Sistemas de ayuda a la decisión Tema 5. Análisis de Sensibilidad Análisis Cualitivo y Análisis Paramétrico

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Sistemas de ayuda a la decisión Tema 5. Análisis de Sensibilidad Análisis Cualitivo y Análisis Paramétrico"

Transcripción

1 Tema 5. Análisis de Sensibilidad Análisis Cualitivo y Análisis Paramétrico Indice 1) Motivavión, Identifición y Estructuración del problema 2) Análisis Paramétrico: Medidas basadas en distancias de umbral Uno, dos y más de dos paramétros Medidas probabilísticas Valor esperado de la información, Dominancia

2 Análisis de Sensibilidad. Medidas Probabilísticas. Énfasis en la probabilidad de atravesar el umbral Asignar distribuciones de prob. a cada parámetro (conjunta) Generar de ella, resolver y apuntar la max UE, con su política Cálculos matemáticos complejos métodos Montecarlo Sacar estadísticas del tipo:

3 AS. Valor Esperado de la Información. Recopilar información para reducir la incertidumbre: consultar a expertos, realizar análisis estadísticos, investigar, libros, revistas, periódicos... Ejemplo inversión (con p = 0.2, q = 0.3): En tablas de decisión: Conocer Θ antes de tomar D (sabríamos qué decisión tomar); con info perfecta podría obtener hasta 420 más que sin ella

4 AS. Valor Esperado de la Información. En árboles de decisión: al tener varias v.a., sería la Eu si el estado de una o más incertidumbres se pudieran observar antes de que se tomaran las decisiones Si conociésemos el verdadero comportamiento del mercado antes de invertir: valorar esa info o cuánto estoy dispuesta a pagar por ella Cambiar la estructura del árbol: incluir una rama, para cada v.a., con la consulta a un clarividente que proveyese info perfecta: =420 euros=veip

5 AS. Valor Esperado de la Información. En diagramas de influencia: conocer la v.a. antes de la decisión modificar arcos informativos y re-evaluar (usar soluciones parciales) =420 euros=veip Cantidad máxima que el decisor está Dispuesto a pagar al experto por la Información perfecta es 420 (porque es lo que espera ganar usando tal info) VEI : introducido por Howard (1966) VE de cualquier fuente de info [0,VEIP] VEIP=mejor situación posible (resolver toda la incertidumbre!) =cota superior para el VEI Útil: qué fuente de info seleccionar y cuánta info de un experto puede merecer la pena

6 AS. Valor Esperado de la Información. También AS sobre estructura probabilística, calculando el VEIP de cada v.a. indicaría dónde centrar esfuerzos en la modelización: Si VEIP pequeño, poco sentido emplear mucho esfuerzo en reducir la incertidumbre recopilando información Si VEIP grande, sí merece la pena Raro tener info perfecta; fuentes sujetas a error VEII = euros =VEII (no pagar más por la predicción)

7 Identificar alternativas no dominadas : AS temprano para descartar alternativas malas Nos preguntamos si podemos encontrar una alternativa que pueda terminar siendo mejor que otra, al variar los parámetros En ese caso, la primera domina a la segunda y ésta debería Ignorarse Modelo analítico de decisión usado ordena las alternativas mediante una función de evaluación Ψ (, ), (p. ej. Eu) ai es al menos tan preferida como a j (a i >= a j ) sii Ψ (a i,w) Ψ (a j,w), w W siendo w el vevector de parámetros modelizando im (w 0 el inicial)

8 Interesa ver repercusión del cambio de w 0 por otros valores de W: a i domina (débilmente) a a k si Ψ (ai,w) Ψ (ak,w), w W Con desigualdad estricta para al menos un w W, entonces la dominancia es estricta (extensión ideas de ordenación de Pareto) a i es no dominada si una alternativa b t.q. a i b (las que interesan) Hay que resolver problemas de programación matemática: a i domina a a k si y sólo si en mín z = Ψ (ai,w) Ψ (ak,w) sa : w W el valor óptimo del objetivo, z* 0. Si z* es positivo, a i domina estrictamente a a k. Si es cero, deberíamos comprobar si a k domina a a i (si sí, serían indiferentes)

9 Otros conceptos de solución: por ej óptimas para algún w W: alternativas potencialmente óptimas ai es p.o. si para algún w W Ψ (a i,w) Ψ (a k,w), a k A con A= conjunto de alternativas Se obtiene resolviendo mín z = z i sa : w W Ψ (a i,w) Ψ (a k,w) + z i 0, k i Si el valor óptimo de z i es 0, entonces Ψ (a i,w) Ψ (a k,w) para cada a k, y por tanto ai es p.o. El recíproco también es cierto. Si conociésemos con seguridad el valor de w, propondríamos aquella a j que maximizase (a j,w); como sólo sabemos que w W, nuestra solución final estará entre las p.o.

10 Para cada w W hay una alternativa no dominada que es potencialmente óptima. Pero de ahí no se deduce ninguna implicación entre ambos conceptos de solución Otro concepto: optimalidad potencial adyacente Cuánto debe cambiar w 0 para que la alternativa óptima deje de serlo? Sea a 0 alternativa que ocupa el primer lugar en la ordenación al considerar los parámetros w 0, es decir, Ψ (a 0,w 0 ) Ψ (ak,w 0 ), ak A Sea W 0 el subconjunto de W para el que a 0 es óptima Sea W k para el que a k es óptima para cada k a k es p.o. adyacente a a 0 si W 0 W k

11 Localiza a las alternativas que pueden competir en optimalidad con a 0 pero no identifica cómo de próxima se encuentra cada competidora Si a k es p.o.a. a a 0, sea w W k y d (, ) una distancia en W: la d(w,w 0 ) menor indicará lo cerca que se encuentra a k de alcanzar la optimalidad E.d., resolver para cada alternativa ak p.o.a. a a 0 mín d (w,w 0 ) sa : w W k Recomendable usar varias métricas (euclídea, mínima desviació absoluta...)

