Sistemas de ayuda a la decisión Tema 5. Análisis de Sensibilidad Análisis Cualitivo y Análisis Paramétrico

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Sistemas de ayuda a la decisión Tema 5. Análisis de Sensibilidad Análisis Cualitivo y Análisis Paramétrico"

Transcripción

1 Tema 5. Análisis de Sensibilidad Análisis Cualitivo y Análisis Paramétrico Indice 1) Motivavión, Identifición y Estructuración del problema 2) Análisis Paramétrico: Medidas basadas en distancias de umbral Uno, dos y más de dos paramétros Medidas probabilísticas Valor esperado de la información, Dominancia

2 Análisis de Sensibilidad. Medidas Probabilísticas. Énfasis en la probabilidad de atravesar el umbral Asignar distribuciones de prob. a cada parámetro (conjunta) Generar de ella, resolver y apuntar la max UE, con su política Cálculos matemáticos complejos métodos Montecarlo Sacar estadísticas del tipo:

3 AS. Valor Esperado de la Información. Recopilar información para reducir la incertidumbre: consultar a expertos, realizar análisis estadísticos, investigar, libros, revistas, periódicos... Ejemplo inversión (con p = 0.2, q = 0.3): En tablas de decisión: Conocer Θ antes de tomar D (sabríamos qué decisión tomar); con info perfecta podría obtener hasta 420 más que sin ella

4 AS. Valor Esperado de la Información. En árboles de decisión: al tener varias v.a., sería la Eu si el estado de una o más incertidumbres se pudieran observar antes de que se tomaran las decisiones Si conociésemos el verdadero comportamiento del mercado antes de invertir: valorar esa info o cuánto estoy dispuesta a pagar por ella Cambiar la estructura del árbol: incluir una rama, para cada v.a., con la consulta a un clarividente que proveyese info perfecta: =420 euros=veip

5 AS. Valor Esperado de la Información. En diagramas de influencia: conocer la v.a. antes de la decisión modificar arcos informativos y re-evaluar (usar soluciones parciales) =420 euros=veip Cantidad máxima que el decisor está Dispuesto a pagar al experto por la Información perfecta es 420 (porque es lo que espera ganar usando tal info) VEI : introducido por Howard (1966) VE de cualquier fuente de info [0,VEIP] VEIP=mejor situación posible (resolver toda la incertidumbre!) =cota superior para el VEI Útil: qué fuente de info seleccionar y cuánta info de un experto puede merecer la pena

6 AS. Valor Esperado de la Información. También AS sobre estructura probabilística, calculando el VEIP de cada v.a. indicaría dónde centrar esfuerzos en la modelización: Si VEIP pequeño, poco sentido emplear mucho esfuerzo en reducir la incertidumbre recopilando información Si VEIP grande, sí merece la pena Raro tener info perfecta; fuentes sujetas a error VEII = euros =VEII (no pagar más por la predicción)

7 Identificar alternativas no dominadas : AS temprano para descartar alternativas malas Nos preguntamos si podemos encontrar una alternativa que pueda terminar siendo mejor que otra, al variar los parámetros En ese caso, la primera domina a la segunda y ésta debería Ignorarse Modelo analítico de decisión usado ordena las alternativas mediante una función de evaluación Ψ (, ), (p. ej. Eu) ai es al menos tan preferida como a j (a i >= a j ) sii Ψ (a i,w) Ψ (a j,w), w W siendo w el vevector de parámetros modelizando im (w 0 el inicial)

8 Interesa ver repercusión del cambio de w 0 por otros valores de W: a i domina (débilmente) a a k si Ψ (ai,w) Ψ (ak,w), w W Con desigualdad estricta para al menos un w W, entonces la dominancia es estricta (extensión ideas de ordenación de Pareto) a i es no dominada si una alternativa b t.q. a i b (las que interesan) Hay que resolver problemas de programación matemática: a i domina a a k si y sólo si en mín z = Ψ (ai,w) Ψ (ak,w) sa : w W el valor óptimo del objetivo, z* 0. Si z* es positivo, a i domina estrictamente a a k. Si es cero, deberíamos comprobar si a k domina a a i (si sí, serían indiferentes)

9 Otros conceptos de solución: por ej óptimas para algún w W: alternativas potencialmente óptimas ai es p.o. si para algún w W Ψ (a i,w) Ψ (a k,w), a k A con A= conjunto de alternativas Se obtiene resolviendo mín z = z i sa : w W Ψ (a i,w) Ψ (a k,w) + z i 0, k i Si el valor óptimo de z i es 0, entonces Ψ (a i,w) Ψ (a k,w) para cada a k, y por tanto ai es p.o. El recíproco también es cierto. Si conociésemos con seguridad el valor de w, propondríamos aquella a j que maximizase (a j,w); como sólo sabemos que w W, nuestra solución final estará entre las p.o.

10 Para cada w W hay una alternativa no dominada que es potencialmente óptima. Pero de ahí no se deduce ninguna implicación entre ambos conceptos de solución Otro concepto: optimalidad potencial adyacente Cuánto debe cambiar w 0 para que la alternativa óptima deje de serlo? Sea a 0 alternativa que ocupa el primer lugar en la ordenación al considerar los parámetros w 0, es decir, Ψ (a 0,w 0 ) Ψ (ak,w 0 ), ak A Sea W 0 el subconjunto de W para el que a 0 es óptima Sea W k para el que a k es óptima para cada k a k es p.o. adyacente a a 0 si W 0 W k

11 Localiza a las alternativas que pueden competir en optimalidad con a 0 pero no identifica cómo de próxima se encuentra cada competidora Si a k es p.o.a. a a 0, sea w W k y d (, ) una distancia en W: la d(w,w 0 ) menor indicará lo cerca que se encuentra a k de alcanzar la optimalidad E.d., resolver para cada alternativa ak p.o.a. a a 0 mín d (w,w 0 ) sa : w W k Recomendable usar varias métricas (euclídea, mínima desviació absoluta...)

