una y en dos dimensiones 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "una y en dos dimensiones http://www.walter-fendt.de/ph14s/ 1"

Transcripción

1 Bolilla : Movimieno en una y en dos dimensiones hp://

2 Bolilla : Movimieno en una y endos dimensiones - El esudio del movimieno se basa en medidas de Posición, Velocidad, y Aceleación. - Deeminada la Posición de un cuepo especo a un sisema de efeencia adecuado, enendemos po movimieno al cambio conínuo en la posición del cuepo. - Consideamos sólo movimienos de aslación: cada pae del objeo se mueve en la misma diección (no hay oación).. Movimieno ecilíneo -El movimieno se lleva a cabo sobe una línea eca. -El Sisema de Refeencia adecuado consise en un eje coodenado, sobe el cuál se indica la posición del cuepo en un iempo deeminado: iempo (s, hs, días, años) x posición (cm, m, km) Δx desplazamieno La mayoía de las ideas fundamenales de la ciencia son esencialmene sencillas y, po egla geneal pueden se expesadas en un lenguaje compensible paa odos. A. Einsein

3 x.. Velocidad media - Velocidad insanánea x posición en = x posición en = La velocidad media es: La velocidad insanánea es: Δx = x x es el desplazamieno v m = v = v = Δx Δx Lím i = Algunas popiedades de las gáficas x vs y v vs dx d, diección angene a la ayecoia -La pendiene de la eca (secane) equivale al módulo de la velocidad media en el inevalo,. x x -La pendiene de la eca (angene) equivale a la velocidad insanánea en -El áea bajo la cuva v vs. ene los iempo y, es equivalene al módulo del desplazamieno ene los iempos y. dx = v d Δx = v d = v d 3

4 .. Movimieno ecilíneo unifome Un objeo iene Movimieno Recilíneo Unifome (MRU) cuando su ayecoia es eca y su velocidad consane. Consecuencias: a) La velocidad media, paa cualquie inevalo de iempo, es igual a la insanánea. b) El desplazamieno es popocional al iempo empleado en ecoelo. c) La gáfica posición-iempo (x vs. ) es una eca cuya pendiene es igual al módulo de la velocidad. d) La gáfica velocidad-iempo (v vs. ) es una eca hoizonal (paalela al eje ). iempo (s) disancia (m) 8 4 disancia (m) 6 4 velocidad (m/s) iempo (s) 3 4 iempo (s) 4

5 .. Movimieno ecilíneo unifomemene vaiado Se denomina aceleación al cambio de la velocidad con el iempo. aceleación media: aceleación insanánea: a m = v - - v a = Lím = Δ v Δv [ a ] = m/s, diección: angene a la cuva v vs. Un objeo iene Movimieno Recilíneo Unifomemene Vaiado (MRUV) cuando su ayecoia es eca y su aceleación es consane Consecuencias: -La aceleación media, paa cualquie inevalo de iempo, coincide con la aceleación insanánea. La gáfica a vs. es una eca hoizonal. -La velocidad es popocional al iempo. La gáfica v vs. es una eca cuya pendiene coincide con el valo numéico de la aceleación. -La velocidad media, en cualquie inevalo de iempo, es la semisuma de las velocidades inicial y final en dicho inevalo. -La elación ene el desplazamieno y el iempo es cuadáica. La gáfica x vs. es una paábola. 5

6 Gáficas y Ecuaciones del MRUV v = v + a x = x + v + ½ a v = v + a(x-x ) Galileo La aceleación de la gavedad Un objeo se mueve en caída libe si la gavedad es el único faco que ineviene en su movimieno. -La aceleación gaviaoia, g, es la misma paa odos los objeos que caen, sea cual sea su amaño o su composición. -La aceleación gaviaoia es consane. -Ceca de la supeficie eese, el modulo de la aceleación gaviaoia es: g=9.8 m/s. -En el esudio de la caída libe de los cuepos, podemos uiliza las ecuaciones del MRUV. Simulación MRUV Ejemplos de aceleaciones gaviaoias (m s - ) Aseoide Vesa,3 Luna,6 Mae 3,7 Tiea 9,8 Jupie 6 Sol 7 Agujeo nego 5 Si consigo ve más lejos es poque he conseguido aupame a hombos de giganes. Galileo Galilei 6

7 .. Movimieno en dos dimensiones En el móvil se encuena en el puno, con posición En el móvil se encuena en el puno, con posición El desplazamieno es: = = Δx î + Δy Δ ĵ La velocidad media es: Δ Δx Δy V m = = î + ĵ = Vmx î + Diección secane a la cuva po los punos y La velocidad insanánea es: Donde: Vmy ĵ V = Vx î + Vy ĵ Diección angene a la cuva V x =Lim Δ x dx Δ = V =Lim y y d = dy d 7

8 Aceleacion media e insanánea Δvx Δvy am = î + ĵ = amx î + amy ĵ Δvx Δv a = ax î + ay ĵ con ax = Lim ; ay = Lim.. Movimieno de Poyeciles Movimieno que se efecua en un plano veical, en la poximidad de la iea y afecado solamene po la aceleacion g. y - La componene x de la aceleación es ceo, po lo ano en esa diección el movimieno es unifome. -La componene x de la velocidad pemanece consane - Según la diección y, la aceleación es -g. En esa dieccion el movimieno es unifomemene vaiado. 8

9 Ecuaciones del Movimieno de Poyeciles Dieccion x Dieccion y v x = v cosθ v y = v senθ v x = x/ v y = v y -g v y = v y - g(h-h ) h = h + v y - / g Tiempo oal de vuelo: Alcance maximo: Alua maxima: T = v senq/g R = v sen(q)/g h m = (v senq) /(g) Simulación Poyeciles Simulación Poyeiles 9

Tema 1, 2 y 3. Magnitudes. Cinemática.