12 Pasos para reducir el conj. soluciones de interés para el decisor: 1. Identificar las alternativas no dominadas 2. Encontrar dentro de las anteriores las que sean p.o. 3. Encontrar las alternativas potencialmente óptimas adyacentes a a 0 y en cada caso el menor cambio necesario, en términos de varias métricas, sobre w para cambiar de optimalidad Imprecisión: por ejemplo Bielza, Ríos Insua y Ríos-Insua (1996): DI bajo información parcial con restricciones sobre las U s y P s indicando imprecisión Algoritmo para calcular no dominadas y Criterios adicionales para limitar los tamaños de los conjuntos no dominados

13 Ministerio de Fomento saca a subasta la realización de una obra Dos objetivos: minimizar coste de realización del trabajo y maximizar número de trabajadores Función de valor aditiva: v( ) = w1v1( ) + w2v2( ), con w1 = 0.3 y w2 = 0.7. v1, v2 funciones de valor para cada objetivo Otros posibles valores son w1 [0.25, 0.45] y w2 = 1 w1

14 Candidatos ordenados según v: I, D, G, B, H, C, E, F, A Dominancia: Resolvemos los problemas de optimimización m = mín v( ) M = m ax v(?) s.a. w1 [0.25, 0.45] s.a. w1 [0.25, 0.45] w1 + w2 = 1 w1 + w2 = 1 y obtenemos m y M siguientes:

15 Gráficamente: {D,I}= conjunto de alternativas no dominadas

16 Por ejemplo, vemos que I domina (estrictamente) a A, pues la solución óptima para el problema de optimización mín z = v(i) v(a) sa : w1 [0.25, 0.45] w1 + w2 = 1 verifica z* = = 0.08 > 0 p.o.: D e I son p.o.? Resolvemos el problema de optimización mín z D sa : w 1 [0.25, 0.45] w 1 + w2 = 1 v(d) v(i) + zd 0 obteniendo w 1 = 0.45,w 2 = 0.55, con z* D = D es una alternativa potencialmente óptima I también lo es ya que para los pesos iniciales es la más preferida

17 Optimalidad potencial adyacente: para D respecto a I Dos subconjuntos: uno cuyos pesos hacen que D I y otro que hacen que I D Los pesos más próximos a w 1 = 0.3, w2 = 0.7 según la norma euclídea, que hacen que D I, son w 1 = 0.3, w 2 = 0.6 siendo d((0.3, 0.6), (0.3, 0.7)) = q (( ) 2 + ( ) 2 ) 1/2 = Ministerio centrar su atención en I y D, eligiendo I, si cree que w1 2 [0.250, 0.334], o D, si cree que pertenece a [0.334, 0.45]

18 Modelos de Problemas de Decisión Sixto Ríos, 1995, Alianza Universidad, AU822 A: Fenómeno o sistema real MODELIZACIÓN C: Modelo empiríco D: Conceptualización Nueva modelización NO K: Validación SI L: Descripción, Predicción Exploración, Decisión, I: Relaciones empíricas H: Desconceptualización e interpretación E: Modelo matemático G: Relaciones matemáticas F: Proceso lógico-deductivo

Sistemas de ayuda a la decisión Tema 5. Análisis de Sensibilidad Análisis Cualitivo y Análisis Paramétrico

Sistemas de ayuda a la decisión Tema 5. Análisis de Sensibilidad Análisis Cualitivo y Análisis Paramétrico Tema 5. Análisis de Sensibilidad Análisis Cualitivo y Análisis Paramétrico Indice 1) Motivavión, Identificación y Estructuración del problema 2) Análisis Paramétrico: Medidas basadas en distancias de umbral

Más detalles

Programación Lineal Entera

Programación Lineal Entera Programación Lineal Entera P.M. Mateo y David Lahoz 2 de julio de 2009 En este tema se presenta un tipo de problemas formalmente similares a los problemas de programación lineal, ya que en su descripción

Más detalles

Unidad 2 Método gráfico de solución

Unidad 2 Método gráfico de solución Unidad 2 Método gráfico de solución Los problemas de programación lineal (pl) que sólo tengan dos variables de decisión pueden resolverse gráficamente, ya que, como se ha visto en los Antecedentes, una

Más detalles

Ejercicios de Programación Lineal

Ejercicios de Programación Lineal Ejercicios de Programación Lineal Investigación Operativa Ingeniería Informática, UCM Curso 8/9 Una compañía de transporte dispone de camiones con capacidad de 4 libras y de 5 camiones con capacidad de

Más detalles

Tema 7: Juegos con información incompleta

Tema 7: Juegos con información incompleta Tema 7: Juegos con información incompleta Microeconomía Avanzada II Iñigo Iturbe-Ormaeche U. de Alicante 2008-09 Modelo de Spence Introducción y ejemplos Equilibrio Bayesiano de Nash Aplicaciones Señales

Más detalles

Problema de Programación Lineal

Problema de Programación Lineal Problema de Programación Lineal Introducción La optimización es un enfoque que busca la mejor solución a un problema. Propósito: Maximizar o minimizar una función objetivo que mide la calidad de la solución,

Más detalles

LA TEORÍA DE JUEGOS EN LAS PRÓXIMAS ELECCIONES PRESIDENCIALES

LA TEORÍA DE JUEGOS EN LAS PRÓXIMAS ELECCIONES PRESIDENCIALES LA TEORÍA DE JUEGOS EN LAS PRÓXIMAS ELECCIONES PRESIDENCIALES ANA ELENA NARRO RAMÍREZ* INTRODUCCIÓN La mayoría de los modelos matemáticos suponen un solo decisor y le apoyan para seleccionar la mejor alternativa,

Más detalles

Programación Lineal Continua/ Investigación Operativa. EJERCICIOS DE INVESTIGACIÓN OPERATIVA. Hoja 1

Programación Lineal Continua/ Investigación Operativa. EJERCICIOS DE INVESTIGACIÓN OPERATIVA. Hoja 1 EJERCICIOS DE INVESTIGACIÓN OPERATIVA. Hoja 1 1. Una empresa que fabrica vehículos quiere determinar un plan de producción semanal. Esta empresa dispone de 5 fábricas que producen distintos elementos del

