Bioestadística: Inferencia Estadística. Análisis de Dos Muestras

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Bioestadística: Inferencia Estadística. Análisis de Dos Muestras"

Transcripción

1 Bioestadística: Inferencia Estadística. Análisis de Dos Muestras M. González Departamento de Matemáticas. Universidad de Extremadura

2 MUESTRAS INDEPENDIENTES: TEST PARAMÉTRICO: VARIANZAS POBLACIONALES IGUALES:Test de t-student (RESUMEN VIII) VARIANZAS POBLACIONALES DIFERENTES:Test de Welch (RESUMEN VIII) Para contrastar si las varianzas poblacionales son iguales utilizamos el test de F-Snedecor (RESUMEN VII). TEST NO PARAMÉTRICO:Test de Mann-Whitney-Wilcoxon de suma de rangos (RESUMEN X) MUESTRAS APAREADAS O RELACIONADAS: TEST PARAMÉTRICO:Test de t-student (RESUMEN XI) TEST NO PARAMÉTRICO:Test de Wilcoxon de rangos con signo (RESUMEN XII)

3 2. En un experimento sobre los efectos de la insulina en la disminución de la glucemia en conejos, se administró una dosis alta de insulina a 9 conejos, resultando una disminución media de glucemia de 16.4 con una desviación típica muestral de 4. A otro grupo de 9 conejos se les administró una dosis baja de insulina, resultando una disminución media de 9.3 con una desviación típica muestral de 3. Si suponemos que la distribución de la glucemia es Normal, contesta las siguientes preguntas: (a) Es posible afirmar, con un nivel de significación del 5%, que existe diferencia significativa en la disminución de la glucemia según se aplique una dosis alta o baja de insulina? X =disminución glucemia dosis alta insulina N(µ 1, σ 2 1 ) Y =disminución glucemia dosis baja insulina N(µ 2, σ 2 2 ) MUESTRAS INDEPENDIENTES m = 9 x = 16.4, s 1 = 4 n = 9 ȳ = 9.3, s 2 = 3 H 0 : µ 1 = µ 2 vs. H 1 : µ 1 µ 2

4 MUESTRAS INDEPENDIENTES: TEST PARAMÉTRICO: VARIANZAS POBLACIONALES IGUALES: Test de t-student (RESUMEN VIII) VARIANZAS POBLACIONALES DIFERENTES: Test de Welch (RESUMEN VIII) Para contrastar si las varianzas poblacionales son iguales utilizamos el test de F-Snedecor (RESUMEN VII). TEST NO PARAMÉTRICO: Test de Mann-Whitney-Wilcoxon de suma de rangos (RESUMEN X) MUESTRAS APAREADAS O RELACIONADAS: TEST PARAMÉTRICO: Test de t-student (RESUMEN XI) TEST NO PARAMÉTRICO: Test de Wilcoxon de rangos con signo (RESUMEN XII)

5 2. (a) MUESTRAS INDEPENDIENTES X =disminución glucemia dosis alta insulina N(µ 1, σ 2 1 ) Y =disminución glucemia dosis baja insulina N(µ 2, σ 2 2 ) m = 9 x = 16.4, s 1 = 4 n = 9 ȳ = 9.3, s 2 = 3 H 0 : σ1 2 = σ2 2 vs. H 1 : σ1 2 σ2 2 RESUMEN VII: Rechazamos H 0 al nivel α si s 2 1 s 2 > F α/2 (m 1, n 1) si s 2 1 s2 2 ó 2 F exp = s2 1 s 2 = 2 ( 4 3 ) 2 = 1.78 α F α/2(8, 8) s 2 2 s 2 > F α/2 (n 1, m 1) si s 2 1 s2 2 1 α = 0.05 F (8, 8) = 4.43 F exp < F (8, 8) H 0 α = 0.1 F 0.05 (8, 8) = 3.44 F exp < F 0.05 (8, 8) H 0 α = 0.2 F 0.1 (8, 8) = 2.59 F exp < F 0.1 (8, 8) H 0 p > 0.2

6 2. (a) H 0 : µ 1 = µ 2 vs. H 1 : µ 1 µ 2 RESUMEN VIII: σ 2 1, σ2 2 DESCONOCIDAS, σ2 1 = σ2 2 m = 9 x = 16.4, s 1 = 4 n = 9 ȳ = 9.3, s 2 = 3 s 2 = (m 1)s2 1 + (n 1)s2 2 m + n + 2 = = 12.5 s = 3.54 t exp = = /9+1/9 α = 0.05 t 0.05 (16) = t exp > t 0.05 (16) H 1 α = t (16) = t exp > t (16) H 1 p < 0.001

7 2. (b) En cuánto podemos estimar dicha diferencia? m = 9 x = 16.4, s 1 = 4 n = 9 ȳ = 9.3, s 2 = 3 s 2 = (m 1)s2 1 +(n 1)s2 2 m+n+2 = = 12.5 s = 3.54 ESTIMACIÓN PUNTUAL: µ 1 µ 2 = x ȳ = = 7.1 ESTIMACIÓN POR INTERVALO DE CONFIANZA: RESUMEN IX Nivel de confianza 1 α 1 µ 1 µ 2 ( x ȳ) ± t α (m + n 2)s m + 1 n 1 α = µ 1 µ ± = 7.1 ± 3.54 = [3.56, 10.64] CON UNA CONFIANZA DEL 95%

8 4. Se da a continuación la dosis de colesterol sérico en mg/l, de dos grupos de individuos hiperlipidémicos, bajo el efecto de un placebo y después de un tratamiento que reduce el colesterol: Placebo Tratamiento (a) Probar si existe diferencia significativa entre las dosis medias de colesterol sérico en ambas poblaciones, suponiendo normalidad de ambas variables. (b) Qué podemos hacer si no tenemos la hipótesis de normalidad? MUESTRAS INDEPENDIENTES NO PARAMÉTRICO: TEST DE SUMA DE RANGOS DE MANN-WHITNEY-WILCOXON RESUMEN X

9 4. Se da a continuación la dosis de colesterol sérico en mg/l, de dos grupos de individuos hiperlipidémicos, bajo el efecto de un placebo y después de un tratamiento que reduce el colesterol: Placebo Tratamiento

