Capitulo 9: Leyes de Kepler, Gravitación y Fuerzas Centrales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Capitulo 9: Leyes de Kepler, Gravitación y Fuerzas Centrales"

Transcripción

1 Capitulo 9: Leyes de Keple, Gavitación y Fuezas Centales Índice. Las 3 leyes de Keple 2. Campo gavitacional 4 3. Consevación de enegía 6 4. Movimiento cicula 8 5. Difeentes tayectoias 0 6. Demosta Leyes de Keple 2 7. Cuantización de momento angula y Átomo de Boh 3

2 . Las 3 leyes de Keple Después de muchas obsevaciones, Keple escibió sus tes leyes:. Los planetas se mueven en obitas elípticas alededo del sol 2. La obita bae áeas iguales en tiempos iguales 3. La elación ente el peiodo T y el eje mayo a de la elipse satisface T 2 = ca 3 La pimea y segunda ley se pueden obseva en la Fig. 2a Figua : Movimiento elíptico Las mediciones de Keple paa llega a la 3a ley, se pueden apecia en esta tabla y la Fig. 2a-b. Acodemonos que la aceleación centípeta paa movimiento cicula tiene magnitud a c = ω 2 En la Tabla tenemos los valoes del peiodo y la distancia de los planetas al sol. En la Fig. 2a y Fig. 2b tenemos el gáfico de a c vs y a c vs ω espectivamente. Po lo tanto podemos deci que la fueza que mantiene a los planetas dando vuelta alededo del sol satisface T 2 = c 3 esta elación fue utilizada po Newton paa escibi su famosa fueza de la gavedad. 2

3 Planeta Peiodo Distancia Mecuio 87,97 días km Venus 224,7 días km Tiea 365,256 días km Mates 686,98 días km Júpite,86 años km Satuno 29,46 años km Uano 84,0 años km Neptuno 64,8 años km Plutón 248,54 años km Ω Ω Ω 0 7 Figua 2: (a) ω 2 3 vs. (b)ω 2 3 vs ω Paa obitas ciculaes, la fueza que mantiene a los planetas giando alededo del sol se puede escibi entonces como a c = a o donde a o es una constante que se puede enconta. Po lo tanto la fueza que ejece el sol sobe un planeta es en la diección adial ente los dos cuepos y con magnitud F S,P = m p a c = m pa o donde m p es la masa del planeta. Si asumimos que el pincipio de acción y eacción se da, entonces podemos deci que la fueza que siente el sol debido a un planeta debeía tene la misma foma F P,S = m Sa peo como las dos fuezas tiene la misma magnitud, entonces F P,S = F S,P = Gm Sm P con la diección definida po se una fueza de atacción ente los cuepos y po la linea ente los dos cuepos (adial). Esto se le denomina una Fueza cental. La constante G se puede deiva si 3

4 conocemos la masa del sol (m S =, ), la masa de la tiea (m P = 5, kgs), y la distancia ente la tiea y el sol, lo que da G = 6,67 0. La fueza de gavitación univesal, popuesta po Newton, es ˆ F,2 = Gm m 2 = Gm m independiente si la tayectoia es cicula o no. Poblema: Cual es el peiodo en años de Júpite, si su distancia del sol es a 5,2 AU. Dado que paa la tiea tenemos T E = año y a = AU, podemos usa T 2 J = T 2 E a 3 J a 3 E T j =,85 2. Campo gavitacional Supongamos que tenemos una distibución de masas, podemos escibi la fueza sobe la masa i como F i = j i j Gm i m j i j 3 Genealmente, se define el campo gavitacional poducido po una distibución de masa como la fueza po unidad de masa que sentiía una masa puesta en algún punto del espacio. Esto es En téminos de una distibución de masa g( ) = m F g( ) = j Gm j j j 2 = G j ˆ i = G dm ˆ El caso de dos masas puntuales, inmediatamente nos dice que la fueza es en la diección ente las dos masas. Lo mismo aplica paa el campo en el eje de un ciculo como se ve en la Fig. 3a. Po lo tanto el campo fuea de una esfea es en la diección adial como se ve en la Fig. 3b, ya que es la suma de muchos cículos. De hecho fuea de la esfea tenemos g( ) = GM m i i ˆ 4

5 Hay un caso que es extemadamente inteesante. Supongamos que estamos dento de un cascaon hueco de masa M y adio R. Podemos demosta que el campo gavitacional g adento es ceo usando el siguiente agumento. Miemos la Fig. 3c, vemos inmediatamente que la elación ente las masas m y m 2 es m m 2 = 2 2 y como estas masas genean fuezas en diecciones opuestas, obtenemos que el efecto neto es ceo. Sumando sobe el cascaon nos da finalmente g( ) = 0 < R Paa > R sabemos que el potencial cae como / y es en la diección adial. Entonces paa el cascaon tenemos lo cual se puede escibi como [ 0 < R g( ) = > R GM g( ) = GM() donde M() es la masa dento del adio. Paa el caso de una esfea llena (un planeta) tenemos entonces y el campo gavitacional es [ M 3 M() = R 3 M g( ) = [ GM R 3 GM < R > R < R > R d F F m m 2 Figua 3: (a) Dento del cascaon. (b) Fuea del cascaon. El campo gavitacional en la supeficie de un planeta define su aceleación gavitacional 5

6 g = GM R 2 y paa el caso de la tiea tenemos g T = 9,8. Recodemos que la masa del planeta esta elacionada con su densidad M = ρ 4π 3 R3 con lo cual uno puede elaciona aceleaciones gavitacionales en vaios planetas. Poblema: Cual es la aceleación de gavedad en la supeficie de la luna si su densidad pomedio es la mitad de la tiea y tiene un tecio del adio teeste. Usando dado que podemos enconta g L = M ( ) 2 L RT g R M T R L M L M T = ρ L ρ T g L g R = ρ L ρ T ( ) 3 RL ( RL R T R T ) = 6 3. Consevación de enegía Usemos el pincipio de consevación de enegía 2 mv2 f f 2 mv2 o = m g d o Paa el caso de un cuepo ceca de un planeta esféico, podemos usa Po lo tanto lo que define el potencial gavitatoio g = GM 2 mv2 f f ( 2 mv2 o = GMm d = GMm ) o 2 f o ˆ 6

7 U() = GMm y el pincipio de consevación de enegía 2 mv2 f GMm f = 2 mv2 o GMm o Notemos que ceca de la tiea = R + h tenemos U() = GMm R + h GMm R + GMmh +... R 2 que apate de la constante es U() = mgh como teníamos anteiomente. Poblema: Calcula la velocidad de escape de la tiea. La velocidad de escape es la velocidad inicial necesaia en la supeficie de la tiea paa que el cohete llegue al infinito con velocidad ceo. Osea 2 mv2 = GMm R Po lo tanto desde la supeficie de la tiea v E = 2R GM R 2 v 2 s = 2GM R = Km/seg Poblema: Calcule el hoizonte de un hoyo nego de la masa de la tiea. El hoizonte de un hoyo nego se define como el adio donde ni siquiea la luz puede escapa. Esto, la velocidad de escape de v s = c, y po lo tanto R S = 2GM c 2 = 0,8 cm Poblema: Cuanto cambia la velocidad de escape si el objeto pate del cento de la tiea En este caso tenemos que hace la integal en dos pates poque g( ) = [ GM R 3 GM < R > R 7