Más detalles

Juegos Dinámicos. Tema 2: Juegos Dinámicos con Información Imperfecta. Universidad Carlos III

Juegos Dinámicos. Tema 2: Juegos Dinámicos con Información Imperfecta. Universidad Carlos III Juegos Dinámicos Tema 2: Juegos Dinámicos con Información Imperfecta Universidad Carlos III JD con información Imperfecta (JDII) Ø Algún jugador desconoce la acción que ha tomado otro jugador Ø Cuando

Más detalles

Universidad de la República Facultad de Ciencias Económicas y de Administración Microeconomía Avanzada Notas Docentes ELECCIÓN SOCIAL

Universidad de la República Facultad de Ciencias Económicas y de Administración Microeconomía Avanzada Notas Docentes ELECCIÓN SOCIAL Universidad de la República Facultad de Ciencias Económicas y de Administración Microeconomía Avanzada Notas Docentes ELECCIÓN SOCIAL Natalia Melgar ELECCIÓN SOCIAL. 1. Criterios para alcanzar el bienestar

Más detalles

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 1 de agosto de 2003 1. Introducción Cualquier modelo de una situación es una simplificación de la situación real. Por lo tanto,

Más detalles

1. Juegos de suma cero con dos jugadores

1. Juegos de suma cero con dos jugadores Teoría de juegos Jesús López Fidalgo Esta teoría está íntimamente relacionada con la teoría de la decisión. Lo que diferencia una de otra es el rival contra el que se entra en juego. En la teoría de la

Más detalles

Administración de Empresas. 11 Métodos dinámicos de evaluación de inversiones 11.1

Administración de Empresas. 11 Métodos dinámicos de evaluación de inversiones 11.1 Administración de Empresas. 11 Métodos dinámicos de evaluación de inversiones 11.1 TEMA 11: MÉTODOS DINÁMICOS DE SELECCIÓN DE INVERSIONES ESQUEMA DEL TEMA: 11.1. Valor actualizado neto. 11.2. Tasa interna

Más detalles

EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION. M. En C. Eduardo Bustos Farías

EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION. M. En C. Eduardo Bustos Farías EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION M. En C. Eduardo Bustos Farías 1 Minimización El método simplex puede aplicarse a un problema de minimización si se modifican los pasos del algoritmo: 1. Se cambia

Más detalles

V.4 Incertidumbre, Métodos Probabilísticos de Análisis de Alternativas

V.4 Incertidumbre, Métodos Probabilísticos de Análisis de Alternativas . Incertidumbre Nadie puede predecir el futuro. Sólo es posible formular hipótesis más o menos fundadas. Es un futuro que contiene un número indeterminado de resultados posibles, ninguno de los cuales

Más detalles

Aprendizaje automático mediante árboles de decisión

Aprendizaje automático mediante árboles de decisión Aprendizaje automático mediante árboles de decisión Aprendizaje por inducción Los árboles de decisión son uno de los métodos de aprendizaje inductivo más usado. Hipótesis de aprendizaje inductivo: cualquier

Más detalles

Teoría de las decisiones y de los juegos 2007-2008 Grupo 51 Ejercicios - Tema 3 Juegos dinámicos con información completa (0, 2) 2 D (3, 0) 1 B I

Teoría de las decisiones y de los juegos 2007-2008 Grupo 51 Ejercicios - Tema 3 Juegos dinámicos con información completa (0, 2) 2 D (3, 0) 1 B I Teoría de las decisiones y de los juegos 007-008 rupo 5 Ejercicios - Tema 3 Juegos dinámicos con información completa. Considere el siguiente juego en su forma extensiva. I (0, ) D (3, 0) I (, ) D (, 3)

Más detalles

DOMINIO Y RANGO página 89. Cuando se grafica una función existen las siguientes posibilidades:

DOMINIO Y RANGO página 89. Cuando se grafica una función existen las siguientes posibilidades: DOMINIO Y RANGO página 89 3. CONCEPTOS Y DEFINICIONES Cuando se grafica una función eisten las siguientes posibilidades: a) Que la gráfica ocupe todo el plano horizontalmente (sobre el eje de las ). b)

Más detalles

PRÁCTICA 1: Optimización con Excel 2010

PRÁCTICA 1: Optimización con Excel 2010 Grado en Administración de Empresas Departamento de Estadística Asignatura: Optimización y Simulación para la Empresa Curso: 2011/2012 PRÁCTICA 1: Optimización con Excel 2010 1. Modelización mediante hojas

Más detalles

TEORÍA DE JUEGOS (2da. Parte) M. En C. Eduardo Bustos Farías

TEORÍA DE JUEGOS (2da. Parte) M. En C. Eduardo Bustos Farías TEORÍA DE JUEGOS (2da. Parte) M. En C. Eduardo Bustos Farías 1 TEORIA DE JUEGOS: ANTECEDENTES 1928: Von Newman Desarrolla la Teoría de Juegos. 1944 PUBLICACION DE Theory and Practice of Games and Economical

Más detalles

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Fundamentos de Investigación de Operaciones Investigación de Operaciones de agosto de 200. Estandarización Cuando se plantea un modelo de LP pueden existir igualdades y desigualdades. De la misma forma

Más detalles

TEORÍA DE JUEGOS. 1 Definiciónes y Conceptos Básicos. 1.1 Definición: 1.2 Elementos de un juego. 1.3 Representación de un juego.

