GUÍA DE APOYO PARA TRABAJO COEF. 2 SEGUNDO AÑO MEDIO TRABAJO Y ENERGÍA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "GUÍA DE APOYO PARA TRABAJO COEF. 2 SEGUNDO AÑO MEDIO TRABAJO Y ENERGÍA"

Transcripción

1 Liceo N 1 de niñas Javiera Carrera Departamento de Física. Prof.: L. Lastra- M. Ramos. GUÍA DE APOYO PARA TRABAJO COEF. 2 SEGUNDO AÑO MEDIO TRABAJO Y ENERGÍA Estimada alumna la presente guía corresponde a la unidad de aprendizaje N 3: ENERGÍA MECÁNICA Tema 1: Trabajo Mecánico y Energía cinética 1.1 Definición de Trabajo. 1.2 El concepto de energía y su relación con el trabajo 1.3 Energía cinética y energía potencial( Ley de conservación de energía) 1.4 Relación entre trabajo y energía cinética: Teorema del trabajo y la energía. 1.5 Potencia. Indicadores de logros. Proceso de la dimensión cognitiva Defino los procesos de trabajo, potencia y energía. Identifico el tipo de energía mecánica que posee un cuerpo. Diferencio fuerzas internas, externas, conservativas y no conservativas. Identifico choques elásticos o inelásticos. La física como resolución de problemas. Resuelvo problemas sobre trabajo, energía y potencia. Aplico el principio de conservación de energía mecánica en la resolución de problemas. Resuelvo problemas de aplicación del M.A.S. La física como razonamiento. Uso modelos y hechos conocidos para explicar las leyes de la conservación de la energía y cantidad de movimiento. Hago uso de estructuras conceptuales para explicar y analizar la energía de un sistema. La física como aplicación. Uso los conceptos de trabajo, potencia y principios de conservación para explicar eventos de la vida diaria. Utilizo los conceptos de trabajo, potencia y energía en el funcionamiento de máquinas. Relaciono los conceptos de energía y trabajo con mi quehacer diario. Procesos de la dimensión comunicativa. Explico con mis propias palabras conceptos relacionados con energía, trabajo, potencia conservadora de la energía y la cantidad de movimiento. Reconozco múltiples fuentes de información sobre diferentes clases de energía. Proceso de la dimensión actitudinal y valórica. Cumplo con los trabajos y tareas asignados. Busco nuevas formas de resolver dificultades en mis actividades académicas. 1

2 Introducción: James Prescott Joule ( ): Físico británico, a quien se le debe la teoría mecánica del calor, y en cuyo honor la unidad de la energía en el sistema internacional recibe el nombre de Joule. James Prescott Joule nació en el seno de una familia dedicada a la fabricación de cervezas. De carácter tímido y humilde, recibió clases particulares en su propio de hogar de física y matemáticas, siendo su profesor el químico británico John Dalton; compaginaba estas clases con su actividad profesional, trabajando junto a su padre en la destilería, la cual llegó a dirigir. Dalton le alentó hacia la investigación científica y realizó sus primeros experimentos en un laboratorio cercano a la fabrica de cervezas, formándose a la vez en la Universidad de Manchester. Joule estudió aspectos relativos al magnetismo, especialmente los relativos a la imantación del hierro por la acción de corrientes eléctricas, que le llevaron a la invención del motor eléctrico. Descubrió también el fenómeno de magnetostricción, que aparece en los materiales ferromagnéticos, en los que su longitud depende de su estado de magnetización. Pero el área de investigación más fructífera de Joule es la relativa a las distintas formas de energía: con sus experimentos verifica que al fluir una corriente eléctrica a través de un conductor, éste experimenta un incremento de temperatura; a partir de ahí dedujo que si la fuente de energía eléctrica es una pila electroquímica, la energía habría de proceder de la transformación llevada a cabo por las reacciones químicas, que la convertirían en energía eléctrica y de esta se transformaría en calor. Si en el circuito se introduce un nuevo elemento, el motor eléctrico, se origina energía mecánica. Ello le lleva a la enunciación del principio de conservación de la energía, y aunque hubo otros físicos de renombre que contribuyeron al establecimiento de este principio como Meyer, Thomson y Helmholtz, fue Joule quien le proporcionó una mayor solidez. TRABAJO MECÁNICO (W) El trabajo mecánico efectuado por una fuerza F se define de la siguiente manera: Supongamos una fuerza F que actúa sobre un cuerpo. Este experimenta un desplazamiento vectorial s. La componente de F en la dirección de s es F cos α. El trabajo W efectuado por la fuerza F se define como el producto de la componente F en la dirección del desplazamiento, multiplicada por el desplazamiento. Es decir: Nótese que α es el ángulo entre la fuerza y el vector desplazamiento. El trabajo mecánico es una cantidad escalar. Si F y s están en la misma dirección y sentido cos α = cos 0º = 1 y el trabajo es, W = Fs. Si F y s están en la misma dirección pero en sentidos opuestos entonces; cos α = cos 180º = -1 y W = -Fs, y el trabajo es negativo. Fuerzas como la fricción (roce) a menudo disminuyen el movimiento de los cuerpos y su sentido es opuesto al desplazamiento. En tales casos efectúa un trabajo negativo. 2

3 UNIDAD DE MEDIDA DE TRABAJO MECÁNICO En el sistema internacional es el Newton x Metro llamado Joule (J). Un Joule es el trabajo realizado por una fuerza de 1N cuando el objeto se desplaza 1 m en la dirección de la fuerza. POTENCIA La potencia es la rapidez con que se realiza un trabajo. Operacionalmente se define la potencia cómo el cuociente entre el trabajo realizado por una fuerza y el tiempo que le tomó a esa fuerza realizar ese trabajo. Es decir: Trabajo realizado por la fuerza Potencia promedio = = Fuerza * velocidad Tiempo necesario para realizarlo Donde velocidad representa la componente de la velocidad del objeto, en la dirección de la fuerza que se le aplica. En forma equivalente, podría tomarse el producto de la velocidad del objeto y la componente de la fuerza aplicada en la dirección de la velocidad. En el sistema internacional (SI), la unidad de potencia es el WATT (W), donde ENERGÍA MECÁNICA 1W = 1 J / s La energía mecánica de un cuerpo es su capacidad para efectuar un trabajo mecánico. Por consiguiente, la emergía de un cuerpo se mide en función del trabajo que pueda desarrollar. Así, cuando un objeto realiza un trabajo, la perdida de energía del cuerpo es igual al trabajo efectuado. El trabajo y la energía tienen las mismas unidades, se miden en Joules. La energía, al igual que el trabajo, es una cantidad escalar. Un objeto es capaz de realizar un trabajo si posee energía. ENERGÍA CINÉTICA ( E C ) La Energía cinética de un cuerpo es la energía (o capacidad de realizar un trabajo) que posee un objeto debido a su movimiento. Sin un objeto de masa m tiene velocidad v, su energía cinética translacional está dada por: E C = ½ m v 2 Cuando m está dado en Kg. y v en m/s, la unidad de energía cinética es Joules LA ENERGÍA POTENCIAL GRAVITATORIA (E PG ) La energía potencial gravitatoria es la energía que posee un cuerpo debido a su posición en el campo gravitatorio. Un cuerpo de masa m, al caer una distancia vertical h, puede realizar un trabajo de magnitud mgh. La energía potencial gravitatoria de un objeto se define con respecto a un nivel arbitrario cero, el cual a menudo es la superficie de la tierra. Si un objeto está a una altura h sobre el nivel cero (o de referencia), se tiene que: E PG = M g h Donde g es la aceleración de gravedad. Adviértase que m g es el peso del objeto. La unidad de energía potencial gravitatoria es el joules, cuando la masa está medida en K g, g está en m/s 2 y h está en metros. 3