8 Y po lo tanto Entonces, usando W (0 ) = GMm R = GMm 2R = 3GMm 2R 0 GMm R d GMm R 3 R d 2 mv2 s = W (0 ) obtenemos v 2 s = 3GM R 4. Movimiento cicula En geneal cuando tenemos un cuepos haciendo un movimiento cicula alededo de oto, en geneal los dos hacen el movimiento cicula como se muesta en la Fig. 4a. Dado que el cento de masa no acelea (poque no hay fuezas extenas) podemos danos cuenta que el cento de los cículos es el cento de masa y los adios se elacionan como = m 2 m En el caso en que una de las masas es mucho mayo que las otas (como el sol y los planetas), podemos asumi que la masa mayo esta en el cento del ciculo y lo que elaciona ma c = mω 2 = GMm ω 2 = GM 3 Esta es ealmente la elación de Keple como hemos visto anteiomente. Poblema: Cual es el peiodo de un satélite dando vuelta ceca de la tiea ( R) La fecuencia es po lo tanto ω 2 = GM R 2 R 2 3 = 9,8 T = 2π ω =,4 hs 8

9 Poblema: Cual es el adio paa tene una obita geoestacionaia (T = T T = s). En este caso y ω = 2π T ( ) 9,8R 2 /3 = = 6,6R E ω 2 con R E como el adio de la tiea. Lo que coesponde a una altua de H = 5,6R E km. Figua 4: (a) Movimiento cicula. (b) Galaxia espial. Notemos que esta es una de las azones po la cual tenemos galaxias espiales, ya que el mateial que esta mas lejos tiene una fecuencia angula ω meno que el mateia que esta mas ceca del cento, ve Fig. 4b. Cuando tenemos un objeto en un ciculo con con v = ω, obtenemos que ω 2 = GM 3 E = 2 mv2 GMm que también se puede escibi como = GMm 2 E = U 2 = KE Po ejemplo la enegía que tenemos que popociona paa cambia de una obita cicula o = 2R a una obita f = 3R es (con v = ω) 9

10 5. Difeentes tayectoias [ ] W = E f E o = GMm 2 f + o ] R f + R o = mr GM 2 = mgor 2 Cuando la masa de uno de los cuepos es mucho mayo que el oto, entonces podemos asumi que que el cuepo mas masivo esta en el cento de masa sin movese, y el segundo cuepo siente una fueza cental. R 2 [ F = GMm ˆ El toque poducido po fuezas centales es ceo ya que la fueza es en la diección de τ = F = 0 y po lo tanto L es constante. La tayectoia sucede en el plano pependicula a L. La tayectoia se puede entonces descibi como y Notemos que = (t) cos θ(t)î + (t) sin θ(t)ĵ = (t)ˆ v = d(t) ˆ + (t)ω(t)ˆt dt ( ) 2 d(t) v(t) 2 = + (t) 2 ω 2 dt La consevación de momento angula puede se calculada como y po lo tanto L = m(t) 2 ω(t)ˆk L = L = m(t) 2 ω(t) = const 2 m v(t) 2 = 2 m ( ṙ 2 + (t) 2 ω 2) = 2 mṙ2 + L2 2m El pincipio de consevación de enegía nos pemitiá demosta el tipo de tayectoias que tenemos, y la clasificación se hace con la enegía total mecánica E = 2 m v(t) 2 GMm = ( L 2 mṙ2 + 2m GMm ) 2 0

11 Po lo tanto tenemos un potencial efectivo U eff (t) = L2 2m GMm 2 En la Fig. 5a vemos este potencial efectivo paa un valo especifico de L. Obsevemos que tanto el valo de L y E se pueden evalua con las condiciones iniciales v(0) y (0), y nos pemiten clasifica las posibles tayectoias:. La situación de mínima enegía es la obita cicula que tiene dando du eff d = 0 o = L2 Gm 2 M No existe una solución de enegía meno. E c = GMm = G2 m 3 M 2 2 o 2L 2 2. Si la enegía E c < E e < 0 entonces tenemos obitas elípticas con un adio mayo y un adio meno, donde 2a = +. Estos valoes se pueden obtene de o de du eff d = 0 U eff = E e Esta situación aplica paa los planetas. El caso del movimiento cicula sucede cuando c = =. 3. Si E = 0 tenemos la situación de una obita paabólica tal que la tayectoia se aceca desde el infinito, llega al punto de máximo acecamiento p y luego se devuelve al infinito llegando con v = Si E > 0 tenemos la situación de una obita hipebólica tal que en infinito v > 0. Esto aplica paa algunos cometas. Las difeencias se pueden obseva en la Fig. 5a. Las tayectoias se pueden escibi como

12 Ueff p 0 Eh>0 Ep=0 Ee<0 Ec Eo Figua 5: (a) Potencial efectivo. o = + ɛ cos θ en coodenadas polaes, donde ɛ es la excenticidad de la obita. Si ɛ = 0 tenemos un ciculo, si ɛ < tenemos una elipse, si ɛ = tenemos una paábola, y si ɛ > tenemos una hipébola. 6. Demosta Leyes de Keple Ahoa usando la fueza gavitacional es fácil poba las leyes de Keple;. La pimea ley la demostamos en la sección anteio. Paa los planetas aplica la elipse. 2. La segunda ley en ealidad detemina la ley de consevación de momento angula. El toque poducido po fuezas centales es ceo ya que la fueza es en la diección de τ = F = 0 y po lo tanto L es constante. La tayectoia sucede en el plano pependicula a L. Paa el caso del ciculo, en un intevalo dt baemos un áea Po lo tanto da = v dt 2 da dt = v = 2m L el cual es constante. 2

13 3. El caso de la tecea ley, la demostamos vaias veces aiba. El caso geneal de cuando las dos masas son compaables es T 2 = 4π 2 G(m + m 2 ) a3 Vemos que obsevando las tayectoias de un sistema binaio podemos aveigua las masas de las estellas. 7. Cuantización de momento angula y Átomo de Boh El momento angula desempeña un papel impotante en la teoía de átomos. En geneal en la mecánica cuántica se pate obsevando que el modulo del momento angula solo puede tene valoes donde L = l(l + ) h l = 0,, 2,... h =, Dado que h es muy pequeño la discetización del momento angula es muy difícil de obseva, ya que la sepaación ente estado y estado es muy pequeña. Po ejemplo, si tenemos una masa de m = kg, dando vuelta en un ciculo de adio = m a una velocidad de v = m/s, tenemos que Js L = mv l L h 034 Esto también implica que la enegía esta cuantizada, dado que KE = L2 2I = l(l + ) h2 2I Duante mucho tiempo existió un poblema que no se le veía solución y que tenia que ve con el movimiento de un electón alededo de un potón. Cuando una paticula se mueve en un ciculo, debeía adia, y po lo tanto los átomos no debeían se estables. En la mecánica cuántica se dice que el poblema se esuelve al existi pobabilisticamente estados discetos donde el electón puede esta sin pede enegía. Asumamos que tenemos la atacción de un núcleo de caga Z positivo y un electón, donde el potencial se escibe como U = kze2 Este potencial es muy paecido al potencial gavitacional, po lo tanto paa obitas ciculaes tenemos 3

