TEMA 6 FUNCIONES. María Juan Pablo Julia Manuel Ángela Enrique Alejandro Carmen

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 6 FUNCIONES. María Juan Pablo Julia Manuel Ángela Enrique Alejandro Carmen"

Transcripción

1 TEMA 6 FUNCIONES 1.- Estudia y clasifica las relaciones que aparecen en las siguientes situaciones (elementos relacionados, características de la relación, dependencia entre elementos, conjuntos que se relacionan, si es o no función, etc.): 1.1) Tabla de lo que deben los miembros de un club: Nombre María Juan Pablo Julia Manuel Ángela Enrique Alejandro Carmen Deuda ) Las relaciones vienen dadas por las siguientes expresiones algebraicas: a) y = 3x 2 2 b) 3x + y = 2 c) y 2 = 3x d) y = 2 e) x 3 y = 0 f) x = 5 1.3) Un médico dispone de 1 hora diaria para consultas. El tiempo que podría dedicar, por término medio a cada enfermo, depende del número de ellos que acudan: si hay uno dedicaría 60 minutos; si hay dos 30 minutos; si tres 20 minutos; Así hasta un máximo de 30 enfermos. 1.4) En un aparcamiento público de una ciudad figuraba hace unos años la siguiente tarifa: 1ª hora o fracción 1 5 Cada hora más o fracción.1 25 Máximo: 10 por 24 horas 2) Expresar la fórmula o expresión algebraica que nos da el área de los rectángulos que miden doble de altura que de base, según el tamaño de la base. Representarla después gráficamente. Es una función? Qué dimensiones tendrá uno de estos rectángulos, si sabemos que su área mide 3528 m? 3) Expresar mediante una tabla; después mediante una gráfica y, por último, mediante una expresión algebraica, la función que expresa el precio que corresponde a un paquete de cereales según el peso del mismo, sabiendo que un paquete de 30 K. ha costado

2 4) Un café está, inicialmente, a 90 ºC. Si en otros momentos está a Tiempo Temperatura a) Completar la tabla donde sea posible. b) Qué sucede a los 7 minutos? y a los 12? Cómo proceder con valores intermedios? 5) Se lanza una piedra desde una torre de manera que, si expresamos en una tabla el tiempo en segundos y la distancia de caída recorrida, tendríamos: Tiempo Distancia Representa gráficamente la caída. Cuál es la fórmula que nos da la distancia recorrida en función del tiempo transcurrido? 6) Cierto fenómeno lleva asociado un comportamiento como función de primer grado. Si conocemos que para el valor 4 de la variable independiente, corresponde el valor 3 de la variable dependiente y que el par (7, 5) es una pareja de su tabla de valores: a) Encontrar la expresión algebraica de dicha función b) Representarla gráficamente. c) Cuánto corresponderá al valor independiente 10? d) A qué valor corresponde el resultado 9? 7) Indica si las siguientes situaciones son o no funciones indicando razonadamente por qué. a) f: Z N x x 2 b) f: Z R x 1/(x-2) c) La recta que pasa por los puntos (8,1) y (13.2) 8) Expresa mediante tabla, gráfica y algebraicamente, la función que nos da el coste del recibo de teléfono según los pasos gastados, sabiendo que incluye una cuota fija de 30 y que el precio del paso es de 0,25. Cuánto pagarás un mes que has consumido 800 pasos? Cuántos pasos consumiste un mes que pagaste ) Puedes dibujar más de un rectángulo de 26 cm de perímetro? Razona la respuesta. En el caso de que puedas encontrar más de un rectángulo, tienen la misma área? De qué depende el área de los rectángulos? Si uno de esos rectángulos tiene de base 1cm. Cuál es su área? Y si el rectángulo tiene de base 3,5 cm? Encuentra la expresión algebraica que relaciona el área con la base de dichos rectángulos. (Ayuda: para calcular el área expresa la altura de dicho rectángulo en función de su base). 72

3 Encuentra las dimensiones de los rectángulos que tienen de área 40 cm 2. Hay más de uno? Y si el área fuera de 39 cm 2? Hay algún rectángulo cuya área sea la mayor de todas? Justifícalo. 10) Un recipiente vacío con capacidad para 20 litros pesa 2 kg. Escribe la función que nos da el peso total del recipiente según la cantidad de agua, en litros, que contiene. 11) Un camión carga cajas de tomates. Cada una pesa 20 kg y el camión vacío pesa 4500 kg. a) Calcular el peso total del camión cuando transporta 125 cajas. b) Determinar el número de cajas que transporta si el peso total es de 6740 kg. c) Escribir una ecuación que exprese el peso total del camión en función del número de cajas. 12) En la oscilación de un reloj de péndulo el tiempo en que el péndulo recorre su longitud máxima depende de la longitud de dicho péndulo siguiendo la fórmula t = 20 L Construir una tabla de los valores correspondientes representándolos gráficamente. 13) Sea un rectángulo de base constante. Cómo varía el área en función de la altura? Exprésalo con una fórmula, construye una tabla de valores y realiza la correspondiente representación gráfica. 14) Considera todos los rectángulos posibles que tengan por área 18 cm 2. Construye una tabla de valores de las bases y anchuras, una representación gráfica de dichos valores y finalmente, una fórmula que nos exprese la relación entre la base y la anchura. 15) Te apuntas a un Videoclub que te cobra una cuota mensual fija de 10 y aparte, por cada película que alquilas, 1,5. Expresa Algebraica y gráficamente la función que te da lo que has gastado un mes cualquiera, según el número de películas alquiladas ése mes. Si el mes pasado pagaste 34, cuántas películas alquilaste?. 16) Al acabar una reunión a la que asisten un cierto número de personas, todo el mundo se da la mano. a) Cuántos apretones de manos se dieron si había 5 personas? y si eran 7? b) Cuántas personas había si se dieron 6 apretones de manos? y si fueron 66? c) Forma una tabla de valores relacionando el número de personas y apretones de manos dados. d) Si hubiera n personas cómo podríamos expresar el número de apretones de manos correspondiente? 17) Dado el número de vértices de un polígono, a) Construir una tabla con diversos valores respecto al número de vértices, lados y diagonales que correspondan. b) Hallar una relación general entre el número n de vértices y la suma de lados y diagonales correspondiente. 73

4 18) El precio por establecimiento de llamada es de 0,12 euros. Si hablamos durante 5 minutos la llamada nos costará 0,87 euros en total. Halla la función que nos da el precio total de la llamada según los minutos que estemos hablando. 19) En otros países se mide la temperatura por grados Farenheit (ºF) en vez de grados centígrados (ºC). Sabiendo que 10 ºC = 50 ºF y que 60ºC = 140 ºF, debemos obtener la ecuación que nos permita expresar temperaturas de ºC a ºF. 20) Hay que construir una conejera rectangular con 22 m. de valla metálica. Hallar la función que nos da el área de la conejera en función de su longitud. 21) Se quiere construir un pozo de forma cilíndrica de 2 m. de diámetro. Expresar el volumen del agua que cabe en el pozo en función de la profundidad x y construir una tabla con algunos de los primeros datos que es posible obtener. 22) El coste de una ventana cuadrada depende de su tamaño. El precio del cristal es de 2 euros el dm 2 y el marco está a 3 euros/dm. a) Cuánto costará una ventana de 7 dm de lado? de 1 m.? de 1,5 m.? b) Construye una tabla con estos y otros datos. c) Representa estos valores gráficamente. d) Deduce una fórmula que nos dé el coste en función de la longitud del lado. 23) Dada la siguiente tabla: n T a) Añadir 4 pares más de valores correspondientes de n y T. b) Hallar n cuando T valga 26 y cuando valga ) Consideremos un cuadrado inscrito en otro cuyo lado mide 7 cm. de la forma que indica la figura: Expresar el área del cuadrado inscrito, en función del segmento x. Representarlo gráficamente 74