4 ENERGÍA POTENCIAL ELÁSTICA (E PE ) Un cuerpo unido al extremo de un resorte deformado (comprimido o estirado) posee energía potencial elástica, pues el resorte deformado ejerce una fuerza sobre el cuerpo, la cual realiza sobre el objeto un trabajo cuando lo soltamos. Pero si intentamos comprimir el resorte, se puede observar que reacciona a la compresión con una fuerza cuyo valor crece conforme se va comprimiendo el resorte. Para calcular el trabajo que el resorte realiza sobre el cuerpo fijado en su extremo, debemos, en primer lugar, saber cómo cambia la fuerza ejercida por el muelle (resorte), la cual es la siguiente: Fuerza ejercida por un resorte deformado. La fuerza ejercida por un resorte deformado es directamente proporcional a su deformación. Es decir: F α X donde X es la deformación del resorte. Este resultado se conoce cómo Ley de Hooke pues fue Robert Hooke, un científico inglés, quien observa por primera vez esta propiedad de los resortes (en estricto rigor, esta ley sólo es verdadera si las deformaciones del resorte no son muy grandes). Como F α X, se puede escribir: F = k X Donde K es una constante de proporcionalidad distinta para cada resorte, que se denomina constante elástica. Al trazar la grafica F en función de X, se obtiene una recta que pasa por el origen y cuya pendiente es igual a k. Calculo de la energía potencial elástica Consideremos un resorte cuya constante elástica es k, en el que se produce una deformación X y que tiene un cuerpo unido a él. La energía potencial elástica del cuerpo en esta posición, se puede determinar por el trabajo que el resorte realizará sobre él al empujarlo hasta la posición en la cual el resorte no presenta deformación. Este trabajo está dado por la expresión: W = ½ k X 2 Por consiguiente, la expresión de la energía potencial elástica es: EP = ½ k X 2 Obsérvese que la EP elástica será más alta, cuando mayor sea la constante del resorte, y cuando mayor sea su deformación. PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA MECÁNICA Se denomina Energía Mecánica total de un cuerpo en un punto a la suma de la energía cinética y potencial (Elástica o Gravitatoria) del cuerpo en ese punto, es decir: 4

5 E = E c + E p. A partir de lo anterior se expresa el principio de conservación de la energía mecánica como: Si solo fuerzas conservativas actúan sobre un cuerpo en movimiento, su energía mecánica total permanece constante para cualquier punto de su trayectoria, o sea la energía mecánica del cuerpo se conserva. CONVERSIÓN TRABAJO ENERGÍA Cuando una fuerza efectúa un trabajo sobre un objeto, la energía de éste debe incrementarse en la misma cantidad (o disminuir si el trabajo es negativo). Cuando un objeto pierde energía de algún tipo, debe experimentar un incremento igual de energía de cualquier forma, o desarrollar una cantidad igual de trabajo. EJERCICIOS DE DESARROLLO 1. Un bloque se desplaza 12 m sobre la superficie horizontal en que se apoya, al actuar sobre él una fuerza de 250 N. Calcular el trabajo realizado por la fuerza: a) Si tiene la misma dirección y sentido del movimiento b) Si forma un ángulo de 45º con el desplazamiento c) Si forma un ángulo de 90º con el desplazamiento 2. En el ejercicio anterior, si el trabajo se realiza en 6 segundos, determinar la potencia mecánica media en KW y HP. 3. Una persona de 70 kg, sube hasta una altura de 20 metros a) Calcular el trabajo mecánico realizado por ella. b) Efectúa el mismo trabajo si sube por una escalera inclinada que si lo hace por una escalera vertical? 4. Una vagoneta de 150 kg de masa se encuentra en una vía recta horizontal. Calcula el trabajo mecánico y la potencia desarrollada en los siguientes casos a y b; a) Se empuja la vagoneta con una fuerza de 100 N en la dirección de la vía, recorriendo 5 m en 10 s. b) Se ejerce una fuerza de 100 N que forma un ángulo de 45º con la vía, de modo que recorra 7 m en 20 s. 5. Un trabajador de una construcción sube, con velocidad constante, un cuerpo de 20 kg de masa hasta una altura de 3 metros, empleando 10 segundos en esta operación. a) Cuál es el valor de la fuerza F que el trabajador debe ejercer para que el cuerpo suba con velocidad constante?(considere g = 10 m / s 2 ) b) Cuál es el trabajo mecánico que el trabajador realiza en esta operación? c) Cuál es la potencia desarrollada por el trabajador? 6. Suponga que en el ejercicio anterior, el trabajador levanta el mismo cuerpo, hasta la misma altura y en el mismo tiempo anterior, pero usando una rampa de 5 metros de longitud. Sise desprecian las fuerzas de roce y se considera a g = 10 m / s 2. a) Cuál es la fuerza que debe ejercer el trabajador para que el cuerpo suba con velocidad constante? b) Cuál es el trabajo realizado por el operario para subir el cuerpo? c) Qué potencia desarrolló el operario en este caso? 7. Una grúa sube, en 3 segundos y con velocidad constante, un saco de trigo de 60 kg, desde el suelo hasta la rampa de un camión, ubicada a 2 metros del suelo. Si se considera g = 10 m / s 2. a) Cuál es la fuerza que ejerce la grúa sobre el saco, al realizar ésta operación? b) Cuál es el trabajo realizado por la grúa? c) Qué potencia desarrolla la grúa? 5

6 8. Se arrastra un objeto sobre la horizontal con una fuerza de 75 N que tiene una dirección de 28º. Cuánto trabajo desarrolla la fuerza al tirar el objeto 8 m? 9. Un bloque se mueve hacia arriba por un plano inclinado 30º bajo la acción de tres fuerzas. La primera (F 1 ) es horizontal al plano inclinado y de 40 N de intensidad, la segunda (F 2 ) es normal al plano y de magnitud igual a 20 N. La tercera (F 3 ) es paralela al plano y de magnitud igual a 30 N. Determine el trabajo realizado por cada una de las fuerzas, cuando el bloque se mueve 80 cm hacia arriba del plano inclinado. 10. Un tanque, con capacidad de litros, está colocado a 6 m de altura, por encima de una cisterna. Una bomba que funciona durante 20 minutos, hace subir verticalmente el agua, llenando completamente el tanque en dicho tiempo. a) Cuál es el peso total del agua subida por la bomba? b) Cuál fue el trabajo total realizado por la bomba al subir el agua? c) Cuál fue la potencia desarrollada por el motor de la bomba para efectuar este trabajo? 11. La cabina de un ascensor tiene una masa de 400 Kg. y transporta 4 personas de 75 Kg. cada una. Si asciende con velocidad constante hasta una altura de 25 metros en 40 segundos, calcular: a) El trabajo realizado para subir la cabina y los pasajeros. b) La potencia media desarrollada en KW y HP. 12. Para elevar un cuerpo con una velocidad constante de 1,5 m/s se necesita un motor de 2 HP de potencia. Cuál es el peso del cuerpo? 13. Un proyectil de 24 g de masa atraviesa una plancha metálica de 2 cm. de grosor. Su velocidad a la entrada era de 400 m/s y a la salida de 120 m/s. Calcular: a) El trabajo realizado. b) La fuerza media que ejerce la plancha sobre el proyectil. 14. Un cuerpo de 2 Kg. de masa se desplaza con una velocidad de 5 m/s. a) Cuál es la energía cinética de este cuerpo? b) Qué ocurre con la energía cinética del cuerpo si la masa fuese 3 veces menor? c) Qué ocurre con la energía cinética del cuerpo si la velocidad del cuerpo fuese el doble? d) Qué ocurre con la energía cinética del cuerpo si la velocidad aumenta el doble y la masa disminuye a la cuarta parte? e) Qué ocurre con la energía cinética del cuerpo si sólo cambia la dirección de la velocidad? 15. Una bala re revolver, cuya masa es de 20 g, tiene una velocidad de 100 m/s. Dicha bala da en el tronco de un árbol y penetra en él cierta distancia, hasta que se detiene. a) Cuál era la E c de la bala antes de chocar con el árbol? b) Qué trabajo realizó la bala al penetrar en el tronco? 16. Una persona estira lentamente un resorte de constante elástica k = 200 N / m, desde su longitud inicial (sin deformación) de 50 cm., hasta que su longitud final sea de 60 cm. a) Conforme el resorte se va deformando, la fuerza que ejerce sobre la persona, aumenta, disminuye o permanece constante? b) Cuánto es la deformación X sufrida por el resorte? c) Cuál es el valor de la fuerza que el resorte ejerce sobre la persona cuando éste alcanza su deformación máxima? d) Cuál es el trabajo que efectuó la persona para deformar el resorte? 17. Un cuerpo se encuentra en el extremo de un resorte, el cual tiene una deformación X. Al aumentar la deformación del resorte a un valor 2X: a) El valor de su constante elástica, aumenta, disminuye o no varía? b) Cuántas veces mayor se vuelve la fuerza ejercida por el resorte sobre el cuerpo? c) Cuántas veces mayor se vuelve la energía potencial elástica? 18. Al colgar un cuerpo de 10 Kg., al extremo de un resorte vertical se produce un alargamiento de 6,8 cm. de este. Determinar: a) La constante elástica del resorte. b) La energía potencial almacenada. 6