12 Pasos para reducir el conj. soluciones de interés para el decisor: 1. Identificar las alternativas no dominadas 2. Encontrar dentro de las anteriores las que sean p.o. 3. Encontrar las alternativas potencialmente óptimas adyacentes a a 0 y en cada caso el menor cambio necesario, en términos de varias métricas, sobre w para cambiar de optimalidad Imprecisión: por ejemplo Bielza, Ríos Insua y Ríos-Insua (1996): DI bajo información parcial con restricciones sobre las U s y P s indicando imprecisión Algoritmo para calcular no dominadas y Criterios adicionales para limitar los tamaños de los conjuntos no dominados

13 Ministerio de Fomento saca a subasta la realización de una obra Dos objetivos: minimizar coste de realización del trabajo y maximizar número de trabajadores Función de valor aditiva: v( ) = w1v1( ) + w2v2( ), con w1 = 0.3 y w2 = 0.7. v1, v2 funciones de valor para cada objetivo Otros posibles valores son w1 [0.25, 0.45] y w2 = 1 w1

14 Candidatos ordenados según v: I, D, G, B, H, C, E, F, A Dominancia: Resolvemos los problemas de optimimización m = mín v( ) M = m ax v(?) s.a. w1 [0.25, 0.45] s.a. w1 [0.25, 0.45] w1 + w2 = 1 w1 + w2 = 1 y obtenemos m y M siguientes:

15 Gráficamente: {D,I}= conjunto de alternativas no dominadas

16 Por ejemplo, vemos que I domina (estrictamente) a A, pues la solución óptima para el problema de optimización mín z = v(i) v(a) sa : w1 [0.25, 0.45] w1 + w2 = 1 verifica z* = = 0.08 > 0 p.o.: D e I son p.o.? Resolvemos el problema de optimización mín z D sa : w 1 [0.25, 0.45] w 1 + w2 = 1 v(d) v(i) + zd 0 obteniendo w 1 = 0.45,w 2 = 0.55, con z* D = D es una alternativa potencialmente óptima I también lo es ya que para los pesos iniciales es la más preferida

17 Optimalidad potencial adyacente: para D respecto a I Dos subconjuntos: uno cuyos pesos hacen que D I y otro que hacen que I D Los pesos más próximos a w 1 = 0.3, w2 = 0.7 según la norma euclídea, que hacen que D I, son w 1 = 0.3, w 2 = 0.6 siendo d((0.3, 0.6), (0.3, 0.7)) = q (( ) 2 + ( ) 2 ) 1/2 = Ministerio centrar su atención en I y D, eligiendo I, si cree que w1 2 [0.250, 0.334], o D, si cree que pertenece a [0.334, 0.45]

18 Modelos de Problemas de Decisión Sixto Ríos, 1995, Alianza Universidad, AU822 A: Fenómeno o sistema real MODELIZACIÓN C: Modelo empiríco D: Conceptualización Nueva modelización NO K: Validación SI L: Descripción, Predicción Exploración, Decisión, I: Relaciones empíricas H: Desconceptualización e interpretación E: Modelo matemático G: Relaciones matemáticas F: Proceso lógico-deductivo

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 1 de agosto de 2003 1. Introducción Cualquier modelo de una situación es una simplificación de la situación real. Por lo tanto,

Más detalles

Juegos Dinámicos. Tema 2: Juegos Dinámicos con Información Imperfecta. Universidad Carlos III

Juegos Dinámicos. Tema 2: Juegos Dinámicos con Información Imperfecta. Universidad Carlos III Juegos Dinámicos Tema 2: Juegos Dinámicos con Información Imperfecta Universidad Carlos III JD con información Imperfecta (JDII) Ø Algún jugador desconoce la acción que ha tomado otro jugador Ø Cuando

Más detalles

Administración de Empresas. 11 Métodos dinámicos de evaluación de inversiones 11.1

Administración de Empresas. 11 Métodos dinámicos de evaluación de inversiones 11.1 Administración de Empresas. 11 Métodos dinámicos de evaluación de inversiones 11.1 TEMA 11: MÉTODOS DINÁMICOS DE SELECCIÓN DE INVERSIONES ESQUEMA DEL TEMA: 11.1. Valor actualizado neto. 11.2. Tasa interna

Más detalles

RESUMEN NIIF 36: Deterioro del Valor de los Activos

RESUMEN NIIF 36: Deterioro del Valor de los Activos CIRCULAR16.09 de Riesgos y RESUMEN NIIF 36: Deterioro del Valor de los Activos El objetivo de esta Norma consiste en establecer los procedimientos que una entidad debe aplicar para asegurarse de que sus

Más detalles

PRÁCTICA 1: Optimización con Excel 2010

PRÁCTICA 1: Optimización con Excel 2010 Grado en Administración de Empresas Departamento de Estadística Asignatura: Optimización y Simulación para la Empresa Curso: 2011/2012 PRÁCTICA 1: Optimización con Excel 2010 1. Modelización mediante hojas

Más detalles

Inversión. Inversión. Arbitraje. Descuento. Tema 5

Inversión. Inversión. Arbitraje. Descuento. Tema 5 Inversión Tema 5 Inversión Los bienes de inversión obligan a gastar hoy para obtener ganancias en el futuro Vamos a estudiar cómo se valoran los pagos futuros Por ejemplo, la promesa de recibir euro dentro

Más detalles

Escuela Académico Profesional de Economía Curso. Examen Parcial No. 1 (solucionario) Tema. Varian 2, 3, 4, 5, 6, 8 y 14 Profesor

Escuela Académico Profesional de Economía Curso. Examen Parcial No. 1 (solucionario) Tema. Varian 2, 3, 4, 5, 6, 8 y 14 Profesor Facultad Ciencias Económicas Escuela Escuela Académico Profesional de Economía Curso Microeconomía I Código CO1214 Aula 218 Actividad Examen Parcial No. 1 (solucionario) Tema Varian 2, 3, 4, 5, 6, 8 y

