Solución: Coloreando el tablero con casillas de dos colores al estilo del tablero de coronas (damas) como se muestra en la figura 2.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Solución: Coloreando el tablero con casillas de dos colores al estilo del tablero de coronas (damas) como se muestra en la figura 2."

Transcripción

1 Algunos prolems. L olorión en ls mtemátis L olorión en ls mtemátis no es más que provehr lguns iferenis que estleemos entre los entes empleos en un prolem prtiulr, similr l utili e ls nemotenis en l progrmión, lógi, mtemáti, et. Esrito en un lenguje oloquil, logrr un ientifiión on el prolem que lo hg más entenile y fáil e trjr, en fin más igerile. Por ejemplo si neesitos iferenir os os e juegos e zr, iremos que uno e ellos es zul y el otro es rojo. Sin emrgo strí eir que uno e los os está limpio y el otro no lo está. O lo que es lo mismo, estleer un ifereni entre mos entes unque est se poo pereptile. Aemás trvés e ls iferenis mrs en los entes, enontrmos prolems que resultn impenetrles priori por el esonoimiento e est téni y posteriori resultn senillos e resolver y entener. En vist logrr un onoimiento iniil e ls oloriones en los tleros está heho este esrito. Con el ojetivo e que estuintes onursntes en olimpis o spirntes ells, inluyn est rm en su rsenl pr tr y soluionr los iferentes prolems. Prolem iniil. Tenemos un tlero e 8x8 y 31 fihs e omino que tienen l prtiulri e que un e ells puee oupr extmente l región e os sills ontigus el tlero (omo se muestr en l figur 1). Se quiere olor ls 31 fihs e omino en el tlero e mner que quee el tlero uierto por fihs e omino exepto ls os sills e los extremos e l igonl prinipl. De ser posile etermine l istriuión e ls fihs e omino. Figur 1 Csill no uiert por fihs e omino. Fih e omino que oup os sills ontigus el tlero. Soluión: Coloreno el tlero on sills e os olores l estilo el tlero e orons (ms) omo se muestr en l figur 2. Figur 2

2 Tenemos que fih el omino l ser olo en el tlero e mner que oupe os sills ontigus (y se vertil u horizontl) oup un sill ln y un sill negr o se l olor ls 31 fihs ests ouprn 31 sills negrs y 31 sills lns por lo que resultrí imposile que l olor ls 31 fihs queen por urir os sills negrs. Y por tnto result imposile olor ls 31 fihs el omino e mner que queen lire los extremos e l igonl prinipl. En este so lo provehle e l olorión fue que os sills on un lo omún el tlero tienen un olorión iferente. L olorión emple fue l más omún e os olores. El llo el jerez. Est mism olorión tiene l prtiulri e que el llo el jerez slt e un sill el tlero otr e olor iferente. Por eso preismente no se puee en un tlero e 5x5 omenzr un reorrio on movis e llo e jerez, iniino en un e sus sill, psr por tos sin repetir ningun y terminr en l sill iniil on movis e un llo. Pues pr que se puier relizr eemos tener un nti iéntis e sills negrs y sills lns (no puee ser impr). Prolem 3 e l 40º IMO, Burest, Rumni Vemos pues otrs ones e l mism olorión trvés el prolem 3 e l 40º IMO, Burest, Rumni Se onsier un tlero uro e n x n, one n es un entero positivo pr. El tlero se ivie en n 2 uros unitrios. Deimos que os uros istintos el tlero son yentes si tienen un lo en omún. Se mrn N uros unitrios el tlero e tl mner que uro (mro o sin mrr) es yente por lo menos un uro mro. Determinr el menor vlor posile e N. Soluión: Si oloremos el tlero e nxn on os olores negro y lno omo en l figur 2, notremos que ls sills yentes ls lns son negrs y ls negrs son lns. Por tnto se eue que pr que tos ls sills lns tengn lgun sill yente mr, eemos usr sólo en ls mrs negrs y vievers. De one onluimos que el número mínimo e sills lns mrs es igul l número mínimo e sills negrs mrs eio que n es pr y hy simetrí en el tlero oloreo. Hst quí tenemos un por iento el prolem pero no semos uál es l nti mínim e sills mrs sólo onoemos que es pr. Si relizmos un olorión sore ls sills negrs omo se muestr en l figur 3 (mrno en ls igonles negrs impres ls posiiones impres) tenremos entones k sills negrs mrs, ls ules umplen que tos ls sills lns son yente lgun e ells, inino esto que el vlor mínimo e sills negrs mrs es menor o igul k. Pero por otr prte notemos que ests k sills negrs mrs están istriuis e form tl que ls sills lns mrr que sen yentes ells son iferentes, lo ul nos ie que el vlor mínimo e sills lns mrs es myor o igul k. Y omo tenímos que el número mínimo e sills lns mrs es igul l número mínimo e sills negrs mrs entones el menor vlor posile e N es 2k, pero k oinie on l sum n/2. Por lo que onluimos que el menor vlor posile es N = r(r +1) one r = n/2.