10 4. Se da a continuación la dosis de colesterol sérico en mg/l, de dos grupos de individuos hiperlipidémicos, bajo el efecto de un placebo y después de un tratamiento que reduce el colesterol: Placebo Tratamiento R exp = R X = 16 RESUMEN X: Rechazamos H 0 al nivel de significación α si R exp V I (α) ó R exp V S (α) α = 0.05 V I (0.05) = 21, V S (0.05) = 49 R exp < V I (α) H 1 α = 0.01 V I (0.01) = 17, V S (0.01) = 53 R exp < V I (α) H 1 p < 0.01

11 7. Se ha estudiado el tiempo de reacción ante un estímulo auditivo bajo dos situaciones o condiciones radicalmente diferentes F y Q. Para ello se ha elegido una muestra aleatoria de 9 niños, los cuales han sido estimulados, en primer lugar, bajo la situación F y pasado un tiempo prudencial de reposo, son nuevamente estimulados bajo Q. Los tiempos de reacción, en centésimas de segundo, aparecen en la siguiente tabla: niño sist. F sist. Q (a) Suponiendo que la diferencia de los tiempos de reacción se distribuye normalmente, puede afirmarse que el tiempo de reacción medio difiere de la situación F a la Q, si admitimos un nivel de error del 1%? X=TIEMPO DE REACCIÓN ANTE F µ 1, σ1 2 Y=TIEMPO DE REACCIÓN ANTE Q µ 2, σ2 2 (X 1, Y 1 ),..., (X 9, Y 9 ) D i = X i Y i, i = 1,..., 9, m.a.s. N(µ D, σ 2 D), µ D = µ 1 µ 2.

12 7. (a) PARAMÉTRICO. MUESTRAS APAREADAS. TEST T-STUDENT. RESUMEN XI H 0 : µ 1 = µ 2 vs. H 1 : µ 1 µ 2 H 0 : µ D = 0 vs. H 1 : µ D 0 niño sist. F sist. Q d i d = 1.89 s 2 D = 2.61 (s D = 1.616) t exp = d s d / n = 3.51 Rechazamos H 0 al nivel de significación α si t exp > t α (n 1) α = 0.01 t 0.01 (8) = t exp > t 0.01 (8) H 1 α = t (8) = t exp < t (8) H < p < 0.01

13 7. (b) Cómo podemos establecer la comparación si no tenemos la hipótesis de normalidad? NO PARAMÉTRICO. MUESTRAS APAREADAS. TEST DE WILCOXON DE RANGOS CON SIGNO. RESUMEN XII. n = 8 niño d i (1.5) + 1 R(+) = R( ) = 34.5 (1.5) (3.5) (3.5) (6) (6) (6) (8) Rechazamos H 0 al nivel de significación α si R(+) T α (n) ó R( ) T α (n) α = 0.05 T 0.05 (8) = 3 R(+) < T 0.05 (8) H 1 α = 0.01 T 0.01 (8) = 0 R(+), R( ) > T 0.01 (8) H < p < 0.05

Tema 5: Estimación puntual y por intervalos

Tema 5: Estimación puntual y por intervalos Tema 5: Estimación puntual y por intervalos Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 5: Estimación puntual y por intervalos Curso

Más detalles

Tema 3: Diseño de experimentos

Tema 3: Diseño de experimentos Grado en Fisioterapia, 2010/11 Cátedra de Bioestadística Universidad de Extremadura 15 de noviembre de 2010 Índice Diseños con un factor 1 Diseños con un factor Comparación de dos medias Comparación de

Más detalles

LICENCIADO EN CIENCIAS AMBIENTALES PROGRAMA DE ESTADÍSTICA

LICENCIADO EN CIENCIAS AMBIENTALES PROGRAMA DE ESTADÍSTICA LICENCIADO EN CIENCIAS AMBIENTALES PROGRAMA DE ESTADÍSTICA CURSO 2010-2011 TITULACIÓN: CIENCIAS AMBIENTALES ASIGNATURA: ESTADISTICA ÁREA DE CONOCIMIENTO: Estadística e Investigación Operativa Número de

Más detalles

Problemas. Intervalos de Confianza y Contrastes de Hipótesis

Problemas. Intervalos de Confianza y Contrastes de Hipótesis Problemas. Intervalos de Confianza y Contrastes de Hipótesis Ejemplos resueltos y propuestos Intervalos de Confianza Variable Nomal en la población Se selecciona una muestra de tamaño n de una población

Más detalles

Pruebas de. Hipótesis

Pruebas de. Hipótesis Pruebas de ipótesis Pruebas de ipótesis Otra manera de hacer inferencia es haciendo una afirmación acerca del valor que el parámetro de la población bajo estudio puede tomar. Esta afirmación puede estar

Más detalles

Resultados de la encuesta sobre dedicación de los módulos 1,2 y 3

Resultados de la encuesta sobre dedicación de los módulos 1,2 y 3 Resultados de la encuesta sobre dedicación de los módulos 1,2 y 3 Nota: Para la dedicación total estimada sólo se consideran los ítems preguntados en las encuestas Todos los capítulos 8 Estimada Real 7

Más detalles

Tema 3. Comparaciones de dos poblaciones

Tema 3. Comparaciones de dos poblaciones Tema 3. Comparaciones de dos poblaciones Contenidos Hipótesis para la diferencia entre las medias de dos poblaciones: muestras pareadas Hipótesis para la diferencia entre las medias de dos poblaciones:

Más detalles

Inferencia Estadística

Inferencia Estadística MaMaEuSch Management Mathematics for European Schools http://www.mathematik.unikl.de/ mamaeusch Inferencia Estadística Paula Lagares Barreiro * Justo Puerto Albandoz * MaMaEuSch ** Management Mathematics

Más detalles

Tema 5: Introducción a la inferencia estadística

Tema 5: Introducción a la inferencia estadística Tema 5: Introducción a la inferencia estadística 1. Planteamiento y objetivos 2. Estadísticos y distribución muestral 3. Estimadores puntuales 4. Estimadores por intervalos 5. Contrastes de hipótesis Lecturas

Más detalles

DESCRIPCIÓN ESPECÍFICA

DESCRIPCIÓN ESPECÍFICA DESCRIPCIÓN ESPECÍFICA NÚCLEO: COMERCIO Y SERVICIO SUBSECTOR: PRODUCCION Y SALUD OCUPACIONAL Nombre del Módulo: Análisis estadístico de datos. total: 45 HORAS. Objetivo General: Analizar la conformidad

Más detalles

Problemas de Probabilidad resueltos.