14 E = 2 mv2 kze2 = kze2 el cual es negativo, ya que epesenta la cantidad de enegía que tenemos dale al átomo paa sepaa el núcleo y el electón. A esta enegía se le denomina también enegía de ionización E ion = kze2 2 Si asumimos que el momento angula esta cuantizado como se sugiee aiba, entonces paa una obita cicula mv = n h Dado que podemos enconta que 2 mv2 = kze2 2 v 2 = kze2 m lo que implica que ( ) 2 n h = v 2 = kze2 m m n = n 2 a 0 Z a 0 = h2 m 2 ke 2 = 0,5 A en unidades de Angstoms (0 0 m). La enegía del átomo es entonces E n = kze2 2 n donde la unidad de enegía es ev =,6 0 9 J. = Z 2 E o n 2 E 0 = ke2 a 0 = 3,6 ev Po ejemplo, ahoa nos damos cuenta que si queemos que el átomo pase del estado n = al estado n = 2, tenemos que dale la cantidad [ ] E = E 2 E = Z 2 E o 4 = 3Z 2 E o 4 de enegía. El signo positivo indica que esta enegía tiene que se popocionada al átomo. Si estamos en el estado n = 2, el átomo puede hace la tansición al estado base n = libeando esta enegía en la foma de un fotón que podíamos obseva. La enegía de ionización paa pasa del estado n = al estado n es 4

15 E ion = Z 2 E o Paa esta enegía tenemos un foton ultavioleta dado que ω = E h = 2 06 ad/s λ = 2πc ω = 5 A Esta enegía podía paece minúscula, peo es impotante nota que si esta enegía es popocionada po un electón a tavés de una colisión inelastica con el átomo, este electón necesita tene al menos una enegía cinética KE = 2 m ev 2 = Z 2 E o v = paa Z =. Osea el % de la velocidad de la luz. 2Eo m e m/s 5

D.1.- Considere el movimiento de una partícula de masa m bajo la acción de una fuerza central del tipo. n ˆ

D.1.- Considere el movimiento de una partícula de masa m bajo la acción de una fuerza central del tipo. n ˆ Cuso Mecánica (FI-1A), Listado de ejecicios. Edito: P. Aceituno 34 Escuela de Ingenieía. Facultad de Ciencias Físicas y Matemáticas. Univesidad de Chile. D: FUERZAS CENTRALES Y MOVIMIENTOS PLANETARIOS

Más detalles

CAMPO GRAVITATORIO FCA 04 ANDALUCÍA

CAMPO GRAVITATORIO FCA 04 ANDALUCÍA CAPO GAVIAOIO FCA 04 ANDALUCÍA. a) Al desplazase un cuepo desde una posición A hasta ota B, su enegía potencial disminuye. Puede aseguase que su enegía cinética en B es mayo que en A? azone la espuesta.

Más detalles

Tema 2. Sistemas conservativos

Tema 2. Sistemas conservativos Tema. Sistemas consevativos Tecea pate: Fueza gavitatoia A Campo gavitatoio Una masa M cea en su vecindad un campo de fuezas, el campo gavitatoio E, dado po E u siendo u el vecto unitaio adial que sale

Más detalles

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA CMPO GRVIORIO FC 0 NDLUCÍ. a) Explique qué se entiende po velocidad de escape y deduzca azonadamente su expesión. b) Razone qué enegía había que comunica a un objeto de masa m, situado a una altua h sobe

Más detalles

Leyes de Kepler. Ley de Gravitación Universal

Leyes de Kepler. Ley de Gravitación Universal Leyes de Keple y Ley de Gavitación Univesal J. Eduado Mendoza oes Instituto Nacional de Astofísica Óptica y Electónica, México Pimea Edición onantzintla, Puebla, México 009 ÍNDICE 1.- PRIMERA LEY DE KEPLER

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad. Indica cuál de las siguientes afimaciones es falsa: a) En la época de Aistóteles ya se aceptaba que la iea ea esféica. b) La estimación del adio teeste que llevó a cabo

Más detalles

10.- www.lortizdeo.tk I.E.S. Francisco Grande Covián Campo Gravitatorio mailto:lortizdeo@hotmail.com 27/01/2005 Física 2ªBachiller

10.- www.lortizdeo.tk I.E.S. Francisco Grande Covián Campo Gravitatorio mailto:lortizdeo@hotmail.com 27/01/2005 Física 2ªBachiller www.lotizdeo.tk I.E.S. Fancisco Gande Covián Campo Gavitatoio mailto:lotizdeo@hotmail.com 7/01/005 Física ªBachille 10.- Un satélite atificial descibe una óbita elíptica, con el cento de la iea en uno

Más detalles

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVIACIÓN 1 GRAVIACIÓN INRODUCCIÓN MÉODO 1. En geneal: Se dibujan las fuezas que actúan sobe el sistema. Se calcula la esultante po el pincipio de supeposición. Se aplica la ª ley de Newton

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejecicios esueltos Boletín 2 Campo gavitatoio y movimiento de satélites Ejecicio 1 En el punto A(2,0) se sitúa una masa de 2 kg y en el punto B(5,0) se coloca ota masa de 4 kg. Calcula la fueza esultante

Más detalles

La fuerza gravitatoria entre dos masas viene dada por la ley de gravitación universal de Newton, cuya expresión vectorial es

La fuerza gravitatoria entre dos masas viene dada por la ley de gravitación universal de Newton, cuya expresión vectorial es LGUNS CUESTIONES TEÓICS SOE LOS TEMS Y.. azone si las siuientes afimaciones son vedadeas o falsas a) El tabajo que ealiza una fueza consevativa sobe una patícula que se desplaza ente dos puntos, es meno

Más detalles

Examen de Selectividad de Física. Septiembre 2008. Soluciones.

Examen de Selectividad de Física. Septiembre 2008. Soluciones. Depatamento de Física y Química. I. E.. Atenea (.. Reyes, Madid) Examen de electividad de Física. eptiembe 2008. oluciones. Pimea pate Cuestión 1. Calcule el módulo del momento angula de un objeto de 1000

Más detalles

+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m

+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m m A + ( ) G P m ( ) 0 + G P m R P + h R P h A B R P eniendo en cuenta que h R P /, la anteio expesión queda como: G A P 8 A 3 Sustituyendo datos numéicos, esulta: 6,67 0 N m kg, 0 3 kg A 06 m s 3,3 0 6

Más detalles

b) La velocidad de escape se calcula con la siguiente expresión:

b) La velocidad de escape se calcula con la siguiente expresión: ADID / JUNIO 0. LOGSE / FÍSICA / CAPO GAVIAOIO PIEA PAE CUESIÓN Un planeta esféico tiene un adio de 000 km, y la aceleación de la gavedad en su supeficie es 6 m/s. a) Cuál es su densidad media? b) Cuál

Más detalles

TEMA3: CAMPO ELÉCTRICO

TEMA3: CAMPO ELÉCTRICO FÍIC º BCHILLERTO. CMPO ELÉCTRICO. TEM3: CMPO ELÉCTRICO o Natualeza eléctica de la mateia. o Ley de Coulomb vs Ley de Newton. o Pincipio de supeposición. o Intensidad del campo elético. o Líneas del campo

Más detalles

Parte 3: Electricidad y Magnetismo

Parte 3: Electricidad y Magnetismo Pate 3: Electicidad y Magnetismo 1 Pate 3: Electicidad y Magnetismo Los fenómenos ligados a la electicidad y al magnetismo, han sido obsevados y estudiados desde hace muchos siglos. No obstante ello, las

Más detalles

CUESTIONES Y PROBLEMAS DE CAMPO ELÉCTRICO. Ejercicio nº1 Cómo se manifiesta la propiedad de la materia denominada carga eléctrica?