5 25) Gráfica de una excursión: a) A qué distancia de casa se encuentra a las dos horas? Y a las 3? Y a las 6? b) Cuánto tiempo estuvo a 3 Km de su casa? c) A qué distancia de casa se encuentra a las 5 horas? Y a 1 hora? Y a las 4'5 horas? d) En qué momento se encontraba a 2 Km. de su casa? e) Inventa otra situación que pueda ser representada por esta gráfica. f) Explicita la expresión algebraica de la función. Cuántas funciones hay? g) Obtener f(2'5), f(4). h) Resuelve: h 1 ) f(x) = 0 h 2 ) f(x) = 2 Trata de describir verbalmente las ecuaciones anteriores. 26) En uno de los brazos de una balanza se han colocado 3 kg. a una distancia de 4 dm respecto al fulcro. La balanza se equilibra colocando y kg. en el otro brazo a una distancia de x dm. del fulcro. Determina la forma de variación de y respecto de x dibujando la gráfica correspondiente. 27) Dos amigos compran cada uno un caballo observando que en ese momento ambos animales pesan lo mismo. Un mes después uno afirma: Mi caballo pesa 10 kg más que entonces y el otro responde: El mío aumentó su peso un 20 %, por lo que siguen pesando lo mismo. a) Cuánto pesaban originalmente los caballos? b) Al cabo de tres meses el segundo afirma: Mi caballo ha seguido aumentando un 20 % cada mes respecto al mes anterior y el otro dice: El mío ha seguido aumentando 10 kg cada mes, luego pesan lo mismo otra vez Es cierta esta última afirmación? Dibuja el gráfico del desarrollo de ambos caballos. c) Encuentra una función que exprese en cada caso el peso del caballo en función del tiempo en meses. 28) En una ciudad las ecuaciones de la oferta O y la demanda D de un producto cuyo precio es de x euros vienen dadas por: O = 18 x 900 ; D = x Se llama punto de equilibrio el valor de x para el que el mercado se encuentra en equilibrio (O = D). Calcular gráficamente el punto de equilibrio. Es posible hacerlo de forma analítica? 75

6 29) Una empresa alquila varios tipos de lijadora para el suelo. El precio de alquiler en euros depende del tipo de máquina y el número de horas que se utilice. Se ofrecen tres máquinas bajo el siguiente precio: Lijadora A: Precio = Nº de horas x 3 + 9,5 Lijadora B: Precio = Nº de horas x 4,2 + 6 Lijadora C: Precio = Nº de horas x 7,2 a) Calcula cuál de las tres lijadoras es más económica para alquilarla, 1; 1,5; 2 ó 3 horas. b) Representa en los mismos ejes de coordenadas las gráficas correspondientes a los precios de las tres dependiendo del número de horas que se emplee. c) Determinar, a partir de la gráfica, para qué número de horas resulta más rentable el alquiler de cada una de ellas 30) Un joven dispone de 350 euros para gastar en libros y CDs de música. En los almacenes donde va observa que el precio de los libros es de 15 euros y los CDs están a 20 euros. Suponiendo que desea comprar como mucho doble número de libros que de CDs, se pide: a) Formular matemáticamente el problema. b) Averiguar si puede comprar 12 libros y 6 CDs. En caso afirmativo, indicar qué parte de su presupuesto gasta. 31) Un hombre duda entre comprar un coche de gasolina, que vale euros o uno de gasoil que cuesta euros. El precio de la gasolina es de 1,01 euros/litro mientras que el del gasoil es de 0,86 euros/litro, mantenimiento y combustible incluidos. a) Dar la función que relaciona el coste (precio del coche más el del combustible) con el número de kilómetros para cada coche. b) Representar estas funciones y determinar el punto de corte. Qué significa? c) Si el hombre recorre km. el primer año qué coche le produce menos gastos? Y si hace km? 32) Un restaurante abre sus puertas a las 8 de la noche sin ningún cliente y las cierra cuando se han marchado todos. La función que representa el número C de clientes en función de las horas h de apertura es: C = 80 h 10 h 2. a) Determinar el número máximo de clientes que van una determinada noche. b) Si deseamos ir cuando haya menos de 150 personas y más de 70 entre qué horas debemos hacerlo? c) A qué hora cierra? 33) Dadas las funciones a) f (x) = 2 x + 1 y g(x) = 2 x 3 / 4 b) f (x) = x + 3 / x 2 y g(x) = 1/x c) f (x) = 1 / 2 x 1 y g (x) = 2 x 1 / 2 x + 1 Hallar la inversa de cada una de estas funciones, la composición de ambas f ه g, probando además que f ه f-1 = i siendo i la función identidad. 76

7 SOLUCIONES 1.1) Al conjunto de los miembros del club le corresponde el conjunto de sus deudas. Es una función puesto que a cada miembro le corresponde una deuda y sólo una. 1.2) La única que no es función es la c) puesto que y = ± 3x por lo que la imagen de x serían dos valores distintos. En los demás casos no sucede tal cosa. 1.3) La correspondencia se establece entre el conjunto de enfermos que puede atender (de 1 a 30) y el tiempo dedicado a cada uno (de 60 a 1 minuto) siguiendo la tabla ) En este caso, al conjunto de horas (de 1 a 24) le corresponde el conjunto de t arifas, de manera que un tiempo determinado tiene por imagen una y sólo una tarifa: ,5 2,75 4 5,25 6,50 que en forma de ecuación sería y = 1,5 + 1,25. (x-1) 2) Si x es la base del rectángulo la altura será 2x de donde el área es A = 2 x 2 que es una función porque a toda base x le corresponde una sola área del rectángulo al que pertenece. Si A = 3528 = 2 x 2 Base x = 42 y Altura 2x = 84 3) La función expresará una proporcionalidad directa, de manera que Peso Precio La relación algebraica vendría dada por Precio = 4. Peso 4) La tabla podría quedar así Tiempo Temperatura Teniendo en cuenta que en el intervalo (0,5) pierde 11º, en el (5,10) pierde 9º y en el más amplio (10,20) pierde 15º que podrían distribuirse en 8º en (10,15) y 7º en (15,20). Así, sucesivamente. Para determinar lo que sucede a los 7º se dividen los 9º perdidos en el intervalo (5,10) entre 5, de manera que 9/5 = 1,8º que podemos suponer pierde en cada intervalo unitario. De esa manera, en el minuto 7 estaría a 75,4º y en el minuto 12 a 66,8º por el mismo razonamiento. 5) Si x es la distancia recorrida y t el tiempo, seríax = 5 t 2 representada por una rama de parábola pasando por el punto (0,0) y simétrica al eje Y. 77

8 6) Será una función lineal o de primer grado de la forma y = a x + b de manera que de manera que se cumplirá 4 a + b = 3 y 7 a + b = 5 a = 2/3 b = 1/3 así que la función será: y = 2 x / 3 + 1/3 7) a) Es una función puesto que a cada número entero le corresponde un solo cuadrado dentro de los naturales. b) No sería función porque, para x = 2 su imagen vendría dada por 1/0 que no es un número real. c) Esa recta nos indica, una vez construida, que a todo elemento en abcisas le corresponde un solo elemento en ordenadas, por lo que la gráfica corresponde a una función. 8) Si el conjunto original es el del número de pasos y el conjunto imagen el de los costes, la función vendrá dada por y = ,25 x que nos permite construir la tabla de los primeros valores Nº pasos Coste 30 30,25 30,50 30, ,25 31,50 Si x = 800, y = , = 230 euros Si y = 280 euros, x = (y 30) / 0,25 = 250/0,25 = pasos 9) Si L es el largo y A su ancho, se cumplirá 2 L + 2 A = 26 L + A = 13 de modo que puede establecerse una función entre largos y anchos, A = 13 L construyéndose una tabla de valores donde a los largos y anchos se puede añadir el área del rectángulo que forman Largo Ancho Área El área del rectángulo dependerá de ambos valores. Para una dimensión de 1, el rectángulo será 1 x 12 y en caso de 3,5 será 3,5 x 9,5. 10) Siendo P el peso total en función del número x de litros de agua, sería P = 2 + x 11) a) P = = 7000 kg b) 6740 = x de donde x = 112 cajas c) P = x 12) Una tabla de valores que diera el tiempo en función de la longitud L del péndulo podría ser: t L Su representación gráfica sería una rama de parábola pasando por el (0,0) y simétrica al eje X. 78