Problemas de Probabilidad resueltos. Problemas de Probabilidad resueltos. Problema 1 El profesor Pérez olvida poner su despertador 3 de cada 10 dias. Además, ha comprobado que uno de cada 10 dias en los que pone el despertador acaba no levandandose

Más detalles

ESTIMACIÓN. puntual y por intervalo

ESTIMACIÓN. puntual y por intervalo ESTIMACIÓN puntual y por intervalo ( ) Podemos conocer el comportamiento del ser humano? Podemos usar la información contenida en la muestra para tratar de adivinar algún aspecto de la población bajo estudio

Más detalles

Hay diferencias en la media del HOMA entre los diabéticos y los no diabéticos? Resumen del procesamiento de los casos

Hay diferencias en la media del HOMA entre los diabéticos y los no diabéticos? Resumen del procesamiento de los casos Test de hipótesis t de Student Hay diferencias en la media del HOMA entre los diabéticos y los no diabéticos? Resumen del procesamiento de los casos HOMA Casos Válidos Perdidos Total N Porcentaje N Porcentaje

Más detalles

Test ( o Prueba ) de Hipótesis

Test ( o Prueba ) de Hipótesis Test de Hipótesis 1 Test ( o Prueba ) de Hipótesis Ejemplo: Una muestra de 36 datos tiene una media igual a 4.64 Qué puede deducirse acerca de la población de donde fue tomada? Se necesita contestar a

Más detalles

Curso de Estadística no-paramétrica

Curso de Estadística no-paramétrica Curso de Estadística no-paramétrica Sesión 1: Introducción Inferencia no Paramétrica David Conesa Grup d Estadística espacial i Temporal Departament d Estadística en Epidemiologia i Medi Ambient i Investigació

Más detalles

8.2.2. Intervalo para la media (caso general)

8.2.2. Intervalo para la media (caso general) 182 Bioestadística: Métodos y Aplicaciones 100 de ellos se obtiene una media muestral de 3 kg, y una desviación típica de 0,5 kg, calcular un intervalo de confianza para la media poblacional que presente

Más detalles

Tema 10. Estimación Puntual.

Tema 10. Estimación Puntual. Tema 10. Estimación Puntual. Presentación y Objetivos. 1. Comprender el concepto de estimador y su distribución. 2. Conocer y saber aplicar el método de los momentos y el de máxima verosimilitud para obtener

Más detalles

Inferencia Estadística

Inferencia Estadística Felipe José Bravo Márquez 11 de noviembre de 2013 Para realizar conclusiones sobre una población, generalmente no es factible reunir todos los datos de ésta. Debemos realizar conclusiones razonables respecto

Más detalles

INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA

INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA Páginas 74-75 Lanzamiento de varios dados Comprobación de que: Desviación típica de n dados = (Desv. típica para un dado) / 1,71 n = 1,1 1,71 n = 3 0,98

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 003 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3,

Más detalles

PRUEBA DE KOLMOGOROV SMIRNOV (Contraste sobre la forma de la distribución) F(X) es la función de distribución que hipotetizamos.

PRUEBA DE KOLMOGOROV SMIRNOV (Contraste sobre la forma de la distribución) F(X) es la función de distribución que hipotetizamos. PRUEBA DE KOLMOGOROV SMIRNOV (Contraste sobre la forma de la distribución) PRUEBAS NO PARAMÉTRICAS F(X) es la función de distribución que hipotetizamos. Fs(X) es la probabilidad o proporción teórica de

Más detalles

UNED. [TEMA 3] Análisis de datos para diseños de dos grupos. Muestras independientes.

UNED. [TEMA 3] Análisis de datos para diseños de dos grupos. Muestras independientes. 2009 UNED [TEMA 3] Análisis de datos para diseños de dos grupos. Muestras independientes. 1 ÍNDICE 3.1 Introducción 3.2 Objetivos 3.3 Muestras independientes o relacionadas 3.4 Contraste de hipótesis sobre

Más detalles

Muestreo estadístico. Relación 2 Curso 2007-2008

Muestreo estadístico. Relación 2 Curso 2007-2008 Muestreo estadístico. Relación 2 Curso 2007-2008 1. Para tomar la decisión de mantener un determinado libro como texto oficial de una asignatura, se pretende tomar una muestra aleatoria simple entre los

Más detalles

Contrastes de Hipótesis

Contrastes de Hipótesis Capítulo 8 Contrastes de Hipótesis 8.1. Introducción. Conceptos básicos Una hipótesis estadística es una afirmación acerca de una característica poblacional formulada en base a los parámetros de su distribución.

Más detalles

Botella-Rocamora, P.; Alacreu-García, M.; Martínez-Beneito, M.A.;

Botella-Rocamora, P.; Alacreu-García, M.; Martínez-Beneito, M.A.; Inferencia estadística (intervalos de confianza y p-valor). Comparación de dos poblaciones (test t de comparación de medias, comparación de dos proporciones, comparación de dos varianzas). Botella-Rocamora,

Más detalles

Determinación del tamaño muestral

Determinación del tamaño muestral Investigación: Determinación del tamaño muestral 1/6 Determinación del tamaño muestral Pita Fernández S. Unidad de Epidemiología Clínica y Bioestadística. Complexo Hospitalario Juan Canalejo. A Coruña.

Más detalles

Práctica 5. Contrastes paramétricos en una población

Práctica 5. Contrastes paramétricos en una población Práctica 5. Contrastes paramétricos en una población 1. Contrastes sobre la media El contraste de hipótesis sobre una media sirve para tomar decisiones acerca del verdadero valor poblacional de la media

Más detalles

Asignatura: Econometría. Conceptos MUY Básicos de Estadística

Asignatura: Econometría. Conceptos MUY Básicos de Estadística Asignatura: Econometría Conceptos MUY Básicos de Estadística Ejemplo: encuesta alumnos matriculados en la UMH Estudio: Estamos interesados en conocer el nivel de renta y otras características de los estudiantes

Más detalles

Problemas. de Bioestadística

Problemas. de Bioestadística DEPARTAMENTO DE MATEMÁTICAS Cátedra de Bioestadística Facultad de Medicina Curso 2010-2011 Problemas de Bioestadística Estadística Descriptiva 1. En un estudio sobre el Grupo Sanguíneo de 25 varones se

Más detalles

CONTENIDO. Prólogo a la 3. a edición en español ampliada... Prólogo...