Tema 1, 2 y 3. Magnitudes. Cinemática. IES Pedo de Tolosa. SM de Valdeiglesias. 1 Tema 1, y 3. Magniudes. Cinemáica. MAGNITUDES FÍSICAS. LIBRO Pág. 1 Y 13. Recueda: magniud es cualquie popiedad de un cuepo o de un fenómeno físico que se pueda

Más detalles

FI -1001 Introducción a la física Newtoniana

FI -1001 Introducción a la física Newtoniana FI -1001 Inoducción a la física Newoniana D. René A. Méndez Depaameno de Asonomía & Obsevaoio Asonómico Nacional Faculad de Ciencias Físicas & Maemáicas Escuela de Injenieía Univesidad de Chile hp://www.das.uchile.cl

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS Dada la dependencia de la velocidad con la posición en un movimieno recilíneo mosrada por la siguiene gráfica, deerminar la dependencia con

Más detalles

Puntos, rectas y planos en el espacio

Puntos, rectas y planos en el espacio Maemáicas II Geomeía del espacio Punos, ecas planos en el espacio Obsevación: La maoía de los poblemas esuelos a coninuación se han popueso en los eámenes de Selecividad.. La eca coa a los es planos coodenados

Más detalles

1.CINEMÁTICA. Movimiento Se define el movimiento como el cambio de posición de algo respecto a un sistema de referencia

1.CINEMÁTICA. Movimiento Se define el movimiento como el cambio de posición de algo respecto a un sistema de referencia Magniudes fundamenales Son las magniudes que se pueden medir direcamene 1.CINEMÁTICA Definiciones Reposo Se define como el no cambiar de posición respeco a un sisema de referencia. No hay ningún cuerpo

Más detalles

15. MOVIMIENTO OSCILATORIO.

15. MOVIMIENTO OSCILATORIO. Física. 5. Movimieno oscilaoio. 5. MOVIMINTO OSCIATORIO. Concepo de movimieno amónico simple. Movimieno amónico simple (M.A.S.). Movimieno peiódico en el que el móvil esá someido en odo insane a una aceleación

Más detalles

2 El movimiento y su descripción

2 El movimiento y su descripción El movimieno y su descripción EJERCICIOS PROPUESTOS. Una malea descansa sobre la cina ransporadora de un aeropuero. Describe cómo ve su movimieno un pasajero que esá: parado en la misma cina; en una cina

Más detalles

CAMPO GRAVITATORIO FCA 04 ANDALUCÍA

CAMPO GRAVITATORIO FCA 04 ANDALUCÍA CAPO GAVIAOIO FCA 04 ANDALUCÍA. a) Al desplazase un cuepo desde una posición A hasta ota B, su enegía potencial disminuye. Puede aseguase que su enegía cinética en B es mayo que en A? azone la espuesta.

Más detalles

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el /5 Conceptos pevios PRODUCTO VECTORIAL DE DO VECTORE. Es oto vecto cuyo módulo viene dado po: a b a b senα. u diección es pependicula al plano en el ue se encuentan los dos vectoes y su sentido viene dado

Más detalles

Solución: El sistema de referencia, la posición del cuerpo en cada instante respecto a dicha referencia, el tiempo empleado y la trayectoria seguida.

Solución: El sistema de referencia, la posición del cuerpo en cada instante respecto a dicha referencia, el tiempo empleado y la trayectoria seguida. 1 Qué es necesario señalar para describir correcamene el movimieno de un cuerpo? El sisema de referencia, la posición del cuerpo en cada insane respeco a dicha referencia, el iempo empleado y la rayecoria

Más detalles

= Δx 2. Escogiendo un sistema de referencia común para ambos móviles x A

= Δx 2. Escogiendo un sistema de referencia común para ambos móviles x A Ejemplos de solución a problemas de Cinemáica de la parícula Diseño en PDF MSc. Carlos Álvarez Marínez de Sanelices, Dpo. Física, Universidad de Camagüey. Carlos.alvarez@reduc.edu.cu Acividad # C1. Un

Más detalles

Geometría Analítica. Ejercicio nº 1.-

Geometría Analítica. Ejercicio nº 1.- Geomeía Analíica Ejecicio nº.- a Aveigua el puno iméico de A ) con epeco a B ). b Halla el puno medio del egmeno de eemo A ) B ). Ejecicio nº.- a Halla el puno medio del egmeno cuo eemo on A( ) con epeco

Más detalles

10.- www.lortizdeo.tk I.E.S. Francisco Grande Covián Campo Gravitatorio mailto:lortizdeo@hotmail.com 27/01/2005 Física 2ªBachiller

10.- www.lortizdeo.tk I.E.S. Francisco Grande Covián Campo Gravitatorio mailto:lortizdeo@hotmail.com 27/01/2005 Física 2ªBachiller www.lotizdeo.tk I.E.S. Fancisco Gande Covián Campo Gavitatoio mailto:lotizdeo@hotmail.com 7/01/005 Física ªBachille 10.- Un satélite atificial descibe una óbita elíptica, con el cento de la iea en uno

Más detalles

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVIACIÓN 1 GRAVIACIÓN INRODUCCIÓN MÉODO 1. En geneal: Se dibujan las fuezas que actúan sobe el sistema. Se calcula la esultante po el pincipio de supeposición. Se aplica la ª ley de Newton

Más detalles

A r. 1.5 Tipos de magnitudes

A r. 1.5 Tipos de magnitudes 1.5 Tipos de magnitudes Ente las distintas popiedades medibles puede establecese una clasificación básica. Un gupo impotante de ellas quedan pefectamente deteminadas cuando se expesa su cantidad mediante

Más detalles

Posiciones relativas entre rectas y planos

Posiciones relativas entre rectas y planos Maemáicas II Geomeía del espacio Posiciones elaivas ene ecas planos Obsevación: La maoía de los poblemas esuelos a coninuación se han popueso en los eámenes de Selecividad.. Discui según los valoes del

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, DATOS EN FUNCIÓN DEL TIEMPO.

