Contenido. 1 Definiciones y propiedades. 2. Método de la potencia. 3. Método de la potencia inversa. 4. Método de la potencia inversa desplazada.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Contenido. 1 Definiciones y propiedades. 2. Método de la potencia. 3. Método de la potencia inversa. 4. Método de la potencia inversa desplazada."

Transcripción

1 Métodos Numéricos: Resumen y ejemplos Tema 7: Valores y vectores propios Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Abril 9 Versión 7 Contenido Definiciones y propiedades Método de la potencia 3 Método de la potencia inversa 4 Método de la potencia inversa desplazada Definiciones y propiedades Notaciones A matriz cuadrada n n v vector de dimensión n λ escalar Objetivo Buscar escalares λ y vectores no nulos v tales que ½ λ valor propio de A Av λv v vector propio asociado a λ Polinomio característico p(λ) det(a λi) Los valores propios de A son las raíces del polinomio característico λ valor propio p(λ) Cálculo de vectores propios

2 Resumen y ejemplos Tema 5: Valores y vectores propios Para cada valor propio λ resolvemos el siguiente sistema de ecuaciones lineales (A λi) v que debe ser un sistema compatible indeterminado Espectro Radio espectral El espectro de una matriz es el conjunto de sus valores propios lo representamos por σ(a) σ(a) {λ : λ es valor propio de A} El radio espectral de la matriz es el módulo máximo de sus valores propios lo representamos por ρ(a) ρ(a) max{ λ : λ es valor propio de A} Diagonalización Sea A una matriz n n Si A tiene n valores propios distintos λ λ n y v v n son vectores propios asociados entonces D V AV D es matriz diagonal λ λ λ n V (v v v n ) tiene en columnas los vectores propios de A Ejemplo Dada la matriz A calcula: (a) Valores propios Radio espectral (b) Vectores propios asociados (d) Diagonaliza la matriz A 3 3

3 Resumen y ejemplos Tema 5: Valores y vectores propios 3 (a) Cálculo de los valores propios Empezamos por calcular el polinomio característico 3 λ p(λ) A λi λ 3 λ p(λ) (3 λ) ( λ) (3 λ) (3 λ) (3 λ)[(3 λ)( λ) ] (3 λ) (λ 5λ +4) {z } factorizamos Factorizamos el polinomio característico λ 5λ +4 λ 5 ± 5 6 ( p(λ) (λ )(3 λ)(λ 4) Los valores propios son las soluciones de la ecuación característica p(λ) El espectro de A es λ λ 3 λ 3 4 σ(a) { 3 4} El radio espectral de A es ρ(a) 4 (b) Cálculo de vectores propios Para cada valor propio λ tenemos que resolver el sistema (A λi) v Vectores propios asociados a λ Resolvemos el sistema por reducción ( a + a ) a (A I) v x y z x y x + y z y +z y z x + y z y +z

4 Resumen y ejemplos Tema 5: Valores y vectores propios 4 Eliminamos la tercera ecuación y resolvemos paramétricamente ½ x t y z y t x + y z z t t R Los vectores propios asociados a λ son de la forma v tv conv Vectores propios asociados a λ 3 Tenemos el sistema (A 3I) v x y z ½ x y z y x t t R y z t Los vectores propios asociados a λ 3son de la forma v tv con v Vectores propios asociados a λ 4 Resolvemos x y x y z y z (A 4I) v x y z ½ x + y y + z Vectores propios asociados a λ 4 ( a a ) ( a ) x t t R y t z t v t v 3 con v 3 x y y z y z

5 Resumen y ejemplos Tema 5: Valores y vectores propios 5 (c) Diagonalización Formamos la base de vectores propios B (v v v 3 ) La matriz de cambio tiene en columnas los vectores propios V Diagonalización Se cumple donde D es una matriz diagonal D V AV D 3 4 Verificamos la diagonalización /6 /3 /6 V / / 6 /3 /3 /3 V AV V AV Ejemplo Cálculo de V por Gauss-Jordan Partimos de (V I 3 ) yoperamosporfilas hasta obtener (I 3 V )

6 Resumen y ejemplos Tema 5: Valores y vectores propios 6 Resulta ( a a ) ( a ) 3 (3 a a ) (3 a ) ( 3 a ) ( a ) ( a ) (3 a ) 3 (3 a + a ) (3 a ) 3 a ( a ) / / 3 3a (3 a ) /3 /3 /3 /6 /3 /6 ( a a 3 a ) ( a ) / / /3 /3 /3 V /6 /3 /6 / / /3 /3 /3 Método de la potencia Definiciones Valor propio dominante Es el de mayor módulo Si λ > λ > > λ n entonces λ es el valor propio dominante Vector normalizado Dado un vector v v v v n decimos que la componente v j es una componente dominante si v j kvk max v j j

7 Resumen y ejemplos Tema 5: Valores y vectores propios 7 Observa que un vector puede tener más de una componente dominante pero todas las componentes dominantes deben tener el mismo valor absoluto Un vector está normalizado si sus componentes dominantes valen ± Si v dom es una componente dominante de v podemos obtener un vector normalizado ˆv en la dirección de v ˆv v v dom Ejemplo Dado el vector v 4 determina las componente dominantes y calcula un vector normalizado La componente dominante es vemos que Vector normalizado ˆv v dom v v dom v 3 4 v 3 kvk 4 4 /4 / /4 Observamos que la componente dominante el vector normalizado vale Método de la potencia Dada una matriz A matriz de dimensión n n el objetivo es calcular el valor propio dominante y un vector propio asociado Supondremos que la matriz A tiene valores propios distintos λ > λ > > λ n con vectores propios asociados v v v n También suponemos que tenemos un vector inicial x () que se puede escribir x () α v + + α n v n con α 6

8 Resumen y ejemplos Tema 5: Valores y vectores propios 8 Método y (j+) Ax (j) c j+ componente dominante de y (j+) x (j+) c j+ y (j+) Normalizado de y (j+) Si las hipótesis citadas son ciertas entonces se cumple: La sucesión de escalares (c j ) tiende al valor propio dominante λ c c c j j λ La sucesión de vectores x (j) tiende a un vector propio normalizado asociado a λ x () x () x (j) j ˆv Ejemplo Aproxima el valor propio dominante y un vector propio asociado de la matriz 3 A 3 Inicia las iteraciones con x () Fase Fase y () Ax () 3 3 c (componente dominante de y () ) x () y() y () Ax () x () c 3 /3 6667