CONTENIDO. Prólogo a la 3. a edición en español ampliada... Prólogo... CONTENIDO Prólogo a la 3. a edición en español ampliada.................................. Prólogo.................................................................. vii xvii 1. Métodos descriptivos................................................

Más detalles

Nombre...Apellidos... Grado en:...grupo:...

Nombre...Apellidos... Grado en:...grupo:... ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA - Soluciones Estadística- Curso 01/1. 9 de Julio de 01 Nombre...Apellidos... Grado en:...grupo:... 1. Considera la variable aleatoria (v.a.) X cuyos posibles

Más detalles

Capítulo 7: Distribuciones muestrales

Capítulo 7: Distribuciones muestrales Capítulo 7: Distribuciones muestrales Recordemos: Parámetro es una medida de resumen numérica que se calcularía usando todas las unidades de la población. Es un número fijo. Generalmente no lo conocemos.

Más detalles

Las bebidas Alcohólicas

Las bebidas Alcohólicas Las bebidas Alcohólicas Hecho por: - Elisa Gutiérrez - Guillermo Rivas-plata - Rodrigo Pumares - Beatriz Sánchez 1 Índice 1- Introducción... 3 2- Objetivos... 3 3- Preguntas de la encuesta... 4 4- Encuesta...

Más detalles

1.2.2. Técnicas estadísticas más utilizadas en la investigación

1.2.2. Técnicas estadísticas más utilizadas en la investigación Contenido PRÓLOGO... 1. LA ESTADÍSTICA COMO HERRAMIENTA EN LA INVESTIGACIÓN TURÍSTICA 1.1. EL TURISMO Y LA ESTADÍSTICA... 2 1.1.1. El turismo... 2 1.1.2. La estadística... 4 1.2. LA ESTADÍSTICA Y LA INVESTIGACIÓN

Más detalles

INDICE Prefacio 1 Introducción 2 Organizaciones de los datos para que transmitan un significado: tablas y graficas

INDICE Prefacio 1 Introducción 2 Organizaciones de los datos para que transmitan un significado: tablas y graficas INDICE Prefacio 1 Introducción 1-1 Preámbulo 1-2 Reseña histórica 1-3 Subdivisiones de la estadística 1-4 Estrategia, suposiciones y enfoque 2 Organizaciones de los datos para que transmitan un significado:

Más detalles

Estadística (Gr. Biología-09) (2010-2011)

Estadística (Gr. Biología-09) (2010-2011) Estadística (Gr. Biología-09) (2010-2011) PRESENTACIÓN OBJETIVOS PROGRAMA METODOLOGÍA EVALUACIÓN BIBLIOGRAFÍA HORARIO ATENCIÓN http://www.unav.es/asignatura/estadisticabio/ 1 de 10 PRESENTACIÓN Descripción

Más detalles

Tamaño muestral Cómo estimar n adecuadamente? Estimación puntual. Marta Cuntín González Biostatech Advice, Training and Innovation in Biostatistics

Tamaño muestral Cómo estimar n adecuadamente? Estimación puntual. Marta Cuntín González Biostatech Advice, Training and Innovation in Biostatistics Tamaño muestral Cómo estimar n adecuadamente? Estimación puntual Marta Cuntín González Biostatech Advice, Training and Innovation in Biostatistics Índice Conceptos básicos Diseño Problemas Qué es necesario?

Más detalles

Tests de hipótesis estadísticas

Tests de hipótesis estadísticas Tests de hipótesis estadísticas Test de hipótesis sobre la media de una población. Introducción con un ejemplo. Los tests de hipótesis estadísticas se emplean para muchos problemas, en particular para

Más detalles

SEMINARIOS. (Problemas de exámenes de años anteriores) Estadística. 1º Grado en Informática

SEMINARIOS. (Problemas de exámenes de años anteriores) Estadística. 1º Grado en Informática SEMINARIOS (Problemas de exámenes de años anteriores) Estadística. 1º Grado en Informática Seminario de Estadística Descriptiva Unidimensional y Bidimensional 1. Se ha realizado un control de calidad en

Más detalles

Introducción al cálculo del tamaño muestral. Por favor, Tamaño muestral. Talleres virtuales para investigadores

Introducción al cálculo del tamaño muestral. Por favor, Tamaño muestral. Talleres virtuales para investigadores Talleres virtuales para investigadores Introducción al cálculo del tamaño muestral Marta Roqué Barcelona, 15/10/010 Organización Panamericana de la Salud Red Cochrane Iberoamericana Por favor, Tamaño muestral

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD EJERCICIOS 5 Profesor: Hugo S. Salinas. Primer Semestre 2009 1. Una compañía de seguros utiliza la

Más detalles

CONTRASTES DE HIPÓTESIS DE 1 POBLACIÓN

CONTRASTES DE HIPÓTESIS DE 1 POBLACIÓN CONTRASTES DE IPÓTESIS DE POBLACIÓN Autores: Alicia Vila (avilag@uoc.edu), Máximo Sedano (msedanoh@uoc.edu), Ángel A. Juan (ajuanp@uoc.edu), Anna López (alopezrat@uoc.edu). ESQUEMA DE CONTENIDOS Definición

Más detalles

SESIÓN PRÁCTICA 6: CONTRASTES DE HIPÓTESIS PROBABILIDAD Y ESTADÍSTICA. PROF. Esther González Sánchez. Departamento de Informática y Sistemas

SESIÓN PRÁCTICA 6: CONTRASTES DE HIPÓTESIS PROBABILIDAD Y ESTADÍSTICA. PROF. Esther González Sánchez. Departamento de Informática y Sistemas SESIÓN PRÁCTICA 6: CONTRASTES DE HIPÓTESIS PROBABILIDAD Y ESTADÍSTICA PROF. Esther González Sánchez Departamento de Informática y Sistemas Facultad de Informática Universidad de Las Palmas de Gran Canaria

Más detalles

Comparación de medias

Comparación de medias 12 Comparación de medias Irene Moral Peláez 12.1. Introducción Cuando se desea comprobar si los valores de una característica que es posible cuantificar (como podría ser la edad o la cifra de tensión arterial,