7 19. Un camión de 30 T está parado al iniciarse una cuesta. Arranca y cuando se ha elevado una altura vertical de 50 metros sobre el punto de partida alcanza una velocidad de 72 km/h, tras permanecer 3 minutos en movimiento. Calcular: a) La energía mecánica adquirida por el camión. b) La potencia mecánica del motor necesaria para suministrar esa energía. 20. Entre los días 16 y 22 de julio de 1994, el cometa Shoemaker-Levy chocó con el planeta Júpiter, entrando en su atmósfera a una velocidad de 60 Km. /s. La masa de los fragmentos del cometa era comparable a la de una esfera de 27 Km. de diámetro y una densidad semejante a la del agua, es decir, de 1000 Kg. /m 3. Calcular: a) La energía del impacto. b) El costo de esa energía, tomando como referencia que el precio del KWh de origen eléctrico es de $ 55. RESPUESTAS. 1. a) T = 3000J; b) T = 2121,3 J; 11. T = Joules P = 4,375 Kw.; 5,87 H.P c) T = 0 J. 2. P = 0,5 watts, 0,67 Hp. 12. P = 994,3 N P = 0,35 watt; 0,47 Hp. 3. a) T = Joule. b) El trabajo realizado es el mismo. 13. a) T = , 2 Joules. b) F = N 4. a) T= 500 J; P=50 watts. b) T= 494,97 J; P=24,75 watts. 14. a) E c=25 Joules. b) La E c se triplica. c) La E c se cuadriplica. d) La E c no sufre alteraciones. e) el valor de la E c es el mismo, pues la energía es una magnitud escalar. 7

8 5. a) F= 200 N. b) T=600 J. 15. a) E c = 100 J. b) T = 100 J. c) P=60 watts. 6. a) F= 120 N. T = 600 Joule. P = 60 watt 16. a) aumenta. b) Δ x = 10 cm. c) F = 20 N d) T= 2 joules. 7. a) F = 600 N b) T=1200 J c) P = 400 watts. 17. a) El valor de la constante elástica permanece constante. b) F aumenta al doble. c) cuatro veces. 8. T = 529,77 Joules 18. a) K = 1470, 59 N/m. b) E p = 3, 4 Joules T F1 = 32 Joules. T F2= 0 Joules. T F3=20,78 Joules 10. a) P = N 20. a) E C = 1,855 x J b) T= Joules. c) P = 100 watts 8

APUNTES DE FÍSICA Y QUÍMICA

APUNTES DE FÍSICA Y QUÍMICA Departamento de Física y Química I.E.S. La Arboleda APUNTES DE FÍSICA Y QUÍMICA 1º de Bachillerato Volumen II. Física Unidad VII TRABAJO Y ENERGÍA Física y Química 1º de Bachillerato 1.- CONCEPTO DE ENERGÍA

Más detalles

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d.

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d. C U R S O: FÍSICA COMÚN MATERIAL: FC-09 TRABAJO Y ENERGÍA La energía desempeña un papel muy importante en el mundo actual, por lo cual se justifica que la conozcamos mejor. Iniciamos nuestro estudio presentando

Más detalles

TEMA 7: TRABAJO Y ENERGÍA.

TEMA 7: TRABAJO Y ENERGÍA. Física y Química 4 ESO TRABAJO Y ENERGÍA Pág. 1 TEMA 7: TRABAJO Y ENERGÍA. DEFINICIÓN DE ENERGÍA La energía no es algo tangible. Es un concepto físico, una abstracción creada por la mente humana que ha

Más detalles

INSTITUTO NACIONAL Dpto. de Física Prof: Aldo Scapini G.

INSTITUTO NACIONAL Dpto. de Física Prof: Aldo Scapini G. GUÍA DE ENERGÍA Nombre:...Curso:... En la presente guía estudiaremos el concepto de Energía Mecánica, pero antes nos referiremos al concepto de energía, el cuál desempeña un papel de primera magnitud tanto

Más detalles

Tema 3. Trabajo y Energía

Tema 3. Trabajo y Energía Tema 3. Trabajo y Energía CONTENIDOS Energía, trabajo y potencia. Unidades SI (conceptos y cálculos) Teorema del trabajo y la energía. Energía cinética (conceptos y cálculos) Fuerzas conservativas. Energía

Más detalles

TRABAJO Y ENERGÍA. a) Calcule el trabajo en cada tramo. b) Calcule el trabajo total.

TRABAJO Y ENERGÍA. a) Calcule el trabajo en cada tramo. b) Calcule el trabajo total. TRABAJO Y ENERGÍA 1.-/ Un bloque de 20 kg de masa se desplaza sin rozamiento 14 m sobre una superficie horizontal cuando se aplica una fuerza, F, de 250 N. Se pide calcular el trabajo en los siguientes

Más detalles

INSTITUCION EDUCATIVA SAN JORGE MONTELIBANO

INSTITUCION EDUCATIVA SAN JORGE MONTELIBANO INSTITUCION EDUCATIVA SAN JORGE MONTELIBANO GUAS DE ESTUDIO PARA LOS GRADOS: 11º AREA: FISICA PROFESOR: DALTON MORALES TEMA DE LA FISICA A TRATAR: ENERGÍA I La energía desempeña un papel muy importante

Más detalles

E G m g h r CONCEPTO DE ENERGÍA - CINÉTICA - POTENCIAL - MECÁNICA

E G m g h r CONCEPTO DE ENERGÍA - CINÉTICA - POTENCIAL - MECÁNICA Por energía entendemos la capacidad que posee un cuerpo para poder producir cambios en sí mismo o en otros cuerpos. Es una propiedad que asociamos a los cuerpos para poder explicar estos cambios. Ec 1

Más detalles

IES RIBERA DE CASTILLA ENERGÍA MECÁNICA Y TRABAJO

IES RIBERA DE CASTILLA ENERGÍA MECÁNICA Y TRABAJO UNIDAD 6 ENERGÍA MECÁNICA Y TRABAJO La energía y sus propiedades. Formas de manifestarse. Conservación de la energía. Transferencias de energía: trabajo y calor. Fuentes de energía. Renovables. No renovables.