Más detalles

LABORATORIO Nº 2 GUÍA PARA REALIZAR FORMULAS EN EXCEL

LABORATORIO Nº 2 GUÍA PARA REALIZAR FORMULAS EN EXCEL OBJETIVO Mejorar el nivel de comprensión y el manejo de las destrezas del estudiante para utilizar formulas en Microsoft Excel 2010. 1) DEFINICIÓN Una fórmula de Excel es un código especial que introducimos

Más detalles

Análisis y cuantificación del Riesgo

Análisis y cuantificación del Riesgo Análisis y cuantificación del Riesgo 1 Qué es el análisis del Riesgo? 2. Métodos M de Análisis de riesgos 3. Método M de Montecarlo 4. Modelo de Análisis de Riesgos 5. Qué pasos de deben seguir para el

Más detalles

Ejercicios de Programación Lineal

Ejercicios de Programación Lineal Ejercicios de Programación Lineal Investigación Operativa Ingeniería Informática, UCM Curso 8/9 Una compañía de transporte dispone de camiones con capacidad de 4 libras y de 5 camiones con capacidad de

Más detalles

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico q 1 q 2 Prof. Félix Aguirre 35 Energía Electrostática Potencial Eléctrico La interacción electrostática es representada muy bien a través de la ley de Coulomb, esto es: mediante fuerzas. Existen, sin embargo,

Más detalles

5 Ecuaciones lineales y conceptos elementales de funciones

5 Ecuaciones lineales y conceptos elementales de funciones Programa Inmersión, Verano 206 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 300 y MATE 3023 Clase #6: martes, 7 de junio de 206. 5 Ecuaciones lineales y conceptos elementales

Más detalles

Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos

Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos MATEMÁTICAS BÁSICAS DESIGUALDADES DESIGUALDADES DE PRIMER GRADO EN UNA VARIABLE La epresión a b significa que "a" no es igual a "b ". Según los valores particulares de a de b, puede tenerse a > b, que

Más detalles

Profr. Efraín Soto Apolinar. Factorización

Profr. Efraín Soto Apolinar. Factorización Factorización La factorización es la otra parte de la historia de los productos notables. Esto es, ambas cosas se refieren a las mismas fórmulas, pero en los productos notables se nos daba una operación

Más detalles

GUÍA DE EJERCICIOS UNIDAD II

GUÍA DE EJERCICIOS UNIDAD II UNIDAD II: INTEGRAL DEFINIDA UNIVERSIDAD DE CARABOBO FACULTAD DE INGENIERÍA ESTUDIOS BÁSICOS DEPARTAMENTO DE MATEMÁTICA ANÁLISIS MATEMÁTICO II Corregido por: Prof. AOUAD Jamil Prof. LAURENTÍN María Prof.

Más detalles

Microeconomía Intermedia

Microeconomía Intermedia Microeconomía Intermedia Colección de preguntas tipo test y ejercicios numéricos, agrupados por temas y resueltos por Eduardo Morera Cid, Economista Colegiado. Tema 03 La elección óptima del consumidor

Más detalles

Sistemas de ayuda a la decisión Tema 5. Análisis de Sensibilidad Análisis Cualitivo y Análisis Paramétrico

Sistemas de ayuda a la decisión Tema 5. Análisis de Sensibilidad Análisis Cualitivo y Análisis Paramétrico Tema 5. Análisis de Sensibilidad Análisis Cualitivo y Análisis Paramétrico Indice 1) Motivavión, Identificación y Estructuración del problema 2) Análisis Paramétrico: Medidas basadas en distancias de umbral

Más detalles

T.1 CONVERGENCIA Y TEOREMAS LÍMITE

T.1 CONVERGENCIA Y TEOREMAS LÍMITE T.1 CONVERGENCIA Y TEOREMAS LÍMITE 1. CONVERGENCIA DE SUCESIONES DE VARIABLES ALEATORIA CONVERGENCIA CASI-SEGURA CONVERGENCIA EN PROBABILIDAD CONVERGENCIA EN MEDIA CUADRÁTICA CONVERGENCIA EN LEY ( O DISTRIBUCIÓN)

Más detalles

Clases de apoyo de matemáticas Fracciones y decimales Escuela 765 Lago Puelo Provincia de Chubut

Clases de apoyo de matemáticas Fracciones y decimales Escuela 765 Lago Puelo Provincia de Chubut Clases de apoyo de matemáticas Fracciones y decimales Escuela 765 Lago Puelo Provincia de Chubut Este texto intenta ser un complemento de las clases de apoyo de matemáticas que se están realizando en la

Más detalles

Ecuación ordinaria de la circunferencia

Ecuación ordinaria de la circunferencia Ecuación ordinaria de la circunferencia En esta sección estudiatemos la ecuación de la circunferencia en la forma ordinaria. Cuando hablemos de la forma ordinaria de una cónica, generalmente nos referiremos

Más detalles

Matemáticas para la Computación

Matemáticas para la Computación Matemáticas para la Computación José Alfredo Jiménez Murillo 2da Edición Inicio Índice Capítulo 1. Sistemas numéricos. Capítulo 2. Métodos de conteo. Capítulo 3. Conjuntos. Capítulo 4. Lógica Matemática.

Más detalles

mcd y mcm Máximo Común Divisor y Mínimo Común múltiplo www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx

mcd y mcm Máximo Común Divisor y Mínimo Común múltiplo www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx mcd y mcm Máximo Común Divisor y Mínimo Común múltiplo www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 2007-2008 Contenido 1. Divisores de un número entero 2 2. Máximo común divisor

Más detalles

MODELOS DE RECUPERACION

MODELOS DE RECUPERACION RECUPERACIÓN Y ORGANIZACIÓN DE LA INFORMACIÓN INGENIERÍA INFORMÁTICA RECUPERACIÓN Y ACCESO A LA INFORMACIÓN MODELOS DE RECUPERACION AUTOR: Rubén García Broncano NIA 100065530 grupo 81 1 INDICE 1- INTRODUCCIÓN

Más detalles

EAE120A Introducción a la Macroeconomía Inversión

EAE120A Introducción a la Macroeconomía Inversión EAE120A Introducción a la Macroeconomía Inversión Pontificia Universidad Católica Semestre II 2012 Contenido Demanda de Inversión 1 Demanda de Inversión 2 3 Introducción Demanda de Inversión En este capítulo