TEORÍA DE JUEGOS. 1 Definiciónes y Conceptos Básicos. 1.1 Definición: 1.2 Elementos de un juego. 1.3 Representación de un juego. TEORÍA DE JUEGOS 1 Definiciónes y Conceptos ásicos. 1.1 Definición: La teoría de juegos es una herramienta de análisis económico usada para estudiar problemas caracterizados por la interacción estratégica

Más detalles

TÉCNICAS DE PLANIFICACIÓN Y CONTROL DE PROYECTOS 1

TÉCNICAS DE PLANIFICACIÓN Y CONTROL DE PROYECTOS 1 Técnicas de planificación y control de proyectos Andrés Ramos Universidad Pontificia Comillas http://www.iit.comillas.edu/aramos/ Andres.Ramos@comillas.edu TÉCNICAS DE PLANIFICACIÓN Y CONTROL DE PROYECTOS

Más detalles

Instituto Politécnico Nacional Escuela Superior de Cómputo. Modelos de ubicación. M. En C. Eduardo Bustos Farías

Instituto Politécnico Nacional Escuela Superior de Cómputo. Modelos de ubicación. M. En C. Eduardo Bustos Farías Instituto Politécnico Nacional Escuela Superior de Cómputo Modelos de ubicación M. En C. Eduardo Bustos Farías 1 Objetivos Describir los factores que influyen las decisiones sobre Localización en manufacturas

Más detalles

ANÁLISIS DE FUNCIONES RACIONALES

ANÁLISIS DE FUNCIONES RACIONALES ANÁLISIS DE FUNCIONES RACIONALES ( x 9) Dada la función f( x) = x 4 DETERMINE: Dominio, asíntotas, intervalos de crecimiento, intervalos de concavidad, extremos relativos y puntos de inflexión, representar

Más detalles

euresti@itesm.mx Matemáticas

euresti@itesm.mx Matemáticas al Método al Método Matemáticas al Método En esta lectura daremos una introducción al método desarrollado por George Bernard Dantzig (8 de noviembre de 1914-13 de mayo de 2005) en 1947. Este método se

Más detalles

4. Se considera la función f(x) =. Se pide:

4. Se considera la función f(x) =. Se pide: Propuesta A 1. Queremos realizar una inversión en dos tipos de acciones con las siguientes condiciones: Lo invertido en las acciones de tipo A no puede superar los 10000 euros. Lo invertido en las acciones

Más detalles

Escuela Académico Profesional de Economía Curso. Examen Parcial No. 1 (solucionario) Tema. Varian 2, 3, 4, 5, 6, 8 y 14 Profesor

Escuela Académico Profesional de Economía Curso. Examen Parcial No. 1 (solucionario) Tema. Varian 2, 3, 4, 5, 6, 8 y 14 Profesor Facultad Ciencias Económicas Escuela Escuela Académico Profesional de Economía Curso Microeconomía I Código CO1214 Aula 218 Actividad Examen Parcial No. 1 (solucionario) Tema Varian 2, 3, 4, 5, 6, 8 y

Más detalles

Capítulo 7 Riesgo Moral

Capítulo 7 Riesgo Moral Capítulo 7 Riesgo Moral Introduction El problema de riesgo moral aparece cuando el comportamiento del agente no es verificable ó cuando el agente recibe información privada, una vez iniciado el contrato.

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES )

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS SOLUCIONES HOJA 5: Optimización 5-1. Hallar los puntos críticos de las siguiente funciones y clasificarlos: a fx, y = x y + xy.

Más detalles

DECISIONES DE CONSUMO EN CONDICIONES DE INCERTIDUMBRE

DECISIONES DE CONSUMO EN CONDICIONES DE INCERTIDUMBRE DECISIONES DE CONSUMO EN CONDICIONES DE INCERTIDUMBRE APLICACIÓN: MODELO DEL SEGURO Y DE CARTERA Contacto: Mª Covadonga De la Iglesia Villasol Departamento de Fundamentos del Análisis Económico I Universidad

Más detalles

Unidad III: Programación no lineal

Unidad III: Programación no lineal Unidad III: Programación no lineal 3.1 Conceptos básicos de problemas de programación no lineal Programación no lineal (PNL) es el proceso de resolución de un sistema de igualdades y desigualdades sujetas

Más detalles

Apuntes de Grafos. 1. Definiciones

Apuntes de Grafos. 1. Definiciones Apuntes de Grafos Un grafo es una entidad matemática introducida por Euler en 736 para representar entidades (vértices) que pueden relacionarse libremente entre sí, mediante el concepto de arista Se puede

Más detalles

Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos

Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos MATEMÁTICAS BÁSICAS DESIGUALDADES DESIGUALDADES DE PRIMER GRADO EN UNA VARIABLE La epresión a b significa que "a" no es igual a "b ". Según los valores particulares de a de b, puede tenerse a > b, que

Más detalles

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 2 Programación Lineal

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 2 Programación Lineal OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA Tema 2 Programación Lineal ORGANIZACIÓN DEL TEMA Sesiones: Introducción, definición y ejemplos Propiedades y procedimientos de solución Interpretación económica

Más detalles

Programación Lineal Entera

Programación Lineal Entera Programación Lineal Entera Los modelos de programación entera son una extensión de los modelos lineales en los que algunas variables toman valores enteros. Con frecuencia las variables enteras sólo toman

Más detalles

ax + b < 0, ax + b > 0, ax + b 0 o ax + b 0, multiplicamos ambos miembros de la inecuación por 6 para quitar denominadores. De esta forma se tiene

ax + b < 0, ax + b > 0, ax + b 0 o ax + b 0, multiplicamos ambos miembros de la inecuación por 6 para quitar denominadores. De esta forma se tiene 8 UNIDAD I. A modo de repaso. Preliminares Inecuaciones Una inecuación es una desigualdad en la que el criterio de comparación es la relación de orden inherente al conjunto de los números reales. Hay que

Más detalles

Juegos Dinámicos: Info Completa. Tema 05. Profesor: Carlos R. Pitta. Análisis de Sectores Económicos

Juegos Dinámicos: Info Completa. Tema 05. Profesor: Carlos R. Pitta. Análisis de Sectores Económicos Universidad Austral de Chile Escuela de Ingeniería Comercial Análisis de Sectores Económicos Tema 05 Juegos Dinámicos: Info Completa Profesor: Carlos R. Pitta Análisis de Sectores Económicos, Prof. Carlos

Más detalles

FUNCIONES. Funciones. Qué es una función? Indicadores. Contenido

FUNCIONES. Funciones. Qué es una función? Indicadores. Contenido Indicadores FUNCIONES Calcula el valor de incógnitas usando la definición de función. Determina valores de la variable dependiente a partir de valores dados a la variable independiente. Determina los puntos

Más detalles

Tema 6: Problemas Especiales de Programación Lineal

Tema 6: Problemas Especiales de Programación Lineal Tema 6: Problemas Especiales de Programación Lineal Transporte Asignación Transbordo Tienen una estructura especial que permite modelizar situaciones en las que es necesario: Determinar la manera óptima

Más detalles

INECUACIONES: DESIGUALDADES. 3. Usa métodos para solucionar desigualdades lineales y cuadráticas.