CUESTIONES Y PROBLEMAS DE CAMPO ELÉCTRICO. Ejercicio nº1 Cómo se manifiesta la propiedad de la materia denominada carga eléctrica? UESTIONES Y POBLEMAS DE AMPO ELÉTIO Ejecicio nº ómo se manifiesta la popiedad de la mateia denominada caga eléctica? La popiedad de la mateia denominada caga eléctica se manifiesta mediante fuezas de atacción

Más detalles

Interacción gravitatoria

Interacción gravitatoria Inteacción gavitatoia H. O. Di Rocco I.F.A.S., Facultad de Cs. Exactas, U.N.C.P.B.A. June 5, 00 Abstact Tatamos en esta clase de oto de los modelos fundamentales de la Física toda: el movimiento en campos

Más detalles

5.2 Capítulo 5. FUERZAS CENTRALES Y ÓRBITAS GRAVITATORIAS

5.2 Capítulo 5. FUERZAS CENTRALES Y ÓRBITAS GRAVITATORIAS 5.2 Capítulo 5. FUERZAS CENTRALES Y ÓRBITAS GRAVITATORIAS descitos en una efeencia inecial (I) po sus vectoes de posición 0 y 1 espectivamente. I m 1 1 F 10 1 F 01 m 1 0 0 0 Figua 5.1: Sistema binaio aislado

Más detalles

5. Sistemas inerciales y no inerciales

5. Sistemas inerciales y no inerciales 5. Sistemas ineciales y no ineciales 5.1. Sistemas ineciales y pincipio de elatividad de Galileo El conjunto de cuepos especto de los cuales se descibe el movimiento se denomina sistema de efeencia, y

Más detalles

a = G m T r T + h 2 a = G r T

a = G m T r T + h 2 a = G r T www.clasesalacata.com Ley de la Gavitación Univesal 0.- Gavitación Univesal y Campo Gavitatoio Esta ley fomulada po Newton, afima que la fueza de atacción que expeimentan dos cuepos dotados de masa es

Más detalles

d AB =r A +r B = 2GM

d AB =r A +r B = 2GM Física de º Bachilleato Campo gavitatoio Actividad 1 [a] Enuncia la tecea ley de Keple y compueba su validez paa una óbita cicula. [b] Un satélite atificial descibe una óbita elíptica alededo de la Tiea,

Más detalles

Examen de Selectividad de Física. Junio 2009. Soluciones.

Examen de Selectividad de Física. Junio 2009. Soluciones. Depatamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madid) Examen de Selectividad de Física. Junio 009. Soluciones. Pimea pate Cuestión 1.- Un satélite atificial de 500 kg que descibe una óbita

Más detalles

Potencial eléctrico. Trabajo y energía potencial en el campo eléctrico. Potencial de una carga puntual: Principio de superposición

Potencial eléctrico. Trabajo y energía potencial en el campo eléctrico. Potencial de una carga puntual: Principio de superposición Potencial eléctico Intoducción. Tabajo y enegía potencial en el campo eléctico Potencial eléctico. Gadiente. Potencial de una caga puntual: Pincipio de supeposición Potencial eléctico de distibuciones

Más detalles

CAPITULO VI FUERZAS CENTRALES. " Qué es lo que hace que los planetas giren en torno al Sol?

CAPITULO VI FUERZAS CENTRALES.  Qué es lo que hace que los planetas giren en torno al Sol? FUEZAS CENALES CAPIULO VI " Qué es lo que hace que los planetas gien en tono al Sol? En los tiempos de Keple algunas pesonas contestaban esta pegunta diciendo que había ángeles detás de ellos, agitando

Más detalles

PROBLEMAS DE ELECTROESTÁTICA

PROBLEMAS DE ELECTROESTÁTICA PBLMAS D LCTSTÁTICA I CAMP LCTIC N L VACI. Cagas puntuales. Cagas lineales. Cagas supeficiales 4. Flujo le de Gauss 5. Distibuciones cúbicas de caga 6. Tabajo enegía electostática 7. Poblemas Pof. J. Matín

Más detalles

C. VALENCIANA / SEPTIEMBRE 04. LOGSE / FÍSICA / EXAMEN COMPLETO

C. VALENCIANA / SEPTIEMBRE 04. LOGSE / FÍSICA / EXAMEN COMPLETO . VALENANA / SEPEMBRE 04. LOGSE / FÍSA / EXAMEN EXAMEN El alumno ealizaá una opción de cada uno de los bloques La puntuación máxima de cada poblema es de puntos, y la de cada cuestión es de,5 puntos. BLOQUE

Más detalles

rad/s EXAMEN FÍSICA PAEG UCLM. JUNIO 2013. SOLUCIONARIO

rad/s EXAMEN FÍSICA PAEG UCLM. JUNIO 2013. SOLUCIONARIO EXAMEN FÍSICA PAEG UCLM. JUNIO 01. SOLUCIONARIO OPCIÓN A. PROBLEMA 1 Una onda tansvesal se popaga po una cueda tensa fija po sus extemos con una velocidad de 80 m/s, y al eflejase se foma el cuato amónico

Más detalles

CAMPO GRAVITATORIO FCA 06 ANDALUCÍA

CAMPO GRAVITATORIO FCA 06 ANDALUCÍA CAMPO AVIAOIO FCA 06 ANDALUCÍA 1.- Si po alguna causa la iea edujese su adio a la itad anteniendo su asa, azone cóo se odificaían: a) La intensidad del capo gavitatoio en su supeficie. b) Su óbita alededo

Más detalles

TEORIA RELATIVISTA DE LA GRAVITACION EN LA EXPANSION COSMOLOGICA

TEORIA RELATIVISTA DE LA GRAVITACION EN LA EXPANSION COSMOLOGICA ORIA RLAIVISA D LA RAVIACION N LA XPANSION COSMOLOICA Rodolfo CARABIO Posiguiendo el estudio eoía Relativista de la avitación basada en la Relatividad special, se analizaa a continuación la aplicación

Más detalles

Campo gravitatorio: cuestiones PAU

Campo gravitatorio: cuestiones PAU Campo gavitatoio: cuestiones PU 3. Descibe bevemente las teoías que se han sucedido a lo lago de la histoia paa explica la estuctua del sistema sola. La obsevación del cielo y sus astos ha sido, desde

Más detalles

La Ley de la Gravitación Universal

La Ley de la Gravitación Universal Capítulo 7 La Ley de la Gavitación Univesal 7.1 La Ley Amónica de Keple La ley que Keple había encontado no elacionaba los adios con los cinco poliedos egulaes, peo ea igualmente simple y bella: Ley Amónica:

Más detalles

BLOQUE 1: INTERACCIÓN GRAVITATORIA

BLOQUE 1: INTERACCIÓN GRAVITATORIA BLOQUE 1: INTERACCIÓN GRAVITATORIA 1.-EL MOVIMIENTO DE LOS PLANETAS A TRAVÉS DE LA HISTORIA La inteacción gavitatoia tiene una gan influencia en el movimiento de los cuepos, tanto de los que se encuentan

Más detalles

TRABAJO DE LABORATORIO Nº 2: Potencial Eléctrico Mapa de Campo Eléctrico

TRABAJO DE LABORATORIO Nº 2: Potencial Eléctrico Mapa de Campo Eléctrico Univesidad Nacional del Nodeste Facultad de Ingenieía Cáteda: Física III Pofeso Adjunto: Ing. Atuo Castaño Jefe de Tabajos Pácticos: Ing. Cesa Rey Auiliaes: Ing. Andés Mendivil, Ing. José Epucci, Ing.