Más detalles

a < b y se lee "a es menor que b" (desigualdad estricta) a > b y se lee "a es mayor que b" (desigualdad estricta)

a < b y se lee a es menor que b (desigualdad estricta) a > b y se lee a es mayor que b (desigualdad estricta) Desigualdades Dadas dos rectas que se cortan, llamadas ejes (rectangulares si son perpendiculares, y oblicuos en caso contrario), un punto puede situarse conociendo las distancias del mismo a los ejes,

Más detalles

Juegos Dinámicos: Info Completa. Tema 05. Profesor: Carlos R. Pitta. Análisis de Sectores Económicos

Juegos Dinámicos: Info Completa. Tema 05. Profesor: Carlos R. Pitta. Análisis de Sectores Económicos Universidad Austral de Chile Escuela de Ingeniería Comercial Análisis de Sectores Económicos Tema 05 Juegos Dinámicos: Info Completa Profesor: Carlos R. Pitta Análisis de Sectores Económicos, Prof. Carlos

Más detalles

Selectividad Septiembre 2013 OPCIÓN B

Selectividad Septiembre 2013 OPCIÓN B Pruebas de Acceso a las Universidades de Castilla y León ATEÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EJERCICIO Nº páginas Tablas OPTATIVIDAD: EL ALUNO DEBERÁ ESCOGER UNA DE LAS DOS OPCIONES Y DESARROLLAR

Más detalles

2) Se ha considerado únicamente la mano de obra, teniéndose en cuenta las horas utilizadas en cada actividad por unidad de página.

2) Se ha considerado únicamente la mano de obra, teniéndose en cuenta las horas utilizadas en cada actividad por unidad de página. APLICACIÓN AL PROCESO PRODUCTIVO DE LA EMPRESA "F. G. / DISEÑO GRÁFICO". AÑO 2004 Rescala, Carmen Según lo explicado en el Informe del presente trabajo, la variación en la producción de páginas web de

Más detalles

PROBLEMAS RESUELTOS DEL TEMA 1

PROBLEMAS RESUELTOS DEL TEMA 1 PROBLEMAS RESUELTOS DEL TEMA Problema nº Dibuje la forma extensiva del laberinto de la figura y a continuación resuélvalo para uno y para dos jugadores. Entrada a b Caldero de oro Para un jugador der D

Más detalles

Unidad 5 Utilización de Excel para la solución de problemas de programación lineal

Unidad 5 Utilización de Excel para la solución de problemas de programación lineal Unidad 5 Utilización de Excel para la solución de problemas de programación lineal La solución del modelo de programación lineal (pl) es una adaptación de los métodos matriciales ya que el modelo tiene

Más detalles

MICROECONOMÍA II PRÁCTICA TEMA III: MONOPOLIO

MICROECONOMÍA II PRÁCTICA TEMA III: MONOPOLIO MICROECONOMÍA II PRÁCTICA TEMA III: MONOPOLIO EJERCICIO 1 Primero analizamos el equilibrio bajo el monopolio. El monopolista escoge la cantidad que maximiza sus beneficios; en particular, escoge la cantidad

Más detalles

Programación Lineal Continua/ Investigación Operativa. EJERCICIOS DE INVESTIGACIÓN OPERATIVA. Hoja 1

Programación Lineal Continua/ Investigación Operativa. EJERCICIOS DE INVESTIGACIÓN OPERATIVA. Hoja 1 EJERCICIOS DE INVESTIGACIÓN OPERATIVA. Hoja 1 1. Una empresa que fabrica vehículos quiere determinar un plan de producción semanal. Esta empresa dispone de 5 fábricas que producen distintos elementos del

Más detalles

CASEN 2013: HISTÓRICA REDUCCIÓN DE LA POBREZA

CASEN 2013: HISTÓRICA REDUCCIÓN DE LA POBREZA CASEN 2013: HISTÓRICA REDUCCIÓN DE LA POBREZA La reducción en la tasa de pobreza en 2013 presentada por el Ministerio de Desarrollo Social es la más importante desde 1990: alcanza un 17,6% promedio anual

Más detalles

En cualquier caso, tampoco es demasiado importante el significado de la "B", si es que lo tiene, lo interesante realmente es el algoritmo.

En cualquier caso, tampoco es demasiado importante el significado de la B, si es que lo tiene, lo interesante realmente es el algoritmo. Arboles-B Características Los árboles-b son árboles de búsqueda. La "B" probablemente se debe a que el algoritmo fue desarrollado por "Rudolf Bayer" y "Eduard M. McCreight", que trabajan para la empresa

Más detalles

Módulo mod_banners para insertar y visualizar anuncios o publicidad (banners) en Joomla. Contador. (CU00446A)

Módulo mod_banners para insertar y visualizar anuncios o publicidad (banners) en Joomla. Contador. (CU00446A) aprenderaprogramar.com Módulo mod_banners para insertar y visualizar anuncios o publicidad (banners) en Joomla. Contador. (CU00446A) Sección: Cursos Categoría: Curso creación y administración web: Joomla

Más detalles

Tarea 7 Soluciones. Sol. Sea x el porcentaje que no conocemos, entonces tenemos la siguiente. (3500)x = 420. x = 420 3500 = 3 25

Tarea 7 Soluciones. Sol. Sea x el porcentaje que no conocemos, entonces tenemos la siguiente. (3500)x = 420. x = 420 3500 = 3 25 Tarea 7 Soluciones. Una inversión de $3500 produce un rendimiento de $420 en un año, qué rendimiento producirá una inversión de $4500 a la misma tasa de interés durante el mismo tiempo? Sol. Sea x el porcentaje

Más detalles

BANCOS. Manejo de Bancos. Como crear una ficha de Banco? Como modificar los datos de una ficha de Banco? Como borrar una ficha de Banco?