9 13) Teniendo en cuenta que el área vendría dada por A = b. h siendo b constante, una tabla de valores podría ser: h A 0 b 2b 3b 4b Que daría lugar a una representación en forma de recta pasando por (0,0) y con una pendiente que dependería del valor de b. 14) Dado que el área es constante y tiene valor 18, resultaría que b. h = 18 h = 18 / b b h , ,5 1 Que daría lugar a una rama de hipérbola. 15) El gasto G vendrá dado en función del número x de películas: G = ,5. x de modo que si G ha sido 34 = ,5 x x = 16 películas. 16) La tabla de valores que es posible construir entre el número P de personas y el número A de apretones de manos, sería: P n A ½ n (n-1) a) 5 personas se dan 10 apretones, 7 personas se dan 21. b) 6 apretones corresponden a 4 personas, 66 apretones a 12 personas. 17) La solución vendría dada por la siguiente tabla: Vértices n Lados N Diagonales Lados + diagonales ½ n (n-1) 18) El coste de la llamada, si x es el coste por minuto, de: 0,87 = 0, x Como x = 0,15 euros/min, la forma general será: P = 0,12 + 0,15 t siendo t el número de minutos que se ha hablado. 79

10 19) La conversión no surge de multiplicar los grados Celsius por un solo número, de manera que podría tomar la forma: ºF = ºC x + a Si fuera así, habría de darse 10 x + a = 50y 60 x + a = 140 De la resolución de este sistema se obtiene que ºF = ºC. 1, ) Teniendo en cuenta que el perímetro viene dado por 2 L + 2 A = 22 y, por tanto, el ancho A = 11 L, la tabla de valores entre el largo y área de la conejera para que el perímetro sea de 22 m y teniendo en cuenta que vendrá dada por: Largo Área Cuya representación es una hipérbola, ya que Área = L (11 L) = 11 L L2. 21) V = El volumen del cilindro vendrá dado por V = π r 2 h y dado que r = 1, entonces será π h siendo h la profundidad del pozo. Así, una tabla sería: h V 3,14 6,28 9,42 12,56 22) a) De 7 dm de lado significa: = 84 euros de marco y = 98 euros cristal De 1 m será: = 120 euros de marco y = 200 euros de cristal De 1,5 m será: = 180 euros de marco y = 450 euros de cristal Lado Coste total En general, Coste total = 4 L L2 23) a) Suponiendo una relación lineal T = a n + b resultaría 2 = a + b ; 5 = 2 a + b de donde la función sería T = 3 n 1. Así, otras parejas serían (5,14), (6,17), (7,20), (8, 23), etc. b) 26 = 3 n 1 n = 9 ; 41 = 3 n 1 n = 14 24) El cuadrado interior tiene la propiedad de dividir el cuadrado grande en el pequeño más cuatro triángulos rectángulos iguales de catetos x, c e hipotenusa L, siendo L el lado del cuadrado interior. De esta forma se cumplirá x + c = 7 y, por Pitágoras, Área = L 2 = x 2 + c 2 que da lugar, por sustitución, a: Área = x 2 + (7-x) 2 = 2 x 2-14 x ) a) A las 2, 3 horas se encuentra a 3 km, a las 6 h a 0 km; b) 3 1,5 = 1,5 horas; c) A las 5 h se encuentra a 0 km. Si en 1,5 h pasa de estar de 0 a 3 km de manera uniforme, cuando haya pasado una hora estará a 2 km; a los 4,5 km estará a 0 km; d) Pasada 1 h. ; e) Subir hasta un piso, por ejemplo, permanecer allí un rato y descender de nuevo, considerando tiempo en el eje de abcisas y altura en el de ordenadas; f) La función vendrá dada por 0 t 1,5 f(t) = 2t ; 1,5 t 3 f(t) = 3 ; 3 t 4,5 f(t) = 3 2(t-3) = 9 2t ; 4,5 t f(t) = 0 80

11 g) f(2,5) = 3 f(4) = 1 ; h) f(t) = 0 t = 0, t 4,5 ; f(t) = 2 t = 1 ; 3,5 26) La ley de la palanca conduce a que y x = 12, de manera que y = 12/x que da lugar a una hipérbola. 27) a) Si P es el peso original, será al cabo de un mes: P + 10 = 120/100 P = 1,2 P P = 50 kg b) Al cabo de dos meses más los pesos serán: P + 30 = 80 kg y 1,2 3 P = 1, = 86,4 kg c) Si P es el peso total, será: P = t y P = 1,2 t ) El punto de equilibrio x se hallará igualando la oferta y la demanda: 18 x 900 = x x = 110 euros 29) 30) 31) 32) a) En los tres primeros casos es más económica la tercera pero, para 3 horas, resulta más barata la primera. c) Comparando las dos primeras 3 h + 9,5 < 4,2 h + 6 se llega a la conclusión de que la primera es más económica que la segunda cuando h > 3. Si se comparan la primera con la tercera: 3 h + 9,5 < 7,2 h la primera es más rentable si h > 2,2. Comparando la segunda y la tercera: 4,2 h + 6 < 7,2 h se llega a la conclusión de que la segunda es más rentable cuando h > 1,8. a) Siendo x el número de libros comprados e y el número de CDs, será como máximo: 350 = 15 x + 20 y pero como x = 2 y resulta y = 7 x = 14 b) = 300 euros que representan el 85,7 % del dinero disponible. a) C1 = ,01 x C2 = ,86 x b) Igualando ambas, resulta que x = km que significa el kilometraje a partir del cual es más rentable la adquisición del motor de gasoil. c) Debido a lo anterior, con resulta más rentable el de gasolina mientras que con km lo es el de gasoil. a) Podemos formar una tabla de valores: Hora real Nº hora Clientes Que muestra que el mayor número de clientes se registra a las 12 h y es de

12 b) Tendremos que ir entre las 9 y las 11 de la noche, o bien entre la 1 y las 3. c) Cerrará cuando no haya clientes, es decir, cuando C = 0 = 80 h 10 h 2 h = 8 h (las 4 de la mañana) 33) a) f-1 (y) = y 1 / 2 g-1 (y) = 4y + 3 / 2 (f o g)(x) = 2x 1 / 2 b) f-1 (y) = y / y 1 g-1 (y) = 1 / y (f o g)(x) = 1 + 3x / 1 2x c) f-1 (y) = 1 + y / 2y g-1 (y) = y 1 / 2(1 y) (f o g)(x) = 2x + 1 / 2x

13 83

CAPÍTULO VI. Funciones

CAPÍTULO VI. Funciones CAPÍTULO VI Funciones FUNCIONES 1. Indicar si las siguientes expresiones son o no funciones indicando razonadamente por qué. ( ) a) f : Z N : x x 2 + 1 b) f : Z R : x 1 x 2 c) La recta que pasa por los

Más detalles

Recuerdas qué es? Constante de proporcionalidad Es el cociente de cualquiera de las razones que intervienen en una proporción.

Recuerdas qué es? Constante de proporcionalidad Es el cociente de cualquiera de las razones que intervienen en una proporción. Recuerdas qué es? Coordenadas de un punto Un punto del plano viene definido por un par ordenado de números. La primera coordenada es la abscisa del punto, la segunda coordenada es la ordenada del punto.

Más detalles

( ) 6. NÚMEROS NATURALES Y ENTEROS 1. Efectúa: = =

( ) 6. NÚMEROS NATURALES Y ENTEROS 1. Efectúa: = = NÚMEROS NATURALES Y ENTEROS. Efectúa a) ( ) ( ) 8 ( ) b) ( ) ( ) c) ( ) d) ( ) e) ( 8) ( ) f) ( ) ( ) g) [ ( ) ] h) ( ) ( ( ) ) ( ) ( ). Al enchufar la corriente a un congelador, la temperatura desciende

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. Página Completa la siguiente tabla: Nº- de vídeos 0 6 7 8 9 0 Coste no socios 0, 7, 0, 7, 0, Coste socios 6 7 8 9 0 Completa en tu cuaderno la gráfica de la derecha, representando los resultados con

Más detalles

Funciones elementales

Funciones elementales 10 Funciones elementales Objetivos En esta quincena aprenderás a: Reconocer y distinguir algunas de las funciones más habituales. Utilizar algunas funciones no lineales: cuadráticas, de proporcionalidad

Más detalles

I.E.S. SALVADOR RUEDA DEPARTAMENTO DE MATEMÁTICAS

I.E.S. SALVADOR RUEDA DEPARTAMENTO DE MATEMÁTICAS PLAN DE TRABAJO PARA RECUPERAR LAS MATEMÁTICAS DE º ESO El profesor/a de la asignatura se encargará de ir evaluando al alumno/a con la asignatura pendiente en la forma que le indique: realización de exámenes,

Más detalles

8 FUNCIONES: PROPIEDADES GLOBALES

8 FUNCIONES: PROPIEDADES GLOBALES 8 FUNCINES: PRPIEDADES GLBALES EJERCICIS PRPUESTS 8. Escribe las coordenadas de los puntos que aparecen en la figura. A D B C A( 3, 3) B(3, ) C(3, ) D( 3, 3) 8. Representa estos puntos en un eje de coordenadas.