Más detalles

INTRODUCCION AL ANALISIS VECTORIAL

INTRODUCCION AL ANALISIS VECTORIAL JOSÉ MILCIDEZ DÍZ, REL CSTILLO, ERNNDO VEG PONTIICI UNIVERSIDD JVERIN, DEPRTMENTO DE ÍSIC INTRODUCCION L NLISIS VECTORIL Intoducción Pate Pate 3 Pate 4 (Pate ) Donde encuente el símbolo..! conduce a una

Más detalles

VECTORES, DERIVADAS, INTEGRALES

VECTORES, DERIVADAS, INTEGRALES Física Tema 0-1 º Bachilleato Vectoes, deivadas, integales Tema 0 VECTORES, DERIVADAS, INTEGRALES 1.- Vectoes. Componentes de un vecto.- Suma y difeencia de vectoes 3.- Poducto de un vecto po un númeo

Más detalles

IES Al-Ándalus. Dpto. Física y Química. F.Q. 1º Bachillerato. Tema 6: Descripción del movimiento - 1 -

IES Al-Ándalus. Dpto. Física y Química. F.Q. 1º Bachillerato. Tema 6: Descripción del movimiento - 1 - IES Al-Ándalus. Dpto. Física y Química. F.Q. 1º Bachilleato. Tema 6: Descipción del movimiento - 1 - TEMA 6: DESCRIPCIÓN DEL MOVIMIENTO DE UNA PARTÍCULA 6.1 Concepto de movimiento. Sistema de efeencia.

Más detalles

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría Apéndices Apéndice 1. Intoducción al cálculo vectoial Apéndice. Tabla de deivadas y de integales inmediatas Apéndice 3. Apéndice 4. Ecuaciones de la tigonometía Sistema peiódico de los elementos Apéndice

Más detalles

Es el producto escalar de la fuerza aplicada al cuerpo por el vector r r Por lo tanto es una magnitud escalar.

Es el producto escalar de la fuerza aplicada al cuerpo por el vector r r Por lo tanto es una magnitud escalar. TRABAJO Y ENERGÍA TRABAJO Es el poducto escala de la fueza aplicada al cuepo po el vecto desplazamiento. Po lo tanto es una magnitud escala. W = F.D = F.D. cos a Su unidad en el sistema intenacional es

Más detalles

Campo eléctrico. Introducción a la Física Ambiental. Tema 7. Tema 7.- Campo eléctrico.

Campo eléctrico. Introducción a la Física Ambiental. Tema 7. Tema 7.- Campo eléctrico. Campo eléctico. Intoducción a la Física Ambiental. Tema 7. Tema7. IFA (Pof. RAMOS) 1 Tema 7.- Campo eléctico. El campo eléctico: unidades. Líneas del campo eléctico. Potencial eléctico: unidades. Fueza

Más detalles

UNIDAD Nº 2 VECTORES Y FUERZAS

UNIDAD Nº 2 VECTORES Y FUERZAS UNIVERSIDAD DE SANTIAGO DE CHILE DEPARTAMENTO DE FISICA FISICA EXPERIMENTAL PLAN ANUAL INGENIERIA FISICA 1 e SEMESTRE 2012 UNIDAD Nº 2 VECTORES Y FUERZAS OBJETIVOS Medi el módulo de un vecto fueza usando

Más detalles

Ecuación de Laplace y Ecuación de Poisson Teorema de Unicidad. Métodos de las Imágenes. Campos y Ondas UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA

Ecuación de Laplace y Ecuación de Poisson Teorema de Unicidad. Métodos de las Imágenes. Campos y Ondas UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA Electostática táti Clase 3 Ecuación de Laplace y Ecuación de Poisson Teoema de Unicidad. Métodos de las Imágenes Campos y Ondas FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA 2 E V m

Más detalles

IES Fco Ayala de Granada Junio de 2014 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 2 opción A, modelo_1 Junio 2014

IES Fco Ayala de Granada Junio de 2014 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 2 opción A, modelo_1 Junio 2014 IES Fco Ayala de Ganada Junio de 014 (Modelo 1) Soluciones Gemán-Jesús Rubio Luna Opción A Ejecicio 1 opción A, modelo_1 Junio 014 Sea f : R R definida po f(x) x + ax + bx + c. [1 7 puntos] Halla a, b

Más detalles

I.E.S. Al-Ándalus. Dpto. de Física-Química. Física 2º Bachillerato. Tema 2. Int. Gravitatoria - 1 - TEMA 2: INTERACCIÓN GRAVITATORIA

I.E.S. Al-Ándalus. Dpto. de Física-Química. Física 2º Bachillerato. Tema 2. Int. Gravitatoria - 1 - TEMA 2: INTERACCIÓN GRAVITATORIA I.E.. l-ándalus. Dpto. de Física-Química. Física º achilleato. Tema. Int. Gavitatoia - 1 - TE : INTECCIÓN GVITTOI.1 Inteacción avitatoia; ley de avitación univesal. Campo y potencial avitatoios; eneía

Más detalles

Física General III Ley de Gauss Optaciano Vásquez García CAPITULO III LEY DE GAUSS

Física General III Ley de Gauss Optaciano Vásquez García CAPITULO III LEY DE GAUSS Física Geneal III Ley de Gauss Optaciano Vásquez Gacía CAPITULO III LY D GAUSS 9 Física Geneal III Ley de Gauss Optaciano Vásquez Gacía 3.1 INTRODUCCIÓN n el capitulo anteio apendimos el significado del

Más detalles

TEMA PRELIMINAR. Los sistemas de representación son objeto de estudio en la geometría descriptiva, la cual se fundamenta en la geometría proyectiva.

TEMA PRELIMINAR. Los sistemas de representación son objeto de estudio en la geometría descriptiva, la cual se fundamenta en la geometría proyectiva. TEMA PRELIMINAR 1. Sistemas de Repesentación y Geometía. En esta pate de la intoducción, se tata de encuada el estudio de los sistemas de epesentación dento de lo que es la geometía. Paa ello se va a intenta

Más detalles

6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS

6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS 6.. Gáficas de ectas usando m b Po ejemplo, paa gafica la ecta Maca el valo de b (odenada al oigen) sobe el eje, es deci el punto (0,). A pati de ese punto, como la pendiente es, se toma una unidad a la

Más detalles

2.4 La circunferencia y el círculo

2.4 La circunferencia y el círculo UNI Geometía. La cicunfeencia y el cículo. La cicunfeencia y el cículo JTIVS alcula el áea del cículo y el peímeto de la cicunfeencia. alcula el áea y el peímeto de sectoes y segmentos ciculaes. alcula

Más detalles

Deflexión de rayos luminosos causada por un cuerpo en rotación

Deflexión de rayos luminosos causada por un cuerpo en rotación 14 Defleión de ayos luminosos causada po un cuepo en otación 114 Intoducción Cuando un ayo luminoso pasa po la cecanía de un cuepo se ve obligado a abandona su tayectoia ectilínea y cuvase más o menos

Más detalles

Dinámica. Principio de Inercia

Dinámica. Principio de Inercia Dinámica Hemos estudiado algunos de los distintos tipos de movimientos que existen en la natualeza. Ahoa, llegó el momento de explica po qué se poducen éstos movimientos, y de esto se encaga la dinámica.