BANCOS. Manejo de Bancos. Como crear una ficha de Banco? Como modificar los datos de una ficha de Banco? Como borrar una ficha de Banco? BANCOS El Sistema de Gestión Administrativa permite el manejo de los movimientos bancarios. Seleccionada la opción de Bancos, el sistema presentara las siguientes opciones. Manejo de Bancos Manejo de movimientos

Más detalles

Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice

Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice 1 Polinomios Dedicaremos este apartado al repaso de los polinomios. Se define R[x] ={a 0 + a 1 x + a 2 x 2 +... +

Más detalles

Estructuras de Datos y Algoritmos

Estructuras de Datos y Algoritmos Estructuras de Datos y Algoritmos Año 205 Deducción de algunos esfuerzos para una Distribución pseudo-aleatoria de datos Introducción Vamos a desarrollar algunos de los esfuerzos para estructuras que utilizan

Más detalles

DOMINIO Y RANGO página 89. Cuando se grafica una función existen las siguientes posibilidades:

DOMINIO Y RANGO página 89. Cuando se grafica una función existen las siguientes posibilidades: DOMINIO Y RANGO página 89 3. CONCEPTOS Y DEFINICIONES Cuando se grafica una función eisten las siguientes posibilidades: a) Que la gráfica ocupe todo el plano horizontalmente (sobre el eje de las ). b)

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES INECUACIONES NOTA IMPORTANTE: El signo de desigualdad de una inecuación puede ser,, < o >. Para las cuestiones teóricas que se desarrollan en esta unidad únicamente se utilizará la desigualdad >, siendo

Más detalles

2. LOS SISTEMAS DE COSTOS

2. LOS SISTEMAS DE COSTOS 2. LOS SISTEMAS DE COSTOS En el actual desarrollo de las técnicas y sistemas de costos se persiguen tres importantes objetivos: La medición de los costos, la más correcta y precisa asignación de costos

Más detalles

Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos

Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 1 Conjuntos y Subconjuntos

Más detalles

Optimización, Solemne 2. Semestre Otoño 2012 Profesores: Paul Bosch, Rodrigo López, Fernando Paredes, Pablo Rey Tiempo: 110 min.

Optimización, Solemne 2. Semestre Otoño 2012 Profesores: Paul Bosch, Rodrigo López, Fernando Paredes, Pablo Rey Tiempo: 110 min. UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. ESCUELA DE INGENIERIA INDUSTRIAL. Optimización, Solemne. Semestre Otoño Profesores: Paul Bosch, Rodrigo López, Fernando Paredes, Pablo Rey Tiempo: min.

Más detalles

4.0 Inducción hacia atrás y Equilibrio de Nash Perfecto en

4.0 Inducción hacia atrás y Equilibrio de Nash Perfecto en 4.0 Inducción hacia atrás y Equilibrio de Nash Perfecto en Subjuegos A pesar de que todos los juegos se pueden representar en Forma Normal, dicha representación tiene una mayor utilidad cuando los juegos

Más detalles

PARA COMERCIANTES Y AUTÓNOMOS. INFORMACIÓN SOBRE TARJETAS DE CRÉDITO.

PARA COMERCIANTES Y AUTÓNOMOS. INFORMACIÓN SOBRE TARJETAS DE CRÉDITO. PARA COMERCIANTES Y AUTÓNOMOS. INFORMACIÓN SOBRE TARJETAS DE CRÉDITO. QUÉ DEBES SABER CUANDO ACEPTAS UNA TARJETA COMO FORMA DE PAGO EN TU ESTABLECIMIENTO? Hace ya muchos años que la mayoría de las microempresas

Más detalles

Universidad de la República Facultad de Ciencias Económicas y de Administración Microeconomía Avanzada Notas Docentes ELECCIÓN SOCIAL

Universidad de la República Facultad de Ciencias Económicas y de Administración Microeconomía Avanzada Notas Docentes ELECCIÓN SOCIAL Universidad de la República Facultad de Ciencias Económicas y de Administración Microeconomía Avanzada Notas Docentes ELECCIÓN SOCIAL Natalia Melgar ELECCIÓN SOCIAL. 1. Criterios para alcanzar el bienestar

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 7 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

I.1 Las siguientes afirmaciones son ciertas o falsas. Si una afirmación es cierta, ofrezca una explicación. Si es falsa ponga un contraejemplo.

I.1 Las siguientes afirmaciones son ciertas o falsas. Si una afirmación es cierta, ofrezca una explicación. Si es falsa ponga un contraejemplo. Teoría de Juegos Examen de enero de 2013 Nombre Grupo: Tiene dos horas y media para completar el examen I Preguntas cortas (20 puntos) I1 Las siguientes afirmaciones son ciertas o falsas Si una afirmación

Más detalles

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Funciones de Antonio Francisco Roldán López de Hierro * Convocatoria de 200 Las siguientes páginas contienen las soluciones de los ejercicios propuestos

Más detalles

POLITICAS DE LA COMPETENCIA Licenciatura en Economía, 4º Curso (Grupos I y II) Profesor: Georges Siotis. Hoja 5: Integración vertical

POLITICAS DE LA COMPETENCIA Licenciatura en Economía, 4º Curso (Grupos I y II) Profesor: Georges Siotis. Hoja 5: Integración vertical POLITICAS DE LA COMPETENCIA Licenciatura en Economía, 4º Curso (Grupos I y II) Profesor: Georges Siotis Hoja 5: Integración vertical Inversiones específicas 1. Imagine una imprenta, que pertenece y es

Más detalles

POR QUÉ EL VALOR PRESENTE NETO CONDUCE A MEJORES DECISIONES DE INVERSIÓN QUE OTROS CRITERIOS? ( Brealey & Myers )

POR QUÉ EL VALOR PRESENTE NETO CONDUCE A MEJORES DECISIONES DE INVERSIÓN QUE OTROS CRITERIOS? ( Brealey & Myers ) CAPÍTULO 5 POR QUÉ EL VALOR PRESENTE NETO CONDUCE A MEJORES DECISIONES DE INVERSIÓN QUE OTROS CRITERIOS? ( Brealey & Myers ) Ya hemos trabajado antes con los principios básicos de la toma de decisiones