INECUACIONES: DESIGUALDADES. 3. Usa métodos para solucionar desigualdades lineales y cuadráticas. FUNDACIÓN INSTITUTO A DISTANCIA EDUARDO CABALLERO CALDERON Espacio Académico: Matemáticas Docente: Mónica Bibiana Velasco Borda mbvelascob@uqvirtual.edu.co CICLO: V INICIADORES DE LOGRO INECUACIONES: DESIGUALDADES

Más detalles

4.3 INTERPRETACIÓN ECONÓMICA DE LA DUALIDAD

4.3 INTERPRETACIÓN ECONÓMICA DE LA DUALIDAD 4.3 INTERPRETACIÓN ECONÓMICA DE LA DUALIDAD El problema de programación lineal se puede considerar como modelo de asignación de recursos, en el que el objetivo es maximizar los ingresos o las utilidades,

Más detalles

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Funciones de Antonio Francisco Roldán López de Hierro * Convocatoria de 200 Las siguientes páginas contienen las soluciones de los ejercicios propuestos

Más detalles

TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (parte II)

TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (parte II) TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (parte II) Tema 6- Parte II 1 ANÁLISIS DE PROYECTOS En ambiente de incertidumbre Los flujos de caja a descontar no son ciertos Criterio a aplicar

Más detalles

CONTROL DE FLUJO. Control de flujo: mecanismo extremo a extremo para regular el tráfico entre el origen y el destino

CONTROL DE FLUJO. Control de flujo: mecanismo extremo a extremo para regular el tráfico entre el origen y el destino Temas 22 y 23 Control de congestión y flujo Diapositiva 1 Laboratorio de sistemas de decisión e información () CONTROL DE FLUJO Control de flujo: mecanismo extremo a extremo para regular el tráfico entre

Más detalles

CONSUMIDORES POTENCIALES 5.000 8.500 2.400 2.800

CONSUMIDORES POTENCIALES 5.000 8.500 2.400 2.800 PROBLEMA En el último consejo de dirección de la empresa La rosca loca se llegó a la conclusión de que la razón por la que sus productos (obviamente roscas de maíz) no son adquiridos es porque el gran

Más detalles

4. HERRAMIENTAS ESTADÍSTICAS

4. HERRAMIENTAS ESTADÍSTICAS 4. HERRAMIENTAS ESTADÍSTICAS 4.1 Definiciones La mayor parte de las decisiones se toman en función de la calidad, como en la mayoría de las demás áreas del moderno esfuerzo humano (por ejemplo, en la evaluación

Más detalles

1. Teoría de la utilidad esperada 2. Experimento de mercado: demanda, oferta y eficiencia 3. Davis y Holt sobre economía experimental

1. Teoría de la utilidad esperada 2. Experimento de mercado: demanda, oferta y eficiencia 3. Davis y Holt sobre economía experimental Historia del pensamiento económico Jorge M. Streb Clase 5 de noviembre de 200 Temas. Teoría de la utilidad esperada 2. Experimento de mercado: demanda, oferta y eficiencia. Davis y Holt sobre economía

Más detalles

CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática

CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática CAPITULO Aplicaciones de la Derivada Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Créditos Primera edición impresa: Rosario Álvarez, 1988. Edición Latex: Marieth

Más detalles

Jesús Getán y Eva Boj. Marzo de 2014

Jesús Getán y Eva Boj. Marzo de 2014 Optimización sin restricciones Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj Optimización sin restricciones 1 / 32 Formulación del problema

Más detalles

INTRODUCCIÓN A LAS FINANZAS (Informática)

INTRODUCCIÓN A LAS FINANZAS (Informática) INTRODUCCIÓN A LAS FINANZAS (Informática) SEGUNDO SEMESTRE 2011 Apunte N 2 Objetivos de la unidad Al finalizar la Unidad Nº2, debe ser capaz de: Entender el concepto de costo de oportunidad del dinero,

Más detalles

Unidad 1 Modelos de programación lineal

Unidad 1 Modelos de programación lineal Unidad 1 Modelos de programación lineal La programación lineal comenzó a utilizarse prácticamente en 1950 para resolver problemas en los que había que optimizar el uso de recursos escasos. Fueron de los

Más detalles

Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor

Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor Tema 5 Aproximación funcional local: Polinomio de Taylor Teoría Los polinomios son las funciones reales más fáciles de evaluar; por esta razón, cuando una función resulta difícil de evaluar con exactitud,

Más detalles

Tratamiento borroso del intangible en la valoración de empresas de Internet

Tratamiento borroso del intangible en la valoración de empresas de Internet Tratamiento borroso del intangible en la valoración de empresas de Internet Mª Carmen Lozano Gutiérrez Federico Fuentes Martín Esta página está alojada por el Grupo EUMED.NET de la Universidad de Málaga

Más detalles

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES. Estudiar el crecimiento, el decrecimiento y los etremos relativos de las siguientes funciones: a) f( ) 7 + + b) ln f( ) c) 5 si < f(

Más detalles

TRANSFORMACIONES LINEALES. Transformaciones. TRANSFORMACIONES LINEALES Ejemplo. TRANSFORMACIONES LINEALES Ejemplo

TRANSFORMACIONES LINEALES. Transformaciones. TRANSFORMACIONES LINEALES Ejemplo. TRANSFORMACIONES LINEALES Ejemplo TRANSFORMACIONES LINEALES Transformaciones Conceptos básicos Gilberto Aguilar Miranda Instituto Tecnologico de Chihuahua : Una transformación lineal L de R n en R m (L : R n R m ) es una función que asigna

Más detalles

Ejemplo del modelo de generaciones solapadas

Ejemplo del modelo de generaciones solapadas Ejemplo del modelo de generaciones solapadas Descripción de la economía 1. Cada unidad del bien sólo puede existir en un período de tiempo. 2. Todas las generaciones 1 son idénticas. Cada generación está