9 Resumen y ejemplos Tema 5: Valores y vectores propios 9 Fase 3 y (3) Ax () Fase 4 Fase 5 Fase 6 Fase 7 c x (3) 99 y (4) Ax (3) c x (4) y (4) 9767 c 4 y (5) Ax (4) c x (5) y (5) 994 c 5 y (6) Ax (5) c x (6) y (6) 9985 c 6 y (7) Ax (6) c

10 Resumen y ejemplos Tema 5: Valores y vectores propios Fase 8 x (7) y (7) c 7 y (8) Ax (7) c x (8) y (8) 9999 c 8 Fase y (9) Ax (8) c x (9) y (9) c 9 Fase 4 y () 4 4 C 4 x () x (9) El valor propio dominante es λ limc j 4 j y un vector propio asociado es v limx (j) j En el Ejemplo hemos visto que A tiene valores propios λ 4 λ 3 λ 3 y que los vectores propios asociados a λ son de la forma v t tv v está normalizado

11 Resumen y ejemplos Tema 5: Valores y vectores propios 3 Método de la potencia inversa Objetivo Calcular el valor propio de módulo mínimo y un vector propio asociado Es decir si los valores propios de A quecumplen λ > λ > > λ n > queremos calcular λ n Valores propios de la matriz inversa Sean (λ v) par valor-vector propio de A A invertible Entonces λ v es un par valor-vector propio de A Demostración Sabemos que se cumple Av λv premultiplicamos por la matriz inversa A (Av) A (λv) I n v λ A v v λ A v Si una matriz es invertible sus valores propios no pueden ser nulos ( por qué?) por lo tanto podemos multiplicar la útima igualdad por /λ yresulta A v λ v Es decir μ /λ es un valor propio de A con vector propio asociado v Método Sea A matriz n n invertible con valores propios λ > λ > > λ n > y vectores propios asociados v v n Según hemos visto la matriz B A tiene valores propios μ j λ j

12 Resumen y ejemplos Tema 5: Valores y vectores propios Como se cumple resulta < < < λ λ λ n μ < μ < < μ n Además v j es un vector propio asociado a μ j Calculamos B A Aplicamos el método de la potencia a B y obtenemos el par μmax v ½ μmax valor propio dominante de B A v vector propio asociado a μ max 3 Entonces λ min eselvalorpropiodemódulomínimodea μ max v es un vector propio asociado a λ max Ejemplo 3 Dada la matriz A µ (a) Calcula el valor propio de módulo mínimo y un vector propio asociado Toma como vector inicial µ x () (b) Verifica el resultado (a) Empezamos calculando la inversa de A A Fase A µ µ 6 4 3/6 /3 8 3/ µ B A x () µ

13 Resumen y ejemplos Tema 5: Valores y vectores propios 3 Fase y () Bx () µ µ µ Fase y () Bx () c 666 x () µ y () c 486 µ µ 486 µ Fase 3 Fase 4 Fase 5 Fase 6 c 738 µ x () 4839 y (3) Bx () µ c x (3) µ y (3) c µ y (4) Bx (3) c 4 56 x (4) µ y (4) c µ y (5) Bx (4) c x (5) µ y (5) c µ y (6) Bx (5) c 6 58 x (6) µ y (6) c

14 Resumen y ejemplos Tema 5: Valores y vectores propios 4 Fase 7 Fase 8 Fase 9 y (7) Bx (6) µ c 7 56 x (7) µ y (7) c y (8) Bx (7) µ 5 5 c 8 5 x (8) µ y (8) c 8 5 y (9) Bx (8) µ 5 5 c 9 5 x (9) µ y (9) c 9 5 Podemos tomar como valor propio de módulo máximo de A μ max 5 vector propio asociado de μ max v µ 5 Entonces el valor propio de módulo mínimo de A será λ min μ max 5 con vector propio asociado v µ 5 (b) Para verificar el resultado calculamos los valores y vectores propios de A µ 8 4 A 6

15 Resumen y ejemplos Tema 5: Valores y vectores propios 5 Polinomio característico p (λ) A λi 8 λ 4 6 λ ( 8 λ)(6 λ) + 48 λ 8λ + Valores propios p(λ) λ 8x + λ 8 ± ± 6 ( λ 6 λ El vector propio de módulo mínimo es λ Calculamos los vectores propios asociado al valor propio de módulo mínimo µ 4 4 ½ x +4y x +4y (A I) v µ x y ½ x t y t t R µ ½ x +y x +y Los vectores propios asociados a λ son de la forma µ v tv con v Un vector propio normalizado es ˆv µ / 4 Método de la potencia inversa desplazada Objetivo Aproximar un valor propio λ y un vector propio asociado a partir de una estimación λ w λ Valores propios de C (A αi) Sea (λ v) par de valor-vector propio de A

16 Resumen y ejemplos Tema 5: Valores y vectores propios 6 Entonces (λ α v) es par valor-vector propio de C (A αi) Demostración Av λv Av αv λv αv (A αi) v (λ α) v Fundamento del método Si λ está próximo al valor propio λ de A entonces C A λi tiene un valor propio δ λ λ con δ pequeño y podemos aplicar el método de la potencia inversa a C para determinar δ λ λ Partimos de una matriz A de orden n n con valores propios λ > λ > > λ j > > λ n y vectores propios asociados v v v n Disponemos además de una estimación inicial λ w λ j El objetivo es aproximar el valor de λ j yobtener un vector propio asociado Calculamos C A λi que tiene un valor propio de módulo mínimo δ min λ j λ Calculamos B C que tiene un valor propio dominante μ max δ min λ j λ y aplicamos el método de la potencia a B para obtener μ max yun vector propio asociado v 3 Entonces μ max λ j λ λ j μ max + λ Ejemplo 4 Sabemos que la matriz 3 A 3 tiene un valor propio λ 8 Calcula el valor de λ y determina un vector propio asociado Empieza las iteraciones con el vector 5 x ()