Más detalles

Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor

Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor Tema 5 Aproximación funcional local: Polinomio de Taylor Teoría Los polinomios son las funciones reales más fáciles de evaluar; por esta razón, cuando una función resulta difícil de evaluar con exactitud,

Más detalles

Economía de la información y la incertidumbre 3er curso (1º Semestre) Grado en Economía

Economía de la información y la incertidumbre 3er curso (1º Semestre) Grado en Economía Economía de la información y la incertidumbre 3er curso (1º Semestre) Grado en Economía Parte I. Tema II: TEORÍA DE LA DECISIÓN CON INCERTIDUMBRE: UTILIDAD ESPERADA Bibliografía recomendada: Para el punto

Más detalles

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 2 Programación Lineal

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 2 Programación Lineal OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA Tema 2 Programación Lineal ORGANIZACIÓN DEL TEMA Sesiones: Introducción, definición y ejemplos Propiedades y procedimientos de solución Interpretación económica

Más detalles

EJEMPLO DE REPORTE DE LIBERTAD FINANCIERA

EJEMPLO DE REPORTE DE LIBERTAD FINANCIERA EJEMPLO DE REPORTE DE LIBERTAD FINANCIERA 1. Introduccio n El propósito de este reporte es describir de manera detallada un diagnóstico de su habilidad para generar ingresos pasivos, es decir, ingresos

Más detalles

FUNDAMENTOS DE ADMINISTRACIÓN Y GESTIÓN Teoría y ejercicios

FUNDAMENTOS DE ADMINISTRACIÓN Y GESTIÓN Teoría y ejercicios FUNDAMENTOS DE ADMINISTRACIÓN Y GESTIÓN Teoría y ejercicios 2ª edición JUAN PALOMERO con la colaboración de CONCEPCIÓN DELGADO Economistas Catedráticos de Secundaria ---------------------------------------------------

Más detalles

Unidad 2 Método gráfico de solución

Unidad 2 Método gráfico de solución Unidad 2 Método gráfico de solución Los problemas de programación lineal (pl) que sólo tengan dos variables de decisión pueden resolverse gráficamente, ya que, como se ha visto en los Antecedentes, una

Más detalles

ESTUDIO Y OBTENCIÓN DE NUEVOS CONCEPTOS PARA TRAVIESA PARACHOQUES

ESTUDIO Y OBTENCIÓN DE NUEVOS CONCEPTOS PARA TRAVIESA PARACHOQUES ESTUDIO Y OBTENCIÓN DE NUEVOS CONCEPTOS PARA TRAVIESA PARACHOQUES El objetivo de este proyecto es el desarrollo de una metodología de innovar aplicada a la mejora de un componente del automóvil, a partir

Más detalles

Instrucción IrA (GoTo). Saltos no naturales en el flujo normal de un programa. Pseudocódigo y diagramas de flujo. (CU00182A)

Instrucción IrA (GoTo). Saltos no naturales en el flujo normal de un programa. Pseudocódigo y diagramas de flujo. (CU00182A) aprenderaprogramar.com Instrucción IrA (GoTo). Saltos no naturales en el flujo normal de un programa. Pseudocódigo y diagramas de flujo. (CU00182A) Sección: Cursos Categoría: Curso Bases de la programación

Más detalles

JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 Energía Potencial eléctrica

JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 Energía Potencial eléctrica Energía Potencial eléctrica Si movemos la carga q2 respecto a la carga q1 Recordemos que la diferencia en la energía tenemos que: potencial U cuando una partícula se mueve entre dos puntos a y b bajo la

Más detalles

CONTROL DE FLUJO. Control de flujo: mecanismo extremo a extremo para regular el tráfico entre el origen y el destino

CONTROL DE FLUJO. Control de flujo: mecanismo extremo a extremo para regular el tráfico entre el origen y el destino Temas 22 y 23 Control de congestión y flujo Diapositiva 1 Laboratorio de sistemas de decisión e información () CONTROL DE FLUJO Control de flujo: mecanismo extremo a extremo para regular el tráfico entre

Más detalles

Vectores en R n y producto punto

Vectores en R n y producto punto Vectores en R n y producto punto Departamento de Matemáticas, CCIR/ITESM 10 de enero de 011 Índice 4.1. Introducción............................................... 1 4.. Vector..................................................

Más detalles

Carteleras. Elaborar una agenda de conciertos y actividades musicales

Carteleras. Elaborar una agenda de conciertos y actividades musicales Carteleras. Elaborar una agenda de conciertos y actividades musicales Etapa/Curso Área Destrezas Tiempo de realización Contenidos Competencias básicas 3º ciclo de Primaria 1º ciclo de Secundaria Educación

Más detalles

Profr. Efraín Soto Apolinar. La función lineal. y = a 0 + a 1 x. y = m x + b

Profr. Efraín Soto Apolinar. La función lineal. y = a 0 + a 1 x. y = m x + b La función lineal Una función polinomial de grado uno tiene la forma: y = a 0 + a 1 x El semestre pasado estudiamos la ecuación de la recta. y = m x + b En la notación de funciones polinomiales, el coeficiente

Más detalles

Unidad III: Programación no lineal

Unidad III: Programación no lineal Unidad III: Programación no lineal 3.1 Conceptos básicos de problemas de programación no lineal Programación no lineal (PNL) es el proceso de resolución de un sistema de igualdades y desigualdades sujetas

Más detalles

Por ello, también será importante la estructura del juego constituyente para efectuar una predicción del resultado.

Por ello, también será importante la estructura del juego constituyente para efectuar una predicción del resultado. 8.5 Juegos repetidos con horizonte finito. Los equilibrios en los juegos repetidos con horizonte finito serán sustancialmente diferentes de los obtenidos en los juegos repetidos con horizonte infinito.