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, DATOS EN FUNCIÓN DEL TIEMPO. CINEMÁTICA: MOVIMIENTO RECTILÍNEO, DATOS EN FUNCIÓN DEL TIEMPO. La velocidad de una parícula viene dada por v( ) 6 +, con en segundos y v en m/s. a) Hacer un gráfico de v() y hallar el área limiada por

Más detalles

DEPARTAMENTO DE SEÑALES, SISTEMAS Y RADIOCOMUNICACIONES RADIACIÓN Y PROPAGACIÓN. EXAMEN FINAL 30 ENERO 2006 APELLIDOS:... NOMBRE: DNI:..

DEPARTAMENTO DE SEÑALES, SISTEMAS Y RADIOCOMUNICACIONES RADIACIÓN Y PROPAGACIÓN. EXAMEN FINAL 30 ENERO 2006 APELLIDOS:... NOMBRE: DNI:.. DPARTAMNTO D SÑALS, SISTMAS Y RADIOCOMUNICACIONS RADIACIÓN Y PROPAGACIÓN. XAMN FINAL 30 NRO 006 APLLIDOS:... VRSIÓN A: PROBLMA 1: Consiee un aioenlace sobe un lago e 30 km e vano que uiliza un ansmiso

Más detalles

6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS

6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS 6.. Gáficas de ectas usando m b Po ejemplo, paa gafica la ecta Maca el valo de b (odenada al oigen) sobe el eje, es deci el punto (0,). A pati de ese punto, como la pendiente es, se toma una unidad a la

Más detalles

GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME

GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME INSTITUTO NACIONAL Deparameno de Física Coordinación Segundo Medio 06. GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME NOMBRE: CURSO: Caracerísica general de M.R.U: Si una parícula se mueve en la dirección del

Más detalles

VECTORES, DERIVADAS, INTEGRALES

VECTORES, DERIVADAS, INTEGRALES Física Tema 0-1 º Bachilleato Vectoes, deivadas, integales Tema 0 VECTORES, DERIVADAS, INTEGRALES 1.- Vectoes. Componentes de un vecto.- Suma y difeencia de vectoes 3.- Poducto de un vecto po un númeo

Más detalles

VALORACION DE ACCIONES. (1) El valor presente de la suma del dividendo de finales de período más el precio de la acción a finales de período, o

VALORACION DE ACCIONES. (1) El valor presente de la suma del dividendo de finales de período más el precio de la acción a finales de período, o U N I V E R S I D A D D E C H I L E Faculad de Ciencias Físicas y Maemáicas Depaameno de Ingenieía Indusial IN56A 0 of: Viviana Fenández VALORACION DE ACCIONES El valo de una acción se puede calcula como:

Más detalles

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría Apéndices Apéndice 1. Intoducción al cálculo vectoial Apéndice. Tabla de deivadas y de integales inmediatas Apéndice 3. Apéndice 4. Ecuaciones de la tigonometía Sistema peiódico de los elementos Apéndice

Más detalles

Ecuaciones diferenciales, conceptos básicos y aplicaciones

Ecuaciones diferenciales, conceptos básicos y aplicaciones GUIA 1 Ecuaciones diferenciales, concepos básicos y aplicaciones Las ecuaciones diferenciales ordinarias son una herramiena básica en las ciencias y las ingenierías para el esudio de sisemas dinámicos

Más detalles

Leyes de Kepler. Ley de Gravitación Universal

Leyes de Kepler. Ley de Gravitación Universal Leyes de Keple y Ley de Gavitación Univesal J. Eduado Mendoza oes Instituto Nacional de Astofísica Óptica y Electónica, México Pimea Edición onantzintla, Puebla, México 009 ÍNDICE 1.- PRIMERA LEY DE KEPLER

Más detalles

Ángulos, distancias. Observación: La mayoría de los problemas resueltos a continuación se han propuesto en los exámenes de Selectividad.

Ángulos, distancias. Observación: La mayoría de los problemas resueltos a continuación se han propuesto en los exámenes de Selectividad. Geomeía del espacio Ángulos, disancias Obseación: La maoía de los poblemas esuelos a coninuación se han popueso en los eámenes de Seleciidad.. Calcúlese la disancia del oigen al plano que pasa po A(,,

Más detalles

PROBLEMAS RESUELTOS DE ONDAS y SONIDO

PROBLEMAS RESUELTOS DE ONDAS y SONIDO PROBLEMAS RESUELTOS DE ONDAS y SONDO CURSO - Anonio J. Babeo, Maiano Henández, Alfonso Calea, José González Deaaeno Física Alicada. UCLM Pobleas esuelos ondas y sonido PROBLEMA. Una onda se oaga o una

Más detalles

Física 2º Bach. Tema: Ondas 27/11/09

Física 2º Bach. Tema: Ondas 27/11/09 Física º Bach. Tema: Ondas 7/11/09 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Problemas [6 PUNTOS: 1 / APARTADO] 1. Una onda ransversal se propaga en el senido negaivo de las X con una velocidad de 5,00

Más detalles

1/8 LA ESTRUCTURA TEMPORAL DE LOS TIPOS DE INTERES. 1.- Introducción

1/8 LA ESTRUCTURA TEMPORAL DE LOS TIPOS DE INTERES. 1.- Introducción LA ESTRUCTURA TEMORAL DE LOS TIOS DE INTERES.- Inoducción La esucua empoal de ipos de ineés o simplemene cuva de ipos ecoge la evolución de los ipos de ineés en función de su vencimieno, consideando po

Más detalles

CINEMATICA. que interpretemos erróneamente cuándo un cuerpo se acelera

CINEMATICA. que interpretemos erróneamente cuándo un cuerpo se acelera CINEMTIC Inroducción Cinemáica es la pare de la física que esudia el movimieno de los cuerpos, aunque sin ineresarse por las causas que originan dicho movimieno. Un esudio de las causas que lo originan

Más detalles

Capitulo 9: Leyes de Kepler, Gravitación y Fuerzas Centrales

Capitulo 9: Leyes de Kepler, Gravitación y Fuerzas Centrales Capitulo 9: Leyes de Keple, Gavitación y Fuezas Centales Índice. Las 3 leyes de Keple 2. Campo gavitacional 4 3. Consevación de enegía 6 4. Movimiento cicula 8 5. Difeentes tayectoias 0 6. Demosta Leyes