3 Figur 3 Prolem e pepito. Un niño (pepito) trtno e ompletr un puzzle h oloo tres e sus piezs (tos e l mism form) que oupn ls posiiones que muestr l figur 4. Será posile ompletr el puzzle on ess tres piezs fijs? Figur 4 Soluión: Notemos que iho tlero es e 9x9, por lo que serí 27 piezs un oupno 3 sills el tlero. Si emplemos un olorión e os olores Blno y Rojo omo se ini en l figur 5, one tmién están presentes ls tres piezs olos por pepito. Entones notremos que ningun e ls tres piezs olos oup lgun e ls sills rojs y que por emás sill roj será uiert por piezs istints, e ser posile tl urimiento el tlero, gris form e ls fihs. Figur 5 Bjo ests oniiones l nti e piezs utilizr nun será menor que l nti e sills rojs (25) más tres por ls fihs y puests, o se 28 lo ul entr en ontriión totl on que se relmente 27 piezs pr urir el tlero e 9 x 9

4 puesto que 3 x 27 = 81. Por tnto tenemos que l operión e urir el tlero on ls piezs el puzzle poyos en ls olos por pepito es imposile. Prolem 5 e l II OIMU Vemos un olorión e 5 olores l ul fue emple pr resolver el prolem 5 e l II OIMU (2 e oture e 1999). En el juego tetris-5 se utilizn utro tipos e fihs que tienen un e sus rs pints e negro y otr e lno tl omo se muestrn en l siguiente figur. Ls fihs pueen ser olos en un tlero uriulo e m x n en ulquier posiión siempre y uno no se superpongn y tengn l r negr hi rri. () Demostrr que se puee reurir un tlero e 8 x 8 que no ontiene sus utro esquins. () Demostrr que no se puee reurir un tlero e 1999 x 2001 que no ontiene sus utro esquins. Soluión En el prolem se utilizn los utro tipos e fihs el juego tetris-5, on ls rs e un olor fijo hi rri ini que sólo se pueen rotr ls piezs (figur 6). Pr resolver el iniso st on eir un poo e nuestro tiempo, y pr el iniso no poyremos en un olorión. Figur 6 Figur L olorión emple en este prolem puee ser e ino olores 1, 2, 3, 4 y 5 los ules por fils preerán ílimente en ese oren y por olumns ílimente omitieno uno e ellos pero mntenieno el oren. En l figur 7 se muestr un posile uiión e ls oloriones e ls sills que oupn ls fihs. Done tos uren un sill e olor, solo fltrí nlizr ls rotiones y trsliones e ls piezs que tmién urirán un sill e olor. Con est olorión notemos que nuestro tlero e 1999x2001 present sills e los olores 1, 2, 3 y 5, pero sills e olor 4. Y ls esquins el tlero son ls superiores e olor 1 y ls inferiores e olor 2. Lo ul entr en ontriión on que piezs ur un sill e olor, pues l olor fihs sin superposiión ejmos lires 4 sills e olores istintos. Hints pr el prolem 3 e l 34º IMO, Turquí 1993 Vemos os oloriones e os y tres olores que nos yun soluionr el prolem 3 e l 34º IMO, Turquí En un tlero e jerez infinito, un prtio es jugo omo sigue. Pr omenzr, n 2 piezs son olos en un tlero e n x n uros ontiguos, un piez en uro. Un movimiento en el juego es un slto en un ireión horizontl o vertil