17 Resumen y ejemplos Tema 5: Valores y vectores propios 7 Tenemos la aproximación λ 8 Calculamos C A λi 3 8 C A λi Vamos a calcular el valor propio de módulo mínimo de C aplicando el método de la potencia inversa Calculamos B C B Aplicamos el método de la potencia a B y determinamos μ max Fase 5 x () Fase y () Bx () Fase x () c y () y () Bx () c x () c

18 Resumen y ejemplos Tema 5: Valores y vectores propios 8 Fase 3 Fase 4 Fase 5 Fase 6 Fase 7 y (3) Bx () c x (3) y (3) c y (4) Bx (3) c x (4) y (4) c y (5) Bx (4) c x (5) y (5) c y (6) Bx (5) c x (6) y (6) c y (7) B x (6) c 7 5 x (7) y (7) c

19 Resumen y ejemplos Tema 5: Valores y vectores propios 9 Fase 8 y (8) Bx (7) c 8 5 x (8) y (8) 84 6 c Podemos tomar como valor propio de módulo máximo de B C μ max 5 El vector propio asociado de μ max con 4 decimales es v El valor propio de A próximo a λ 8 es y el vector propio asociado es λ + μ λ +8 3 max 5 v

Contenido. 1 Definiciones y propiedades. 2. Método de la potencia. 3. Método de la potencia inversa. 4. Método de la potencia inversa desplazada

Contenido. 1 Definiciones y propiedades. 2. Método de la potencia. 3. Método de la potencia inversa. 4. Método de la potencia inversa desplazada ETS Minas: Métodos Matemáticos Resumen y ejemplos Tema 5: Valores y vectores propios Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Octubre

Más detalles

Valores y vectores propios de una matriz. Juan-Miguel Gracia

Valores y vectores propios de una matriz. Juan-Miguel Gracia Juan-Miguel Gracia Índice 1 Valores propios 2 Polinomio característico 3 Independencia lineal 4 Valores propios simples 5 Diagonalización de matrices 2 / 28 B. Valores y vectores propios Definiciones.-

Más detalles

Prácticas de Algebra con Mathematica II (Ingeniería Industrial). Jose Salvador Cánovas Peña. Departamento de Matemática Aplicada y Estadística.

Prácticas de Algebra con Mathematica II (Ingeniería Industrial). Jose Salvador Cánovas Peña. Departamento de Matemática Aplicada y Estadística. Prácticas de Algebra con Mathematica II (Ingeniería Industrial). Jose Salvador Cánovas Peña. Departamento de Matemática Aplicada y Estadística. Índice General 1 PRACTICAS CON MATHEMATICA 2 1.1 Introducción...

Más detalles

FORMA CANONICA DE JORDAN Y ECUACIONES DIFERENCIALES LINEALES A COEFICIENTES CONSTANTES

FORMA CANONICA DE JORDAN Y ECUACIONES DIFERENCIALES LINEALES A COEFICIENTES CONSTANTES FORMA CANONICA DE JORDAN Y ECUACIONES DIFERENCIALES LINEALES A COEFICIENTES CONSTANTES Eleonora Catsigeras 6 de mayo de 997 Notas para el curso de Análisis Matemático II Resumen Se enuncia sin demostración

Más detalles

Valores propios y vectores propios

Valores propios y vectores propios Capítulo 6 Valores propios y vectores propios En este capítulo investigaremos qué propiedades son intrínsecas a una matriz, o su aplicación lineal asociada. Como veremos, el hecho de que existen muchas

Más detalles

Tema 3: Aplicaciones de la diagonalización

Tema 3: Aplicaciones de la diagonalización TEORÍA DE ÁLGEBRA II: Tema 3. DIPLOMATURA DE ESTADÍSTICA 1 Tema 3: Aplicaciones de la diagonalización 1 Ecuaciones en diferencias Estudiando la cría de conejos, Fibonacci llegó a las siguientes conclusiones:

Más detalles

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES. ÁLGEBRA PARA INGENIEROS (Solucionario)

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES. ÁLGEBRA PARA INGENIEROS (Solucionario) Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS (Solucionario) 2 Í N D I C E CAPÍTULO : MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES CAPÍTULO 2: ESPACIOS VECTORIALES

Más detalles

UNIVERSIDADES DE ANDALUCIA PRUEBAS DE ACCESO A LA UNIVERSIDAD. Miguel A. Jorquera

UNIVERSIDADES DE ANDALUCIA PRUEBAS DE ACCESO A LA UNIVERSIDAD. Miguel A. Jorquera UNIVERSIDADES DE ANDALUCIA PRUEBAS DE ACCESO A LA UNIVERSIDAD Miguel A. Jorquera BACHILLERATO MATEMÁTICAS II JUNIO 2 ii Índice General 1 Examen Junio 2. Opción B 1 2 SOLUCIONES del examen de junio 2 Opción

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Problemas teóricos Sistemas de ecuaciones lineales con parámetros En los siguientes problemas hay que resolver el sistema de ecuaciones lineales para todo valor del parámetro

Más detalles

Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3 Aplicaciones Tema 3.3 Sistemas de ecuaciones lineales: regla de Cramer

Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3 Aplicaciones Tema 3.3 Sistemas de ecuaciones lineales: regla de Cramer Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3 Aplicaciones Tema 3.3 Sistemas de ecuaciones lineales: regla de Cramer Francisco Palacios Escuela Politécnica Superiror de Ingeniería Manresa

Más detalles

E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 5: Valores y vectores propios

E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 5: Valores y vectores propios E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 5: Valores y vectores propios Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Curso

Más detalles

Diferenciabilidad de funciones de R n en R m

Diferenciabilidad de funciones de R n en R m Diferenciabilidad de funciones de R n en R m Cálculo II (2003) En este capítulo generalizamos la noción de diferenciabilidad para funciones vectoriales de variable vectorial, que también llamamos aplicaciones.