Más detalles

Tema 2: Estimación puntual

Tema 2: Estimación puntual Tema 2: Estimación puntual 1 (basado en el material de A. Jach (http://www.est.uc3m.es/ajach/) y A. Alonso (http://www.est.uc3m.es/amalonso/)) Planteamiento del problema: estimador y estimación Insesgadez

Más detalles

Gráfico de Dispersión de Notas en la Prueba 1 versus Notas en la Prueba Final Acumulativa de un curso de 25 alumnos de Estadística en la UTAL

Gráfico de Dispersión de Notas en la Prueba 1 versus Notas en la Prueba Final Acumulativa de un curso de 25 alumnos de Estadística en la UTAL 0. Describiendo relaciones entre dos variables A menudo nos va a interesar describir la relación o asociación entre dos variables. Como siempre la metodología va a depender del tipo de variable que queremos

Más detalles

TEMA 7: Análisis de la Capacidad del Proceso

TEMA 7: Análisis de la Capacidad del Proceso TEMA 7: Análisis de la Capacidad del Proceso 1 Introducción Índices de capacidad 3 Herramientas estadísticas para el análisis de la capacidad 4 Límites de tolerancia naturales 1 Introducción La capacidad

Más detalles

Programa de Statgraphics. TITULO: Aplicaciones del Análisis de la Varianza. Resolución de dos Ejercicios propuestos paso por paso.

Programa de Statgraphics. TITULO: Aplicaciones del Análisis de la Varianza. Resolución de dos Ejercicios propuestos paso por paso. Programa de Statgraphics TITULO: Aplicaciones del Análisis de la Varianza. Resolución de dos Ejercicios propuestos paso por paso. AUTOR: JUAN VICENTE GONZÁLEZ OVANDO ANALISIS Y CALCULOS A) Planteamos los

Más detalles

ESTADÍSTICA. Tema 3 Contrastes de hipótesis

ESTADÍSTICA. Tema 3 Contrastes de hipótesis ESTADÍSTICA Grado en CC. de la Alimentación Tema 3 Contrastes de hipótesis Estadística (Alimentación). Profesora: Amparo Baíllo Tema 3: Contrastes de hipótesis 1 Estructura de este tema Qué es un contraste

Más detalles

Tema 12: Contrastes Paramétricos

Tema 12: Contrastes Paramétricos Tema 1 Tema 1: Contrastes Paramétricos Presentación y Objetivos. Se comienza este tema introduciendo la terminología y conceptos característicos de los contrastes de hipótesis, típicamente a través de

Más detalles

APLICACIONES DE INFERENCIA

APLICACIONES DE INFERENCIA APLICACIONES DE INFERENCIA CONTENIDO DE LA PRESENTACIÓN Un ejemplo desarrollado dentro del marco del proyecto MaMaEuSch como aplicación de la Inferencia. Una serie de applets relacionados con la inferencia.

Más detalles

INFERENCIA ESTADÍSTICA

INFERENCIA ESTADÍSTICA Capítulo 4 INFERENCIA ESTADÍSTICA 4.1. Introducción Inferir: Sacar una consecuencia de una cosa. Sacar consecuencia o deducir una cosa de otra. La estadística, ciencia o rama de las Matemáticas que se

Más detalles

Las técnicas muestrales, los métodos prospectivos y el diseño de estadísticas en desarrollo local

Las técnicas muestrales, los métodos prospectivos y el diseño de estadísticas en desarrollo local 21 Las técnicas muestrales, los métodos prospectivos y el diseño de estadísticas en desarrollo local Victoria Jiménez González Introducción La Estadística es considerada actualmente una herramienta indispensable

Más detalles

PROBABILIDAD Y ESTADISTICA II. Propósito del Curso : Al final del curso el estudiante: Ingeniería Ingeniería en Sistemas. Hardware

PROBABILIDAD Y ESTADISTICA II. Propósito del Curso : Al final del curso el estudiante: Ingeniería Ingeniería en Sistemas. Hardware UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA Clave: 08MSU0017H Clave: 08USU4053W FACULTAD DE INGENIERÍA PROGRAMA DEL CURSO: PROBABILIDAD Y ESTADISTICA II DES: Ingeniería Ingeniería en Sistemas Programa(s) Educativo(s):

Más detalles

Manual del Usuario. Encuesta Nacional de Opinión Pública Universidad Diego Portales Septiembre 2013

Manual del Usuario. Encuesta Nacional de Opinión Pública Universidad Diego Portales Septiembre 2013 Encuesta Nacional de Opinión Pública Universidad Diego Portales Santiago, septiembre 2013 Presentación Manual del Usuario Desde 2005 la Universidad Diego Portales desarrolla un programa de encuestas de

Más detalles

Especialización en PLANEACIÓN, DESARROLLO Y ADMINISTRACIÓN DE LA INVESTIGACIÓN

Especialización en PLANEACIÓN, DESARROLLO Y ADMINISTRACIÓN DE LA INVESTIGACIÓN Especialización en PLANEACIÓN, DESARROLLO Y ADMINISTRACIÓN DE LA INVESTIGACIÓN Curso: POBLACIÓN DE ESTUDIO Y MUESTRA Estrategia de trabajo. MODULO II. Elementos de muestreo Contextualización Este módulo

Más detalles

Tema 1: Test de Distribuciones de Probabilidad

Tema 1: Test de Distribuciones de Probabilidad Tema 1: Test de Distribuciones de Probabilidad 1.- Una compañía de seguros tiene 1000 asegurados en el ramo de accidentes. Si la el modelo mejor para el número de siniestros en un año es: a) Normal (5;,3).