Más detalles

Problemas Tema 1 Enunciados de problemas de Repaso 4ºESO

Problemas Tema 1 Enunciados de problemas de Repaso 4ºESO página / Problemas Tema Enunciados de problemas de Repaso 4ºESO Hoja. Calcula las medidas de un rectángulo cuya superficie es de 40 metros cuadrados, sabiendo que el largo es 6 metros mayor que el triple

Más detalles

PLAN DE TRABAJO para el VERANO

PLAN DE TRABAJO para el VERANO PLAN DE TRABAJO para el VERANO MATEMÁTICAS 4 º ESO OPCIÓN A PENDIENTES IES JOVELLANOS Nombre: Esta colección de ejercicios ha sido diseñada con el objetivo de ayudar a preparar a aquellos alumnos y alumnas

Más detalles

IES ARROYO HONDO ACTIVIDADES REPASO MATEMÁTICAS 3º ESO. Segunda parte. Curso 15/16. Fecha de entrega: 11/2/16

IES ARROYO HONDO ACTIVIDADES REPASO MATEMÁTICAS 3º ESO. Segunda parte. Curso 15/16. Fecha de entrega: 11/2/16 IES ARROYO HONDO ACTIVIDADES REPASO MATEMÁTICAS 3º ESO Segunda parte Curso 15/16 Fecha de entrega: 11/2/16 Nombre: Grupo: FUNCIONES Y GRÁFICAS: 1. Ricardo ha quedado con sus amigos para dar una vuelta

Más detalles

Funciones. Objetivos. Antes de empezar. 1.Relaciones funcionales...pág. 204. 2.Representación gráfica...pág. 211. 3.Propiedades generales...pág.

Funciones. Objetivos. Antes de empezar. 1.Relaciones funcionales...pág. 204. 2.Representación gráfica...pág. 211. 3.Propiedades generales...pág. 11 Funciones. Objetivos En esta quincena aprenderás a: Comprender, distinguir y valorar el concepto de función Interpretar y relacionar tabla, gráfica y fórmula de una relación funcional Distinguir los

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA 1. MONOTONÍA (CRECIMIENTO O DECRECIMIENTO) Si una función es derivable en un punto = a, podemos determinar su crecimiento o decrecimiento en ese punto a partir del signo de

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente

Más detalles

Problemas de funciones para 2º E.S.O

Problemas de funciones para 2º E.S.O Problemas de funciones para 2º E.S.O 1º) Esboza una representación gráfica de las siguientes funciones: a) La altura a la que se encuentra el asiento de un columpio, al pasar el tiempo. b) La temperatura

Más detalles

SEGUNDO PARCIAL BOLETÍN DE EJERCICIOS PARA ALUMNOS CON MATEMÁTICAS DE 2º ESO PENDIENTE

SEGUNDO PARCIAL BOLETÍN DE EJERCICIOS PARA ALUMNOS CON MATEMÁTICAS DE 2º ESO PENDIENTE SEGUNDO PARCIAL BOLETÍN DE EJERCICIOS PARA ALUMNOS CON MATEMÁTICAS DE º ESO PENDIENTE TEMA 5: ÁLGEBRA: MONOMIOS Y POLINOMIOS- OPERACIONES-, PRODUCTOS NOTABLES, ECUACIONES DE PRIMER GRADO CON UNA INCOGNITA,

Más detalles

) = 5. Operaciones con polinomios 54 SOLUCIONARIO 1. POLINOMIOS. SUMA Y RESTA 2. MULTIPLICACIÓN DE POLINOMIOS

) = 5. Operaciones con polinomios 54 SOLUCIONARIO 1. POLINOMIOS. SUMA Y RESTA 2. MULTIPLICACIÓN DE POLINOMIOS 54 SOLUCIONARIO 5. Operaciones con polinomios. POLINOMIOS. SUMA RESTA PIENSA CALCULA Dado el cubo de la figura, calcula en función de : a) El área. b) El volumen. a) A ( ) = 6 b) V ( ) = CARNÉ CALCULISTA

Más detalles

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero ACTIVIDADES DE LOS TEMAS 11 Y 12

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero ACTIVIDADES DE LOS TEMAS 11 Y 12 Colegio La Inmaculada Misioneras Seculares de Jesús Obrero Matemáticas 4º E.S.O. ACTIVIDADES DE LOS TEMAS Y. Representa en los mismos ejes las siguientes funciones: y = - ; b) y = ; c) y = +. Representa

Más detalles

ES OBLIGATORIA LA RESOLUCIÓN COMPLETA DE CADA EJERCICIO (PLANTEAMIENTO, DESARROLLO Y SOLUCIÓN) DE FORMA CLARA Y CONCISA.

ES OBLIGATORIA LA RESOLUCIÓN COMPLETA DE CADA EJERCICIO (PLANTEAMIENTO, DESARROLLO Y SOLUCIÓN) DE FORMA CLARA Y CONCISA. EJERCICIOS DE REPASO MATEMÁTICAS.- º ESO ES OBLIGATORIA LA RESOLUCIÓN COMPLETA DE CADA EJERCICIO (PLANTEAMIENTO DESARROLLO Y SOLUCIÓN) DE FORMA CLARA Y CONCISA.. Sergio trabaja horas todas las semanas

Más detalles

PARA EMPEZAR. Escribe con el mismo denominador y ordena de menor a mayor las siguientes fracciones: 5 6, 7 9, 1 , 7 8 4, 0, 1, 2, 9

PARA EMPEZAR. Escribe con el mismo denominador y ordena de menor a mayor las siguientes fracciones: 5 6, 7 9, 1 , 7 8 4, 0, 1, 2, 9 5 INECUACIONES PARA EMPEZAR 1 Escribe con el mismo denominador y ordena de menor a mayor las siguientes fracciones: 7 Si sumas a cada fracción, se mantiene el orden? 0 5 6, 7 9, 1 15 El denominador común

Más detalles

3ª Parte: Funciones y sus gráficas

3ª Parte: Funciones y sus gráficas 3ª Parte: Funciones y sus gráficas Relaciones funcionales. Estudio gráfico y algebraico de funciones 1. Interpretación de gráficas 1. Un médico dispone de 1hora diaria para consulta. El tiempo que podría,

Más detalles

Ejercicios 2º ESO PROBLEMAS( ecuaciones de primer grado) CURSO 2008/2009. Problemas 1 incógnita

Ejercicios 2º ESO PROBLEMAS( ecuaciones de primer grado) CURSO 2008/2009. Problemas 1 incógnita Ejercicios 2º ESO PROBLEMAS( ecuaciones de primer grado) CURSO 2008/2009 Problemas 1 incógnita 2º E.S.O Sobre números Quién miente? El famoso detective Roberto J. Pescador recibió una tarde la visita de

Más detalles

RELACIÓN DE PROBLEMAS DE OPTIMIZACIÓN

RELACIÓN DE PROBLEMAS DE OPTIMIZACIÓN 1. En un concurso se da a cada participante un alambre de dos metros de longitud para que doblándolo convenientemente hagan con el mismo un cuadrilátero con los cuatro ángulos rectos. Aquellos que lo logren

Más detalles

9 FUNCIONES DE PROPORCIONALIDAD DIRECTA E INVERSA

9 FUNCIONES DE PROPORCIONALIDAD DIRECTA E INVERSA 9 FUNCINES DE PRPRCINALIDAD DIRECTA E INVERSA EJERCICIS PRPUESTS 9. Dibuja la gráfica de la función que eprese que el precio del litro de gasolina en los últimos 6 meses ha sido siempre de 0,967 euros.