Más detalles

MÉTODOS DIRECTOS PARA LA RESOLUCIÓN DE ECUACIONES ALGEBRAICAS LINEALES

MÉTODOS DIRECTOS PARA LA RESOLUCIÓN DE ECUACIONES ALGEBRAICAS LINEALES CAPÍTULO 4 EJERCICIOS RESUELTOS: MÉTODOS DIRECTOS PARA LA RESOLUCIÓN DE ECUACIONES ALGEBRAICAS LINEALES Ejercicios resueltos 1 1. Determine el número de operaciones aritméticas necesarias para calcular

Más detalles

MATRICES SELECTIVIDAD

MATRICES SELECTIVIDAD MATRICES SELECTIVIDAD 1.- Sea K un número natural y sean las matrices a) Calcular A k. b) Hallar la matriz X que verifica que A K X = B C. Solución: 1 K K 0 0 0 ; X 1 1 0 0 1 1 1 K A 0 1 0 1 1 1 A 0 1

Más detalles

Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3: Aplicaciones Tema 3.7 Polinomio interpolador

Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3: Aplicaciones Tema 3.7 Polinomio interpolador Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3: Aplicaciones Tema 3.7 Polinomio interpolador Francisco Palacios Escuela Politécnica Superior de Ingeniería Manresa Universidad Politécnica

Más detalles

Álgebra Vectorial. Principios de Mecánica. Licenciatura de Física. Curso 2007-2008. 1

Álgebra Vectorial. Principios de Mecánica. Licenciatura de Física. Curso 2007-2008. 1 Álgebra Vectorial Principios de Mecánica. Licenciatura de Física. Curso 2007-2008. 1 Indice. 1. Magnitudes Escalares y Vectoriales. 2. Vectores. 3. Suma de Vectores. Producto de un vector por un escalar.

Más detalles

Tema 7: Valores y vectores propios

Tema 7: Valores y vectores propios Tema 7: es y clausura s Espacios y Permutaciones es y clausura Una permutación p = {p 1, p 2,..., p n } de los números {1, 2,..., n} es una nueva ordenación de los elementos {1, 2,..., n}, es decir, un

Más detalles

PROPIOS. DIAGONALIZACIÓN DE MATRICES CUADRADAS

PROPIOS. DIAGONALIZACIÓN DE MATRICES CUADRADAS Tema 7.- VALORES Y VECTORES PROPIOS. DIAGONALIZACIÓN DE MATRICES CUADRADAS VALORES Y VECTORES PROPIOS MATRICES CUADRADAS DIAGONALIZABLES DIAGONALIZACIÓN N ORTOGONAL DE MATRICES CUADRADAS SIMÉTRICAS 1 Un

Más detalles

Opción A Ejercicio 1 opción A, modelo 4 Septiembre 2014

Opción A Ejercicio 1 opción A, modelo 4 Septiembre 2014 IES Fco Ayala de Granada Septiembre de 014 (Modelo 4) Soluciones Germán-Jesús Rubio Luna [ 5 puntos] Sabiendo que Sabiendo que 0 0 cos(3) - e + a sen() Opción A Ejercicio 1 opción A, modelo 4 Septiembre

Más detalles

Observaciones del profesor:

Observaciones del profesor: Calificación total máxima: 10 puntos. Tiempo: 60 minutos. OPCIÓN A Ejercicio 1. (Puntuación máxima: 4 puntos) Se considera la matriz: A=( ) a) Determina la matriz B= A 2-2A 1,5 PUNTOS b) Determina los

Más detalles

1 v 1 v 2. = u 1v 1 + u 2 v 2 +... u n v n. v n. y v = u u = u 2 1 + u2 2 + + u2 n.

1 v 1 v 2. = u 1v 1 + u 2 v 2 +... u n v n. v n. y v = u u = u 2 1 + u2 2 + + u2 n. Ortogonalidad Producto interior Longitud y ortogonalidad Definición Sean u y v vectores de R n Se define el producto escalar o producto interior) de u y v como u v = u T v = u, u,, u n ) Ejemplo Calcular

Más detalles

1. INVERSA DE UNA MATRIZ REGULAR

1. INVERSA DE UNA MATRIZ REGULAR . INVERSA DE UNA MATRIZ REGULAR Calcular la inversa de una matriz regular es un trabajo bastante tedioso. A través de ejemplos se expondrán diferentes técnicas para calcular la matriz inversa de una matriz

Más detalles

x : N Q 1 x(1) = x 1 2 x(2) = x 2 3 x(3) = x 3

x : N Q 1 x(1) = x 1 2 x(2) = x 2 3 x(3) = x 3 3 Sucesiones - Fernando Sánchez - - Cálculo I de números racionales 03 10 2015 Los números reales son aproximaciones que se van haciendo con números racionales. Estas aproximaciones se llaman sucesiones

Más detalles

Soluciones de los ejercicios de Selectividad sobre Matrices y Sistemas de Ecuaciones Lineales de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Matrices y Sistemas de Ecuaciones Lineales de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Matrices y Sistemas de Ecuaciones Lineales de Matemáticas Aplicadas a las Ciencias Sociales II Antonio Francisco Roldán López de Hierro * Convocatoria

Más detalles

Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice

Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice 1 Polinomios Dedicaremos este apartado al repaso de los polinomios. Se define R[x] ={a 0 + a 1 x + a 2 x 2 +... +

Más detalles

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente.

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente. ÁLGEBRA DE MATRICES Página 49 REFLEXIONA Y RESUELVE Elección de presidente Ayudándote de la tabla, estudia detalladamente los resultados de la votación, analiza algunas características de los participantes

Más detalles

Objetivos: Al inalizar la unidad, el alumno:

Objetivos: Al inalizar la unidad, el alumno: Unidad 7 transformaciones lineales Objetivos: Al inalizar la unidad, el alumno: Comprenderá los conceptos de dominio e imagen de una transformación. Distinguirá cuándo una transformación es lineal. Encontrará

Más detalles

Operaciones lineales en R 3 y sus propiedades

Operaciones lineales en R 3 y sus propiedades Operaciones lineales en R 3 y sus propiedades Ejercicios Objetivos. Aprender a demostrar propiedades de las operaciones lineales en R 3. Requisitos. Conjunto de los números reales R, propiedades de las

Más detalles

GEOMETRÍA ANALÍTICA 2º Curso de Bachillerato 22 de mayo de 2008

GEOMETRÍA ANALÍTICA 2º Curso de Bachillerato 22 de mayo de 2008 1. Sean los puntos A (1, 0,-1) y B (,-1, 3). Calcular la distancia del origen de coordenadas a la recta que pasa por A y B. Calculemos la recta que pasa por A y B. El vector AB es (1,-1,4) y por tanto