5 sore un uro yente oupo un uro esoupo.l piez que h sio slt es elimin. Enuentr esos vlores e n pr que el juego pue r on sólo un piez en el tlero. L soluión el prolem es pr n no ivisile por 3. En un e ls vís e emostrión se plnten explíitmente ls soluiones pr n=2 y n=4, y on yu e un proeso inutivo se reue e otrs imensiones myores ests. Luego pr emostrr que pr n ivisile por 3 no es posile que el juego e on un sol piez nos poemos poyr en ls os oloriones mostrs en l figur 8: Un e tres olores, y oloreno ílimente y mntenieno el oren por fils y por olumns. L rterísti e est olorión que nos permite resolver el prolem es que en movi el juego intervienen tres sills yentes en fil o en olumn y por tnto un e olor iferente. L segun olorión e l figur 8 es e os olores lno y negro one l peuliri es que tres sills yentes por fils o por olumns uren en ulquier e sus vrintes un nti pr e sills negrs o se ningun o os. Figur 8 Otrs oloriones pr estrtegis e movimientos. Supongmos que en ierto juego existe un fih que se mueve por un tlero en tres ireiones posiles pero sólo vnz e un en un ls sills: Si ls tres ireiones en que se mueve l fih son ls mostrs en l figur 9, l olorión utilizr puee ser l mostr en l mism figur 9, o se e tres olores, y por fils oloreno ílimente mntenieno el mismo oren y por olumns e form íli, omitieno uno e los olores y mntenieno el oren. Con est olorión provehmos que l fih e un sill e olor sólo puee llegr un e olor, tmién tenemos que l fih e un sill e olor sólo puee llegr un e olor y que l fih e un sill e olor sólo puee llegr un e olor. Por est rzón poemos segurr que pr que en un tlero retngulr pue ser reorrio por un e ls referis fihs psno por tos ls sills, sin repetir l visit y ulminr en l mism sill iniil. Tiene que poseer l menos luego e l olorión l mism nti e sills e olor, y. Lo ul onllev l oniión neesri e que l nti e sills el tlero se ivisile por 3. Figur 9 Figur 10

6 Si ls tres ireiones en que se mueve l fih son ls mostrs en l figur 10, l olorión utilizr puee ser l mostr en l mism figur 10, o se e utro olores,, y por fils oloreno ílimente mntenieno el mismo oren y por olumns e form íli, omitieno uno e los olores y mntenieno el oren. Con est olorión provehmos que l fih e un sill e olor sólo puee llegr un e olor, tmién tenemos que l fih e un sill e olor sólo puee llegr un e olor, emás que l fih e un sill e olor sólo puee llegr un e olor y que l fih e un sill e olor sólo puee llegr un e olor. Por est rzón poemos segurr que pr que en un tlero retngulr pue ser reorrio por un e ls fihs psno por tos ls sills, sin repetir visits y ulminno en l sill iniil. Tiene que poseer l menos, luego e l olorión l mism nti e sills e olor,, y. Por lo ul l nti e sills el tlero tiene que ser múltiplo e 4. Prolem finl (eloro por Leonel) En un tlero e nxn sills, on n myor que ino tos ls sills son lns exepto un negr. En el tlero se pueen relizr operiones e mio e olorión en tos ls sills e un mism fil, e un mism olumn o un mism igonl on l intensión e que tos lleguen ser el mismo olor. Determine ls posiles posiiones e l sill negr e moo que en un momento etermino puen tos ls sills llegr ser el mismo olor. Soluión: Anliemos lo que suee en un tlero e 4x4. En un tlero e 4x4 notemos que l sill negr no puee ser un e ls sills grises e l figur 11. Pues si iniilmente un e ells es negr entones luego e ulquier nti e operiones l nti e sills negrs entre ells es impr, lo ul onllev que nun lleguen ser tos el mismo olor. Esto se ee que por l istriuión e ls 8 sills olores, l relizr ulquier operión que mie l olorión e un e ells relmente mi extmente os e ells (figur 11) y por tnto l nti e sills negrs entre ells siempre serí impr. Figur 11 Esto es pr un tlero e 4x4, pero est olorión se puee her en su-tlero e 4x4, o se trslmos vertil y horizontl est olorión omo se muestr en