Más detalles

a) x 1 = 2 b) x + x 6 = 2 + = + = c) x 9x + 20 = 2 d) x 6x 7 = a) x = 1 y x = 1 b) x = 3 y x = 2 c) x = 4 y x = 5 d) x = 1 y x = 7

a) x 1 = 2 b) x + x 6 = 2 + = + = c) x 9x + 20 = 2 d) x 6x 7 = a) x = 1 y x = 1 b) x = 3 y x = 2 c) x = 4 y x = 5 d) x = 1 y x = 7 1 Resuelve las siguientes ecuaciones: a) x 1 = x + x 6 = c) x 9x + = d) x 6x 7 = = a) x = 1 y x = 1 x = 3 y x = c) x = 4 y x = 5 d) x = 1 y x = 7 Resuelve las siguientes ecuaciones de primer grado: a)

Más detalles

IES ARROYO HONDO ACTIVIDADES REPASO MATEMÁTICAS 2º ESO. Segunda parte. Curso 15/16. Fecha de entrega: 11/2/16

IES ARROYO HONDO ACTIVIDADES REPASO MATEMÁTICAS 2º ESO. Segunda parte. Curso 15/16. Fecha de entrega: 11/2/16 IES ARROYO HONDO ACTIVIDADES REPASO MATEMÁTICAS 2º ESO Segunda parte Curso 15/16 Fecha de entrega: 11/2/16 Nombre: Grupo: DIVISIBILIDAD Y NÚMEROS ENTEROS 1. En las siguientes expresiones, saca factor común

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA 7 APLICACIONES DE LA DERIVADA Página 68 Relación del crecimiento con el signo de la primera derivada Analiza la curva siguiente: f decrece f' < 0 f crece f' > 0 f decrece f' < 0 f crece f' > 0 f decrece

Más detalles

DEPARTAMENTO DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICAS PROPUESTA DE ACTIVIDADES PARA LA PRUEBA EXTRAORDINARIA DE SEPTIEMBRE MATEMÁTICAS SEGUNDO CURSO EDUCACIÓN SECUNDARIA OBLIGATORIA Curso 01/01 DEPARTAMENTO DE MATEMÁTICAS NOMBRE GRUPO TEMA 1 : LOS NÚMEROS

Más detalles

4 ECUACIONES E INECUACIONES

4 ECUACIONES E INECUACIONES 4 ECUACIONES E INECUACIONES EJERCICIOS PROPUESTOS 4.1 Expresa estos enunciados en forma de ecuación. a) La suma de dos números consecutivos es 17. b) Un número más su tercera parte es 16. c) Tres números

Más detalles

EJERCICIOS PROPUESTOS. a) 9 500 b) 3 c) 2 d) 20 e) 25

EJERCICIOS PROPUESTOS. a) 9 500 b) 3 c) 2 d) 20 e) 25 2 NÚMEROS ENTEROS EJERCICIOS PROPUESTOS 2.1 Expresa con un número entero las siguientes informaciones. a) El avión está volando a 9 500 metros de altura. b) La temperatura mínima de ayer fue de 3 C bajo

Más detalles

5. [2012] [EXT-A] Se estima que el beneficio anual B(t), en %, que produce cierta inversión viene determinado por el tiempo t en

5. [2012] [EXT-A] Se estima que el beneficio anual B(t), en %, que produce cierta inversión viene determinado por el tiempo t en . [204] [ET-A] Dada la función f(x) = x2-8x+6 x 2-8x+5 a) Su dominio y puntos de corte con los ejes. -x+5, 0 x 2. [204] [JUN-A] En una sesión, el valor de cierta acción, en euros, vino dado por la función:

Más detalles

SOLUCIONES. Matemáticas 3 EDUCACIÓN SECUNDARIA 1 3 1 1 3, 4 2,3 + : a) Expresamos N = 2,3 en forma de fracción: 10 N = 23,333 N = 2,333 21 7 = + = =

SOLUCIONES. Matemáticas 3 EDUCACIÓN SECUNDARIA 1 3 1 1 3, 4 2,3 + : a) Expresamos N = 2,3 en forma de fracción: 10 N = 23,333 N = 2,333 21 7 = + = = Matemáticas EDUCACIÓN SECUNDARIA Opción A SOLUCIONES Evaluación: Fecha: Ejercicio nº 1.- a) Opera y simplifica: 1 1 1, 4, + : 5 b) Reduce a una sola potencia: 4 1 5 5 0 a) Expresamos N =, en forma de fracción:

Más detalles

PROBLEMAS RESUELTOS DE OPTIMIZACIÓN

PROBLEMAS RESUELTOS DE OPTIMIZACIÓN Problemas de optimiación Ejercicio PROBLEMAS RESUELTOS DE OPTIMIZACIÓN Un banco lana al mercado un plan de inversión cua rentabilidad R(, en euros, viene dada en función de la cantidad invertida, en euros,

Más detalles

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano 24 Unidad II Vectores 2.1 Magnitudes escalares y vectoriales Unidad II. VECTORES Para muchas magnitudes físicas basta con indicar su valor para que estén perfectamente definidas y estas son las denominadas

Más detalles

FUNCIONES DE PROPORCIONALIDAD

FUNCIONES DE PROPORCIONALIDAD UNIDAD 2 PROPORCIONALIDAD. FUNCIONES DE PROPORCIONALIDAD 1.- INTRODUCCIÓN Continuamente hacemos uso de las magnitudes físicas cuando nos referimos a diversas situaciones como medida de distancias (longitud),

Más detalles

58 EJERCICIOS DE FUNCIONES. La función que a cada número le asocia su doble La función que a cada número le asocia su triple más 5

58 EJERCICIOS DE FUNCIONES. La función que a cada número le asocia su doble La función que a cada número le asocia su triple más 5 58 EJERCICIOS DE FUNCIONES FUNCIONES y GRÁFICAS. Construir una tabla de valores para cada una de las siguientes funciones: a) y=3+ b) f()= c) y= -4 d) f(). Completar la siguiente tabla (obsérvese el primer

Más detalles

Formas de expresar la relación entre dos variables.

Formas de expresar la relación entre dos variables. 866 _ 00-06.qxd 7/6/08 : Página Funciones INTRDUCCIÓN RESUMEN DE LA UNIDAD La representación gráfica de las funciones es la forma más adecuada de entender la relación entre las variables. Estas gráficas

Más detalles

Problemas de optimización

Problemas de optimización Problemas de optimización 1º) La producción de cierta hortaliza en un invernadero (Q(x) en Kg) depende de la temperatura x (ºC) según la expresión. a) Calcula razonadamente cuál es la temperatura óptima

Más detalles

EJERCICIOS PROPUESTOS. Copia y completa de modo que estas expresiones sean igualdades numéricas. a) 5 2 13 c) 2 32 b) 4 5 17 d) 4 6 18 10

EJERCICIOS PROPUESTOS. Copia y completa de modo que estas expresiones sean igualdades numéricas. a) 5 2 13 c) 2 32 b) 4 5 17 d) 4 6 18 10 5 ECUACIONES EJERCICIOS PROPUESTOS 5.1 Copia y completa de modo que estas epresiones sean igualdades numéricas. a) 5 1 c) b) 5 17 d) 6 1 10 a) 5 10 1 c) 16 b) 5 17 d) 6 1 10 5. Sustituye las letras por

Más detalles

5 SISTEMAS DE ECUACIONES

5 SISTEMAS DE ECUACIONES 5 SISTEMAS DE ECUACINES EJERCICIS PRPUESTS 5. Escribe estos enunciados en forma de una ecuación con dos incógnitas. a) Un número más el doble de otro es. La diferencia de dos números es 5. c) Un número

Más detalles

Funciones. 1. Definición de función. Imágenes y antiimágenes página 185. 2. Representación gráfica de una función página 188

Funciones. 1. Definición de función. Imágenes y antiimágenes página 185. 2. Representación gráfica de una función página 188 Funciones E S Q U E M A D E L A U N I D A D. Definición de función. Imágenes y antiimágenes página 8. Representación gráfica de una función página 88.. Funciones polinómicas página 9.. Funciones racionales

Más detalles

Ecuaciones de primer y segundo grado

Ecuaciones de primer y segundo grado Ecuaciones de primer y segundo grado El fin del mundo En octubre de la cárcel de Wittenberg acogió una curiosa reunión: allí estaba Lutero visitando a su íntimo amigo Michael Stifel. Este, aplicando a