Más detalles

a = G m T r T + h 2 a = G r T

a = G m T r T + h 2 a = G r T www.clasesalacata.com Ley de la Gavitación Univesal 0.- Gavitación Univesal y Campo Gavitatoio Esta ley fomulada po Newton, afima que la fueza de atacción que expeimentan dos cuepos dotados de masa es

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejecicios esueltos Boletín 2 Campo gavitatoio y movimiento de satélites Ejecicio 1 En el punto A(2,0) se sitúa una masa de 2 kg y en el punto B(5,0) se coloca ota masa de 4 kg. Calcula la fueza esultante

Más detalles

+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m

+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m m A + ( ) G P m ( ) 0 + G P m R P + h R P h A B R P eniendo en cuenta que h R P /, la anteio expesión queda como: G A P 8 A 3 Sustituyendo datos numéicos, esulta: 6,67 0 N m kg, 0 3 kg A 06 m s 3,3 0 6

Más detalles

TEMA 3 MOVIMIENTO CIRCULAR Y GRAVITACIÓN UNIVERSAL

TEMA 3 MOVIMIENTO CIRCULAR Y GRAVITACIÓN UNIVERSAL EMA 3 MOIMIENO CICULA Y GAIACIÓN UNIESAL El movimiento cicula unifome (MCU) Movimiento cicula unifome es el movimiento de un cuepo que tiene po tayectoia una cicunfeencia y descibe acos iguales en tiempos

Más detalles

Tema 2. Sistemas conservativos

Tema 2. Sistemas conservativos Tema. Sistemas consevativos Tecea pate: Fueza gavitatoia A Campo gavitatoio Una masa M cea en su vecindad un campo de fuezas, el campo gavitatoio E, dado po E u siendo u el vecto unitaio adial que sale

Más detalles

CAMPO GRAVITATORIO FCA 06 ANDALUCÍA

CAMPO GRAVITATORIO FCA 06 ANDALUCÍA CAMPO AVIAOIO FCA 06 ANDALUCÍA 1.- Si po alguna causa la iea edujese su adio a la itad anteniendo su asa, azone cóo se odificaían: a) La intensidad del capo gavitatoio en su supeficie. b) Su óbita alededo

Más detalles

FÍSICA. Centro Educativo de Nivel Secundario Nº 451 Anexo Universidad Tecnológica Nacional. Dirección de Capacitación No Docente.

FÍSICA. Centro Educativo de Nivel Secundario Nº 451 Anexo Universidad Tecnológica Nacional. Dirección de Capacitación No Docente. Cenro Educaivo de Nivel Secundario Nº 45 Anexo Universidad Tecnológica Nacional Dirección de Capaciación No Docene Dirección General de Culura y Educación Provincia de Buenos Aires FÍSICA Segundo Año Unidad

Más detalles

0.2.4 Producto de un escalar por un vector. Vector unitario. 0.3 Vectores en el sistema de coordenadas cartesianas.

0.2.4 Producto de un escalar por un vector. Vector unitario. 0.3 Vectores en el sistema de coordenadas cartesianas. VECTORES, OPERCIONES ÁSICS. VECTORES EN EL SISTEM DE C. CRTESINS 0.1 Vectoes escalaes. 0. Opeaciones básicas: 0..1 Suma de vectoes. 0.. Vecto opuesto. 0..3 Difeencia de vectoes. 0..4 Poducto de un escala

Más detalles

Tema 4 FENOMENOS DE TRANSPORTE Y CONDUCTIVIDAD ELECTROLITICA. Departamento de Química Física. Universidad de Valencia.

Tema 4 FENOMENOS DE TRANSPORTE Y CONDUCTIVIDAD ELECTROLITICA. Departamento de Química Física. Universidad de Valencia. Tema 4 FENOMENOS DE TRANSPORTE Y CONDUCTIVIDAD ELECTROLITICA Depaameno de Química Física Univesidad de Valencia. QF III Tema 4 Índice: 4.. Inoducción 4... Descipción macoscópica de esados de no equilibio.

Más detalles

Sistemas Físicos. Sistemas Físicos. Sistemas Eléctricos. Sistemas Eléctricos. Dependiendo de los elementos del sistema, los podemos clasificar en:

Sistemas Físicos. Sistemas Físicos. Sistemas Eléctricos. Sistemas Eléctricos. Dependiendo de los elementos del sistema, los podemos clasificar en: Sisemas Físicos Dependiendo de los elemenos del sisema, los podemos clasificar en: Sisemas elécricos Sisemas mecánicos Sisemas elecromecánicos Sisemas de fluídos Sisemas ermodinámicos Sisemas Físicos En

Más detalles

Parametrizando la epicicloide

Parametrizando la epicicloide 1 Paametizando la epicicloide De la figua se obseva que cos(θ) = x 0 + ( 0 + ) cos(θ) = x sen(θ) = y 0 + ( 0 + ) sen(θ) = y po tanto las coodenadas del punto A son: A = (( 0 + ) cos(θ), ( 0 + ) sen(θ))

Más detalles

INTERACCIÓN ELECTROMAGNÉTICA ELECTROMAGNETISMO. Campo magnético creado por un conductor

INTERACCIÓN ELECTROMAGNÉTICA ELECTROMAGNETISMO. Campo magnético creado por un conductor TERACCÓ ELECTROMAGÉTCA ELECTROMAGETSMO ES La Magdalena. Avilés. Astuias La unión electicidad-magnetismo tiene una fecha: 180. Ese año Oested ealizó su famoso expeimento (ve figua) en el cual hacía cicula

Más detalles

TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES

TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES 1. MOVIMIENTO CIRCULAR UNIFORME (MCU). Es el movimiento de un cuepo cuya tayectoia es una cicunfeencia y su velocidad es constante. 1.1. Desplazamiento angula o