Más detalles

Dualidad y Análisis de Sensibilidad

Dualidad y Análisis de Sensibilidad Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Industrial IN34A: Clase Auxiliar Dualidad y Análisis de Sensibilidad Marcel Goic F. 1 1 Esta es una versión bastante

Más detalles

Economía de la información y la incertidumbre 3er curso (1º Semestre) Grado en Economía

Economía de la información y la incertidumbre 3er curso (1º Semestre) Grado en Economía Economía de la información y la incertidumbre 3er curso (1º Semestre) Grado en Economía Parte I. Tema II: TEORÍA DE LA DECISIÓN CON INCERTIDUMBRE: UTILIDAD ESPERADA Bibliografía recomendada: Para el punto

Más detalles

USO DE LA DISTRIBUCIÓN PARETO CON ESTIMADORES BAYESIANOS PARA MODELAR EL INGRESO EN MÉXICO

USO DE LA DISTRIBUCIÓN PARETO CON ESTIMADORES BAYESIANOS PARA MODELAR EL INGRESO EN MÉXICO COLEGIO DE POSTGRADUADOS INSTITUCIÓN DE ENSEÑANZA E INVESTIGACIÓN EN CIENCIAS AGRÍCOLAS CAMPUS MONTECILLO POSTGRADO DE SOCIOECONOMÍA, ESTADÍSTICA E INFORMÁTICA ECONOMÍA USO DE LA DISTRIBUCIÓN PARETO CON

Más detalles

1. Examen 21/Junio/1994. Para la inversión de una matriz cuadrada A de orden n n, cuya inversa existe, se ha definido la siguiente iteración

1. Examen 21/Junio/1994. Para la inversión de una matriz cuadrada A de orden n n, cuya inversa existe, se ha definido la siguiente iteración CAPÍTULO 5 EJERCICIOS RESUELTOS: MÉTODOS ITERATIVOS PARA ECUACIONES LINEALES Ejercicios resueltos 1 1. Examen 21/Junio/1994. Para la inversión de una matriz cuadrada A de orden n n cuya inversa existe

Más detalles

RELACIÓN DE PROBLEMAS Nº 2 CONJUNTOS Y APLICACIONES

RELACIÓN DE PROBLEMAS Nº 2 CONJUNTOS Y APLICACIONES UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Dpto. de Matemáticas (Área de Álgebra) 1. Sean X e Y conjuntos. Demostrar: a) X = X Y Y X. b) X = X Y X Y. RELACIÓN DE PROBLEMAS Nº 2 CONJUNTOS Y APLICACIONES

Más detalles

MÉTODOS MATEMÁTICOS DE LA ECONOMÍA

MÉTODOS MATEMÁTICOS DE LA ECONOMÍA UNIVERSIDAD DE VALLADOLID DEPARTAMENTO DE ECONOMÍA APLICADA SUBSECCIÓN DE MATEMÁTICAS MÉTODOS MATEMÁTICOS DE LA ECONOMÍA Economía Derecho Administración y Dirección de Empresas RELACIÓN DE PROBLEMAS DE

Más detalles

Investigación Operativa

Investigación Operativa Investigación Operativa Ingeniería Informática Curso 08/09 Introducción Programación lineal Programación entera Programación combinatoria y en redes Simulación Sistemas de colas Introducción: Qué es la

Más detalles

Análisis y cuantificación del Riesgo

Análisis y cuantificación del Riesgo Análisis y cuantificación del Riesgo 1 Qué es el análisis del Riesgo? 2. Métodos M de Análisis de riesgos 3. Método M de Montecarlo 4. Modelo de Análisis de Riesgos 5. Qué pasos de deben seguir para el

Más detalles

Tema 1: La conducta del consumidor

Tema 1: La conducta del consumidor Tema 1: La conducta del consumidor 1.1. Las preferencias del consumidor. Concepto de utilidad. 1.2. La restricción presupuestaria. 1.3. La elección del consumidor. 1.4. Los índices del coste de la vida.

Más detalles

Unidad 5 Utilización de Excel para la solución de problemas de programación lineal

Unidad 5 Utilización de Excel para la solución de problemas de programación lineal Unidad 5 Utilización de Excel para la solución de problemas de programación lineal La solución del modelo de programación lineal (pl) es una adaptación de los métodos matriciales ya que el modelo tiene

Más detalles

Análisis de una variable real I. Tijani Pakhrou

Análisis de una variable real I. Tijani Pakhrou Análisis de una variable real I Tijani Pakhrou Índice general 1. Introducción axiomática de los números 1 1.1. Números naturales............................ 1 1.1.1. Axiomas de Peano........................

Más detalles

TEORIA DE JUEGOS (Síntesis de conceptos introductorias de J.Pérez, J.L. Jimeno y E. Cerdá, Teoría de Juegos, Madrid, Pearson, 2004, )

TEORIA DE JUEGOS (Síntesis de conceptos introductorias de J.Pérez, J.L. Jimeno y E. Cerdá, Teoría de Juegos, Madrid, Pearson, 2004, ) TEORIA DE JUEGOS (Síntesis de conceptos introductorias de J.Pérez, J.L. Jimeno y E. Cerdá, Teoría de Juegos, Madrid, Pearson, 2004, ) Hablando en términos generales e intuitivos, podríamos decir que la

Más detalles

Universidad Carlos III de Madrid Teoría de Juegos Lista de Ejercicios de Juegos Repetidos y Bayesianos

Universidad Carlos III de Madrid Teoría de Juegos Lista de Ejercicios de Juegos Repetidos y Bayesianos Sesión 1: 1, 2, 3, 4 Sesión 2: 5, 6, 8, 9 Universidad Carlos III de Madrid Teoría de Juegos Lista de Ejercicios de Juegos Repetidos y Bayesianos 1. Considere el siguiente juego en forma normal: Jugadora

Más detalles

Un programa entero de dos variables. 15.053 Jueves, 4 de abril. La región factible. Por qué programación entera? Variables 0-1

Un programa entero de dos variables. 15.053 Jueves, 4 de abril. La región factible. Por qué programación entera? Variables 0-1 15.053 Jueves, 4 de abril Un programa entero de dos variables Introducción a la programación entera Modelos de programación entera Handouts: material de clase maximizar 3x + 4y sujeto a 5x + 8y 24 x, y

Más detalles

Experimentación con Descartes na Aula. Galicia 2008

Experimentación con Descartes na Aula. Galicia 2008 Experimentación con Descartes na Aula. Galicia 2008 Follas de traballo Se traballará coas páxinas web da unidade á vez que se completan as follas de traballo, e se realizarán as actividades propostas que

Más detalles

TEMA 5. La Elección Pública. Fuentes: Arial, Barcelona. -Albi, E.; González-Páramo, J.M. y Zubiri, I. (2004): Economía pública I, Ed.