7 figur 12 y llegremos que en los tleros e nxn on n > 5, ls posiles posiiones e l sill negr nos que sólo en ls esquins el tlero y on un sol operión le mimos en olor y tos ls sills el tlero psrín ser lns. Figur 12 L restriión e que n se myor que 5 fue usno uniformi en l soluión, sí que e este moo que propuesto pr el letor el ejeriio pr los tleros e nxn on n menor o igul que ino. Ests misms onlusiones otenis on yu e ls oloriones en los tleros son lnzs on rzonmientos lógios equivlentes iferenir los elementos e trjo. Por ejemplo uno tenemos un olorión e os olores es omo estleer os estos iferentes (iviir los sos en os) no tienen que ser olores por omoi o pr un mejor ompresión emplemos los olores pero pueen ser 0 y 1 poyos inluso en operiones el lger e Bolee o en l ongrueni móulo 2. Estrí intereso en que lguno e ustees, los letores, me hg llegr ví orreo eletrónio prolems y/o soluiones one se pue empler este tipo e estrtegi. Mi orreo eletrónio es wlterr@yhoo.es.

8 Revist Esolr e l Olimpí Ieromerin e Mtemáti Eit:

Los términos de una fracción son el NUMERADOR y el DENOMINADOR. Numerador. Denominador 5 5 = 5 5 5 5 5 = 3.125

Los términos de una fracción son el NUMERADOR y el DENOMINADOR. Numerador. Denominador 5 5 = 5 5 5 5 5 = 3.125 Friones CONTENIDOS PREVIOS Reueres lo que es un frión y uáles son sus términos. Lo neesitrás omo punto e prti pr mplir tus onoimientos. Los términos e un frión son el NUMERADOR y el DENOMINADOR. Numeror

Más detalles

( ) ( ) El principio de inducción

( ) ( ) El principio de inducción El priipio e iuió U ejemplo seillo pr empezr Si hemos oío hlr e progresioes ritmétis (series e úmeros e form que l iferei etre os oseutivos es siempre l mism, omo,,, 0,) prolemete o será fáil lulr l sum

Más detalles

Esto es sólo una muestras de los ejercicios, repasa también los de la libreta y los del libro.

Esto es sólo una muestras de los ejercicios, repasa también los de la libreta y los del libro. MATEMÁTICAS º ESO Esto es sólo un muestrs e los ejeriios, reps tmién los e l liret los el liro. Deprtmento e Mtemátis Coleio Sgro Corzón e Jesús ontever. eliz ests operiones: - 8 - -. Efetú: - - - - -

Más detalles

Fracciones equivalentes

Fracciones equivalentes 6 Aritméti Friones equivlentes Reflexiones diionles Frión unitri. Es quell frión uyo numerdor es igul. Friones equivlentes. Son ls que representn l mism ntidd, un undo el numerdor y el denomindor sen distintos,

Más detalles

MATRICES: un apunte teórico-práctico

MATRICES: un apunte teórico-práctico MRICES: un punte teório-prátio Definiión Un mtriz e tmño n x m es un rreglo e números reles oloos en n fils (o renglones) y m olumns, e l siguiente form: [ ].. n Los números se llmn elementos o entrs e

Más detalles

PROBLEMAS DE ÁLGEBRA DE MATRICES

PROBLEMAS DE ÁLGEBRA DE MATRICES Mtemátis Álger e mtries José Mrí Mrtínez Meino PROLEMS DE ÁLGER DE MTRCES Oservión: L myorí e estos ejeriios proeen e ls prues e Seletivi D l mtriz enuentr tos ls mtries P tles que P P Soluión: Se ese

Más detalles

APUNTE: Matrices. Una matriz de tamaño n x m es un arreglo de números reales colocados en n filas (o renglones) y m columnas, de la siguiente forma:

APUNTE: Matrices. Una matriz de tamaño n x m es un arreglo de números reales colocados en n filas (o renglones) y m columnas, de la siguiente forma: PUNE: Mtries UNIVERSIDD NCIONL DE RIO NEGRO signtur: Mtemáti Crrers: Li. en ministrión Profesor: Prof. Mel Chresti Semestre: o ño: 6 Definiión Un mtriz e tmño n x m es un rreglo e números reles oloos en

Más detalles

Matemática II Tema 4: matriz inversa y determinante

Matemática II Tema 4: matriz inversa y determinante Mtemáti II Tem 4: mtriz invers y eterminnte 2012 2013 Ínie Mtriz invertile 1 Definiión y propiees 1 Cómputo e l mtriz invers 3 Determinnte e un mtriz 4 Propiees e los eterminntes 4 Cómputo el eterminnte

Más detalles

TEMA 9. DETERMINANTES.

TEMA 9. DETERMINANTES. Uni.Determinntes TEM. DETERMINNTES.. Coneptos previos, permutiones. Definiión generl e eterminntes. Determinnte e mtries e oren y oren... Determinnte mtries urs e oren.. Determinnte mtries urs e oren.

Más detalles

CUESTIONES RESUELTAS 1. VECTORES Y MATRICES FUNDAMENTOS DE MATEMÁTICAS. 1º GRADO GESTIÓN AERONAÚTICA

CUESTIONES RESUELTAS 1. VECTORES Y MATRICES FUNDAMENTOS DE MATEMÁTICAS. 1º GRADO GESTIÓN AERONAÚTICA CUESTIONES RESUELTS. VECTORES Y MTRICES FUNDMENTOS DE MTEMÁTICS. º GRDO GESTIÓN ERONÚTIC. Se el onjunto e vetores } tl que entones se verifi:. El onjunto M es linelmente inepeniente.. El onjunto M tiene

Más detalles

. Se clasifican en Números Racionales Q y Números Irracionales Q. . Se pueden representar en la recta numérica al igual que otros números reales.

. Se clasifican en Números Racionales Q y Números Irracionales Q. . Se pueden representar en la recta numérica al igual que otros números reales. COMPETENCIA Estleer reliones y iferenis entre iferentes notiones e números reles pr eiir sore su uso. 2.. NÚMEROS RACIONALES Los números Frionrios se simolizn on l letr Q. Se lsifin en Números Rionles

Más detalles

Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente:

Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente: Uni Mtries PÁGINA 7 SOLUCIONES. L resoluión e los sistems puee expresrse e l form siguiente: L segun mtriz proporion l soluión x 5,y 6. L últim mtriz proporion l soluión x, y, z 4. . Vemos que P P. Pr

Más detalles

Haga clic para cambiar el estilo de título

Haga clic para cambiar el estilo de título Medids de ángulos 90º 0º 80º 360º R 70º reto 90º º 60' ' 60'' Se die que mide un rdián si el ro de irunfereni orrespondiente tiene un longitud igul l rdio de l mism. R Equivlenis entre grdos segesimles

Más detalles

Taller 3: material previo

Taller 3: material previo Tller 3: mteril previo El tller 3 está dedido los diferentes modelos de empquetmiento ompto de esfers y prender ontr átomos dentro de l eld unidd. Por ello, ntes de l orrespondiente sesión (dís 20, 21

Más detalles

Matrices y determinantes

Matrices y determinantes Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net) Mtries eterminntes CTS. Sen ls mtries, C. Hll l mtri ( C). Soluión: Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net)

Más detalles

Cuestionario Respuestas

Cuestionario Respuestas Cuestionrio Respuests Copright 2014, MtemtiTu Derehos reservdos 1) Un ineuión o desiguldd on un vrile (inógnit) es un enunido en que se presentn dos epresiones, l menos un on l vrile entre ells uno de

Más detalles

1.6. BREVE REPASO DE LOGARITMOS.

1.6. BREVE REPASO DE LOGARITMOS. .. BREVE REPASO DE LOGARITMOS. Sistems de ritmos. Si ulquier número positivo puede tomrse omo Bse, eiste infinito número de sistems de logritmos, pero trdiionlmente, solo se utilizn dos sistems: o ritmos

Más detalles

MATRICES. MATRIZ INVERSA. DETERMINANTES.