Más detalles

PROBLEMAS ORIENTATIVOS PARA EL EXAMEN DE INGRESO AL CICLO FORMATIVO DE GRADO MEDIO

PROBLEMAS ORIENTATIVOS PARA EL EXAMEN DE INGRESO AL CICLO FORMATIVO DE GRADO MEDIO OPERACIONES BÁSICAS CON NÚMEROS NATURALES, ENTEROS, DECIMALES Y FRACCIONES (SUMA, RESTA, MULTIPLICACIÓN Y DIVISIÓN) Y OPERACIONES COMBINADAS DE LAS ANTERIORES. 1. Realizar las siguientes operaciones con

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

PRUEBA DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR. Junio de 2001. Parte General - Apartado B

PRUEBA DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR. Junio de 2001. Parte General - Apartado B PRUEBA DE ACCESO Junio de 2001 Parte General - Apartado B Duración: 1 hora 30 min. REALIZA 4 EJERCICIOS CUALESQUIERA DE LOS 6 PROPUESTOS 1.- Los presupuestos del Estado asignaron, en el año 1998, 1.051.997

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales 9 Sistemas de ecuaciones lineales 1. Sistemas lineales. Resolución gráfica Comprueba si = 2, = 3 es solución del siguiente sistema: 2 + 4 3 = 14 5 2 + 3 = 13 P I E N S A C A L C U L A + 4 = 14 5 + = 13

Más detalles

Estudio matemático de 1relaciones entre dos variables

Estudio matemático de 1relaciones entre dos variables .............................................................................................................................................................................. U N I D A D Estudio matemático

Más detalles

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula:

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula: 1. Dada la función f(x) = : a) Encontrar el dominio, las AH y las AV. b) Intervalos de crecimiento, decrecimiento, máximos y mínimos relativos. c) Primitiva que cumpla que F(0) = 0. a) Para encontrar el

Más detalles

85 EJERCICIOS de ECUACIONES y SISTEMAS de 1 er y 2 o GRADO

85 EJERCICIOS de ECUACIONES y SISTEMAS de 1 er y 2 o GRADO 85 EJERCICIOS de ECUACIONES y SISTEMAS de er y o GRADO. Resolver las siguientes ecuaciones de er grado y comprobar la solución: a) 5[-(+)] -0+0 (Soluc: -) b) -[-(-)] (Soluc: 9) c) [6-5(-)]5-(-5) (Soluc:

Más detalles

UNIDAD 0. REPASO DE Nº NATURALES

UNIDAD 0. REPASO DE Nº NATURALES Departamento de UNIDAD 0. REPASO DE Nº NATURALES 1. En un edificio de 6 plantas hay tres viviendas por planta y en cada vivienda hay 9 ventanas. Si cada ventana tiene tres cristales cuántos cristales son

Más detalles

3º ESO. matemáticas IES Montevil tema 9: lenguaje algebraico, ecuaciones y sistemas curso 2010/2011

3º ESO. matemáticas IES Montevil tema 9: lenguaje algebraico, ecuaciones y sistemas curso 2010/2011 1. Escribe utilizando el lenguaje algebraico las siguientes afirmaciones El doble de un La mitad de un La décima parte de un Un más su cuarta parte El triple de un más el doble de otro La quinta parte

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS . FUNCINES EJERCICIS PRPUESTS. Un kilogramo de azúcar cuesta,0 euros. Completa la siguiente tabla que relaciona las magnitudes número de kilogramos y precio en euros. N.º de kilogramos 5 0 0 Precio,0 5,50..3

Más detalles

1º E.S.O. NÚMEROS ENTEROS:

1º E.S.O. NÚMEROS ENTEROS: 1º E.S.O. NÚMEROS ENTEROS: 1. Los números naturales. Sistema de numeración decimal. Orden y representación de los números naturales. Los números grandes: millones, millardos, billones. Suma, resta y multiplicación.

Más detalles

BLOQUE III Funciones y gráficas

BLOQUE III Funciones y gráficas BLOQUE III Funciones y gráficas. Características globales de las funciones 9. Rectas e hipérbolas 0. Función cuadrática Características globales de las funciones. Funciones Considera los rectángulos con

Más detalles

3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función

3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función TEMA 3 FUNCIONES 3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función Una función es una relación establecida entre dos variables que asocia a cada valor de la primera variable

Más detalles

Tema: Ecuaciones y sistemas de ecuaciones

Tema: Ecuaciones y sistemas de ecuaciones Tema: Ecuaciones y sistemas de ecuaciones 1. Las siguientes ecuaciones tienen alguna solución entera. Intenta encontrarlas tanteando. Qué tipo de ecuación es cada una?. a) x + 6 = b) x x = 0 c) x x = 1

Más detalles

1. GRÁFICAS. Página 1

1. GRÁFICAS. Página 1 1. GRÁFICAS Página 1 Lectura, construcción e interpretación de gráficas Características globales y locales de las gráficas Página 2 1. LECTURA, CONSTRUCCIÓN E INTERPRETACIÓN DE GRÁFICAS. ETAPA CICLISTA

Más detalles

8LÍMITES Y DERIVADAS. Problema 1. Problema 2. Problema 3

8LÍMITES Y DERIVADAS. Problema 1. Problema 2. Problema 3 CONTENIDOS Límite y asíntotas Cálculo de límites Continuidad Derivadas Estudio de funciones Problemas de optimización Varias de las características de diferentes tipos de funciones ya han sido estudiadas

Más detalles

FUNDAMENTOS DE ADMINISTRACIÓN Y GESTIÓN Teoría y ejercicios

FUNDAMENTOS DE ADMINISTRACIÓN Y GESTIÓN Teoría y ejercicios FUNDAMENTOS DE ADMINISTRACIÓN Y GESTIÓN Teoría y ejercicios 2ª edición JUAN PALOMERO con la colaboración de CONCEPCIÓN DELGADO Economistas Catedráticos de Secundaria ---------------------------------------------------

Más detalles

Página 123 EJERCICIOS Y PROBLEMAS PROPUESTOS. Dominio de definición PARA PRACTICAR UNIDAD. 1 Halla el dominio de definición de estas funciones: 2x + 1

Página 123 EJERCICIOS Y PROBLEMAS PROPUESTOS. Dominio de definición PARA PRACTICAR UNIDAD. 1 Halla el dominio de definición de estas funciones: 2x + 1 Página 3 EJERCICIOS PROBLEMAS PROPUESTOS PARA PRACTICAR Dominio de definición Halla el dominio de definición de estas funciones: 3 x a) y = y = x + x (x ) c) y = d) y = e) y = x + x + 3 5x x f) y = x x

Más detalles

Posteriormente el matemático suizo Leonard Euler (1707-1783) fue el primero que utilizó el símbolo y = f(x) en la forma que ahora lo utilizamos.

Posteriormente el matemático suizo Leonard Euler (1707-1783) fue el primero que utilizó el símbolo y = f(x) en la forma que ahora lo utilizamos. Una función en matemáticas, es un término que se usa para indicar la relación entre dos o más magnitudes. El matemático alemán Gottfried Wilhelm Leibniz (1646-1716) fue el primero que utilizó el término

Más detalles

2. Escribe las coordenadas de los puntos. 3. Indica razonadamente cuáles de estas gráficas representan funciones.

2. Escribe las coordenadas de los puntos. 3. Indica razonadamente cuáles de estas gráficas representan funciones. TEMA 10: FUNCIONES CONCEPTO DE FUNCIÓN Una función es una relación entre dos variables, que llamaremos X e Y en la que a cada valor de X le hace corresponder un único valor de Y. X es la variable independiente

Más detalles

CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática

CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática CAPITULO Aplicaciones de la Derivada Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Créditos Primera edición impresa: Rosario Álvarez, 1988. Edición Latex: Marieth

Más detalles

1) Tacha los números que no sean naturales: 12-4 23-5 36 29-1 -15 13-20

1) Tacha los números que no sean naturales: 12-4 23-5 36 29-1 -15 13-20 ACTIVIDADES DE REPASO MATEMÁTICAS 1º ESO NOMBRE: GRUPO:. Actividades a realizar: 1) Tacha los números que no sean naturales: 12-4 23-5 36 29-1 -15 13-20 2) Calcula: a) 4 6 + 3 + 9-2 3 = b) 6 (3 + 7) -

Más detalles

SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS

SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS Sistemas de dos ecuaciones con dos incógnitas. Un sistema lineal de dos ecuaciones con dos incógnitas es de la forma: a b c ' ' ' con a b c a b c números reales

Más detalles

De dos incógnitas. Por ejemplo, x + y 3 = 4. De tres incógnitas. Por ejemplo, x + y + 2z = 4. Y así sucesivamente.