Más detalles

7.6 Comparación entre dos medias Poblacionales usando muestras independientes

7.6 Comparación entre dos medias Poblacionales usando muestras independientes 7.6 Comparación entre dos medias Poblacionales usando muestras independientes Supongamos que se tiene dos poblaciones distribuidas normalmente con medias desconocidas µ y µ, respectivamente. Se puede aplicar

Más detalles

PRUEBAS NO PARAMÉTRICAS

PRUEBAS NO PARAMÉTRICAS PRUEBAS NO PARAMÉTRICAS 1. PRUEBAS DE NORMALIDAD Para evaluar la normalidad de un conjunto de datos tenemos el Test de Kolmogorov- Smirnov y el test de Shapiro-Wilks La opción NNPLOT del SPSS permite la

Más detalles

Estadística para las Ciencias Administrativas

Estadística para las Ciencias Administrativas Estadística para las Ciencias Administrativas Tercera edición LINCOLN L. CHAO California State University Long Beach, California Traducción JOSÉ MARÍA CASTAÑO Exjefe del Departamento de Matemáticas Universidad

Más detalles

Departamento de Matemática Aplicada a la I.T. de Telecomunicación

Departamento de Matemática Aplicada a la I.T. de Telecomunicación Departamento de Matemática Aplicada a la I.T. de Telecomunicación EXAMEN RESUELTO DE ESTADÍSTICA Y PROCESOS ESTOCÁSTICOS CONVOCATORIA: ENERO / FECHA: de Enero de Duración del examen: 3 horas Fecha publicación

Más detalles

CONTRASTE DE HIPÓTESIS DE DOS POBLACIONES

CONTRASTE DE HIPÓTESIS DE DOS POBLACIONES CONTRSTE DE HIPÓTESIS DE DOS POLCIONES utores: Ángel. Juan (ajuanp@uoc.edu), áximo Sedano (msedanoh@uoc.edu), licia Vila (avilag@uoc.edu), nna López (alopezrat@uoc.edu) P CONCEPTUL Definición de muestras

Más detalles

Curso Práctico de Bioestadística Con Herramientas De Excel

Curso Práctico de Bioestadística Con Herramientas De Excel Curso Práctico de Bioestadística Con Herramientas De Excel Fabrizio Marcillo Morla MBA barcillo@gmail.com (593-9) 4194239 Fabrizio Marcillo Morla Guayaquil, 1966. BSc. Acuicultura. (ESPOL 1991). Magister

Más detalles

INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA

INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA Página 75 REFLEXIONA Y RESUELVE Lanzamiento de varios dados Comprueba en la tabla anterior ue: DESV. TÍPICA PARA n DADOS n = 8 1,71 1,1 n = 3 8 1,71 3 0,98

Más detalles

Detergente Lavad.1 Lavad.2 Lavad.3 Media A 45 43 51 46.3 B 47 44 52 47.6 C 50 49 57 52 D 42 37 49 42.6. Media 46 43.2 52.2 47.16

Detergente Lavad.1 Lavad.2 Lavad.3 Media A 45 43 51 46.3 B 47 44 52 47.6 C 50 49 57 52 D 42 37 49 42.6. Media 46 43.2 52.2 47.16 3. DISEÑO EN BLOQUES ALEATORIZADOS En muchos experimentos además de que interesa investigar la influencia de un factor controlado sobre la variable de respuesta, como en la sección anterior, existe una

Más detalles

8. Estimación puntual

8. Estimación puntual 8. Estimación puntual Estadística Ingeniería Informática Curso 2009-2010 Estadística (Aurora Torrente) 8. Estimación puntual Curso 2009-2010 1 / 30 Contenidos 1 Introducción 2 Construcción de estimadores

Más detalles

PROGRAMA ANALITICO Y DE EXAMENES FINALES

PROGRAMA ANALITICO Y DE EXAMENES FINALES PROGRAMA ANALITICO Y DE EXAMENES FINALES UNIVERSIDAD NACIONAL DE LA RIOJA Carrera: Ingeniería Agropecuaria. Ordenanza: RCF Número 271/98 - RR 46/80 Asignatura: Estadística Aplicada Curso: Segundo Cuatrimestre:

Más detalles

Tipo de Unidad de Aprendizaje. Créditos

Tipo de Unidad de Aprendizaje. Créditos Programa de Estudios por Competencias Análisis Estadístico 2013B I. IDENTIFICACIÓN DEL CURSO ORGANISMO ACADÉMICO: Facultad de Turismo y Gastronomía, UAEM Programa Educativo: Licenciatura en Turismo Área

Más detalles

Inferencia de información para dos o más poblaciones

Inferencia de información para dos o más poblaciones Inferencia de información para dos o más poblaciones Contrastes de hipótesis para dos poblaciones y comparación de grupos mediante ANOVA Blanca de la Fuente y Ángel A. Juan PID_00161060 CC-BY-SA PID_00161060

Más detalles

Solución ESTADÍSTICA. Prueba de evaluación contínua 2 - PEC2

Solución ESTADÍSTICA. Prueba de evaluación contínua 2 - PEC2 Semestre set04 - feb05 Módulos 11-17 Prueba de evaluación contínua 2 - PEC2 Solución Presentación i objetivos Enunciados: descripción teórica de la práctica a realizar Materiales Criterios de evaluación

Más detalles

FACULTAD DE INGENIERÍA INDUSTRIAL Y DE SISTEMAS SÍLABO 2013-II

FACULTAD DE INGENIERÍA INDUSTRIAL Y DE SISTEMAS SÍLABO 2013-II FACULTAD DE INGENIERÍA INDUSTRIAL Y DE SISTEMAS SÍLABO 2013-II Asignatura: Código: ESTADÍSTICA II 1. DATOS GENERALES 1.1. Departamento Académico Ingeniería Industrial 1.2. Escuela profesional Ingeniería

Más detalles

ESCUELA COLOMBIANA DE INGENIERÍA

ESCUELA COLOMBIANA DE INGENIERÍA ESCUELA COLOMBIANA DE INGENIERÍA ASIGNATURA: ESTADÍSTICA DEPARTAMENTO: MATEMÁTICAS PLANES DE ESTUDIO: CÓDIGO: Mnemónico ESTI Numérico 1. OBJETIVOS GENERALES Desarrollar habilidades para organizar, representar

Más detalles

Prof. Dr. José Perea Dpto. Producción Animal ANÁLISIS DE EXPERIMENTOS

Prof. Dr. José Perea Dpto. Producción Animal ANÁLISIS DE EXPERIMENTOS Prof. Dr. José Perea Dpto. Producción Animal ANÁLISIS DE EXPERIMENTOS ANÁLISIS DE EXPERIMENTOS 1. Introducción 2. Comparación de dos medias 3. Comparación de más de dos medias 4. Pruebas post-hoc 5. ANCOVA