Más detalles

BLOQUE II - CUESTIONES Opción A Explica mediante un ejemplo el transporte de energía en una onda. Existe un transporte efectivo de masa?

BLOQUE II - CUESTIONES Opción A Explica mediante un ejemplo el transporte de energía en una onda. Existe un transporte efectivo de masa? EXAMEN COMPLETO El alumno ealizaá una opción de cada uno de los bloques La puntuación máxima de cada poblema es de puntos, y la de cada cuestión es de 1,5 puntos. BLOQUE I Un satélite atificial de 500

Más detalles

2.7 Cilindros, conos, esferas y pirámides

2.7 Cilindros, conos, esferas y pirámides UNIDAD Geometía.7 Cilindos, conos, esfeas y piámides 58.7 Cilindos, conos, esfeas y piámides OBJETIVOS Calcula el áea y el volumen de cilindos, conos, esfeas y piámides egulaes Resolve poblemas de solidos

Más detalles

www.fisicaeingenieria.es Vectores y campos

www.fisicaeingenieria.es Vectores y campos www.fisicaeingenieia.es Vectoes y campos www.fisicaeingenieia.es www.fisicaeingenieia.es ) Dados los vectoes a = 4$ i + 3$ j + k$ y c = $ i + $ j 7k$, enconta las componente de oto vecto unitaio, paa que

Más detalles

ELECTRICIDAD MODULO 2

ELECTRICIDAD MODULO 2 .Paniagua Física 20 ELECTRICIDD MODULO 2 Enegía Potencial Eléctica nalicemos la siguiente situación física: una patícula q 0 cagada elécticamente se mueve desde el punto al punto B. Estos puntos están

Más detalles

CAMPO ELÉCTRICO. r r. r Q Q. 2 r K = 2 u r. La fuerza que experimenta una carga Q debido a la acción del campo creado por una carga Q es:

CAMPO ELÉCTRICO. r r. r Q Q. 2 r K = 2 u r. La fuerza que experimenta una carga Q debido a la acción del campo creado por una carga Q es: CAMPO ELÉCTRICO Camp eléctic Es la egión del espaci que se ve petubada p la pesencia de caga cagas elécticas. Las caacteísticas más imptantes de la caga eléctica sn: - La caga eléctica se cnseva. - Está

Más detalles

100 Cuestiones de Selectividad

100 Cuestiones de Selectividad Física de º Bachilleato 100 Cuestiones de Selectividad 1.- a) Explique qué se entiende po velocidad de escape y deduzca azonadamente su expesión. (And-010-P1) La velocidad de escape es la mínima velocidad

Más detalles

El campo eléctrico(i):ley de Coulomb

El campo eléctrico(i):ley de Coulomb El campo eléctico(i):ley de Coulomb La ley que ige el compotamiento de las cagas elécticas, es la ley de Coulomb, es como la ley de gavitación, una fueza a distancia ya que no se necesita ligadua física

Más detalles

a) Si t es el tiempo de caída de la piedra, 3,5-t será el tiempo de subida. El espacio recorrido por 1 2 1 la piedra y el sonido son iguales: ssonido

a) Si t es el tiempo de caída de la piedra, 3,5-t será el tiempo de subida. El espacio recorrido por 1 2 1 la piedra y el sonido son iguales: ssonido PRUEBAS DE ACCESO A LA UNIVERSIDAD Diciembe de 006 Cantabia, Oviedo, Castilla-León UNIVERSIDAD DE CANTABRIA - LOGSE - JUNIO 00 F Í S I C A INDICACIONES AL ALUMNO 1. El alumno elegiá tes de las cinco cuestiones

Más detalles

CAMPO GRAVITATORIO FCA 05 ANDALUCÍA

CAMPO GRAVITATORIO FCA 05 ANDALUCÍA CAPO GRAVIAORIO FCA 05 ANDALUCÍA 1. Un satélite descibe una óbita cicula alededo de la iea. Conteste azonadaente a las siguientes peguntas: a) Qué tabajo ealiza la fueza de atacción hacia la iea a lo lago

Más detalles

IES Al-Ándalus. Dpto. Física y Química. Curso 2004/05 Física 2º Bachillerato - 1 -

IES Al-Ándalus. Dpto. Física y Química. Curso 2004/05 Física 2º Bachillerato - 1 - IS Al-Ándalus. Dpto. Física y Quíica. Cuso 4/5 Física º Bachilleato - - FÍSICA º BACHIAO. XA AS 4, 5 - - 5 OPCIÓ A:. a) Caacteísticas de la inteacción anética. Difeencias con la inteacción electostática.

Más detalles

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el /5 Conceptos pevios PRODUCTO VECTORIAL DE DO VECTORE. Es oto vecto cuyo módulo viene dado po: a b a b senα. u diección es pependicula al plano en el ue se encuentan los dos vectoes y su sentido viene dado

Más detalles

PRINCIPADO DE ASTURIAS / SEPTIEMBRE 04. LOGSE / FÍSICA / EXAMEN COMPLETO

PRINCIPADO DE ASTURIAS / SEPTIEMBRE 04. LOGSE / FÍSICA / EXAMEN COMPLETO PINCIPADO D ASUIAS / SPIM 04. LOGS / FÍSICA / XAMN COMPLO XAMN COMPLO PUAS D APIUD PAA L ACCSO A LA UNIVSIDAD LOGS Cso 00-004 FÍSICA l almno elegiá CUAO de las seis opciones popestas Opción.- Demosta qe

Más detalles

Sustituyendo los valores que nos da el problema obtenemos el siguiente valor para la fuerza:

Sustituyendo los valores que nos da el problema obtenemos el siguiente valor para la fuerza: 1. Caga eléctica 2. Fueza electostática 3. Campo eléctico 4. Potencial electostático 5. Enegía potencial electostática 6. Repesentación de campos elécticos 7. Movimiento de cagas elécticas en el seno de

Más detalles

TEMA 3 MOVIMIENTO CIRCULAR Y GRAVITACIÓN UNIVERSAL

TEMA 3 MOVIMIENTO CIRCULAR Y GRAVITACIÓN UNIVERSAL EMA 3 MOIMIENO CICULA Y GAIACIÓN UNIESAL El movimiento cicula unifome (MCU) Movimiento cicula unifome es el movimiento de un cuepo que tiene po tayectoia una cicunfeencia y descibe acos iguales en tiempos

Más detalles

Cinética de partículas: segunda ley de Newton

Cinética de partículas: segunda ley de Newton bee76985_ch12.xd 23/10/06 5:44 PM Página 691 PÍTUL12 inética de patículas: segunda ley de Newton uando un automóvil se desplaza sobe el tamo cuvo de una pista de caeas, está sujeto a una componente de

Más detalles

9. GRAVITACIÓN. 9. Gravitación

9. GRAVITACIÓN. 9. Gravitación 9. Gavitación 9. GAVIACIÓN a ey Univesal de la Gavitación Desde la más emota antigüedad se sabe que los cuepos caen poque una fueza los atae hacia abajo: el peso. Sin embago pasó mucho tiempo hasta que

Más detalles

Leyes de Kepler Movimiento de masas puntuales en las proximidades de la superficie terrestre Satélites. Velocidad orbital y velocidad de escape.