MATRICES. MATRIZ INVERSA. DETERMINANTES. DP. - S - 59 7 Mtemátis ISSN: 988-79X 6 MTRICES. MTRIZ INVERS. DETERMINNTES. plino ls propiees e los eterminntes y sin utilizr l regl e Srrus, lulr rzonmente ls ríes e l euión polinómi. Enunir ls propiees

Más detalles

NÚMEROS RACIONALES. y Números Irracionales Q

NÚMEROS RACIONALES. y Números Irracionales Q CORPORACIÓN UNIFICADA NACIONAL DE EDUCACIÓN SUPERIOR DEPARTAMENTO DE CIENCIAS BÁSICAS LOGICA Y PENSAMIENTO MATEMATICO ASIGNATURA: AREA / COMPONENTE: FORMACIÓN BÁSICA CICLO DE FORMACIÓN: TECNICA TIPO DE

Más detalles

PRÁCTICA 1 ARITMÉTICA BÁSICA. MATRICES. DETERMINANTES.

PRÁCTICA 1 ARITMÉTICA BÁSICA. MATRICES. DETERMINANTES. PRÁCTICA ARITMÉTICA BÁSICA. MATRICES. DETERMINANTES..- OPERACIONES ARITMÉTICAS ELEMENTALES SUMA : + y DIFERENCIA : y PRODUCTO : *y o ien y DIVISIÓN : /y POTENCIA : ^y.- CELDAS EVALUABLES Est el y ls nteriores

Más detalles

Ejemplo para transformar un DFA en una Expresión Regular

Ejemplo para transformar un DFA en una Expresión Regular Ejemplo pr trnsformr un DFA en un Expresión Regulr En este texto vmos ver uno e los métoos que se usn pr trnsformr utómts finitos eterminists en expresiones regulres, el métoo e eliminión e estos. Cuno

Más detalles

TEMA 5: FRACCIONES. Las fracciones permiten trabajar de manera simbólica con cantidades no enteras.

TEMA 5: FRACCIONES. Las fracciones permiten trabajar de manera simbólica con cantidades no enteras. Alonso Fernánez Glián TEMA FRACCIONES Ls friones permiten trjr e mner simóli on nties no enters.. CONCEPTO DE FRACCIÓN Un frión es un expresión e l form numeror enominor ( 0) Represent el resulto e iviir

Más detalles

DETERMINANTES. 1. Calcular el valor del determinante. Solución: Determinante tipo Van der Mondem. sustituyendo en la primera expresión

DETERMINANTES. 1. Calcular el valor del determinante. Solución: Determinante tipo Van der Mondem. sustituyendo en la primera expresión DETERMINANTES. lulr el vlor el eterminnte ² ² ² Soluión: Sno ftor omún e en lª fil Sno ftor omún e en l ª fil ² ² ² ² ² ² Determinnte tipo Vn er Monem. ² ² ² ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) sustituyeno

Más detalles

Óvalo dados los dos ejes: óvalo óptimo

Óvalo dados los dos ejes: óvalo óptimo l óvlo es un urv err y pln que está ompuest por utro, o más, ros e irunferéni simétrios entre sí. Suele venir efinio por os ejes que mrn sus imensiones y sirven e ejes e simetrí e los ros. Se emple freuentemente

Más detalles

PROBLEMAS RESUELTOS. a) Simplificar por el método de Karnaugh la siguiente expresión:

PROBLEMAS RESUELTOS. a) Simplificar por el método de Karnaugh la siguiente expresión: PROLEM REUELTO ) implifir por el métoo e Krnugh l siguiente expresión: ) Diujr un iruito que relie ih funión on puerts lógis (eletivi nluz). Otenemos l expresión nóni y relizmos el mp e Krnugh pr utro

Más detalles

, donde a y b son números cualesquiera.

, donde a y b son números cualesquiera. Mtemátis Mtries José Mrí Mrtínez Meino (SM, www.profes.net) MJ6 D l mtriz enuentr tos ls mtries P tles que P = P. Soluión: Se ese que Por tnto, ee umplirse que: Por tnto, P, one y son números ulesquier.