Más detalles

1erg = 10^-7 J, y la libra- pie (lb pie), donde 1lb pie = 1.355 J.

1erg = 10^-7 J, y la libra- pie (lb pie), donde 1lb pie = 1.355 J. El TRABAJO efectuado por una fuerza F se define de la siguiente manera. Como se muestra en la figura, una fuerza F actúa sobre un cuerpo. Este presenta un desplazamiento vectorial s. La componente de F

Más detalles

TRABAJO Y ENERGÍA. Campos de fuerzas

TRABAJO Y ENERGÍA. Campos de fuerzas TRABAJO Y ENERGÍA 1. Campos de fuerzas. Fuerzas dependientes de la posición. 2. Trabajo. Potencia. 3. La energía cinética: Teorema de la energía cinética. 4. Campos conservativos de fuerzas. Energía potencial.

Más detalles

TRABAJO Y ENERGÍA. F r

TRABAJO Y ENERGÍA. F r TRABAJO Y ENERGÍA. Trabajo mecánico... Trabajo de una fuerza constante... Trabajo de una fuerza variable.. Energía... Energía cinética... Energía potencial.... Energía potencial gravitatoria.... Energía

Más detalles

6 Energía mecánica y trabajo

6 Energía mecánica y trabajo 6 Energía mecánica y trabajo EJERCICIOS PROPUESTOS 6.1 Indica tres ejemplos de sistemas o cuerpos de la vida cotidiana que tengan energía asociada al movimiento. Una persona que camina, un automóvil que

Más detalles

Resumen fórmulas de energía y trabajo

Resumen fórmulas de energía y trabajo Resumen fórmulas de energía y trabajo Si la fuerza es variable W = F dr Trabajo r Si la fuerza es constante r r r W = F Δ = F Δ cosθ r Si actúan varias fuerzas r r r r r W total = Δ + F Δ + + Δ = W + W

Más detalles

TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS

TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1. CONCEPTO DE TRABAJO: A) Trabajo de una fuerza constante Todos sabemos que cuesta trabajo tirar de un sofá pesado, levantar una pila de libros

Más detalles

Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética

Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética Problema 1: Sobre un cuerpo que se desplaza 20 m está aplicada una fuerza constante, cuya intensidad es de

Más detalles

4. Trabajo y energía. La Energía

4. Trabajo y energía. La Energía 57 4 Trabajo y energía La energía es una propiedad que está relacionada con los cambios o procesos de transformación en la naturaleza Sin energía ningún proceso físico, químico o biológico sería posible

Más detalles

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N Ejercicios de dinámica, fuerzas (4º de ESO/ 1º Bachillerato): 1º Calcular la masa de un cuerpo que al recibir una fuerza de 0 N adquiere una aceleración de 5 m/s. Sol: 4 kg. º Calcular la masa de un cuerpo

Más detalles

TRABAJO Y ENERGÍA - EJERCICIOS

TRABAJO Y ENERGÍA - EJERCICIOS TRABAJO Y ENERGÍA - EJERCICIOS Hallar la energía potencial gravitatoria adquirida por un alpinista de 80 kg que escala una montaña de.00 metros de altura. Epg mgh 0,5 kg 9,8 m / s 0,8 m 3,9 J Su energía

Más detalles

Conservación de la Energía Mecánica NOMBRE: CURSO:

Conservación de la Energía Mecánica NOMBRE: CURSO: NOMBRE: CURSO: La ley de conservación de la energía mecánica nos dice que la energía de un sistema aislado de influencias externas se mantiene siempre constante, lo que ocurre es una simple transformación

Más detalles

2-Trabajo hecho por una fuerza constante

2-Trabajo hecho por una fuerza constante TRABAJO POTENCIA Y ENERGIA 1-Trabajo y Energía En el lenguaje ordinario, trabajo y energía tienen un significado distinto al que tienen en física. Por ejemplo una persona sostiene una maleta; lo que estamos

Más detalles

F Podemos imaginarnos ejemplos en que ocurra esto: donde es el ángulo formado por la fuerza. y el desplazamiento.

F Podemos imaginarnos ejemplos en que ocurra esto: donde es el ángulo formado por la fuerza. y el desplazamiento. 1-TRABAJO: En el lenguaje ordinario, al emplear el término trabajo nos referimos a todo aquello que supone un esfuerzo ya sea físico o mental y que, por tanto, produce cansancio. Sin embargo, el concepto

Más detalles

Trabajo y Energía. W = FO. xo. t t =mvo. vo= ( 1 2 m vo2 )= K, y, F z = U E = K +U. E =K + i. U i

Trabajo y Energía. W = FO. xo. t t =mvo. vo= ( 1 2 m vo2 )= K, y, F z = U E = K +U. E =K + i. U i Trabajo y Energía Trabajo vo xo=m vo xo W = FO. xo FO: Fuerza aplicada, XOes el desplazamiento. Usando la Segunda Ley de Newton: W = m t t =mvo. vo= ( 1 2 m vo2 )= K, Teorema del Trabajo y la Energía K

Más detalles

5ª GUIA DE EJERCICIOS 2º SEMESTRE 2010

5ª GUIA DE EJERCICIOS 2º SEMESTRE 2010 UNIVRSI HIL - FULT INIS - PRTMNTO FISI 5ª GUI JRIIOS 2º SMSTR 2010 NRGÍ 1.- María y José juegan deslizándose por un tobogán de superficie lisa. Usan para ello un deslizador de masa despreciable. mbos parten

Más detalles

INTRO.ENERGÍA MECÁNICA Y TRABAJO LA ENERGÍA

INTRO.ENERGÍA MECÁNICA Y TRABAJO LA ENERGÍA INTRO.ENERGÍA MECÁNICA Y TRABAJO La energía es una propiedad que está relacionada con los cambios o procesos de transformación en la naturaleza. Sin energía ningún proceso físico, químico o biológico sería

Más detalles

TRABAJO Y ENERGIA 1. Para un objeto que se mueve en una dimensión, el trabajo W hecho sobre el objeto por una fuerza constante aplicada F es

TRABAJO Y ENERGIA 1. Para un objeto que se mueve en una dimensión, el trabajo W hecho sobre el objeto por una fuerza constante aplicada F es TRABAJO Y ENERGIA 1 TRABAJO Y ENERGIA La primera figura muestra un esquiador que partiendo del reposo desciende por una superficie uniforme Cuál será la velocidad del esquiador cuando llegue al final de

Más detalles

EJERCICIOS DE TRABAJO, POTENCIA Y ENERGÍA. CONSERVACIÓN DE LA ENERGÍA MECÁNICA. 4º E.S.O.

EJERCICIOS DE TRABAJO, POTENCIA Y ENERGÍA. CONSERVACIÓN DE LA ENERGÍA MECÁNICA. 4º E.S.O. EJERCICIOS DE TRABAJO, POTENCIA Y ENERGÍA. CONSERVACIÓN DE LA ENERGÍA MECÁNICA. 4º La finalidad de este trabajo implica tres pasos: a) Leer el enunciado e intentar resolver el problema sin mirar la solución.