Más detalles

E 1 E 2 E 2 E 3 E 4 E 5 2E 4

E 1 E 2 E 2 E 3 E 4 E 5 2E 4 Problemas resueltos de Espacios Vectoriales: 1- Para cada uno de los conjuntos de vectores que se dan a continuación estudia si son linealmente independientes, sistema generador o base: a) (2, 1, 1, 1),

Más detalles

TEMA 6. EIGENVALORES Y EIGENVECTORES

TEMA 6. EIGENVALORES Y EIGENVECTORES TEMA 6. EIGENVALORES Y EIGENVECTORES M. C. Roberto Rosales Flores INSTITUTO TECNOLÓGICO SUPERIOR DE TLAXCO Ingeniería en Logística M. C. Roberto Rosales Flores (ITST TEMA 6. EIGENVALORES Y EIGENVECTORES

Más detalles

Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo

Polinomios: Definición: Se llama polinomio en x de grado n a una expresión del tipo Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo P (x) = a 0 x n + a 1 x n 1 +... + a n Donde n N (número natural) ; a 0, a 1, a 2,..., a n son coeficientes reales

Más detalles

6.1 Definición de valores y vectores característicos de una matriz cuadrada

6.1 Definición de valores y vectores característicos de una matriz cuadrada 6.Valores y Vectores Característicos 6. Definición de valores y vectores característicos de una matriz cuadrada El cálculo de los valores propios y de los vectores propios de una matriz simétrica tiene

Más detalles

Objetivos: Al inalizar la unidad, el alumno:

Objetivos: Al inalizar la unidad, el alumno: Unidad 3 espacios vectoriales Objetivos: Al inalizar la unidad, el alumno: Describirá las características de un espacio vectorial. Identiicará las propiedades de los subespacios vectoriales. Ejempliicará

Más detalles

Matrices equivalentes. El método de Gauss

Matrices equivalentes. El método de Gauss Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar

Más detalles

Matemáticas I: Hoja 2 Cálculo matricial y sistemas de ecuaciones lineales

Matemáticas I: Hoja 2 Cálculo matricial y sistemas de ecuaciones lineales Matemáticas I: Hoja 2 Cálculo matricial y sistemas de ecuaciones lineales Ejercicio 1 Escribe las siguientes matrices en forma normal de Hermite: 2 4 3 1 2 3 2 4 3 1 2 3 1. 1 2 3 2. 2 1 1 3. 1 2 3 4. 2

Más detalles

Álgebra y Matemática Discreta Sesión de Prácticas 10

Álgebra y Matemática Discreta Sesión de Prácticas 10 Álgebra y Matemática Discreta Sesión de Prácticas 10 (c) 2013 Leandro Marín, Francisco J. Vera, Gema M. Díaz 18 Nov 2013-24 Nov 2013 Núcleos e Imágenes Definición Sea f : V W una aplicación lineal. Se

Más detalles

Definición operacional, independientemente de cualquier sistema de referencia

Definición operacional, independientemente de cualquier sistema de referencia Carácter de las magnitudes físicas: Magnitudes escalares y vectoriales. Vectores unitarios, Operaciones con vectores. No todas las magnitudes físicas tienen las mismas características matemáticas El carácter

Más detalles

Tema 2 Límites de Funciones

Tema 2 Límites de Funciones Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Sistemas de Ecuaciones Lineales y Matrices Oscar G Ibarra-Manzano, DSc Departamento de Area Básica - Tronco Común DES de Ingenierías Facultad de Ingeniería, Mecánica, Eléctrica y Electrónica Trimestre

Más detalles

3.- DETERMINANTES. a 11 a 22 a 12 a 21

3.- DETERMINANTES. a 11 a 22 a 12 a 21 3.- DETERMINANTES. 3.1. -DEFINICIÓN Dada una matriz cuadrada de orden n, se llama determinante de esta matriz (y se representa por A o deta al polinomio cuyos términos son todos los productos posibles

Más detalles

3. Equivalencia y congruencia de matrices.

3. Equivalencia y congruencia de matrices. 3. Equivalencia y congruencia de matrices. 1 Transformaciones elementales. 1.1 Operaciones elementales de fila. Las operaciones elementales de fila son: 1. H ij : Permuta la fila i con la fila j. 2. H

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 013 Capítulo 13 Año 01 13.1. Modelo 01 - Opción A Problema 13.1.1 (3 puntos) Dados los puntos A(1,

Más detalles

Anexo 1: Demostraciones

Anexo 1: Demostraciones 75 Matemáticas I : Álgebra Lineal Anexo 1: Demostraciones Espacios vectoriales Demostración de: Propiedades 89 de la página 41 Propiedades 89- Algunas propiedades que se deducen de las anteriores son:

Más detalles

Ejercicios de Programación Lineal

Ejercicios de Programación Lineal Ejercicios de Programación Lineal Investigación Operativa Ingeniería Informática, UCM Curso 8/9 Una compañía de transporte dispone de camiones con capacidad de 4 libras y de 5 camiones con capacidad de

Más detalles

Índice Introducción Números Polinomios Funciones y su Representación. Curso 0: Matemáticas y sus Aplicaciones Tema 1. Números, Polinomios y Funciones

Índice Introducción Números Polinomios Funciones y su Representación. Curso 0: Matemáticas y sus Aplicaciones Tema 1. Números, Polinomios y Funciones Curso 0: Matemáticas y sus Aplicaciones Tema 1. Números, Polinomios y Funciones Leandro Marín Dpto. de Matemática Aplicada Universidad de Murcia 2012 1 Números 2 Polinomios 3 Funciones y su Representación

Más detalles

y λu = Idea. Podemos sumar vectores y multiplicar por un escalar. El resultado vuelve a ser un vector Definición de espacio vectorial.

y λu = Idea. Podemos sumar vectores y multiplicar por un escalar. El resultado vuelve a ser un vector Definición de espacio vectorial. Espacios vectoriales Espacios y subespacios R n es el conjunto de todos los vectores columna con n componentes. Además R n es un espacio vectorial. Ejemplo Dados dos vectores de R por ejemplo u = 5 v =

Más detalles

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales Práctica 4 - Parte Límite de funciones En lo que sigue, veremos cómo la noción de límite introducida para sucesiones se etiende al caso de funciones reales. Esto nos permitirá estudiar el comportamiento

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES )

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS SOLUCIONES HOJA 5: Optimización 5-1. Hallar los puntos críticos de las siguiente funciones y clasificarlos: a fx, y = x y + xy.