Leyes de Kepler Movimiento de masas puntuales en las proximidades de la superficie terrestre Satélites. Velocidad orbital y velocidad de escape. TEM : INTERCCIÓN GRVITTORI PRTE Genealización del concepto de tabajo a una fueza vaiable. Teoema del tabajo y la enegía cinética. Fuezas consevativas. Enegía potencial asociada a una fueza consevativa.

Más detalles

EL ESPACIO VECORIAL MAGNITUDES VECTORIALES

EL ESPACIO VECORIAL MAGNITUDES VECTORIALES EL ESPACIO VECORIAL MAGNITUDES VECTORIALES Son las que paa queda pefectamente definidas es necesaio da: - Punto de aplicación - Diección - Sentido - Módulo o valo del VECTOR MODULO Y COSENOS DIRECTORES

Más detalles

CONTENIDO Capítulo II.2 Campo y Potencial Eléctrico...2

CONTENIDO Capítulo II.2 Campo y Potencial Eléctrico...2 CONTENIDO Capítulo II. Campo y Potencial Eléctico... II.. Definición de campo eléctico... II.. Campo poducido po vaias cagas discetas...4 II..3 Campo eléctico poducido po una distibución de caga continua...4

Más detalles

[1] que podemos escribir como:

[1] que podemos escribir como: ema 3 abajo y Enegía 3.1. abajo, enegía y otencia. 3.1.1. Enegía y tabajo mecánico. En Mecánica los concetos de tabajo y enegía son muy útiles aa esolve oblemas dinámicos en los que las fuezas vienen dadas

Más detalles

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES.- Halla dos númeos que sumados den cuo poducto sea máimo. Sean e los númeos buscados. El poblema a esolve es el siguiente: máimo Llamamos p al poducto de los dos

Más detalles

ALGUNAS DEMOSTRACIONES DE FÍSICA

ALGUNAS DEMOSTRACIONES DE FÍSICA ALGUNAS DEMOSTACONES DE FÍSCA NDCE. Coodenadas de la velocidad y de la aceleación. Ley del péndulo simple 4 3. Estudio de un muelle 5 4. Composición de movimientos vibatoios amónicos 6 5. ntefeencia de

Más detalles

Aplicación 2: Diversificación de las inversiones (problema de selección de cartera)

Aplicación 2: Diversificación de las inversiones (problema de selección de cartera) Aplicación : Divesificación de las invesiones (poblema de selección de catea) Hecho empíico: Cuanto mayo es el valo espeado (endimiento) de una invesión NO es cieto que sea más apetecible. (Si invesoes

Más detalles

Física 2º Bacharelato

Física 2º Bacharelato Física º Bachaelato Gavitación 19/01/10 DEPARAMENO DE FÍSICA E QUÍMICA Nombe: 1. Calcula la pimea velocidad obital cósmica, es deci la velocidad que tendía un satélite de óbita asante.. La masa de la Luna

Más detalles

INDUCCIÓN ELECTROMAGNÉTCA Y ENERGÍA DEL CAMPO MAGNÉTICO

INDUCCIÓN ELECTROMAGNÉTCA Y ENERGÍA DEL CAMPO MAGNÉTICO NDUCCÓN EECTROMAGNÉTCA Y ENERGÍA 1. ey de inducción de Faaday. ey de enz.. Ejemplos: fem de movimiento y po vaiación tempoal de. 3. Autoinductancia. 4. Enegía magnética. OGRAFÍA:. DE CAMPO MAGNÉTCO -Tiple-Mosca.

Más detalles

CINEMÁTICA DE LA PARTICULA

CINEMÁTICA DE LA PARTICULA CAPITULO I CINEMÁTICA DE LA PARTICULA "La natualeza es una esfea infinita cuyo cento está en todas pates y su cicunfeencia en ninguna" Blas Pascal Pensamientos. "No definié tiempo, espacio y movimiento

Más detalles

INTERACCIÓN ELECTROMAGNÉTICA ELECTROMAGNETISMO. Campo magnético creado por un conductor

INTERACCIÓN ELECTROMAGNÉTICA ELECTROMAGNETISMO. Campo magnético creado por un conductor TERACCÓ ELECTROMAGÉTCA ELECTROMAGETSMO ES La Magdalena. Avilés. Astuias La unión electicidad-magnetismo tiene una fecha: 180. Ese año Oested ealizó su famoso expeimento (ve figua) en el cual hacía cicula

Más detalles

2. CINEMATICA EL MOVIMIENTO Y SU DESCRIPCIÓN

2. CINEMATICA EL MOVIMIENTO Y SU DESCRIPCIÓN 19. CINEMATICA La descipción matemática del movimiento constituye el objeto de una pate de la física denominada cinemática. Tal descipción se apoya en la definición de una seie de magnitudes que son caacteísticas

Más detalles

A r. 1.5 Tipos de magnitudes

A r. 1.5 Tipos de magnitudes 1.5 Tipos de magnitudes Ente las distintas popiedades medibles puede establecese una clasificación básica. Un gupo impotante de ellas quedan pefectamente deteminadas cuando se expesa su cantidad mediante

Más detalles

CAMPO ELÉCTRICO 7.1. FENÓMENOS DE ELECTRIZACIÓN 7.2. LEY DE COULOMB

CAMPO ELÉCTRICO 7.1. FENÓMENOS DE ELECTRIZACIÓN 7.2. LEY DE COULOMB 7 CAMPO ELÉCTRICO 7.. FENÓMENOS DE ELECTRIZACIÓN. Un péndulo electostático es un dispositivo fomado po una esfea ligea, de mateial aislante, suspendida de un hilo de masa despeciable. Utilizando ese dispositivo,

Más detalles

Parametrizando la epicicloide

Parametrizando la epicicloide 1 Paametizando la epicicloide De la figua se obseva que cos(θ) = x 0 + ( 0 + ) cos(θ) = x sen(θ) = y 0 + ( 0 + ) sen(θ) = y po tanto las coodenadas del punto A son: A = (( 0 + ) cos(θ), ( 0 + ) sen(θ))

Más detalles

Corrección Examen 1. Andalucía 2011

Corrección Examen 1. Andalucía 2011 Coección Exaen 1. Andalucía 011 OPCIÓN A 1. a) Relación ente capo y potencial gavitatoios. Dibuje en un esquea las líneas del capo gavitatoio ceado po una asa puntual M. Una asa, situada en un punto A,

Más detalles

GEOMETRÍA. punto, la recta y el plano.

GEOMETRÍA. punto, la recta y el plano. MISIÓN 011-II GEMETRÍ STUS GEMETRÍ a geometía es la ama de las Matemáticas que tiene po objeto el estudio de las figuas geométicas. Se denomina figua geomética a cualquie conjunto no vacío de puntos del

Más detalles

LAS FUERZAS Y SUS EFECTOS. DINÁMICA DEL PUNTO MATERIAL.

LAS FUERZAS Y SUS EFECTOS. DINÁMICA DEL PUNTO MATERIAL. Física 1º bachilleato LAS FUERZAS Y SUS EFECTOS. DINÁMICA DEL PUNTO MATERIAL. 1.- Concepto de fueza. Tipos. Composición y descomposición de fuezas..- Fuezas y defomaciones. 3.- del punto mateial. Genealidades.