Más detalles

Tema 4. Sistemas de partículas

Tema 4. Sistemas de partículas Física I. Curso 2010/11 Departamento de Física Aplicada. ETSII de Béjar. Universidad de Salamanca Profs. Alejandro Medina Domínguez y Jesús Ovejero Sánchez Tema 4. Sistemas de partículas Índice 1. Introducción

Más detalles

Principio de Conservación de la nergía nergía La energía es una propiedad que está relacionada con los cambios o procesos de transformación en la naturaleza. Sin energía ningún proceso físico, químico

Más detalles

La energía es la capacidad que tienen los sistemas materiales para transformarse o en producir transformaciones a en otros sistemas.

La energía es la capacidad que tienen los sistemas materiales para transformarse o en producir transformaciones a en otros sistemas. Trabajo y energía. 1º bachillerato 1.- ENERGÍA. DEINICIÓN Y PROPIEDADES La energía es una magnitud de difícil definición, pero de gran utilidad. Para ser exactos, podríamos decir que más que de energía

Más detalles

Trabajo, fuerzas conservativas. Energia.

Trabajo, fuerzas conservativas. Energia. Trabajo, fuerzas conservativas. Energia. TRABAJO REALIZADO POR UNA FUERZA CONSTANTE. Si la fuerza F que actúa sobre una partícula constante (en magnitud y dirección) el movimiento se realiza en línea recta

Más detalles

El trabajo W efectuado por un agente que ejerce una fuerza constante es igual al producto punto entre la fuerza F y el desplazamiento d

El trabajo W efectuado por un agente que ejerce una fuerza constante es igual al producto punto entre la fuerza F y el desplazamiento d El trabajo W efectuado por un agente que ejerce una fuerza constante es igual al producto punto entre la fuerza F y el desplazamiento d W F d Fd cos Si la fuerza se expresa en newton (N) y el desplazamiento

Más detalles

Nombre:..Curso:.. GUIA DE TRABAJO Y POTENCIA MECANICA. Un niño traslada una caja desde el punto A al punto B recorriendo 4 m (fig.

Nombre:..Curso:.. GUIA DE TRABAJO Y POTENCIA MECANICA. Un niño traslada una caja desde el punto A al punto B recorriendo 4 m (fig. Nombre:..Curso:.. GUIA DE TRABAJO Y POTENCIA MECANICA Trabajo realizado por una fuerza. Un niño traslada una caja desde el punto A al punto B recorriendo 4 m (fig. N 1), fig N 1 Desde el punto de vista

Más detalles

1. Indica cuáles son las condiciones que han de cumplirse para que el trabajo sea distinto de cero.

1. Indica cuáles son las condiciones que han de cumplirse para que el trabajo sea distinto de cero. A) Trabajo mecánico 1. Indica cuáles son las condiciones que han de cumplirse para que el trabajo sea distinto de cero. 2. Rellena en tu cuaderno las celdas sombreadas de esta tabla realizando los cálculos

Más detalles

COLECCIÓN DE PROBLEMAS DE FÍSICA ELEMENTAL

COLECCIÓN DE PROBLEMAS DE FÍSICA ELEMENTAL 1 COLECCIÓN DE PROBLEMAS DE FÍSICA ELEMENTAL Los problemas que se plantean a continuación corresponden a problemas seleccionados para hacer un repaso general previo a un examen libre paracompletar la enseñanza

Más detalles

Energía. Preguntas de Opción Múltiple.

Energía. Preguntas de Opción Múltiple. Energía. Preguntas de Opción Múltiple. Física- PSI Nombre Opción Múltiple 1. Se empuja un bloque con una cierta masa a una distancia d y se aplica una fuerza F en sentido paralelo al desplazamiento. Cuánto

Más detalles

TRABAJO Y ENERGÍA Página 1 de 13

TRABAJO Y ENERGÍA Página 1 de 13 TRABAJO Y ENERGÍA Página 1 de 13 EJERCICIOS DE TRABAJO Y ENERGÍA RESUELTOS: Ejemplo 1: Calcular el trabajo necesario para estirar un muelle 5 cm, si la constante del muelle es 1000 N/m. La fuerza necesaria

Más detalles

FÍSICA Y QUÍMICA - 4º ESO LAS FUERZAS PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA

FÍSICA Y QUÍMICA - 4º ESO LAS FUERZAS PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA 1. Todo cuerpo tiene tendencia a permanecer en su estado de movimiento. Esta tendencia recibe el nombre de inercia. 2. La masa es una medida

Más detalles

TRABAJO Y POTENCIA. LA ENERGÍA

TRABAJO Y POTENCIA. LA ENERGÍA Tema 5 TRABAJO Y POTENCIA. LA ENERGÍA 1 - CONCEPTO DE TRABAJO Generalmente suele asociarse la idea del trabajo con la del esfuerzo. En ciertos casos es verdad, como cuando una persona arrastra un objeto,

Más detalles

Teorema trabajo-energía: el trabajo efectuado por un cuerpo es igual al cambio de energía cinética o potencia.

Teorema trabajo-energía: el trabajo efectuado por un cuerpo es igual al cambio de energía cinética o potencia. INSTITUCION EDUCATIVA NACIONAL LOPERENA DEPARTAMENTO DE CIENCIAS NATURALES. FISICA I. CUESTIONARIO GENERAL IV PERIODO. NOTA: Es importante que cada una de las cuestiones así sean tipo Icfes, deben ser

Más detalles

FÍSICA 10 GRADO ELVER ANTONIO RIVAS CÓRDOBA ENERGÍA.

FÍSICA 10 GRADO ELVER ANTONIO RIVAS CÓRDOBA ENERGÍA. FÍSICA 0 GRADO ELVER ANTONIO RIVAS CÓRDOBA ENERGÍA. Se puede definir informalmente la energía que posee un cuerpo como una medida de su capacidad para realizar trabajo Julio (J): es la unidad de energía

Más detalles

Unidad 5 Energía INTRODUCCIÓN

Unidad 5 Energía INTRODUCCIÓN Unidad 5 Energía INTRODUCCIÓN La palabra energía es una de las que más se emplean en la actualidad. Has pensado a qué se debe esto? El concepto de energía se emplea en todas las ciencias y es muy importante

Más detalles

FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS

FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1 FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1.1. A QUÉ LLAMAMOS TRABAJO? 1. Un hombre arrastra un objeto durante un recorrido de 5 m, tirando de él con una fuerza de 450 N mediante una cuerda que forma

Más detalles

TRABAJO ENERGÍA CONSERVACIÓN DE ENERGÍA MECÁNICA

TRABAJO ENERGÍA CONSERVACIÓN DE ENERGÍA MECÁNICA TRABAJO ENERGÍA CONSERVACIÓN DE ENERGÍA MECÁNICA 1. La figura muestra una bola de 100 g. sujeta a un resorte sin estiramiento, de longitud L 0 = 19 cm y constante K desconocida. Si la bola se suelta en

Más detalles

TRABAJO MECÁNICO. T = f s. Es una magnitud escalar que designaremos con la letra griega tau T.

TRABAJO MECÁNICO. T = f s. Es una magnitud escalar que designaremos con la letra griega tau T. TRABAJO MECÁNICO El concepto que generalmente tenemos del trabajo es el de realizar alguna actividad manual o intelectual: el campesino siembra sus tierras, realizando un trabajo muscular; el novelista,

Más detalles

Unidad 4. Objetivos Al término de la unidad, el alumno podrá: Solucionar problemas relacionados con fenómenos de movimiento.

Unidad 4. Objetivos Al término de la unidad, el alumno podrá: Solucionar problemas relacionados con fenómenos de movimiento. Unidad 4 Trabajo y energía Objetivos Al término de la unidad, el alumno podrá: Entender y aplicar la relación entre trabajo, energía y potencia. Solucionar problemas relacionados con fenómenos de movimiento.