Más detalles

Comenzaremos recordando algunas definiciones y propiedades estudiadas en el capítulo anterior.

Comenzaremos recordando algunas definiciones y propiedades estudiadas en el capítulo anterior. Capítulo 2 Matrices En el capítulo anterior hemos utilizado matrices para la resolución de sistemas de ecuaciones lineales y hemos visto que, para n, m N, el conjunto de las matrices de n filas y m columnas

Más detalles

Tema 3 Resolución de Sistemas de Ecuaciones Lineales

Tema 3 Resolución de Sistemas de Ecuaciones Lineales Tema Resolución de Sistemas de Ecuaciones Lineales Índice Introducción 2 Método de Gauss 2 Resolución de sistemas triangulares 22 Triangulación por el método de Gauss 2 Variante Gauss-Jordan 24 Comentarios

Más detalles

Matrices. Definiciones básicas de matrices. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx

Matrices. Definiciones básicas de matrices. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx Matrices Definiciones básicas de matrices wwwmathcommx José de Jesús Angel Angel jjaa@mathcommx MathCon c 2007-2008 Contenido 1 Matrices 2 11 Matrices cuadradas 3 12 Matriz transpuesta 4 13 Matriz identidad

Más detalles

MATEMÁTICAS II. Departamento de Matemáticas I.E.S. A Xunqueira I (Pontevedra)

MATEMÁTICAS II. Departamento de Matemáticas I.E.S. A Xunqueira I (Pontevedra) MATEMÁTICAS II 1 José M. Ramos González Este libro es totalmente gratuito y solo vale la tinta y el papel en que se imprima. Es de libre divulgación y no está sometido a ningún copyright. Tan solo se

Más detalles

Subespacios vectoriales en R n

Subespacios vectoriales en R n Subespacios vectoriales en R n Víctor Domínguez Octubre 2011 1. Introducción Con estas notas resumimos los conceptos fundamentales del tema 3 que, en pocas palabras, se puede resumir en técnicas de manejo

Más detalles

Juegos Cooperativos. Core

Juegos Cooperativos. Core Curso : Juegos Cooperativos Core J. Oviedo Universidad Nacional de San Luis 1. Juegos Cooperativos En estos juegos se permite la comunicación entre los jugadores, también pueden firmar contratos de cooperación.

Más detalles

E. T. S. de Ingenieros Industriales Universidad Politécnica de Madrid. Grado en Ingeniería en Tecnologías Industriales. Grado en Ingeniería Química

E. T. S. de Ingenieros Industriales Universidad Politécnica de Madrid. Grado en Ingeniería en Tecnologías Industriales. Grado en Ingeniería Química E. T. S. de Ingenieros Industriales Universidad Politécnica de Madrid Grado en Ingeniería en Tecnologías Industriales Grado en Ingeniería Química Apuntes de Álgebra ( Curso 2014/15) Departamento de Matemática

Más detalles

RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES

RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES 1 La ecuación 2x - 3 = 0 se llama ecuación lineal de una variable. Obviamente sólo tiene una solución. La ecuación -3x + 2y = 7 se llama ecuación lineal de

Más detalles

Tema 3. Espacios vectoriales

Tema 3. Espacios vectoriales Tema 3. Espacios vectoriales Estructura del tema. Definición y propiedades. Ejemplos. Dependencia e independencia lineal. Conceptos de base y dimensión. Coordenadas Subespacios vectoriales. 0.1. Definición

Más detalles

NUMERO DE CONDICION Y DETERMINANTE DE UNA MATRIZ Jorge Lemagne Pérez, Facultad de Matemática y Computación, Universidad de La Habana

NUMERO DE CONDICION Y DETERMINANTE DE UNA MATRIZ Jorge Lemagne Pérez, Facultad de Matemática y Computación, Universidad de La Habana REVISTA INVESTIGACION OPERACIONAL Vol. 2, No., 2000 NUMERO DE CONDICION Y DETERMINANTE DE UNA MATRIZ Jorge Lemagne Pérez, Facultad de Matemática y Computación, Universidad de La Habana RESUMEN En la resolución

Más detalles

13.TRANSFORMACIONES LINEALES 273 13.1. DEFINICIÓN DE TRANSFORMACIÓN LINEAL... 273 13.2. DETERMINACIÓN DE UNA TRANSFORMACIÓN LINEAL... 275 13.3.

13.TRANSFORMACIONES LINEALES 273 13.1. DEFINICIÓN DE TRANSFORMACIÓN LINEAL... 273 13.2. DETERMINACIÓN DE UNA TRANSFORMACIÓN LINEAL... 275 13.3. ÍNDICE 13.TRANSFORMACIONES LINEALES 273 13.1. DEFINICIÓN DE TRANSFORMACIÓN LINEAL............. 273 13.2. DETERMINACIÓN DE UNA TRANSFORMACIÓN LINEAL...... 275 13.3. REPRESENTACIÓN MATRICIAL DE UNA TRANSFORMACIÓN

Más detalles

Congruencias de Grado Superior

Congruencias de Grado Superior Congruencias de Grado Superior Capítulo 3 3.1 Introdución En el capítulo anterior vimos cómo resolver congruencias del tipo ax b mod m donde a, b y m son enteros m > 1, y (a, b) = 1. En este capítulo discutiremos

Más detalles

Matrices invertibles. La inversa de una matriz

Matrices invertibles. La inversa de una matriz Matrices invertibles. La inversa de una matriz Objetivos. Estudiar la definición y las propiedades básicas de la matriz inversa. Más adelante en este curso vamos a estudiar criterios de invertibilidad

Más detalles

LÍMITES DE FUNCIONES Y DE SUCESIONES

LÍMITES DE FUNCIONES Y DE SUCESIONES LÍMITES DE FUNCIONES Y DE SUCESIONES Índice: 1.Funciones reales de variable real-------------------------------------------------------------- 1 2. Límite finito de una función en un punto.---------------------------------------------------

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas UNIDAD Polinomios y fracciones algebraicas U n polinomio es una expresión algebraica en la que las letras y los números están sometidos a las operaciones de sumar, restar y multiplicar. Los polinomios,

Más detalles

La suma se realiza miembro a miembro. La suma de polinomios goza de las mismas propiedades que la suma de números. Ejemplo:

La suma se realiza miembro a miembro. La suma de polinomios goza de las mismas propiedades que la suma de números. Ejemplo: Tema 4. Polinomios 1. Definición Un polinomio es una expresión hecha con constantes, variables y exponentes, que están combinados. Los exponentes sólo pueden ser 0, 1, 2, 3,... etc. No puede tener un número

Más detalles

Al consejero A no le gusta ninguno de sus colegas como presidente. Dos consejeros (C y E) están de acuerdo en los mismos candidatos (B, C y D).