Más detalles

2. CINEMATICA EL MOVIMIENTO Y SU DESCRIPCIÓN

2. CINEMATICA EL MOVIMIENTO Y SU DESCRIPCIÓN 19. CINEMATICA La descipción matemática del movimiento constituye el objeto de una pate de la física denominada cinemática. Tal descipción se apoya en la definición de una seie de magnitudes que son caacteísticas

Más detalles

C. VALENCIANA / SEPTIEMBRE 04. LOGSE / FÍSICA / EXAMEN COMPLETO

C. VALENCIANA / SEPTIEMBRE 04. LOGSE / FÍSICA / EXAMEN COMPLETO . VALENANA / SEPEMBRE 04. LOGSE / FÍSA / EXAMEN EXAMEN El alumno ealizaá una opción de cada uno de los bloques La puntuación máxima de cada poblema es de puntos, y la de cada cuestión es de,5 puntos. BLOQUE

Más detalles

Dinámica. Principio de Inercia

Dinámica. Principio de Inercia Dinámica Hemos estudiado algunos de los distintos tipos de movimientos que existen en la natualeza. Ahoa, llegó el momento de explica po qué se poducen éstos movimientos, y de esto se encaga la dinámica.

Más detalles

MAGNITUDES VECTORIALES:

MAGNITUDES VECTORIALES: Magnitudes ectoiales MAGNITUDES VECTORIALES: Índice 1 Magnitudes escalaes ectoiales Suma de ectoes libes Poducto de un escala po un ecto 3 Sistema de coodenadas ectoiales. Vectoes unitaios 3 Módulo de

Más detalles

D.1.- Considere el movimiento de una partícula de masa m bajo la acción de una fuerza central del tipo. n ˆ

D.1.- Considere el movimiento de una partícula de masa m bajo la acción de una fuerza central del tipo. n ˆ Cuso Mecánica (FI-1A), Listado de ejecicios. Edito: P. Aceituno 34 Escuela de Ingenieía. Facultad de Ciencias Físicas y Matemáticas. Univesidad de Chile. D: FUERZAS CENTRALES Y MOVIMIENTOS PLANETARIOS

Más detalles

Experimento 3. Análisis del movimiento en una dimensión. Objetivos. Teoría

Experimento 3. Análisis del movimiento en una dimensión. Objetivos. Teoría Experimeno 3 Análisis del movimieno en una dimensión Objeivos. Esablecer la relación enre la posición y la velocidad de un cuerpo en movimieno 2. Definir la velocidad como el cambio de posición en un inervalo

Más detalles

TRABAJO DE LABORATORIO Nº 2: Potencial Eléctrico Mapa de Campo Eléctrico

TRABAJO DE LABORATORIO Nº 2: Potencial Eléctrico Mapa de Campo Eléctrico Univesidad Nacional del Nodeste Facultad de Ingenieía Cáteda: Física III Pofeso Adjunto: Ing. Atuo Castaño Jefe de Tabajos Pácticos: Ing. Cesa Rey Auiliaes: Ing. Andés Mendivil, Ing. José Epucci, Ing.

Más detalles

IES Al-Ándalus. Dpto. Física y Química. F.Q. 1º Bachillerato. Tema 6: Descripción del movimiento - 1 -

IES Al-Ándalus. Dpto. Física y Química. F.Q. 1º Bachillerato. Tema 6: Descripción del movimiento - 1 - IES Al-Ándalus. Dpto. Física y Química. F.Q. 1º Bachilleato. Tema 6: Descipción del movimiento - 1 - TEMA 6: DESCRIPCIÓN DEL MOVIMIENTO DE UNA PARTÍCULA 6.1 Concepto de movimiento. Sistema de efeencia.

Más detalles

b) La velocidad de escape se calcula con la siguiente expresión:

b) La velocidad de escape se calcula con la siguiente expresión: ADID / JUNIO 0. LOGSE / FÍSICA / CAPO GAVIAOIO PIEA PAE CUESIÓN Un planeta esféico tiene un adio de 000 km, y la aceleación de la gavedad en su supeficie es 6 m/s. a) Cuál es su densidad media? b) Cuál

Más detalles

CAPITULO 2. MOVIMIENTO EN UNA DIMENSION.

CAPITULO 2. MOVIMIENTO EN UNA DIMENSION. Cap. Movimiento en una dimensión. CAPITULO. MOVIMIENTO EN UNA DIMENSION. La cinemática es la ama de la mecánica que estudia la geometía del movimiento. Usa las magnitudes fundamentales longitud, en foma

Más detalles

5. Sistemas inerciales y no inerciales

5. Sistemas inerciales y no inerciales 5. Sistemas ineciales y no ineciales 5.1. Sistemas ineciales y pincipio de elatividad de Galileo El conjunto de cuepos especto de los cuales se descibe el movimiento se denomina sistema de efeencia, y

Más detalles

IES Fco Ayala de Granada Junio de 2014 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 2 opción A, modelo_1 Junio 2014

IES Fco Ayala de Granada Junio de 2014 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 2 opción A, modelo_1 Junio 2014 IES Fco Ayala de Ganada Junio de 014 (Modelo 1) Soluciones Gemán-Jesús Rubio Luna Opción A Ejecicio 1 opción A, modelo_1 Junio 014 Sea f : R R definida po f(x) x + ax + bx + c. [1 7 puntos] Halla a, b

Más detalles

Tema 2. Ondas electromagnéticas.

Tema 2. Ondas electromagnéticas. Tema. Ondas elecomagnéicas..1. Inoducción. l campo elécico l eoema de Gauss elécico.3 l campo magnéico l eoema de Gauss elécico.4 La le de inducción magnéica o le de Faada.5 La le de Ampèe.6 Las ecuaciones

Más detalles

CUESTIONES Y PROBLEMAS DE CAMPO ELÉCTRICO. Ejercicio nº1 Cómo se manifiesta la propiedad de la materia denominada carga eléctrica?