De dos incógnitas. Por ejemplo, x + y 3 = 4. De tres incógnitas. Por ejemplo, x + y + 2z = 4. Y así sucesivamente. 3 Ecuaciones 17 3 Ecuaciones Una ecuación es una igualdad en la que aparecen ligados, mediante operaciones algebraicas, números y letras Las letras que aparecen en una ecuación se llaman incógnitas Existen

Más detalles

5Soluciones a los ejercicios y problemas PÁGINA 114

5Soluciones a los ejercicios y problemas PÁGINA 114 5Soluciones a los ejercicios y problemas PÁGINA 4 Pág. P RACTICA Ecuaciones: soluciones por tanteo Es o solución de alguna de las siguientes ecuaciones? Compruébalo. a) 5 b) 4 c) ( ) d) 4 4 a)? 0? 5 no

Más detalles

FRACCIONES EJERCICIOS PARA REPASAR VERANO 2012

FRACCIONES EJERCICIOS PARA REPASAR VERANO 2012 FRACCIONES EJERCICIOS PARA REPASAR VERANO 2012 PORCENTAJES 1.- El precio de un libro sin IVA es de 50. Si nos cobran 55, cuàl es el porcentaje del IVA que nos han cobrado. 2.-En un tienda hemos comprado

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 5 PRACTICA Interpretación de gráficas Se suelta un globo que se eleva y, al alcanzar cierta altura, estalla. La siguiente gráfica representa la altura, con el paso del tiempo, a la que se encuentra

Más detalles

ANÁLISIS MATEMÁTICO I

ANÁLISIS MATEMÁTICO I ANÁLISIS MATEMÁTICO I Trabajo Práctico Nº 2: Funciones Equipo Docente: Claudio Molina - P. Mariano Nowakowski LAS FUNCIONES DESCRIBEN FENÓMENOS Año: 2015 1º Cuatrimestre 1) Haga un gráfico que refleje

Más detalles

I.E.S. Tegueste Departamento de Matemáticas 2º ESO

I.E.S. Tegueste Departamento de Matemáticas 2º ESO CURSO 10-11 ACTIVIDADES DE REPASO MATEMÁTICAS 2º ESO NOMBRE: GRUPO:.; Nº:. Los contenidos mínimos para la prueba extraordinaria de septiembre se encuentran en la programación, que se puede consultar en

Más detalles

MATEMÁTICAS 4º DE ESO - OP. A REPASO

MATEMÁTICAS 4º DE ESO - OP. A REPASO 1 MATEMÁTICAS 4º DE ESO - OP. A REPASO TEMA 1: OPERACIONES CON POTENCIAS Y RADICALES 6.- 1.- 2.- 3.- 4.- 5.- 7.- 8.- Expresa bajo un radical 9.- Expresa bajo un radical 10.- Expresa bajo un radical 11.-

Más detalles

DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES

DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES UNIDAD 6 DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES Página 5 Problema y f () 5 5 9 Halla, mirando la gráfica y las rectas trazadas, f'(), f'(9) y f'(). f'() 0; f'(9) ; f'() Di otros tres puntos en

Más detalles

Resuelve problemas PÁGINA 75

Resuelve problemas PÁGINA 75 PÁGINA 7 Pág. 1 Resuelve problemas 9 Una empresa de alquiler de coches cobra por día y por kilómetros recorridos. Un cliente pagó 10 por días y 400 km, y otro pagó 17 por días y 00 km. Averigua cuánto

Más detalles

BLOQUE IV. Funciones. 10. Funciones. Rectas y parábolas 11. Funciones racionales, irracionales, exponenciales y logarítmicas 12. Límites y derivadas

BLOQUE IV. Funciones. 10. Funciones. Rectas y parábolas 11. Funciones racionales, irracionales, exponenciales y logarítmicas 12. Límites y derivadas BLOQUE IV Funciones 0. Funciones. Rectas y parábolas. Funciones racionales, irracionales, exponenciales y logarítmicas. Límites y derivadas 0 Funciones. Rectas y parábolas. Funciones Dado el rectángulo

Más detalles

Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8

Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8 Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8 gramos del primer elemento y 1 gramo del segundo; un kilo

Más detalles

ACTIVIDADES DE REPASO. MATEMÁTICAS 1º ESO

ACTIVIDADES DE REPASO. MATEMÁTICAS 1º ESO ACTIVIDADES DE REPASO. MATEMÁTICAS º ESO NÚMEROS NATURALES. Calcula: a) 4 6 5 + 3 4 b) (4 6 5) + 3 4 c) 4 6 (5 + 3 4) d) 4 (6 5) + 3 4 e) (5 + 0) 8 f) (73 37) : 6. Calcula: a) 987 + 5 + 3 784 b) 3 978

Más detalles

3.1.1. Operaciones. a a a a -2 3 2 -3 3-3. a a a a. a) 6 12 27 16 3 12 8-1 5-1 3 3-1 2 3 2 3 2 3 4 4-4 3 1-1 1 3 2 9 300 3.600 720 3.

3.1.1. Operaciones. a a a a -2 3 2 -3 3-3. a a a a. a) 6 12 27 16 3 12 8-1 5-1 3 3-1 2 3 2 3 2 3 4 4-4 3 1-1 1 3 2 9 300 3.600 720 3. 74 Ejercicios y Problemas de Matemáticas de º a º de ESO. Tercero de ESO.. Números, medidas y operaciones... Operaciones. Reduce las expresiones siguientes a una sola potencia: a) c) 6 - - - - 5 - - -

Más detalles

MATEMÁTICA CPU Práctica 2. Funciones Funciones lineales y cuadráticas

MATEMÁTICA CPU Práctica 2. Funciones Funciones lineales y cuadráticas ECT UNSAM MATEMÁTICA CPU Práctica Funciones Funciones lineales cuadráticas FUNCIONES Damiana al irse del parque olvidó de subir a su perro Vicente en la parte trasera de su camioneta Los gráficos hacen

Más detalles

1. Lenguaje algebraico. 2. Generalización. 3. Valores numéricos. 4. Ecuaciones. 5. Resolución de problemas mediante ecuaciones

1. Lenguaje algebraico. 2. Generalización. 3. Valores numéricos. 4. Ecuaciones. 5. Resolución de problemas mediante ecuaciones 3. Ecuaciones Taller de Matemáticas 2º ESO 1. Lenguaje algebraico 2. Generalización 3. Valores numéricos 4. Ecuaciones 5. Resolución de problemas mediante ecuaciones 2 Ecuaciones 1. Lenguaje algebraico

Más detalles

Proporcionalidad. 1. Calcula:

Proporcionalidad. 1. Calcula: Proporcionalidad 1. Calcula:. Resuelve los siguientes problemas: a. Tres kilos de naranjas cuestan,4. Cuánto cuestan dos kilos? b. Seis obreros descargan un camión en tres horas. Cuánto tardarán cuatro

Más detalles

Expresa, de forma algebraica y mediante una tabla de valores, la función que asigna a cada número su cubo menos dos veces su cuadrado.