Más detalles

MAGNITUDES VECTORIALES:

MAGNITUDES VECTORIALES: Magnitudes ectoiales MAGNITUDES VECTORIALES: Índice 1 Magnitudes escalaes ectoiales Suma de ectoes libes Poducto de un escala po un ecto 3 Sistema de coodenadas ectoiales. Vectoes unitaios 3 Módulo de

Más detalles

I MAGNITUDES Y MEDIDAS

I MAGNITUDES Y MEDIDAS I MAGNITUDES Y MEDIDAS 1. MAGNITUDES Se llama magnitud a cualquie caacteística de un cuepo que se puede medi y expesa como una cantidad. Así, son magnitudes la altua de un cuepo, la tempeatua, y no son

Más detalles

FÍSICA UNIDAD TEMÁTICA I: Introducción a la Física. Conceptos Elementales. 1.3.- Unidades y Medidas. Sistemas de Unidades.

FÍSICA UNIDAD TEMÁTICA I: Introducción a la Física. Conceptos Elementales. 1.3.- Unidades y Medidas. Sistemas de Unidades. UNIDAD TEMÁTICA I: Intoducción a la Física. Conceptos Elementales. 1.- ÍNDICE. 1.1.- Intoducción a la Física. 1.2.- Magnitudes Físicas. 1.3.- Unidades y Medidas. Sistemas de Unidades. 1.4.- Ecuación de

Más detalles

0.2.4 Producto de un escalar por un vector. Vector unitario. 0.3 Vectores en el sistema de coordenadas cartesianas.

0.2.4 Producto de un escalar por un vector. Vector unitario. 0.3 Vectores en el sistema de coordenadas cartesianas. VECTORES, OPERCIONES ÁSICS. VECTORES EN EL SISTEM DE C. CRTESINS 0.1 Vectoes escalaes. 0. Opeaciones básicas: 0..1 Suma de vectoes. 0.. Vecto opuesto. 0..3 Difeencia de vectoes. 0..4 Poducto de un escala

Más detalles

Primer Periodo ELEMENTOS DE TRIGONOMETRIA

Primer Periodo ELEMENTOS DE TRIGONOMETRIA Matemática 10 Gado. I.E. Doloes Maía Ucós de Soledad. INSEDOMAU Pime Peíodo Pofeso: Blas Toes Suáez. Vesión.0 Pime Peiodo ELEMENTOS DE TRIGONOMETRIA Indicadoes de logos: Conveti medidas de ángulos en adianes

Más detalles

Tema 3. Campo eléctrico

Tema 3. Campo eléctrico Tema 3 Campo eléctico Pogama 1. Inteacción eléctica. Campo eléctico.. Repesentación mediante líneas de campo. Flujo eléctico: Ley de Gauss. 3. Enegía y potencial elécticos. Supeficies equipotenciales.

Más detalles

Elementos de la geometría plana

Elementos de la geometría plana Elementos de la geometía plana Elementos de la geometía plana El punto Los elementos básicos de la geometía plana El punto es el elemento mínimo del plano. Los otos elementos geométicos están fomados po

Más detalles

MÉTODO DE ESTUDIO DE LA ASIGNATURA

MÉTODO DE ESTUDIO DE LA ASIGNATURA MÉODO DE ESUDIO DE LA ASIGNAURA 1º) Estudia detenidamente el esumen teóico que se pesenta paa cada tema º) Acudi al libo de texto paa consulta aquel apatado o concepto que no se haya compendido al estudia

Más detalles

CAPITULO 2. MOVIMIENTO EN UNA DIMENSION.

CAPITULO 2. MOVIMIENTO EN UNA DIMENSION. Cap. Movimiento en una dimensión. CAPITULO. MOVIMIENTO EN UNA DIMENSION. La cinemática es la ama de la mecánica que estudia la geometía del movimiento. Usa las magnitudes fundamentales longitud, en foma

Más detalles

GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO

GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO GALICIA / JUNIO 3. LOGSE / FÍSICA / EXAMEN COMPLEO El examen de física de las P.A.U. pesenta dos opciones de semejante nivel de dificultad. Cada opción consta de tes pates difeentes(poblemas, cuestiones

Más detalles

Electrostática. Ley de Coulomb. r r (E.1) r r

Electrostática. Ley de Coulomb. r r (E.1) r r ELECTRICIDAD Y MAGNETISMO v.1.4 Notas de clase del Pof. D. R.Tinivella. Se ponen a disposición de los alumnos como una guía de estudio peo no eemplazan el uso de un libo de texto. Se agadeceá al lecto

Más detalles

MODELADO DEL FLUJO EN UNA PLANTA DE TRATAMIENTO DE AGUA

MODELADO DEL FLUJO EN UNA PLANTA DE TRATAMIENTO DE AGUA MODELADO DEL FLUJO EN UNA PLANTA DE TRATAMIENTO DE AGUA Raymundo López, Juan Moales, Alen Díaz, Mabel Vaca, Aaceli Laa y Atuo Lizadí. Univesidad Autónoma Metopolitana- Azcapotzalco Depatamento de Enegía,

Más detalles

5 Procedimiento general para obtener el esquema equivalente de un transformador

5 Procedimiento general para obtener el esquema equivalente de un transformador Pocedimiento geneal paa obtene el esquema equivalente de un tansfomado 45 5 Pocedimiento geneal paa obtene el esquema equivalente de un tansfomado En este capítulo se encontaá el esquema equivalente de

Más detalles

UNIDAD IV: CAMPO MAGNETICO

UNIDAD IV: CAMPO MAGNETICO UNNE Facultad de Ingenieía UNIDAD IV: CAMPO MAGNETICO Antecedentes. Inducción magnética. Líneas de inducción. Flujo magnético. Unidades. Fuezas magnéticas sobe una caga y una coiente eléctica. Momento

Más detalles

CAMPO GRAVITATORIO FCA 07 ANDALUCÍA

CAMPO GRAVITATORIO FCA 07 ANDALUCÍA CAO GAVIAOIO FCA 07 ANDAUCÍA 1. Un satélite atificial de 500 kg obita alededo de la una a una altua de 10 km sobe su supeficie y tada hoas en da una uelta completa. a) Calcule la masa de la una, azonando

Más detalles

Física General III Potencial Eléctrico Optaciano Vásquez García CAPITULO IV POTENCIAL ELÉCTRICO

Física General III Potencial Eléctrico Optaciano Vásquez García CAPITULO IV POTENCIAL ELÉCTRICO Física Geneal III Potencial Eléctico Optaciano ásuez Gacía CPITULO I POTENCIL ELÉCTICO 136 Física Geneal III Potencial Eléctico Optaciano ásuez Gacía 4.1 INTODUCCIÓN. Es sabido ue todos los objetos poseen

Más detalles

Colegio Nuestra Señora de los Ángeles Curso 2015-2016

Colegio Nuestra Señora de los Ángeles Curso 2015-2016 Colegio Nuesta Señoa de los Ángeles Cuso 05-06 Almudena de la Fuente, 05 ÍNDICE TEMA : VIBRACIONES Y ONDAS. Movimiento amónico simple 3. Movimiento ondulatoio 3. Ondas sonoas 8 TEMA : ÓPTICA. Natualeza

Más detalles