Más detalles

1. INTEGRALES DEFINIDAS E IMPROPIAS

1. INTEGRALES DEFINIDAS E IMPROPIAS . INTEGRALES DEFINIDAS E IMPROPIAS.. INTEGRAL DEFINIDA Se y = f(x) definid pr todo x [, b]. Consideremos un prtiión P del intervlo [, b] P {x 0 = < x < x 2 < < x n = b} Sen P = máx{x i x i }, s n = n m

Más detalles

TEMA 2: NÚMEROS RACIONALES: FRACCIONES.

TEMA 2: NÚMEROS RACIONALES: FRACCIONES. TEMA NÚMEROS RACIONALES FRACCIONES.. Cojuto e los Núeros Rioles, Q. El ojuto e los úeros rioles es u pliió e los úeros eteros, los que se le ñe uevos úeros que se ostruye o úeros eteros y se ll FRACCIONES.

Más detalles

SISTEMA DE COORDENADAS EN EL PLANO

SISTEMA DE COORDENADAS EN EL PLANO Mtemáti Diseño Inustril Coorens en el lno Ing. Avil Ing. Moll SISTEMA DE CRDENADAS EN EL LAN SISTEMA UNIDIMENSINAL Es sio que es posile soir los números reles on los puntos e un ret reípromente. Es lo

Más detalles

Matemática. Primaria. Nombre: Sección: Nº de orden: 4P_10A_1

Matemática. Primaria. Nombre: Sección: Nº de orden: 4P_10A_1 Mtemáti. Primri Nomre: P_10A_1 Seión: Nº e oren: 1 L iliote e un esuel tiene registros liros e iferentes áres. Oserv: Cnti e liros en l iliote Cieni y Amiente Mtemáti Comuniión C vle 5 liros Según el gráfio,

Más detalles

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica Artículo de sección Revist digitl Mtemátic, Educción e Internet (www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel

Más detalles

Determinantes D - 1 DETERMINANTES

Determinantes D - 1 DETERMINANTES Determinntes D - DETERMINNTES Determinnte e un mtri ur e oren os Definiión: D un mtri ur e oren os numero rel: Det (), se llm eterminnte e l El eterminnte e un mtri ur e oren os es igul l routo e los elementos

Más detalles

INDICACIONES. En estas preguntas tienes que unir con una línea las palabras o las oraciones con su dibujo. Une con una línea la palabra con su dibujo.

INDICACIONES. En estas preguntas tienes que unir con una línea las palabras o las oraciones con su dibujo. Une con una línea la palabra con su dibujo. 1 2 En ests pregunts tienes que unir on un líne ls plrs o ls oriones on su diujo. Ejemplo: INDICACIONES Une on un líne l plr on su diujo... gllo. Une on un líne l orión on su diujo.. Julio orre... 3 AHORA

Más detalles

CALCULO DE CENTROS DE MASA: PLACAS

CALCULO DE CENTROS DE MASA: PLACAS CALCULO DE CENTROS DE MASA: PLACAS Clulr l posiión el entro e mss e l siguiente pl suponieno que su ms está uniformemente istribui por to ell: b b( 1 k 3 ) Soluión: I.T.I. 1,, I.T.T. 1, En primer lugr,

Más detalles

Resolución de triángulos rectángulos

Resolución de triángulos rectángulos Resoluión de triángulos retángulos Ejeriio nº 1.- Uno de los tetos de un triángulo retángulo mide 4,8 m y el ángulo opuesto este teto mide 4. Hll l medid del resto de los ldos y de los ángulos del triángulo.