CUESTIONES Y PROBLEMAS DE CAMPO ELÉCTRICO. Ejercicio nº1 Cómo se manifiesta la propiedad de la materia denominada carga eléctrica? UESTIONES Y POBLEMAS DE AMPO ELÉTIO Ejecicio nº ómo se manifiesta la popiedad de la mateia denominada caga eléctica? La popiedad de la mateia denominada caga eléctica se manifiesta mediante fuezas de atacción

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad. Indica cuál de las siguientes afimaciones es falsa: a) En la época de Aistóteles ya se aceptaba que la iea ea esféica. b) La estimación del adio teeste que llevó a cabo

Más detalles

Tema 3. Campo eléctrico

Tema 3. Campo eléctrico Tema 3 Campo eléctico Pogama 1. Inteacción eléctica. Campo eléctico.. Repesentación mediante líneas de campo. Flujo eléctico: Ley de Gauss. 3. Enegía y potencial elécticos. Supeficies equipotenciales.

Más detalles

PRÁCTICA 3: Sistemas de Orden Superior:

PRÁCTICA 3: Sistemas de Orden Superior: PRÁCTICA 3: Sisemas de Orden Superior: Idenificación de modelo de POMTM. Esabilidad y Régimen Permanene de Sisemas Realimenados Conrol e Insrumenación de Procesos Químicos. . INTRODUCCIÓN Esa prácica se

Más detalles

www.fisicaeingenieria.es Vectores y campos

www.fisicaeingenieria.es Vectores y campos www.fisicaeingenieia.es Vectoes y campos www.fisicaeingenieia.es www.fisicaeingenieia.es ) Dados los vectoes a = 4$ i + 3$ j + k$ y c = $ i + $ j 7k$, enconta las componente de oto vecto unitaio, paa que

Más detalles

Las derivadas de los instrumentos de renta fija

Las derivadas de los instrumentos de renta fija Las derivadas de los insrumenos de rena fija Esrella Peroi, MBA Ejecuivo a cargo Capaciación & Desarrollo Bolsa de Comercio de Rosario eperoi@bcr.com.ar Como viéramos en el arículo el dilema enre la asa

Más detalles

Examen de Selectividad de Física. Junio 2009. Soluciones.

Examen de Selectividad de Física. Junio 2009. Soluciones. Depatamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madid) Examen de Selectividad de Física. Junio 009. Soluciones. Pimea pate Cuestión 1.- Un satélite atificial de 500 kg que descibe una óbita

Más detalles

UNIVERSIDAD NACIONAL DEL SUR - DEPARTAMENTO DE INGENIERÍA ELECTRICA Y DE COMPUTADORAS - AREA 4 CONVERSIÓN ELECTROMECÁNICA DE LA ENERGÍA (Cod.

UNIVERSIDAD NACIONAL DEL SUR - DEPARTAMENTO DE INGENIERÍA ELECTRICA Y DE COMPUTADORAS - AREA 4 CONVERSIÓN ELECTROMECÁNICA DE LA ENERGÍA (Cod. UIVEIDAD ACIOAL DEL U - DEPAAMEO DE IGEIEÍA ELECICA Y DE COMPUADOA - AEA 4 COVEIÓ ELECOMECÁICA DE LA EEGÍA (Cod.55) GUIA DE ABAJO PACICO DE LABOAOIO P Enayo de un AFOMADO IFAICO. Objeivo Idenifica bobinado

Más detalles

Campo eléctrico. Introducción a la Física Ambiental. Tema 7. Tema 7.- Campo eléctrico.

Campo eléctrico. Introducción a la Física Ambiental. Tema 7. Tema 7.- Campo eléctrico. Campo eléctico. Intoducción a la Física Ambiental. Tema 7. Tema7. IFA (Pof. RAMOS) 1 Tema 7.- Campo eléctico. El campo eléctico: unidades. Líneas del campo eléctico. Potencial eléctico: unidades. Fueza

Más detalles

d AB =r A +r B = 2GM

d AB =r A +r B = 2GM Física de º Bachilleato Campo gavitatoio Actividad 1 [a] Enuncia la tecea ley de Keple y compueba su validez paa una óbita cicula. [b] Un satélite atificial descibe una óbita elíptica alededo de la Tiea,

Más detalles

propiedad de la materia causada por la interacción electromagnética

propiedad de la materia causada por la interacción electromagnética www.clasesalacaa.com 1 Caga Elécica. Ley de Coulomb Tema 1.- Elecosáica Unidad de caga elécica La caga elécica es el exceso o defeco de elecones que posee un cuepo especo al esado neuo. Es una popiedad

Más detalles

EL ESPACIO VECORIAL MAGNITUDES VECTORIALES

EL ESPACIO VECORIAL MAGNITUDES VECTORIALES EL ESPACIO VECORIAL MAGNITUDES VECTORIALES Son las que paa queda pefectamente definidas es necesaio da: - Punto de aplicación - Diección - Sentido - Módulo o valo del VECTOR MODULO Y COSENOS DIRECTORES

Más detalles

Puntos, rectas y planos en el espacio. Posiciones relativas

Puntos, rectas y planos en el espacio. Posiciones relativas Maemáicas II Geomeía del espacio Punos, ecas planos en el espacio. Posiciones elaivas Obsevación: La maoía de los poblemas esuelos a coninuación se han popueso en los eámenes de Selecividad. Punos, ecas

Más detalles

UNGS FÍSICA GENERAL 1º SEMESTRE 2012 GUÍAS DE PROBLEMAS

UNGS FÍSICA GENERAL 1º SEMESTRE 2012 GUÍAS DE PROBLEMAS UNGS FÍSIC GENERL 1º SEMESTRE 2012 GUÍS DE PROBLEMS - Pogaa - Bibliogafía - Guía de poblea 1e día. - Guía Nº 0 Vecoe. - Guía Nº 1 Cineáica. - Guía Nº 2 Dináica. - Guía Nº 3 Moviieno Cicula. - Guía Nº 4

Más detalles

PROBLEMAS DE ELECTROESTÁTICA

PROBLEMAS DE ELECTROESTÁTICA PBLMAS D LCTSTÁTICA I CAMP LCTIC N L VACI. Cagas puntuales. Cagas lineales. Cagas supeficiales 4. Flujo le de Gauss 5. Distibuciones cúbicas de caga 6. Tabajo enegía electostática 7. Poblemas Pof. J. Matín

Más detalles

UD: 3. ENERGÍA Y POTENCIA ELÉCTRICA.