Más detalles

TRABAJO Y ENERGIA MECANICA

TRABAJO Y ENERGIA MECANICA TRABAJO Y ENERGIA MECANICA 1. Si una persona saca de un pozo una cubeta de 20 [kg] y realiza 6.000 [J] de trabajo, cuál es la profundidad del pozo? (30,6 [m]) 2. Una gota de lluvia (3,35x10-5 [kg] apx.)

Más detalles

Slide 1 / 31. Slide 2 / 31. Slide 3 / 31. mfd. mfd. mfd

Slide 1 / 31. Slide 2 / 31. Slide 3 / 31. mfd. mfd. mfd 1 Se empuja un bloque con una cierta masa a una distancia d y se aplica una fuerza F en sentido paralelo al desplazamiento. uánto trabajo realiza la fuerza F en el bloque? Slide 1 / 31 mfd cero Fd F/d

Más detalles

Relación de energía cinética y potencial con el trabajo

Relación de energía cinética y potencial con el trabajo Relación de energía cinética y potencial con el trabajo La energía se encuentra presente en toda la materia, en seres vivos y objetos inertes. Se puede afirmar el viento, la electricidad, el agua de un

Más detalles

CAPITULO V TRABAJO Y ENERGÍA

CAPITULO V TRABAJO Y ENERGÍA CAPITULO V TRABAJO Y ENERGÍA La energía está presente en el Universo en varias formas: energía mecánica, electromagnética, nuclear, etc. Además, una forma de energía puede convertirse en otra. Cuando la

Más detalles

5.3 Teorema de conservación de la cantidad de movimiento

5.3 Teorema de conservación de la cantidad de movimiento 105 UNIDAD V 5 Sistemas de Partículas 5.1 Dinámica de un sistema de partículas 5.2 Movimiento del centro de masa 5.3 Teorema de conservación de la cantidad de movimiento 5.4 Teorema de conservación de

Más detalles

Fundamentos de importancia del Trabajo, Energía y Potencia en física

Fundamentos de importancia del Trabajo, Energía y Potencia en física Fundamentos de importancia del Trabajo, Energía y Potencia en física INTRODUCCIÓN En el campo de la Física no se habla de trabajo simplemente, sino de Trabajo Mecánico y se dice que una fuerza realiza

Más detalles

po= FO. t (2) La cantidad del lado derecho recibe el nombre de impulso de la fuerza para el intervalo t =t f t i.

po= FO. t (2) La cantidad del lado derecho recibe el nombre de impulso de la fuerza para el intervalo t =t f t i. IMPULSO po 1.1 Qué es el impulso mecánico? El impulso de una fuerza F es gual al cambio en el momento de la partícula. Supongamos que una fuerza F actúa sobre una partícula y que esta fuerza puede variar

Más detalles

UNIDAD DOS. Intencionalidades Formativas Denominación de capítulos. F(r) en una dimensión

UNIDAD DOS. Intencionalidades Formativas Denominación de capítulos. F(r) en una dimensión UNIDAD DOS Nombre de la Unidad Introducción Justificación Intencionalidades Formativas Denominación de capítulos ONDAS Y ENERGÍA La naturaleza está conformada por ondas y energía, se discutirán estos términos

Más detalles

Problemas de Física 1 o Bachillerato

Problemas de Física 1 o Bachillerato Problemas de Física o Bachillerato Principio de conservación de la energía mecánica. Desde una altura h dejamos caer un cuerpo. Hallar en qué punto de su recorrido se cumple E c = 4 E p 2. Desde la parte

Más detalles

VI CO CURSO ACIO AL DE TALE TOS E FISICA 2010 1 de 10

VI CO CURSO ACIO AL DE TALE TOS E FISICA 2010 1 de 10 VI CO CURSO ACIO AL DE TALE TOS E FISICA 2010 1 de 10 Instrucciones: Al final de este examen se encuentra la hoja de respuestas que deberá contestar. o ponga su nombre en ninguna de las hojas, escriba

Más detalles

Mecánica I, 2009. Trabajo efectuado por una fuerza constante. Trabajo hecho por una fuerza variable

Mecánica I, 2009. Trabajo efectuado por una fuerza constante. Trabajo hecho por una fuerza variable Departamento de Física Facultad de Ciencias Universidad de Chile Profesor: Gonzalo Gutiérrez Ayudantes: Uta Naether Felipe González Mecánica I, 2009 Guía 5: Trabajo y Energía Jueves 7 Mayo Tarea: Problemas

Más detalles

EJERCICIOS PROPUESTOS. Qué transferencias de energía se producen cuando el viento incide sobre las velas de un barco?

EJERCICIOS PROPUESTOS. Qué transferencias de energía se producen cuando el viento incide sobre las velas de un barco? 8 ENERGÍA Y TRABAJO EJERCICIOS PROPUESTOS 8.1 Qué transferencias de energía se producen cuando el viento incide sobre las velas de un barco? Parte de la energía cinética del viento se transfiere a las

Más detalles

2 )d = 5 kg x (9,8 m/s 2 + ( ) 2

2 )d = 5 kg x (9,8 m/s 2 + ( ) 2 Solucionario TRABAJO, ENERGIA Y POTENCIA MECANICA 1.- Calcular el trabajo realizado al elevar un cuerpo de 5 kg hasta una altura de 2 m en 3 s. Expresar el resultado en Joule y en erg. Voy a proponer dos

Más detalles

La energía. Transferencia de energía:

La energía. Transferencia de energía: 4 trabajo A-PDF Manual Split Demo. Purchase from www.a-pdf.com to remove the watermark La energía. Transferencia de energía: y calor Un satélite de comunicaciones gira con velocidad constante atraído por

Más detalles

EJEMPLOS DE CUESTIONES DE EVALUACIÓN

EJEMPLOS DE CUESTIONES DE EVALUACIÓN EJEMPLOS DE CUESTIONES DE EVALUACIÓN 1. EL MOVIMIENTO Dirección en Internet: http://www.iesaguilarycano.com/dpto/fyq/cine4/index.htm a 1. Determine el desplazamiento total en cada uno de los casos siguientes

Más detalles

Guía para el examen de 4ª y 6ª oportunidad de FÍsica1

Guía para el examen de 4ª y 6ª oportunidad de FÍsica1 4a 4a 6a Guía para el examen de 4ª y 6ª oportunidad de FÍsica1 Capitulo 1 Introducción a la Física a) Clasificación y aplicaciones b) Sistemas de unidades Capitulo 2 Movimiento en una dimensión a) Conceptos

Más detalles

10.- Qué se entiende por sistema material? Un insecto podría ser un sistema material? De qué tipo?

10.- Qué se entiende por sistema material? Un insecto podría ser un sistema material? De qué tipo? Tema 4. Energía. 1 TEMA 4. LA ENERGÍA. 1. LA ENERGÍA. 8.- Relaciona mediante flechas las dos columnas. 2. LOS SISTEMAS MATERIALES Y LA ENERGÍA. 10.- Qué se entiende por sistema material? Un insecto podría

Más detalles

LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO

LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO 1. Trabajo mecánico y energía. El trabajo, tal y como se define físicamente, es una magnitud diferente de lo que se entiende sensorialmente por trabajo. Trabajo

Más detalles

FÍSICA 2014. Unidad Nº 4 : El trabajo y la Energía

FÍSICA 2014. Unidad Nº 4 : El trabajo y la Energía Diseño Industrial FÍSICA 2014 P R O F. I NG. C E C I L I A A R I A G N O I NG. D A N I E L M O R E N O Unidad Nº 4 : El trabajo y la Energía Introducción: La materia no puede por sí sola ponerse en movimiento

Más detalles

UNGS 1er semestre 2009 Física General. Guía de problemas nº 4 Trabajo - Energía. Problemas de Nivel 1.