TEMA 5. La Elección Pública. Fuentes: Arial, Barcelona. -Albi, E.; González-Páramo, J.M. y Zubiri, I. (2004): Economía pública I, Ed. TEMA 5 La Elección Pública Fuentes: -Albi, E.; González-Páramo, J.M. y Zubiri, I. (2004): Economía pública I, Ed. Arial, Barcelona. -Elaboración Propia. ESQUEMA 1. El mercado y el sector público como sistemas

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES INECUACIONES NOTA IMPORTANTE: El signo de desigualdad de una inecuación puede ser,, < o >. Para las cuestiones teóricas que se desarrollan en esta unidad únicamente se utilizará la desigualdad >, siendo

Más detalles

Guía de Ejercicios. Teoría de Juegos

Guía de Ejercicios. Teoría de Juegos Guía de Ejercicios Teoría de Juegos Soledad Cabrera Calabacero 2012 La autora es Licenciada en Ciencias en dministración de Empresas e Ingeniero Comercial de la Pontificia Universidad Católica de Valparaíso,

Más detalles

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico q 1 q 2 Prof. Félix Aguirre 35 Energía Electrostática Potencial Eléctrico La interacción electrostática es representada muy bien a través de la ley de Coulomb, esto es: mediante fuerzas. Existen, sin embargo,

Más detalles

Restricciones. Inteligencia Artificial. Ingeniería Superior en Informática, 4º Curso académico: 2011/2012 Profesores: Ramón Hermoso y Matteo Vasirani

Restricciones. Inteligencia Artificial. Ingeniería Superior en Informática, 4º Curso académico: 2011/2012 Profesores: Ramón Hermoso y Matteo Vasirani Restricciones Ingeniería Superior en Informática, 4º Curso académico: 2011/2012 Profesores: Ramón Hermoso y Matteo Vasirani 1 Tema 2: Agentes basados en Búsqueda Resumen: 2. Agentes basados en búsqueda

Más detalles

Anexo 11. Valoración de la calidad de los distintos tipos de estudios

Anexo 11. Valoración de la calidad de los distintos tipos de estudios Anexo 11. Valoración de la calidad de los distintos tipos de estudios Ensayos Clínicos Un ensayo clínico aleatorizado (ECA) es un estudio experimental en el que se aplica una intervención a un grupo de

Más detalles

L A P R O G R A M A C I O N

L A P R O G R A M A C I O N L A P R O G R A M A C I O N L I N E A L 1. INTRODUCCIÓN: la programación lineal como método de optimación La complejidad de nuestra sociedad en cuanto a organización general y económica exige disponer

Más detalles

Objetivos: Al inalizar la unidad, el alumno:

Objetivos: Al inalizar la unidad, el alumno: Unidad 7 transformaciones lineales Objetivos: Al inalizar la unidad, el alumno: Comprenderá los conceptos de dominio e imagen de una transformación. Distinguirá cuándo una transformación es lineal. Encontrará

Más detalles

Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice

Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice 1 Polinomios Dedicaremos este apartado al repaso de los polinomios. Se define R[x] ={a 0 + a 1 x + a 2 x 2 +... +

Más detalles

Sistemas de ayuda a la decisión Modelización de la incertidumbre Tema 2. Incertidumbre y Probabilidad

Sistemas de ayuda a la decisión Modelización de la incertidumbre Tema 2. Incertidumbre y Probabilidad Sistemas de ayuda a la decisión Modelización de la incertidumbre Tema 2. Incertidumbre y Probabilidad Indice 1) Sucesos aleatorios. Espacio muestral. 2) Operaciones con sucesos. 3) Enfoques de la Probabilidad.

Más detalles

MICROECONOMÍA Grado en Economía Universitat de València Prof. Carlos Peraita 1 TEMA 1. La conducta de los consumidores

MICROECONOMÍA Grado en Economía Universitat de València Prof. Carlos Peraita 1 TEMA 1. La conducta de los consumidores MICROECONOMÍA Grado en Economía Universitat de València Prof. Carlos Peraita 1 TEMA 1 La conducta de los consumidores MICROECONOMÍA Grado en Economía Universitat de València Prof. Carlos Peraita 2 TEMA

Más detalles

MATEMÁTICAS III. RESTRICCIONES DE IGUALDAD

MATEMÁTICAS III. RESTRICCIONES DE IGUALDAD MATEMÁTICAS III. PROBLEMAS Y CUESTIONES TEMA 4: RESTRICCIONES DE IGUALDAD OPTIMIZACIÓN CON Problema 1: Una empresa calcula que puede alcanzar unos beneficios anuales (en miles de euros) dados por la función:

Más detalles

DESCRIPCIÓN DE SERVICIOS

DESCRIPCIÓN DE SERVICIOS DESCRIPCIÓN DE SERVICIOS MARVERATI Trade & Consulting Group, es un despacho de reciente creación, enfocado en inteligencia de negocios, iniciando operaciones con el objeto de brindar soluciones y estrategias

Más detalles

Examen Final 28 de Enero de 2009 Permutación 1

Examen Final 28 de Enero de 2009 Permutación 1 Universitat Autònoma de Barcelona Introducció a l Economia, Curs 2008-2009 Codi: 25026 Examen Final 28 de Enero de 2009 Permutación 1 Primera Parte Preguntas de opción múltiple (20 puntos). Marca claramente

Más detalles

Resumen de técnicas para resolver problemas de programación entera. 15.053 Martes, 9 de abril. Enumeración. Un árbol de enumeración

Resumen de técnicas para resolver problemas de programación entera. 15.053 Martes, 9 de abril. Enumeración. Un árbol de enumeración 5053 Martes, 9 de abril Ramificación y acotamiento () Entregas: material de clase Resumen de técnicas para resolver problemas de programación entera Técnicas de enumeración Enumeración completa hace una

Más detalles

Tema 10. Estimación Puntual.