UD: 3. ENERGÍA Y POTENCIA ELÉCTRICA. D: 3. ENEGÍA Y OENCA ELÉCCA. La energía es definida como la capacidad de realizar rabajo y relacionada con el calor (ransferencia de energía), se percibe fundamenalmene en forma de energía cinéica, asociada

Más detalles

Lección 4. Funciones de varias variables. Derivadas. 4. Las reglas de la cadena.

Lección 4. Funciones de varias variables. Derivadas. 4. Las reglas de la cadena. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 11 1. Lección 4. Funciones de aias aiables. Deiadas paciales. 4. Las eglas de la cadena. Las eglas de la cadena nos pemien calcula las deiadas paciales de una función

Más detalles

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA CMPO GRVIORIO FC 0 NDLUCÍ. a) Explique qué se entiende po velocidad de escape y deduzca azonadamente su expesión. b) Razone qué enegía había que comunica a un objeto de masa m, situado a una altua h sobe

Más detalles

6. Movimiento Rectilíneo Uniforme

6. Movimiento Rectilíneo Uniforme 6. Movimieno Recilíneo Uniforme La velocia e un vehículo es mayor en las recas que en las curvas. Cuano un físico se refiere a la prisa con la que se mueve un cuerpo, aemás e conocer su rapiez, necesia

Más detalles

Solución y criterios de corrección. Examen de mayores de 25 años. 2012. Matemáticas aplicadas a las ciencias sociales.

Solución y criterios de corrección. Examen de mayores de 25 años. 2012. Matemáticas aplicadas a las ciencias sociales. Solución y crierios de corrección. Examen de mayores de años.. Maemáicas aplicadas a las ciencias sociales. BLOQUE A En un cenro de ocio hay salas de cine: A, B y. A una deerminada sesión han acudido personas.

Más detalles

I.E.S. Ana Mª Matute FÍSICA Y QUÍMICA 4º E.S.O.

I.E.S. Ana Mª Matute FÍSICA Y QUÍMICA 4º E.S.O. I.E.S. Ana Mª Matute FÍSICA Y QUÍMICA 4º E.S.O. Índice 1. Cálculo vectoial... 1 2. Cinemática... 10 3. Dinámica del punto mateial... 21 4. Estática de fluidos... 30 5. Tabajo y enegía... 38 6. Caloimetía...

Más detalles

DINAMICA DE SIERRAS CIRCULARES: UNA SOLUCIÓN NUMÉRICA

DINAMICA DE SIERRAS CIRCULARES: UNA SOLUCIÓN NUMÉRICA III Congeso Inenacional sobe Méodos Numéicos en Ingenieía y Ciencias Aplicadas S.Gallegos I. Heeo S Boello F. Záae y G. Ayala (Edioes) ITESM Moneey 4 CIMNE Bacelona 4 DINAMICA DE SIERRAS CIRCULARES: UNA

Más detalles

Es el producto escalar de la fuerza aplicada al cuerpo por el vector r r Por lo tanto es una magnitud escalar.

Es el producto escalar de la fuerza aplicada al cuerpo por el vector r r Por lo tanto es una magnitud escalar. TRABAJO Y ENERGÍA TRABAJO Es el poducto escala de la fueza aplicada al cuepo po el vecto desplazamiento. Po lo tanto es una magnitud escala. W = F.D = F.D. cos a Su unidad en el sistema intenacional es

Más detalles

Examen de Selectividad de Física. Septiembre 2008. Soluciones.

Examen de Selectividad de Física. Septiembre 2008. Soluciones. Depatamento de Física y Química. I. E.. Atenea (.. Reyes, Madid) Examen de electividad de Física. eptiembe 2008. oluciones. Pimea pate Cuestión 1. Calcule el módulo del momento angula de un objeto de 1000

Más detalles

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Física Geneal Poecto PMME - Cuso 8 Instituto de Física Facultad de Inenieía UdelaR TÍTULO MOVIMIENTO RELATIVO MOVIMIENTO E PROYECTIL. EL ALEGRE CAZAOR QUE VUELVE A SU CASA CON UN FUERTE OLOR ACÁ. AUTORES

Más detalles

En la Sección III Usted debe justificar todas sus respuestas con claridad en el espacio en blanco.

En la Sección III Usted debe justificar todas sus respuestas con claridad en el espacio en blanco. Diciembre 9, 2011 nsrucciones Nombre Ese examen iene 3 secciones: La Sección consa de 10 pregunas en el formao de Falso-Verdadero y con un valor de 20 punos. La Sección es de selección múliple y consa

Más detalles

Parte 3: Electricidad y Magnetismo

Parte 3: Electricidad y Magnetismo Pate 3: Electicidad y Magnetismo 1 Pate 3: Electicidad y Magnetismo Los fenómenos ligados a la electicidad y al magnetismo, han sido obsevados y estudiados desde hace muchos siglos. No obstante ello, las

Más detalles

BLOQUE 1: INTERACCIÓN GRAVITATORIA

BLOQUE 1: INTERACCIÓN GRAVITATORIA BLOQUE 1: INTERACCIÓN GRAVITATORIA 1.-EL MOVIMIENTO DE LOS PLANETAS A TRAVÉS DE LA HISTORIA La inteacción gavitatoia tiene una gan influencia en el movimiento de los cuepos, tanto de los que se encuentan

Más detalles

UNIDAD DE CONOCIMIENTO Área: Ciencias Naturales y Educación Ambiental Asignatura: Física Docente: Erasmo Gaona Contreras

UNIDAD DE CONOCIMIENTO Área: Ciencias Naturales y Educación Ambiental Asignatura: Física Docente: Erasmo Gaona Contreras Unidad : CONCEPTOS FUNDAMENTALES DE LA FÍSICA Y VECTORES Tiempo: OBJETIVO Desarrollar el proceso de concepualización mediane la consrucción de los concepos fundamenales de la física a parir del análisis

