julieta Fierro, Susana Deustua, Beatriz Garcia International Astronomical Union Universidad Nacional Autónoma de México, México Space Telescope Science Institute,

Más detalles

Trabajo, Energía y Potencial

Trabajo, Energía y Potencial Cátedra de Física Experimental II Física III Trabajo, Energía y Potencial Prof. Dr. Victor H. Rios 2015 METAS DE APRENDIZAJE Al estudiar este capítulo, usted aprenderá: A calcular la energía potencial

Más detalles

Práctica 1: Introducción experimental a la Óptica

Práctica 1: Introducción experimental a la Óptica Óptica: Introducción experimental 1 Práctica 1: Introducción experimental a la Óptica 1.- Introducción 2.- El láser 3.- Óptica geométrica 4.- Óptica ondulatoria 1.- Introducción Destaca en la historia

Más detalles

Universidad Central de Venezuela Facultad de Ciencias Escuela de Física

Universidad Central de Venezuela Facultad de Ciencias Escuela de Física Universidad Central de Venezuela Facultad de Ciencias Escuela de Física DISEÑO Y EVALUACIÓN DOSIMÉTRICA DE UN MANIQUÍ PARA TRATAMIENTO DE MAMA CON BRAQUITERAPIA INTERSTICIAL (HDR) Heyward N. Solarte García

Más detalles

5.3 Teorema de conservación de la cantidad de movimiento

5.3 Teorema de conservación de la cantidad de movimiento 105 UNIDAD V 5 Sistemas de Partículas 5.1 Dinámica de un sistema de partículas 5.2 Movimiento del centro de masa 5.3 Teorema de conservación de la cantidad de movimiento 5.4 Teorema de conservación de

Más detalles

Fundamentos físicos de la teledetección

Fundamentos físicos de la teledetección Tema 1 Fundamentos físicos de la teledetección 1.1 La radiación electromagnética Dada la importancia que la radiación electromagnética tiene como transmisor de información en todas las formas de teledetección,

Más detalles

Radiología General. Magnitudes y Unidades en Radiología. Miguel Pombar Facultad de Medicina y Odontología (USC)

Radiología General. Magnitudes y Unidades en Radiología. Miguel Pombar Facultad de Medicina y Odontología (USC) Radiología General Magnitudes y Unidades en Radiología Miguel Pombar Facultad de Medicina y Odontología (USC) Magnitudes y unidades radiológicas Actividad Exposición Dosis Absorbida Dosis Equivalente Dosis

Más detalles

3.1. ÁCIDOS Y BASES. HA (ac) H + (ac) + A - (ac)

3.1. ÁCIDOS Y BASES. HA (ac) H + (ac) + A - (ac) 3.1. ÁCIDOS Y BASES Según la teoría de Arrhenius, ácido es toda sustancia capaz de dar iones hidrógeno (H ) como uno de sus productos iónicos de disociación en agua : HA H A - El ion H, denominado protón

Más detalles

Instrucciones Sólo hay una respuesta correcta por pregunta. Salvo que se indique explícitamente lo contrario, todas las resistencias, bombillas o

Instrucciones Sólo hay una respuesta correcta por pregunta. Salvo que se indique explícitamente lo contrario, todas las resistencias, bombillas o 1. Una partícula de 2 kg, que se mueve en el eje OX, realiza un movimiento armónico simple. Su posición en función del tiempo es x(t) = 5 cos (3t) m y su energía potencial es E pot (t) = 9 x 2 (t) J. (SEL

Más detalles

Física y Química 4º ESO Apuntes de Dinámica página 1 de 5 CONCEPTO DE ENERGÍA

Física y Química 4º ESO Apuntes de Dinámica página 1 de 5 CONCEPTO DE ENERGÍA Física y Química 4º ESO Apuntes de Dinámica página 1 de 5 CONCEPTO DE ENERGÍA Antes se definía la energía como la capacidad de un cuerpo o sistema para realizar un trabajo. Vamos a ver una explicación

Más detalles

Estructura atómica: Trabajo en Clase y en Casa

Estructura atómica: Trabajo en Clase y en Casa Luz y Ondas Trabajo en clase: Estructura atómica: Trabajo en Clase y en Casa 1. Según la visión de Einstein sobre materia y energía Cuál es el vínculo común entre la luz y la materia? 2. Cómo funciona

Más detalles

TRABAJO Y ENERGÍA. Las magnitudes físicas trabajo y energía nos acercarán de una manera sencilla a explicar éste y otros muchos fenómenos naturales.

TRABAJO Y ENERGÍA. Las magnitudes físicas trabajo y energía nos acercarán de una manera sencilla a explicar éste y otros muchos fenómenos naturales. TRABAJO Y ENERGÍA Si las Leyes Fundamentales de la Dinámica explican y predicen el movimiento de los cuerpos... Por qué más magnitudes físicas como trabajo W y energía E, que parece persiguen el mismo

Más detalles

Variación de los elementos en la naturaleza

Variación de los elementos en la naturaleza Variación de los elementos en la naturaleza por V.S. Venkatavaradan En la naturaleza existe una variedad infinita de objetos e infinita también es la variedad de formas, colores y estados. A pesar de sus

Más detalles

EXAMEN DE FÍSICA SELECTIVIDAD 2014-2015 JUNIO OPCIÓN A. a) La velocidad orbital de la luna exterior y el radio de la órbita de la luna interior.

EXAMEN DE FÍSICA SELECTIVIDAD 2014-2015 JUNIO OPCIÓN A. a) La velocidad orbital de la luna exterior y el radio de la órbita de la luna interior. EXAMEN DE FÍSICA SELECTIVIDAD 04-05 JUNIO OPCIÓN A Problema. Dos lunas que orbitan alrededor de un planeta desconocido, describen órbitas circulares concéntricas con el planeta y tienen periodos orbitales

Más detalles

Materia Todo lo que ocupa un lugar en el espacio. Sustancia pura Materia de composición química definida

Materia Todo lo que ocupa un lugar en el espacio. Sustancia pura Materia de composición química definida II. MATERIA Y ENERGÍA OBJETIVO.-. Analizará la relación entre materia y energía a partir de sus propiedades para identificar su vinculación con los fenómenos físicos y químicos de su entorno 1 Materia

Más detalles

NOS AFECTAN LAS RADIACIONES?

NOS AFECTAN LAS RADIACIONES? NOS AFECTAN LAS RADIACIONES? AUTORÍA MARÍA FABIOLA GÓMEZ ALAVERT TEMÁTICA FÍSICA ETAPA BACHILLERATO Resumen Con este artículo se pretende que los alumnos conozcan que son las radiaciones, saber qué radiaciones

Más detalles