Al consejero A no le gusta ninguno de sus colegas como presidente. Dos consejeros (C y E) están de acuerdo en los mismos candidatos (B, C y D). ÁLGEBRA DE MATRICE Página 48 Ayudándote de la tabla... De la tabla podemos deducir muchas cosas: Al consejero A no le gusta ninguno de sus colegas como presidente. B solo tiene un candidato el C. Dos consejeros

Más detalles

Conceptos Básicos de Algebra Lineal y Geometría Multidimensional. Alvaro Cofré Duvan Henao

Conceptos Básicos de Algebra Lineal y Geometría Multidimensional. Alvaro Cofré Duvan Henao Conceptos Básicos de Algebra Lineal y Geometría Multidimensional Alvaro Cofré Duvan Henao ii Índice general 1 Sistemas de ecuaciones lineales 1 11 El método de eliminación de Gauss 3 12 Determinantes 8

Más detalles

Diagonalización de matrices

Diagonalización de matrices diagonalizacion.nb Diagonalización de matrices Práctica de Álgebra Lineal, E.U.A.T., Grupos ºA y ºB, 2005 Algo de teoría Qué es diagonalizar una matriz? Para estudiar una matriz suele ser conveniente expresarla

Más detalles

3 Espacios Vectoriales

3 Espacios Vectoriales Prof. Susana López 31 3 Espacios Vectoriales 3.1 Introducción Un ector fijo en el plano no es más que un segmento orientado en el que hay que distinguir tres características: -dirección: la de la recta

Más detalles

Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos

Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos MATEMÁTICAS BÁSICAS DESIGUALDADES DESIGUALDADES DE PRIMER GRADO EN UNA VARIABLE La epresión a b significa que "a" no es igual a "b ". Según los valores particulares de a de b, puede tenerse a > b, que

Más detalles

UNIDAD I NÚMEROS REALES

UNIDAD I NÚMEROS REALES UNIDAD I NÚMEROS REALES Los números que se utilizan en el álgebra son los números reales. Hay un número real en cada punto de la recta numérica. Los números reales se dividen en números racionales y números

Más detalles

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define.

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define. VECTORES El estudio de los vectores es uno de tantos conocimientos de las matemáticas que provienen de la física. En esta ciencia se distingue entre magnitudes escalares y magnitudes vectoriales. Se llaman

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 13 y #14

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 13 y #14 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 3 y #4 Desigualdades Al inicio del Capítulo 3, estudiamos las relaciones de orden en los número reales y el signi cado de expresiones

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

Material elaborado por la Profesora Ana Aída Sforzini - Año 2009 1

Material elaborado por la Profesora Ana Aída Sforzini - Año 2009 1 UNIVERSIDAD NACIONAL DE RIO CUARTO FACULTAD DE CIENCIAS ECONOMICAS Cátedra: ÁLGEBRA LINEAL UNIDAD V ESPACIOS VECTORIALES 1.V Definición de vector VECTOR EN R n y PUNTO EN EL ESPACIO N-DIMENSIONAL SON,

Más detalles

Apuntes de Matemática Discreta 11. Teorema Fundamental de la Aritmética

Apuntes de Matemática Discreta 11. Teorema Fundamental de la Aritmética Apuntes de Matemática Discreta 11. Teorema Fundamental de la Aritmética Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 11 Teorema Fundamental

Más detalles

Matrices Invertibles y Elementos de Álgebra Matricial

Matrices Invertibles y Elementos de Álgebra Matricial Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CCIR/ITESM 12 de enero de 2011 Índice 91 Introducción 1 92 Transpuesta 1 93 Propiedades de la transpuesta 2 94 Matrices

Más detalles

LÍMITES DE FUNCIONES. CONTINUIDAD

LÍMITES DE FUNCIONES. CONTINUIDAD LÍMITES DE FUNCIONES. CONTINUIDAD Página REFLEXIONA Y RESUELVE Algunos ites elementales Utiliza tu sentido común para dar el valor de los siguientes ites: a,, b,, @ c,, 5 + d,, @ @ + e,, @ f,, 0 @ 0 @

Más detalles

Métodos Numéricos: Guía de estudio Tema 6 Métodos iterativos para sistemas de ecuaciones lineales

Métodos Numéricos: Guía de estudio Tema 6 Métodos iterativos para sistemas de ecuaciones lineales Métodos Numéricos: Guía de estudio Tema 6 Métodos iterativos para sistemas de ecuaciones lineales Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña

Más detalles

Polinomios y Fracciones Algebraicas

Polinomios y Fracciones Algebraicas Tema 4 Polinomios y Fracciones Algebraicas En general, a lo largo de este tema trabajaremos con el conjunto de los números reales y, en casos concretos nos referiremos al conjunto de los números complejos.

Más detalles

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices Estructura del tema. Conceptos básicos y ejemplos Operaciones básicas con matrices Método de Gauss Rango de una matriz Concepto de matriz regular y propiedades Determinante asociado a una

Más detalles

1. ESPACIOS VECTORIALES

1. ESPACIOS VECTORIALES 1 1. ESPACIOS VECTORIALES 1.1. ESPACIOS VECTORIALES. SUBESPACIOS VECTORIALES Denición 1. (Espacio vectorial) Decimos que un conjunto no vacío V es un espacio vectorial sobre un cuerpo K, o K-espacio vectorial,

Más detalles

LÍMITES Y CONTINUIDAD

LÍMITES Y CONTINUIDAD UNIDAD 5 LÍMITES Y CONTINUIDAD Páginas 0 y Describe las siguientes ramas: a) f () b) f () no eiste c) f () d) f () + e) f () f) f () + g) f () h) f () no eiste; f () 0 i) f () + f () + j) f () 5 4 f ()