Más detalles

= = f=440 Hz, v=143 m/s A=0.75 mm. b) Las posiciones de los nodos están en x=0,λ/2,2λ/2 :

= = f=440 Hz, v=143 m/s A=0.75 mm. b) Las posiciones de los nodos están en x=0,λ/2,2λ/2 : 15.7 Una de las cuerdas de una guiarra esá en el eje cuando esá en equilibrio. El eremo 0 el puene de la guiarra esá fijo. Una onda senoidal incidene iaja por la cuerda en dirección a 143 m/s con ampliud

Más detalles

MECÁNICA CUÁNTICA. GOD DOES NOT PLAY DICES WITH THE UNIVERSE (Albert Einstein. 1879 1955)

MECÁNICA CUÁNTICA. GOD DOES NOT PLAY DICES WITH THE UNIVERSE (Albert Einstein. 1879 1955) MECÁNICA CUÁNTICA GOD DOES NOT PLAY DICES WITH THE UNIVERSE Albe Einsein. 1879 1955 NOT ONLY DOES GOD PLAY DICES BUT HE SOMETIMES THROWS THEM WHERE THEY CAN T BE SEEN Seen Hawking. 194 Mecánica CUÁNTICA

Más detalles

El campo electrostático

El campo electrostático 1 Fenómenos de electización. Caga eléctica Cuando un cuepo adquiee po fotamiento la popiedad de atae pequeños objetos, se dice que el cuepo se ha electizado También pueden electizase po contacto con otos

Más detalles

GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO

GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO GALICIA / JUNIO 3. LOGSE / FÍSICA / EXAMEN COMPLEO El examen de física de las P.A.U. pesenta dos opciones de semejante nivel de dificultad. Cada opción consta de tes pates difeentes(poblemas, cuestiones

Más detalles

LAS FUERZAS Y SUS EFECTOS. DINÁMICA DEL PUNTO MATERIAL.

LAS FUERZAS Y SUS EFECTOS. DINÁMICA DEL PUNTO MATERIAL. Física 1º bachilleato LAS FUERZAS Y SUS EFECTOS. DINÁMICA DEL PUNTO MATERIAL. 1.- Concepto de fueza. Tipos. Composición y descomposición de fuezas..- Fuezas y defomaciones. 3.- del punto mateial. Genealidades.

Más detalles

CAMPO GRAVITATORIO FCA 05 ANDALUCÍA

CAMPO GRAVITATORIO FCA 05 ANDALUCÍA CAPO GRAVIAORIO FCA 05 ANDALUCÍA 1. Un satélite descibe una óbita cicula alededo de la iea. Conteste azonadaente a las siguientes peguntas: a) Qué tabajo ealiza la fueza de atacción hacia la iea a lo lago

Más detalles

TEMA3: CAMPO ELÉCTRICO

TEMA3: CAMPO ELÉCTRICO FÍIC º BCHILLERTO. CMPO ELÉCTRICO. TEM3: CMPO ELÉCTRICO o Natualeza eléctica de la mateia. o Ley de Coulomb vs Ley de Newton. o Pincipio de supeposición. o Intensidad del campo elético. o Líneas del campo

Más detalles

INTRODUCCION AL ANALISIS VECTORIAL

INTRODUCCION AL ANALISIS VECTORIAL JOSÉ MILCIDEZ DÍZ, REL CSTILLO, ERNNDO VEG PONTIICI UNIVERSIDD JVERIN, DEPRTMENTO DE ÍSIC INTRODUCCION L NLISIS VECTORIL Intoducción Pate Pate 3 Pate 4 (Pate ) Donde encuente el símbolo..! conduce a una

Más detalles

MATEMATICAS I FUNCIONES ELEMENTALES. PROBLEMAS

MATEMATICAS I FUNCIONES ELEMENTALES. PROBLEMAS 1º) La facura del gas se calcula a parir de una canidad fija y de un canidad variable que se calcula según los m 3 consumidos (el precio de cada m 3 es consane). El impore de la facura de una familia,

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS.

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS. CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS. Una parícula se muee en la dirección posiia del eje X, de modo que su elocidad aría según la ley = α donde α es una consane. Teniendo en cuena que en el

Más detalles

3 TEORÍA DE LA CODA. 3.1 Introducción TEORÍA DE LA CODA 39

3 TEORÍA DE LA CODA. 3.1 Introducción TEORÍA DE LA CODA 39 TEORÍA DE LA CODA 39 3 TEORÍA DE LA CODA 3. Inoducción Las heeogeneidades de la liosfea eese acúan como elemenos dispesoes de las ondas pimaias paa poduci ondas secundaias y son las causanes de las anomalías

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de varias variables. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C.

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de varias variables. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Maemáicas 1 1 EJERCICIOS RESUELTOS: Funciones de varias variables Elena Álvarez Sáiz Dpo. Maemáica Aplicada C. Compuación Universidad de Canabria Ingeniería de Telecomunicación Ejercicios: Func. varias

Más detalles

CAMPO ELÉCTRICO 7.1. FENÓMENOS DE ELECTRIZACIÓN 7.2. LEY DE COULOMB

CAMPO ELÉCTRICO 7.1. FENÓMENOS DE ELECTRIZACIÓN 7.2. LEY DE COULOMB 7 CAMPO ELÉCTRICO 7.. FENÓMENOS DE ELECTRIZACIÓN. Un péndulo electostático es un dispositivo fomado po una esfea ligea, de mateial aislante, suspendida de un hilo de masa despeciable. Utilizando ese dispositivo,

Más detalles

Almacenan energía magnética generada como consecuencia de las variaciones de corriente. Suelen ser fabricados a medida por el propio diseñador.

Almacenan energía magnética generada como consecuencia de las variaciones de corriente. Suelen ser fabricados a medida por el propio diseñador. 6. nductancias Almacenan enegía magnética geneada como consecuencia de las vaiaciones de coiente. Suelen se fabicados a medida po el popio diseñado. Pincipios de la teoía electomagnética Magnitudes a utiliza:

Más detalles