Más detalles

DATOS GENERALES DEL CURSO

DATOS GENERALES DEL CURSO Facultad Nacional de Salud Pública Héctor Abad Gómez DATOS GENERALES DEL CURSO Nombre del curso: Muestreo e Inferencia Estadística Código: GSI-332 Grupo: 01 Nivel: III Área: ME Créditos: 03 Total horas:

Más detalles

RELACIÓN DE EJERCICIOS DE ESTADÍSTICA. PROBLEMAS DE ESTADÍSTICA: PROBABILIDAD

RELACIÓN DE EJERCICIOS DE ESTADÍSTICA. PROBLEMAS DE ESTADÍSTICA: PROBABILIDAD 1 UNIVERSIDAD DE CASTILLA-LA MANCHA Facultad de Químicas. RELACIÓN DE EJERCICIOS DE ESTADÍSTICA. PROBLEMAS DE ESTADÍSTICA: PROBABILIDAD Ejercicio 1º.- Se lanzan dos monedas y un dado. Se pide: 1) Describir

Más detalles

UNIVERSIDAD DEL SALVADOR PROGRAMA. UNIDAD ACADÉMICA: Campus San Roque González de Santa Cruz. CARRERA: Veterinaria. DIVISIÓN / COMISIÓN: Primer Año

UNIVERSIDAD DEL SALVADOR PROGRAMA. UNIDAD ACADÉMICA: Campus San Roque González de Santa Cruz. CARRERA: Veterinaria. DIVISIÓN / COMISIÓN: Primer Año UNIVERSIDAD DEL SALVADOR PROGRAMA UNIDAD ACADÉMICA: Campus San Roque González de Santa Cruz. CARRERA: Veterinaria DIVISIÓN / COMISIÓN: Primer Año TURNO: Único OBLIGACIÓN ACADÉMICA: ESTADÍSTICA Y DISEÑO

Más detalles

CURSO HERRAMIENTAS ESTADISTICAS PARA IMPLEMENTACION DE SIX SIGMA EN EMPRESAS DE PRODUCCION, LOGISTICA Y SERVICIOS

CURSO HERRAMIENTAS ESTADISTICAS PARA IMPLEMENTACION DE SIX SIGMA EN EMPRESAS DE PRODUCCION, LOGISTICA Y SERVICIOS CURSO HERRAMIENTAS ESTADISTICAS PARA IMPLEMENTACION DE SIX SIGMA EN EMPRESAS DE PRODUCCION, LOGISTICA Y SERVICIOS Cnel. R.L. Falcón 1435 C1406GNC 35 Buenos Aires, Argentina Tel.: 054-15-4492-6252 Fax:

Más detalles

SECCIÓN 1. INTRODUCCIÓN A LA ESTADÍSTICA MATEMÁTICA: APLICACIONES.

SECCIÓN 1. INTRODUCCIÓN A LA ESTADÍSTICA MATEMÁTICA: APLICACIONES. Facultad de Ciencias Sociales Diplomatura en Ciencias Empresariales Asignatura: Estadística Empresarial Duración: 1er Cuatrimestre Carácter: Optativa Tipo: Teórica - Práctica Departamento: Estadística

Más detalles

GUÍA DOCENTE DE ESTADISTICA APLICADA AL MARKETING. Curso 2013-2014

GUÍA DOCENTE DE ESTADISTICA APLICADA AL MARKETING. Curso 2013-2014 GUÍA DOCENTE DE ESTADISTICA APLICADA AL MARKETING Curso 2013-2014 1 TITULACIÓN: GRADO MARKETING GUÍA DE DOCENTE DE LA ASIGNATURA: ESTADISTICA APLICADA AL MARKETING Coordinador: Manuel David Orden Erena.

Más detalles

Estadística aplicada y modelización. 10 de septiembre de 2005

Estadística aplicada y modelización. 10 de septiembre de 2005 Estadística aplicada y modelización. 10 de septiembre de 005 SOLUCIÓN MODELO A 1. Una persona se está preparando para obtener el carnet de conducir, repitiendo un test de 0 preguntas. En la siguiente tabla

Más detalles

Análisis de la Varianza de un Factor

Análisis de la Varianza de un Factor Práctica de Estadística con Statgraphics Análisis de la Varianza de un Factor Fundamentos teóricos El Análisis de la Varianza con un Factor es una técnica estadística de contraste de hipótesis, cuyo propósito

Más detalles

Cómo aplicar las pruebas paramétricas bivariadas t de Student y ANOVA en SPSS. Caso práctico.

Cómo aplicar las pruebas paramétricas bivariadas t de Student y ANOVA en SPSS. Caso práctico. Universitat de de Barcelona. Institut de de Ciències de de l Educació Cómo aplicar las pruebas paramétricas bivariadas t de Student y ANOVA en SPSS. Caso práctico. María José Rubio

Más detalles

ANÁLISIS ESTADÍSTICO DE DATOS USANDO MINITAB

ANÁLISIS ESTADÍSTICO DE DATOS USANDO MINITAB ANÁLISIS ESTADÍSTICO DE DATOS USANDO MINITAB Tercera Edición EDGAR ACUÑA FERNANDEZ UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ DEPARTAMENTO DE MATEMATICAS e-mail:edgar@math.uprm.edu homepage:math.uprm.edu/~edgar

Más detalles

Tipo A Tipo B Min. y Máx. Gambas 2 1 50 Langostinos 3 5 180 Contenedores 1 1 50 Coste 350 550 350x + 550y

Tipo A Tipo B Min. y Máx. Gambas 2 1 50 Langostinos 3 5 180 Contenedores 1 1 50 Coste 350 550 350x + 550y IES Fco Ayala de Granada Sobrantes 010 (Modelo 6) Soluciones Germán-Jesús Rubio Luna MATEMÁTICAS CCSS II Sobrantes 010 (Modelo 6) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1 (.5 puntos) Un supermercado

Más detalles

SPSS: ANOVA de un Factor

SPSS: ANOVA de un Factor SPSS: ANOVA de un Factor El análisis de varianza (ANOVA) de un factor nos sirve para comparar varios grupos en una variable cuantitativa. Esta prueba es una generalización del contraste de igualdad de