UNGS 1er semestre 2009 Física General. Guía de problemas nº 4 Trabajo - Energía. Problemas de Nivel 1. UNGS 1er semestre 009 Física General. Guía de problemas nº 4 Trabajo - Energía. Problemas de Nivel 1. 1.- Un niño, de 00 N de peso, sube 10 m de altura con la ayuda de una escalera vertical. Halle el trabajo

Más detalles

Ejercicios Trabajo y Energía R. Tovar. Sección 01 Física 11. Semestre B-2004

Ejercicios Trabajo y Energía R. Tovar. Sección 01 Física 11. Semestre B-2004 Ejercicios Trabajo y Energía R. Tovar. Sección 01 Física 11. Semestre B-2004 1.- Un astronauta de 710 [N] flotando en el mar es rescatado desde un helicóptero que se encuentra a 15 [m] sobre el agua, por

Más detalles

UNIDAD IV: TRABAJO Y ENERGIA

UNIDAD IV: TRABAJO Y ENERGIA UNIVERSIDD DE EL SLVDOR FCULTD DE CIENCIS NTURLESY MTEMTIC ESCUEL DE FISIC CONTENIDO: FISIC (con orientación en las aplicaciones al Área de la Salud Pública) UNIDD IV: TRJO Y ENERGI 4.1 Concepto de Trabajo

Más detalles

CUESTIONARIOS FÍSICA 4º ESO

CUESTIONARIOS FÍSICA 4º ESO DPTO FÍSICA QUÍMICA. IES POLITÉCNICO CARTAGENA CUESTIONARIOS FÍSICA 4º ESO UNIDAD 5 Trabajo, potencia y energía Mª Teresa Gómez Ruiz 2010 HTTP://WWW. POLITECNICOCARTAGENA. COM/ ÍNDICE Página PRIMER CUESTIONARIO.

Más detalles

GUIA DE PROBLEMAS. 3) La velocidad de un auto en función del tiempo, sobre un tramo recto de una carretera, está dada por

GUIA DE PROBLEMAS. 3) La velocidad de un auto en función del tiempo, sobre un tramo recto de una carretera, está dada por Unidad : Cinemática de la partícula GUIA DE PROBLEMAS 1)-Un automóvil acelera en forma uniforme desde el reposo hasta 60 km/h en 8 s. Hallar su aceleración y desplazamiento durante ese tiempo. a = 0,59

Más detalles

2. Qué sucede con la energía cinética de una bola que se mueve horizontalmente cuando:

2. Qué sucede con la energía cinética de una bola que se mueve horizontalmente cuando: PONTIFICIA UNIERSIA CATOLICA MARE Y MAESTA EPARTAMENTO E CIENCIAS BASICAS. INTROUCCION A LA FISICA Prof. Remigia Cabrera Unidad I. TRABAJO Y ENERGIA 1. emuestre que la energía cinética en el movimiento

Más detalles

Experimento 7 MOMENTO LINEAL. Objetivos. Teoría. Figura 1 Dos carritos sufren una colisión parcialmente inelástica

Experimento 7 MOMENTO LINEAL. Objetivos. Teoría. Figura 1 Dos carritos sufren una colisión parcialmente inelástica Experimento 7 MOMENTO LINEAL Objetivos 1. Verificar el principio de conservación del momento lineal en colisiones inelásticas, y 2. Comprobar que la energía cinética no se conserva en colisiones inelásticas

Más detalles

FÍSICA 1º DE BACHILLERATO TEMA 4: TRABAJO Y ENERGÍA

FÍSICA 1º DE BACHILLERATO TEMA 4: TRABAJO Y ENERGÍA ÍSICA 1º DE BACHILLERATO TEMA 4: TRABAJO Y ENERGÍA 1. Introducción. 2. Trabajo mecánico. 2.1. Concepto. 2.2. Interpretación geométrica del trabajo. 2.3. Trabajo realizado por una fuerza variable: uerza

Más detalles

Problemas sobre Trabajo y Energía. Trabajo hecho por una fuerza constante

Problemas sobre Trabajo y Energía. Trabajo hecho por una fuerza constante Problemas sobre Trabajo y Energía Trabajo hecho por una fuerza constante 1. Si una persona saca de un pozo una cubeta de 20 kg y realiza un trabajo equivalente a 6.00 kj, Cuál es la profundidad del pozo?

Más detalles

Colegio Madre Carmen Educar con Amor y Sabiduría para Formar Auténticos Ciudadanos Trabajo para la evaluación bimestral

Colegio Madre Carmen Educar con Amor y Sabiduría para Formar Auténticos Ciudadanos Trabajo para la evaluación bimestral Colegio Madre Carmen Educar con Amor y Sabiduría para Formar Auténticos Ciudadanos Trabajo para la evaluación bimestral Proceso: GESTION ACADEMICA HOJA DE TRABAJO Área/Asignatura: FISICA CIENCIAS Grado:

Más detalles

VECTORES. Se representa gráficamente por medio de una flecha, por ejemplo: Todos los vectores poseen las siguientes características:

VECTORES. Se representa gráficamente por medio de una flecha, por ejemplo: Todos los vectores poseen las siguientes características: Un vector v es un segmento orientado. VECTORES Se representa gráficamente por medio de una flecha, por ejemplo: Todos los vectores poseen las siguientes características: Punto de aplicación: es el lugar

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA 1.- El bloque mostrado se encuentra afectado por fuerzas que le permiten desplazarse desde A hasta B.

Más detalles

MATERIA Y ENERGÍA (Física)

MATERIA Y ENERGÍA (Física) MATERIA Y ENERGÍA (Física) 1. Tema 1: Conceptos generales. 1. La materia. Propiedades macroscópicas y su medida 2. Estructura microscópica de la materia 3. Interacción gravitatoria y electrostática 4.

Más detalles

(producto escalar, considerando una sola dirección)

(producto escalar, considerando una sola dirección) Definimos trabajo de una fuerza al desplazar un cuerpo, al producto escalar de la fuerza por el desplazamiento realizado: W = F. Δx (producto escalar, considerando una sola dirección) W = F Δx cosθ Calculando

Más detalles

FÍSICA Y QUÍMICA 4º ESO

FÍSICA Y QUÍMICA 4º ESO Object 4 FÍSICA Y QUÍMICA 4º ESO Jaime Ruiz-Mateos Todos los derechos reservados. Ninguna parte de este libro puede ser reproducida, almacenada en un sistema de transmisión de datos de ninguna forma o

Más detalles

ENERGÍA, TRABAJO Y POTENCIA

ENERGÍA, TRABAJO Y POTENCIA ENERGÍA, TRABAJO Y POTENCIA NOTA: Para aceder a los vídeos o páginas Webs PISAR CONTROL y PINCHAR el vídeo o página Web seleccionada. NOTA: Cuando sobre un cuerpo regular se apliquen varias fuerzas, en

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Energía y trabajo (II)

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Energía y trabajo (II) 1(7) Ejercicio nº 1 Se desea trasladar 40 m por una superficie horizontal un cuerpo de 12 kg tirando con una fuerza de 40 que forma un ángulo de 60º con la horizontal. Si el coeficiente de rozamiento vale

Más detalles

TEMA 7 USO Y TRANSFORMACIÓN DE LA ENERGÍA

TEMA 7 USO Y TRANSFORMACIÓN DE LA ENERGÍA TMA 7 USO Y TRANSFORMACIÓN D LA NRGÍA 1. FORMAS D NRGÍA La energía es la capacidad que tienen los cuerpos para producir cambios en ellos mismos o en otros cuerpos. La energía no es la causa de los cambios.