Más detalles

1 1 0 1 x 1 0 1 1 1 1 0 1 + 1 1 0 1 0 0 0 0 1 1 0 1 1 0 0 0 1 1 1 1

1 1 0 1 x 1 0 1 1 1 1 0 1 + 1 1 0 1 0 0 0 0 1 1 0 1 1 0 0 0 1 1 1 1 5.1.3 Multiplicación de números enteros. El algoritmo de la multiplicación tal y como se realizaría manualmente con operandos positivos de cuatro bits es el siguiente: 1 1 0 1 x 1 0 1 1 1 1 0 1 + 1 1 0

Más detalles

1. Introducción al evaluación de proyectos

1. Introducción al evaluación de proyectos Objetivo general de la asignatura: El alumno analizará las técnicas de evaluación de proyectos de inversión para la utilización óptima de los recursos financieros; así como aplicar las técnicas que le

Más detalles

Ejemplo del modelo de generaciones solapadas

Ejemplo del modelo de generaciones solapadas Ejemplo del modelo de generaciones solapadas Descripción de la economía 1. Cada unidad del bien sólo puede existir en un período de tiempo. 2. Todas las generaciones 1 son idénticas. Cada generación está

Más detalles

TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (parte II)

TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (parte II) TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (parte II) Tema 6- Parte II 1 ANÁLISIS DE PROYECTOS En ambiente de incertidumbre Los flujos de caja a descontar no son ciertos Criterio a aplicar

Más detalles

H E R R A M I E N T A S D E A N Á L I S I S D E D A T O S HERRAMIENTAS DE ANÁLISIS DE DATOS

H E R R A M I E N T A S D E A N Á L I S I S D E D A T O S HERRAMIENTAS DE ANÁLISIS DE DATOS H E R R A M I E N T A S D E A N Á L I S I S D E D A T O S HERRAMIENTAS DE ANÁLISIS DE DATOS Una situación que se nos plantea algunas veces es la de resolver un problema hacia atrás, esto es, encontrar

Más detalles

CAPÍTULO IX INDICADORES DE RENTABILIDAD DE LA INVERSIÒN

CAPÍTULO IX INDICADORES DE RENTABILIDAD DE LA INVERSIÒN CAPÍTULO IX INDICADORES DE RENTABILIDAD DE LA INVERSIÒN Con la finalidad de medir la rentabilidad del proyecto a la luz de sacrificar la oportunidad de utilizar el dinero en otras inversiones, o sea el

Más detalles

4º ESO 1. ECUAC. 2º GRADO Y UNA INCÓGNITA

4º ESO 1. ECUAC. 2º GRADO Y UNA INCÓGNITA 4º ESO 1. ECUAC. 2º GRADO Y UNA INCÓGNITA Una ecuación con una incógnita es de segundo grado si el exponente de la incógnita es dos. Ecuaciones de segundo grado con una incógnita son: Esta última ecuación

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES )

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS SOLUCIONES HOJA 5: Optimización 5-1. Hallar los puntos críticos de las siguiente funciones y clasificarlos: a fx, y = x y + xy.

Más detalles

1. EL CONCEPTO DE INTERÉS

1. EL CONCEPTO DE INTERÉS 1. EL CONCEPTO DE INTERÉS 1.1 Introducción Tal y como se ha señalado en el prefacio, en estos primeros capítulos se va a suponer ambiente de certidumbre, es decir, que los agentes económicos conocen con

Más detalles

Matrices Invertibles y Elementos de Álgebra Matricial

Matrices Invertibles y Elementos de Álgebra Matricial Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CCIR/ITESM 12 de enero de 2011 Índice 91 Introducción 1 92 Transpuesta 1 93 Propiedades de la transpuesta 2 94 Matrices

Más detalles

V.4 Incertidumbre, Métodos Probabilísticos de Análisis de Alternativas

V.4 Incertidumbre, Métodos Probabilísticos de Análisis de Alternativas . Incertidumbre Nadie puede predecir el futuro. Sólo es posible formular hipótesis más o menos fundadas. Es un futuro que contiene un número indeterminado de resultados posibles, ninguno de los cuales

Más detalles

Las razones financieras ayudan a determinar las relaciones existentes entre diferentes rubros de los estados financieros

Las razones financieras ayudan a determinar las relaciones existentes entre diferentes rubros de los estados financieros Razones financieras Uno de los métodos más útiles y más comunes dentro del análisis financiero es el conocido como método de razones financieras, también conocido como método de razones simples. Este método

Más detalles

Selectividad Septiembre 2009 SEPTIEMBRE 2009. Opción A

Selectividad Septiembre 2009 SEPTIEMBRE 2009. Opción A SEPTIEMBRE 2009 Opción A 1.- Como cada año, el inicio del curso académico, una tienda de material escolar prepara una oferta de 600 cuadernos, 500 carpetas y 400 bolígrafos para los alumnos de un IES,

Más detalles

Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios. Dra. Noemí L. Ruiz Limardo 2009

Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios. Dra. Noemí L. Ruiz Limardo 2009 Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios Dra. Noemí L. Ruiz Limardo 2009 Objetivos de la Lección Al finalizar esta lección los estudiantes: Identificarán, de una lista de expresiones

Más detalles

Clase 9 -Carga anual equivalente (CAE) TIR Comparación entre alternativas

Clase 9 -Carga anual equivalente (CAE) TIR Comparación entre alternativas Clase 9 -Carga anual equivalente (CAE) TIR Comparación entre alternativas Carolina Rojas G. Universidad Diego Portales Facultad de Ingeniería Industrial Caraga anual equivalente (CAE) Comparación de alternativas

Más detalles

Créditos académicos. Ignacio Vélez. Facultad de Ingeniería Industrial. Politécnico Grancolombiano

Créditos académicos. Ignacio Vélez. Facultad de Ingeniería Industrial. Politécnico Grancolombiano Créditos académicos Ignacio Vélez Facultad de Ingeniería Industrial Politécnico Grancolombiano 11 de noviembre de 2003 Introducción Cuando se habla del sistema de créditos muchas personas consideran que

Más detalles

LÍMITES DE FUNCIONES. CONTINUIDAD

LÍMITES DE FUNCIONES. CONTINUIDAD LÍMITES DE FUNCIONES. CONTINUIDAD Página REFLEXIONA Y RESUELVE Algunos ites elementales Utiliza tu sentido común para dar el valor de los siguientes ites: a,, b,, @ c,, 5 + d,, @ @ + e,, @ f,, 0 @ 0 @

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Índice general 1. Sistemas de ecuaciones lineales 2 2. Método de sustitución 5 3. Método de igualación 9 4. Método de eliminación 13 5. Conclusión 16 1 Sistemas de ecuaciones

Más detalles

El modelo EOQ básico (Economic Order Quantity) es el más simple y fundamental de todos los modelos de inventarios.