Tema 10. Estimación Puntual. Tema 10. Estimación Puntual. Presentación y Objetivos. 1. Comprender el concepto de estimador y su distribución. 2. Conocer y saber aplicar el método de los momentos y el de máxima verosimilitud para obtener

Más detalles

a < b y se lee "a es menor que b" (desigualdad estricta) a > b y se lee "a es mayor que b" (desigualdad estricta)

a < b y se lee a es menor que b (desigualdad estricta) a > b y se lee a es mayor que b (desigualdad estricta) Desigualdades Dadas dos rectas que se cortan, llamadas ejes (rectangulares si son perpendiculares, y oblicuos en caso contrario), un punto puede situarse conociendo las distancias del mismo a los ejes,

Más detalles

Apuntes de Matemática Discreta 7. Relaciones de Orden

Apuntes de Matemática Discreta 7. Relaciones de Orden Apuntes de Matemática Discreta 7. Relaciones de Orden Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 7 Relaciones de Orden Contenido

Más detalles

INDICE 2. Psicología de la toma decisiones 3. Resolución de problemas 4. Imaginación en la toma de decisiones

INDICE 2. Psicología de la toma decisiones 3. Resolución de problemas 4. Imaginación en la toma de decisiones INDICE Prefacio de la segunda edición XIII 1. Sobre decisiones 1 Decisiones difíciles Analizar las decisiones 2 Elementos del análisis de decisiones (AD) 4 Disciplinas afines 5 Como mirar un cuadro 6 Los

Más detalles

I.1 Las siguientes afirmaciones son ciertas o falsas. Si una afirmación es cierta, ofrezca una explicación. Si es falsa ponga un contraejemplo.

I.1 Las siguientes afirmaciones son ciertas o falsas. Si una afirmación es cierta, ofrezca una explicación. Si es falsa ponga un contraejemplo. Teoría de Juegos Examen de enero de 2013 Nombre Grupo: Tiene dos horas y media para completar el examen I Preguntas cortas (20 puntos) I1 Las siguientes afirmaciones son ciertas o falsas Si una afirmación

Más detalles

POR QUÉ EL VALOR PRESENTE NETO CONDUCE A MEJORES DECISIONES DE INVERSIÓN QUE OTROS CRITERIOS? ( Brealey & Myers )

POR QUÉ EL VALOR PRESENTE NETO CONDUCE A MEJORES DECISIONES DE INVERSIÓN QUE OTROS CRITERIOS? ( Brealey & Myers ) CAPÍTULO 5 POR QUÉ EL VALOR PRESENTE NETO CONDUCE A MEJORES DECISIONES DE INVERSIÓN QUE OTROS CRITERIOS? ( Brealey & Myers ) Ya hemos trabajado antes con los principios básicos de la toma de decisiones

Más detalles

El Marco Conceptual para la Información Financiera

El Marco Conceptual para la Información Financiera El Marco Conceptual para la Información Financiera El Marco Conceptual se emitió por el IASB en septiembre de 2010. Derogó el Marco Conceptual para la Preparación y Presentación de Estados Financieros.

Más detalles

GUÍA DE EJERCICIOS UNIDAD II

GUÍA DE EJERCICIOS UNIDAD II UNIDAD II: INTEGRAL DEFINIDA UNIVERSIDAD DE CARABOBO FACULTAD DE INGENIERÍA ESTUDIOS BÁSICOS DEPARTAMENTO DE MATEMÁTICA ANÁLISIS MATEMÁTICO II Corregido por: Prof. AOUAD Jamil Prof. LAURENTÍN María Prof.

Más detalles

3FUNCIONES LOGARÍTMICAS

3FUNCIONES LOGARÍTMICAS 3FUNCIONES LOGARÍTMICAS Problema 1 Si un cierto día, la temperatura es de 28, y hay mucha humedad, es frecuente escuchar que la sensación térmica es de, por ejemplo, 32. La sensación térmica depende de

Más detalles

MICROECONOMÍA II PRÁCTICA TEMA III: MONOPOLIO

MICROECONOMÍA II PRÁCTICA TEMA III: MONOPOLIO MICROECONOMÍA II PRÁCTICA TEMA III: MONOPOLIO EJERCICIO 1 Primero analizamos el equilibrio bajo el monopolio. El monopolista escoge la cantidad que maximiza sus beneficios; en particular, escoge la cantidad

Más detalles

Análisis estadístico. Tema 1 de Biología NS Diploma BI Curso 2013-2015

Análisis estadístico. Tema 1 de Biología NS Diploma BI Curso 2013-2015 Análisis estadístico Tema 1 de Biología NS Diploma BI Curso 2013-2015 Antes de comenzar Sobre qué crees que trata esta unidad? - Escríbelo es un post-it amarillo. Pregunta guía Cómo podemos saber si dos

Más detalles

TEORÍA DE DECISIONES (Versión Preliminar)

TEORÍA DE DECISIONES (Versión Preliminar) Facultad de Ciencias Exactas y Tecnologías - UNSE Apuntes de Cátedra: Investigación Operativa Año: 2008 TEORÍA DE DECISIONES (Versión Preliminar) Introducción: Decisión e Investigación Operativa: La mayoría

Más detalles

Inversión. Inversión. Arbitraje. Descuento. Tema 5

Inversión. Inversión. Arbitraje. Descuento. Tema 5 Inversión Tema 5 Inversión Los bienes de inversión obligan a gastar hoy para obtener ganancias en el futuro Vamos a estudiar cómo se valoran los pagos futuros Por ejemplo, la promesa de recibir euro dentro

Más detalles