Más detalles

ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN. Apuntes de. para la titulación de

ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN. Apuntes de. para la titulación de E.T.S. DE INGENIERÍA INFORMÁTICA Apuntes de ÁLGEBRA LINEAL para la titulación de INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN Fco. Javier Cobos Gavala Amparo Osuna Lucena Rafael Robles Arias Beatriz Silva

Más detalles

Tema 8: Análisis Discriminante. Clasificación. Aurea Grané Departamento de Estadística Universidad Carlos III de Madrid. Análisis discriminante

Tema 8: Análisis Discriminante. Clasificación. Aurea Grané Departamento de Estadística Universidad Carlos III de Madrid. Análisis discriminante Aurea Grané. Máster en Estadística. Universidade Pedagógica. 1 Aurea Grané. Máster en Estadística. Universidade Pedagógica. 2 Análisis discriminante Tema 8: Análisis Discriminante y Clasificación Aurea

Más detalles

1-Comportamiento de una función alrededor de un punto:

1-Comportamiento de una función alrededor de un punto: Matemática II 7 Modulo Límites continuidad En esta sección desarrollaremos el concepto de límite, una de las nociones fundamentales del cálculo. A partir de este concepto se desarrollan también los conceptos

Más detalles

Nivelación de Matemática MTHA UNLP 1. Vectores

Nivelación de Matemática MTHA UNLP 1. Vectores Nivelación de Matemática MTHA UNLP 1 1. Definiciones básicas Vectores 1.1. Magnitudes escalares y vectoriales. Hay magnitudes que quedan determinadas dando un solo número real: su medida. Por ejemplo:

Más detalles

FRACCIONES. Una fracción tiene dos términos, numerador y denominador, separados por una raya horizontal.

FRACCIONES. Una fracción tiene dos términos, numerador y denominador, separados por una raya horizontal. FRACCIONES Las fracciones representan números (son números, mucho más exactos que los enteros o los decimales), Representa una o varias partes de la unidad. Una fracción tiene dos términos, numerador y

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

MATEMÁTICAS CCSS JUNIO 2010 (COMÚN MODELO5) SELECTIVIDAD ANDALUCÍA

MATEMÁTICAS CCSS JUNIO 2010 (COMÚN MODELO5) SELECTIVIDAD ANDALUCÍA IES Fco Ayala de Granada Junio de 010 (General Modelo 5) Soluciones Germán-Jesús Rubio Luna MATEMÁTICAS CCSS JUNIO 010 (COMÚN MODELO5) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1 Sea el recinto definido

Más detalles

4 APLICACIONES LINEALES. DIAGONALIZACIÓN

4 APLICACIONES LINEALES. DIAGONALIZACIÓN 4 APLICACIONES LINEALES DIAGONALIZACIÓN DE MATRICES En ocasiones, y con objeto de simplificar ciertos cálculos, es conveniente poder transformar una matriz en otra matriz lo más sencilla posible Esto nos

Más detalles

Para hallar el límite de una sucesión podemos utilizar algunas técnicas como: El concepto de límite de una función:

Para hallar el límite de una sucesión podemos utilizar algunas técnicas como: El concepto de límite de una función: Tema 3 Sucesiones y Series 3.1. Sucesiones de números reales Definición 3.1.1 Una sucesión de números reales { } es una aplicación que asigna a cad N un número real: : N R a 1, a 2, a 3... son los términos

Más detalles

Ejercicio 1 Dada la matriz A = 1. Calcula los valores propios. 2. Determina una base de vectores propios. 3. Diagonaliza la matriz.

Ejercicio 1 Dada la matriz A = 1. Calcula los valores propios. 2. Determina una base de vectores propios. 3. Diagonaliza la matriz. Métodos Numéricos: soluciones Tema 7: Valores y vectores propios Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Mayo 8 Versión. Ejercicio Dada

Más detalles

Ejercicios Propuestos Tema 2

Ejercicios Propuestos Tema 2 Ejercicios Propuestos Tema 2 1 Programar la función: fx, A, X = a 0 + a 1 x x 1 + a 2 x x 1 x x 2 + + a n x x 1 x x 2 x x n, donde A = [a 0, a 1,, a n ], X = [x 1, x 2,, x n ], con x R Calcular todas las

Más detalles

Problema 1. (4 puntos) Sea f la aplicación lineal de R³ en R³ definida por f(1,3,4)=(2,6,8), f(1,1,1)=(2,6,8) y f(0,1,1)=(0,0,0).

Problema 1. (4 puntos) Sea f la aplicación lineal de R³ en R³ definida por f(1,3,4)=(2,6,8), f(1,1,1)=(2,6,8) y f(0,1,1)=(0,0,0). Problema 1. (4 puntos) Sea f la aplicación lineal de R³ en R³ definida por f(1,3,4)=(2,6,8), f(1,1,1)=(2,6,8) y f(0,1,1)=(0,0,0). a) Demostrad que (1,3,4), (1,1,1) i (0,1,1) son una base de R³. b) Decid

Más detalles

Recurrencias lineales

Recurrencias lineales Recurrencias lineales Juan-Miguel Gracia 10 de febrero de 2008 Recurrencias lineales 68 Las recurrencias lineales son ecuaciones en las que la incógnita es una sucesión numérica (x k ) k=0 que aparece

Más detalles

Tema 3: Producto escalar

Tema 3: Producto escalar Tema 3: Producto escalar 1 Definición de producto escalar Un producto escalar en un R-espacio vectorial V es una operación en la que se operan vectores y el resultado es un número real, y que verifica

Más detalles

GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1,0, la recta x 1 y z

GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1,0, la recta x 1 y z GEOMETRÍA Junio 94. 1. Sin resolver el sistema, determina si la recta x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia (x 1) (y ) 1. Razónalo. [1,5 puntos]. Dadas las ecuaciones de los

Más detalles

Solución a los problemas adicionales Aplicaciones lineales (Curso 2008 2009)

Solución a los problemas adicionales Aplicaciones lineales (Curso 2008 2009) ÁLGEBRA Solución a los problemas adicionales Aplicaciones lineales (Curso 2008 2009) I. Se considera el homomorfismo f : P 2 (IR) P 2 (IR) definido por las siguientes condiciones: (1) Los polinomios sin

Más detalles