El modelo EOQ básico (Economic Order Quantity) es el más simple y fundamental de todos los modelos de inventarios. Tema 7 Sistemas de Inventarios 7.1. Modelo EOQ básico El modelo EOQ básico (Economic Order Quantity) es el más simple y fundamental de todos los modelos de inventarios. 7.1.1. Hipótesis del modelo 1. Todos

Más detalles

Certificados para la exportación de dispositivos médicos por David Racine

Certificados para la exportación de dispositivos médicos por David Racine Certificados para la exportación de dispositivos médicos por David Racine Diapositiva 1 Buenos días/buenas tardes. Mi nombre es David Racine y trabajo para la Administración de Alimentos y Medicamentos

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 13 y #14

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 13 y #14 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 3 y #4 Desigualdades Al inicio del Capítulo 3, estudiamos las relaciones de orden en los número reales y el signi cado de expresiones

Más detalles

Los estados financieros proporcionan a sus usuarios información útil para la toma de decisiones

Los estados financieros proporcionan a sus usuarios información útil para la toma de decisiones El ABC de los estados financieros Importancia de los estados financieros: Aunque no lo creas, existen muchas personas relacionadas con tu empresa que necesitan de esta información para tomar decisiones

Más detalles

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales Práctica 4 - Parte Límite de funciones En lo que sigue, veremos cómo la noción de límite introducida para sucesiones se etiende al caso de funciones reales. Esto nos permitirá estudiar el comportamiento

Más detalles

PROBLEMAS RESUELTOS DE TEORÍA DE COLAS. (M/M/1: Un servidor con llegadas de Poisson y tiempos de servicio Exponenciales)

PROBLEMAS RESUELTOS DE TEORÍA DE COLAS. (M/M/1: Un servidor con llegadas de Poisson y tiempos de servicio Exponenciales) PROBLEMAS RESUELTOS DE TEORÍA DE COLAS. (M/M/1: Un servidor con llegadas de Poisson y tiempos de servicio Exponenciales) Prof.: MSc. Julio Rito Vargas A. I. Suponga que en una estación con un solo servidor

Más detalles

Estudiante: Mag. Ingeniero. Roberto Schovelin Surhoff Director: Dr. Arq. Josep Roca Cladera Tutor Dr. Ingeniero. Francisco Nuñez Cerda

Estudiante: Mag. Ingeniero. Roberto Schovelin Surhoff Director: Dr. Arq. Josep Roca Cladera Tutor Dr. Ingeniero. Francisco Nuñez Cerda Universidad Politécnica de Cataluña, UPC Departamento de Construcciones Arquitectónicas I, CAI DOCTORADO EN GESTIÓN Y VALORACION URBANA Centro de Política de Suelo y Valoraciones, CPSV MODELO PARA MAXIMIZAR

Más detalles

LA FACTURACIÓN DE LA ELECTRICIDAD

LA FACTURACIÓN DE LA ELECTRICIDAD LA FACTURACIÓN DE LA ELECTRICIDAD A partir del 1 de octubre de 2015 las empresas comercializadoras de referencia deben facturar con los con los datos procedentes de la curva de carga horaria, siempre que

Más detalles

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define.

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define. VECTORES El estudio de los vectores es uno de tantos conocimientos de las matemáticas que provienen de la física. En esta ciencia se distingue entre magnitudes escalares y magnitudes vectoriales. Se llaman

Más detalles

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables Capítulo 8 PROGRAMACIÓN LINEAL 8.1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver

Más detalles

CAPÍTULO 1: INTRODUCCIÓN. El presente capítulo muestra una introducción al problema de Optimizar un Modelo de

CAPÍTULO 1: INTRODUCCIÓN. El presente capítulo muestra una introducción al problema de Optimizar un Modelo de CAPÍTULO 1: INTRODUCCIÓN El presente capítulo muestra una introducción al problema de Optimizar un Modelo de Escenarios para Carteras de Inversión. Se presenta tanto objetivo general como objetivos específicos.

Más detalles

Medias Móviles: Señales para invertir en la Bolsa

Medias Móviles: Señales para invertir en la Bolsa www.gacetafinanciera.com Medias Móviles: Señales para invertir en la Bolsa Juan P López..www.futuros.com Las medias móviles continúan siendo una herramienta básica en lo que se refiere a determinar tendencias

Más detalles

PROPUESTAS COMERCIALES

PROPUESTAS COMERCIALES PROPUESTAS COMERCIALES 1. Alcance... 2 2. Entidades básicas... 2 3. Circuito... 2 3.1. Mantenimiento de rutas... 2 3.2. Añadir ofertas... 5 3.2.1. Alta desde CRM... 5 3.2.2. Alta desde el módulo de Propuestas

Más detalles

Unidad 3 Direccionamiento IP (Subnetting)

Unidad 3 Direccionamiento IP (Subnetting) Unidad 3 Direccionamiento IP (Subnetting) Las direcciones denominadas IPv4 se expresan por combinaciones de números de hasta 32 bits que permiten hasta 2 32 posibilidades (4.294.967.296 en total). Los

Más detalles

LÍMITES Y CONTINUIDAD

LÍMITES Y CONTINUIDAD UNIDAD 5 LÍMITES Y CONTINUIDAD Páginas 0 y Describe las siguientes ramas: a) f () b) f () no eiste c) f () d) f () + e) f () f) f () + g) f () h) f () no eiste; f () 0 i) f () + f () + j) f () 5 4 f ()

Más detalles