Expresa, de forma algebraica y mediante una tabla de valores, la función que asigna a cada número su cubo menos dos veces su cuadrado. Funciones EJERCICIOS 00 Expresa, de forma algebraica y mediante una tabla de valores, la función que asigna a cada número su cubo menos dos veces su cuadrado. Expresión algebraica: y = x 3 x o f(x) = x

Más detalles

9 Estudio de funciones

9 Estudio de funciones Solucionario 9 Estudio de funciones ACTIVIDADES INICIALES 9.I. Resuelve las siguientes inecuaciones. a) 0 0 b) 4 0 c) 0 d) 0 7 9 a) (, ) b) (, 4] c) (, ] [0, ] d) (, ) (4, ) 9.II. Halla el valor en radianes

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES 0 FUNCIONES ELEMENTALES Página 5 REFLEIONA RESUELVE Asocia a cada una de las siguientes gráficas una ecuación de las de abajo: A B C D 80 (, π) 50 0 5 E F G H 0 (5, ) 50 0 50 0 (, ) 5 I J K L LINEALES

Más detalles

REFUERZO MATEMÁTICAS 2º ESO CURSO: 2009/2010 PROFESOR: MARÍA DE LA ROSA SÁNCHEZ

REFUERZO MATEMÁTICAS 2º ESO CURSO: 2009/2010 PROFESOR: MARÍA DE LA ROSA SÁNCHEZ REFUERZO MATEMÁTICAS º ESO CURSO: 009/010 PROFESOR: MARÍA DE LA ROSA SÁNCHEZ SUMA Y RESTA DE NÚMEROS ENTEROS... POTENCIAS... 6 FRACCIONES... 8 FRACCIONES EQUIVALENTES... 8 SUMA DE FRACCIONES... 9 PRODUCTO

Más detalles

a 4a (-5) a a op(a) 5-a Op(a-5) 2 5 7 3 3. El valor absoluto de un número menor que 1 es 9. De qué número se trata?

a 4a (-5) a a op(a) 5-a Op(a-5) 2 5 7 3 3. El valor absoluto de un número menor que 1 es 9. De qué número se trata? NÚMEROS ENTEROS 1. Calcula: - (4-3) (-2) 2 = b) (-2) 4 + - 3 (-1) = c) (8-3) : (-1) - 1 (-6) : (3 - ) + = e) [-(-2)+7-(-2) (-3)]-(-2)= f) -9 + [ 10 : (-3-2) -1 ] + 4 (-3) = g) [ -4 (8 - - 4) + (-9-3) :

Más detalles

Ejercicios de Matemáticas

Ejercicios de Matemáticas Ejercicios de Matemáticas 82. Me encargaron un trabajo. Ayer realicé la mitad del mismo y hoy 1/3 del total. Qué fracción del trabajo llevo realizada? 83. De un depósito que contiene 240 litros de agua

Más detalles

EJERCICIOS PARA RECUPERAR MATEMÁTICAS PENDIENTES 2º ESO

EJERCICIOS PARA RECUPERAR MATEMÁTICAS PENDIENTES 2º ESO MATEMÁTICAS PENDIENTES º ESO Operaciones combinadas con enteros Calcula + ( (+ 0 ) ) + 0 + ( + ) ( (+ 8 + 9 )) 0 + + + + 6 68 + 6+ 9 6 ( + 6+ ( + 6)) + 0 (( + 8 ) + (+ ) + ) + + 8 + ( + + 6+ ) 66 ( + 6

Más detalles

8Soluciones a los ejercicios y problemas PÁGINA 170

8Soluciones a los ejercicios y problemas PÁGINA 170 PÁGINA 70 Pág. P RACTICA Representación de rectas Representa las rectas siguientes: a) y b) y c) y d) y c) b) a) d) Representa estas rectas: c) a) y 0,6 b) y c) y, d) y d) a) b) Representa las rectas siguientes,

Más detalles

REPASO DE LA PRIMERA EVALUACIÓN

REPASO DE LA PRIMERA EVALUACIÓN REPASO DE LA PRIMERA EVALUACIÓN º ESO. Escribe todos los divisores de: 7,, 8, y Sol: a),,,, 6, 8, 9,, 8,, 6, 7 b),,,, 6, 8,, c),,, 7,, 8 d),,, 9,, d),,, 6, 9, 8, 7,. Descompón en factores primos: 800,

Más detalles

EJERCICIOS DE REPASO 2º ESO

EJERCICIOS DE REPASO 2º ESO NOMBRE: CURSO: 0-0 EJERCICIOS DE REPASO º ESO.- Calcula, poniendo los pasos que haces, no sólo el resultado: a ) - ( - ) + 8 ( - ) = b) ( - 8 ) [ 7 + ( - 9 ) ] = c) 7 ( 8 ) + : ( - + 7 ) = d) 6 : ( 8 )

Más detalles

Capítulo 5: Ecuaciones de segundo grado y sistemas lineales

Capítulo 5: Ecuaciones de segundo grado y sistemas lineales º de ESO Capítulo : Ecuaciones de segundo grado sistemas lineales Autora: Raquel Hernández Revisores: Sergio Hernández María Molero Ilustraciones: Raquel Hernández Banco de Imágenes de INTEF Ecuaciones

Más detalles

Mapa Curricular / Matemáticas Séptimo Grado

Mapa Curricular / Matemáticas Séptimo Grado ESTADO LIBRE ASOCIADO DE PUERTO RICO Programa de Matemáticas Mapa Curricular / Matemáticas Séptimo Grado Estándar, Dominio N.SO.7.2.1 Modela la suma, resta, multiplicación y división con números enteros,

Más detalles

I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GBG 1

I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GBG 1 ECUACIONES Y SISTEMAS. PROBLEMAS 1. El lado de un cuadrado mide 3 m más que el lado de otro cuadrado. Si la suma de las dos áreas es 89 m, calcula las dimensiones de los cuadrados.. La suma de dos números

Más detalles

RELACIÓN DE EJERCICIOS DE REPASO 3º E.S.O. CURSO 2014-2015

RELACIÓN DE EJERCICIOS DE REPASO 3º E.S.O. CURSO 2014-2015 BLOQUE 1: NÚMEROS 1 Efectúa y simplifica: a) 21 : b) 3 c) 3 d) : :3 2 Se pintan de blanco los de un poste Cuál es la longitud del poste si la parte sin pintar mide 6 metros? 3 Calcula las siguientes cantidades:

Más detalles

7 ECUACIONES. SISTEMAS DE ECUACIONES

7 ECUACIONES. SISTEMAS DE ECUACIONES EJERCICIOS PROPUESTOS 7. Escribe estos enunciados en forma de ecuación. a) La suma de dos números consecutivos es. La suma de tres números pares consecutivos es 0. c) Un número más su quinta parte es.

Más detalles

Ecuaciones e Inecuaciones. 83 Ejercicios para practicar con soluciones. 1 Resuelve las siguientes ecuaciones bicuadradas:

Ecuaciones e Inecuaciones. 83 Ejercicios para practicar con soluciones. 1 Resuelve las siguientes ecuaciones bicuadradas: Ecuaciones e Inecuaciones. 83 Ejercicios para practicar con soluciones 1 Resuelve las siguientes ecuaciones bicuadradas: 4 a) x 13x + 36 = 0 4 b) x 6x + 5 = 0 a) Realizando el cambio de variable: x = z

Más detalles

PRUEBA DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR. septiembre de 1999. Parte General Apartado B

PRUEBA DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR. septiembre de 1999. Parte General Apartado B septiembre de 1999 Parte General Apartado B Duración: 1 hora 30 minutos 1.- Un alumno ha obtenido 7,1 y 8,3 en las dos primeras evaluaciones de matemáticas. Qué nota debe sacar en la tercera evaluación

Más detalles

PROYECTO DE REFUERZO ACADÉMICO PARA ESTUDIANTES DE EDUCACIÓN MEDIA

PROYECTO DE REFUERZO ACADÉMICO PARA ESTUDIANTES DE EDUCACIÓN MEDIA MINISTERIO DE EDUCACIÓN DIRECCIÓN NACIONAL DE EDUCACIÓN PROYECTO DE REFUERZO ACADÉMICO PARA ESTUDIANTES DE EDUCACIÓN MEDIA PRUEBA DE DIAGNÓSTICO MATEMÁTICA NOMBRE DEL ESTUDIANTE: INSTITUCIÓN EDUCATIVA:

Más detalles

Sección 4. 65. Cuál es la ecuación equivalente de la siguiente expresión algebraica?

Sección 4. 65. Cuál es la ecuación equivalente de la siguiente expresión algebraica? Sección 4 64. Cuál es la expresión algebraica que corresponde al siguiente enunciado? El cociente de la suma de dos números al cuadrado entre la diferencia de dichos números. 65. Cuál es la ecuación equivalente

Más detalles

CUADERNILLO DE VERANO MATEMÁTICAS 1º ESO

CUADERNILLO DE VERANO MATEMÁTICAS 1º ESO CUADERNILLO DE VERANO MATEMÁTICAS 1º ESO Potencias y raíces. Expresa en forma de potencia: a) 7 7 7 7 = b) 8 8 8 8 8 8 8 = c) 6 6 6 6 6 = d) 5 5 5 5 = e) 9 9 9 = f) 3 3 = Calcula las siguientes potencias:

Más detalles