Más detalles

DINÁMICA TRABAJO: POTENCIA Y ENERGÍA. MILTON ALFREDO SEPÚLVEDA ROULLETT Física I

DINÁMICA TRABAJO: POTENCIA Y ENERGÍA. MILTON ALFREDO SEPÚLVEDA ROULLETT Física I DINÁMICA TRABAJO: POTENCIA Y ENERGÍA MILTON ALFREDO SEPÚLVEDA ROULLETT Física I DINÁMICA Concepto de Dinámica.- Es una parte de la mecánica que estudia la reacción existente entre las fuerzas y los movimientos

Más detalles

Mecánica Racional 20 TEMA 3: Método de Trabajo y Energía.

Mecánica Racional 20 TEMA 3: Método de Trabajo y Energía. INTRODUCCIÓN. Mecánica Racional 20 Este método es útil y ventajoso porque analiza las fuerzas, velocidad, masa y posición de una partícula sin necesidad de considerar las aceleraciones y además simplifica

Más detalles

FS-10. Guía Cursos Anuales. Ciencias Plan Común. Física. Trabajo y energía II

FS-10. Guía Cursos Anuales. Ciencias Plan Común. Física. Trabajo y energía II FS-10 Guía Cursos Anuales Ciencias Plan Común Física 008 Trabajo y energía II Guía Cursos Anuales Introducción: La presente guía tiene por objetivo proporcionarte distintas instancias didácticas relacionadas

Más detalles

UNIVERSIDAD PÚBLICA DE NAVARRA DEPARTAMENTO DE FÍSICA OLIMPIADA DE FÍSICA FASE LOCAL

UNIVERSIDAD PÚBLICA DE NAVARRA DEPARTAMENTO DE FÍSICA OLIMPIADA DE FÍSICA FASE LOCAL UNIVERSIDAD PÚBLICA DE NAVARRA DEPARTAMENTO DE FÍSICA OLIMPIADA DE FÍSICA FASE LOCAL 6 de Marzo de 2012 Apellidos, Nombre:... Centro de Estudio:... En la prueba de selección se plantean 9 problemas de

Más detalles

Física I (Biociencias y Geociencias) - 2015. PRÁCTICO 6 (Momento lineal y choque, Momento angular, Propiedades elásticas de los materiales)

Física I (Biociencias y Geociencias) - 2015. PRÁCTICO 6 (Momento lineal y choque, Momento angular, Propiedades elásticas de los materiales) Física I (Biociencias y Geociencias) - 2015 PRÁCTICO 6 (Momento lineal y choque, Momento angular, Propiedades elásticas de los materiales) 6.1 (A) Un coche de 1000 kg y un camión de 2000 kg corren ambos

Más detalles

PROBLEMAS RESUELTOS TEMA: 3

PROBLEMAS RESUELTOS TEMA: 3 PROBLEMAS RESUELTOS TEMA: 3 1. Una partícula de 3 kg se desplaza con una velocidad de cuando se encuentra en. Esta partícula se encuentra sometida a una fuerza que varia con la posición del modo indicado

Más detalles

La sala de clases! Fuerza y movimiento en la Educación Básica

La sala de clases! Fuerza y movimiento en la Educación Básica La sala de clases! Fuerza y movimiento en la Educación Básica Prof. Bartolomé Yankovic Nola, 2012 1 Los contenidos sobre fuerza y movimiento se concentran en los cursos 4º, 7º y 8º, en estos últimos cursos,

Más detalles

1. Trabajo y energía TRABAJO HECHO POR UNA FUERZA CONSTANTE

1. Trabajo y energía TRABAJO HECHO POR UNA FUERZA CONSTANTE Trabajo y energía 1. Trabajo y energía Hasta ahora hemos estudiado el movimiento traslacional de un objeto en términos de las tres leyes de Newton. En este análisis la fuerza ha jugado un papel central.

Más detalles

Física y Química 4º ESO Apuntes de Dinámica página 1 de 5 CONCEPTO DE ENERGÍA

Física y Química 4º ESO Apuntes de Dinámica página 1 de 5 CONCEPTO DE ENERGÍA Física y Química 4º ESO Apuntes de Dinámica página 1 de 5 CONCEPTO DE ENERGÍA Antes se definía la energía como la capacidad de un cuerpo o sistema para realizar un trabajo. Vamos a ver una explicación

Más detalles

03 ENERGÍA ALGUNOS COMENTARIOS Y CUESTIONES

03 ENERGÍA ALGUNOS COMENTARIOS Y CUESTIONES 03 ENERGÍA ALGUNOS COMENTARIOS Y CUESTIONES Feynman: Es importante darse cuenta que en la física actual no sabemos lo que la energía es 03.0 Le debe interesar al óptico la energía? 03.1 Fuerza por distancia.

Más detalles

TALLER SOBRE SISTEMA DE PARTÍCULAS Y CUERPO RÍGIDO

TALLER SOBRE SISTEMA DE PARTÍCULAS Y CUERPO RÍGIDO UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS- ESCUELA DE FÍSICA FÍSICA MECÁNICA (00000) TALLER SOBRE SISTEMA DE PARTÍCULAS Y CUERPO RÍGIDO Preparado por: Diego Luis Aristizábal Ramírez

Más detalles

CINEMÁTICA I FYQ 1º BAC CC.

CINEMÁTICA I FYQ 1º BAC CC. www.matyfyq.com Página 1 de 5 Pregunta 1: La posición de una partícula en el plano viene dada por la ecuación vectorial: r(t) = (t 2 4) i + (t + 2) j En unidades del SI calcula: a) La posición de la partícula

Más detalles

LAS FUERZAS Y EL MOVIMIENTO

LAS FUERZAS Y EL MOVIMIENTO Página 1 LAS UEZAS Y EL MOVIMIENTO DINÁMICA: Es la parte de la ísica que estudia las fuerzas como productoras de movimientos. UEZA: Es toda causa capaz de modificar el estado de reposo o movimiento de

Más detalles

Julián Moreno Mestre www.juliweb.es

Julián Moreno Mestre www.juliweb.es Ejercicio de cálculos de trabajo: 1º Una bomba hidráulica llena un depósito de 500 L situado a 6 m de altura. Qué trabajo ha realizado? Sol: 2.94 10 5 J. 2º Determinar el trabajo realizado por una fuerza

Más detalles

Tema 7 : Trabajo, Energía y Calor

Tema 7 : Trabajo, Energía y Calor Tema 7 : Trabajo, Energía y Calor Esquema de trabajo: 7. Trabajo. Concepto. Unidad de medida. 8. Energía. Concepto 9. Energía Cinética 10. Energía Potencial Gravitatoria 11. Ley de Conservación de la Energía

Más detalles

Capítulo 2 Energía 1

Capítulo 2 Energía 1 Capítulo 2 Energía 1 Trabajo El trabajo realizado por una fuerza constante sobre una partícula que se mueve en línea recta es: W = F L = F L cos θ siendo L el vector desplazamiento y θ el ángulo entre

Más detalles

Energía. Teorema de conservación de la energía.

Energía. Teorema de conservación de la energía. Tarea 2. 1 Energía. Teorema de conservación de la energía. 3 Energía Es la capacidad que tiene un cuerpo para realizar un trabajo (u otra transformación). A su vez, el trabajo es capaz de aumentar la energía

Más detalles