Más detalles

APROXIMACIÓN DE LA DISTRIBUCIÓN BINOMIAL A LA NORMAL, LA CALCULADORA Y

APROXIMACIÓN DE LA DISTRIBUCIÓN BINOMIAL A LA NORMAL, LA CALCULADORA Y APROXIMACIÓN DE LA DISTRIBUCIÓN BINOMIAL A LA NORMAL, LA CALCULADORA Y LAS TIC Abel Martín ( * ) Rosana Álvarez García ( ) En dos artículos anteriores ya hemos estudiado la distribución Binomial de parámetros

Más detalles

Problemas. Variables Aleatorias. Modelos de Probabilidad

Problemas. Variables Aleatorias. Modelos de Probabilidad Problemas. Variables Aleatorias. Modelos de Probabilidad Ejemplos resueltos y propuestos Variables Aleatorias Discretas Una variable aleatoria discreta X de valores x 1, x 2,..., x k con función de probabilidad

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Modelo 2011) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Modelo 2011) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Modelo 20) Selectividad-Opción A Tiempo: 90 minutos Problema (3 puntos) Un estudiante ha gastado un total de 48 euros en la compra de una mochila,

Más detalles

Bioestadística y uso de software científico TEMA 6 CÁLCULO DEL TAMAÑO MUESTRAL

Bioestadística y uso de software científico TEMA 6 CÁLCULO DEL TAMAÑO MUESTRAL Bioestadística y uso de software científico TEMA 6 CÁLCULO DEL TAMAÑO MUESTRAL Índice Requisitos generales para el cálculo del tamaño muestral Estimación de una proporción Estimación de una media Comparación

Más detalles

ESTADÍSTICA. I Estadística 2º 1º 6 Troncal MÓDULO MATERIA CURSO SEMESTRE CRÉDITOS TIPO

ESTADÍSTICA. I Estadística 2º 1º 6 Troncal MÓDULO MATERIA CURSO SEMESTRE CRÉDITOS TIPO GUIA DOCENTE DE LA ASIGNATURA ESTADÍSTICA MÓDULO MATERIA CURSO SEMESTRE CRÉDITOS TIPO I Estadística 2º 1º 6 Troncal PROFESOR(ES) DIRECCIÓN COMPLETA DE CONTACTO PARA TUTORÍAS (Dirección postal, teléfono,

Más detalles

ESTADÍSTICA BÁSICA en LABORATORIOS (Físico - Químicos)

ESTADÍSTICA BÁSICA en LABORATORIOS (Físico - Químicos) ESTADÍSTICA BÁSICA en LABORATORIOS (Físico - Químicos) (Aplicaciones de Microsoft Excel ) Curso a distancia (EDICIÓN Junio 2012) ASECAL, S.L. MADRID-ESPAÑA RONDA DE TOLEDO, 8, LOCAL 1º- 28005 MADRID. Teléfono:

Más detalles

Relación entre variables cuantitativas

Relación entre variables cuantitativas Investigación: Relación entre variables cuantitativas 1/8 Relación entre variables cuantitativas Pita Fernández S., Pértega Díaz S. Unidad de Epidemiología Clínica y Bioestadística. Complexo Hospitalario

Más detalles

CLAVE: LII PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO

CLAVE: LII PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO Estadística Superior CLAVE: LII PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO 1 1. REGRESIÓN LINEAL SIMPLE Y MÚLTIPLE 1.1. Regresión lineal simple 1.2. Estimación y predicción por intervalo en regresión lineal

Más detalles

PRÁCTICA 4. Ingeniería Técnica Industrial (2º) - Mecánica.

PRÁCTICA 4. Ingeniería Técnica Industrial (2º) - Mecánica. PRÁCTICA 4. Ingeniería Técnica Industrial (2º) - Mecánica. Profesores: Javier Faulín y Francisco Ballestín 1. Introducción. El objetivo de esta parte es obtener resultados sobre contrastes de hipótesis

Más detalles

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression Aniel Nieves-González Abril 2013 Aniel Nieves-González () Time Series Abril 2013 1 / 15 Considere el ejemplo en cual queremos modelar las ventas en una cadena de tiendas por

Más detalles

Se toma una muestra aleatoria de diez personas de una población. Se ha estimado de experiencias anteriores que la característica en estudio se

Se toma una muestra aleatoria de diez personas de una población. Se ha estimado de experiencias anteriores que la característica en estudio se Se toma una muestra aleatoria de diez personas de una población. Se ha estimado de experiencias anteriores que la característica en estudio se distribuye según una variable aleatoria normal de media 167

Más detalles

TEMA 5 VALIDEZ DE LA INVESTIGACIÓN (II): Validez de conclusión estadística

TEMA 5 VALIDEZ DE LA INVESTIGACIÓN (II): Validez de conclusión estadística TEMA 5 VALIDEZ DE LA INVESTIGACIÓN (II): Validez de conclusión estadística 1 TAMAÑO DEL EFECTO 2 TAMAÑO DEL EFECTO vel tamaño del efecto es el nombre dado a una familia de índices que miden la magnitud

Más detalles

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ESTADISITICA

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ESTADISITICA UNIVERSIDAD AUTONOMA DE SANTO DOMINGO FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ESTADISITICA CATEDRA ASIGNATURA Bioestadística Bioestadística (EST-135) NUMERO DE CREDITOS 03 HORAS DE DOCENCIA

Más detalles

DISTRIBUCIÓN NORMAL CON EXCEL Y WINSTATS

DISTRIBUCIÓN NORMAL CON EXCEL Y WINSTATS DISTRIBUCIÓN NORMAL CON EXCEL Y WINSTATS 1) Reseña histórica Abrahan De Moivre (1733) fue el primero en obtener la ecuación matemática de la curva normal. Kart Friedrich Gauss y Márquez De Laplece (principios

Más detalles

RELACIÓN EJERCICIOS DEL CAPÍTULO 1. Intervalos de Confianza 1. La vida media de una muestra aleatoria de 10 focos es de 4.

RELACIÓN EJERCICIOS DEL CAPÍTULO 1. Intervalos de Confianza 1. La vida media de una muestra aleatoria de 10 focos es de 4. RELACIÓN EJERCICIOS DEL CAPÍTULO 1. Intervalos de Confianza 1. La vida media de una muestra aleatoria de 10 focos es de 4.000 horas, con una cuasidesviación típica muestral de 200 horas. Se supone que

Más detalles