Más detalles

APUNTES DE CRISTALOGRAFÍA: RETÍCULO RECÍPROCO Màrius Vendrell RETÍCULO RECÍPROCO

APUNTES DE CRISTALOGRAFÍA: RETÍCULO RECÍPROCO Màrius Vendrell RETÍCULO RECÍPROCO RETÍCULO RECÍPROCO A pti el etíulo efinio nteiomente, en el que omo nuo oespone un motivo o llmemos etíulo ieto, es posible efini oto etíulo (que llmemos eípoo) en el ul los tes vetoes funmentles son:

Más detalles

PROBLEMAS DE ELECTRÓNICA DIGITAL

PROBLEMAS DE ELECTRÓNICA DIGITAL Prolems de Eletróni Digitl 4º ESO PROLEMS DE ELECTRÓNIC DIGITL 1. En l gráfi siguiente se muestr l rterísti de l resisteni de un LDR en funión de l luz que reie. Qué tipo de mgnitud es est resisteni? 2.

Más detalles

Razones y Proporciones

Razones y Proporciones Rzones y Proporiones 01. L rzón geométri e os números es 1/ y su rzón ritméti es 7. Hllr el myor. ) 117 ) 11 ) 119 ) 118 e) 110 0. L rzón geométri entre l sum e números y su ifereni es :. Hllr l rzón geométri

Más detalles

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

ECUACIONES DE PRIMER Y SEGUNDO GRADO

ECUACIONES DE PRIMER Y SEGUNDO GRADO UNIDAD ECUACIONES DE PRIMER Y SEGUNDO GRADO EJERCICIOS RESUELTOS Ojetivo generl. Al terminr est Unidd resolverás ejeriios y prolems que involuren l soluión de euiones de primer grdo y de segundo grdo Ojetivo.

Más detalles

Función de transición δ. Tema 6. Función de transición extendida. Función de transición extendida. Función de transición extendida

Función de transición δ. Tema 6. Función de transición extendida. Función de transición extendida. Función de transición extendida Tem 6 El lenguje eptdo por un FA Funión de trnsiión δ p j p l Dr. Luis A. Pined ISBN: 970-32-2972-7 Σ Q p i p k n Pr todo en Q & Σ, δ(, ) = p Funión de trnsiión etendid δ permite moverse the un estdo otro

Más detalles

MATEMATICA Parte III para 1 Año

MATEMATICA Parte III para 1 Año Crpet e Trjos Prátios e MATEMATICA Prte III pr 1 Año APELLIDO Y NOMBRE DEL ALUMNO:... PROFESOR:... DIVISIÓN:... Crpet e Trjos Prátios e Mtemáti Prte III 1º ño Págin 1 POLÍGONOS TRIÁNGULOS 3) En el triángulo

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(Específico) Solución Antonio Mengiano Corbacho UNIVERSIDAD DEL PAÍS VASCO MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(Específico) Solución Antonio Mengiano Corbacho UNIVERSIDAD DEL PAÍS VASCO MATEMÁTICAS II IES STELR BDJOZ Emen Junio e (Espeífio) ntonio engino orho UIVERSIDD DEL PÍS VSO TEÁTIS II TEÁTIS II Tiempo máimo: hor minutos Instruiones: El lumno elegirá un e ls os opiones propuests un e ls utro uestiones

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio Colegio Sn Ptriio A-09 - Inorpordo l Enseñnz Ofiil Fundión Edutiv Sn Ptriio MATEMÁTICA º AÑO Trjo prátio Nº 8 Sistems de dos euiones lineles on dos inógnits Un sistem de euiones es un onjunto de dos o

Más detalles

PROBLEMAS DE MÁQUINAS TÉRMICAS, REFRIGERADORES y

PROBLEMAS DE MÁQUINAS TÉRMICAS, REFRIGERADORES y PROBLEMAS DE DE MÁUINAS ÉRMICAS, REFRIGERADORES y BOMBAS BOMBAS DE DE CALOR CALOR Equipo docente Antonio J. Brero / Alfonso Cler / Mrino Hernández Dpto. Físic Aplicd. E..S. Agrónomos (Alcete) Plo Muñiz

Más detalles

1 RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS

1 RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS T3: TRIGONOMETRÍ 1º T 1 RESOLUIÓN DE TRIÁNGULOS RETÁNGULOS Resolver un triángulo es llr ls longitudes de sus ldos y ls mplitudes de sus ángulos. Ls fórmuls que se plin son: ) Ls rzones trigonométris: ˆ

Más detalles

COMPRENSIÓN ESPACIAL

COMPRENSIÓN ESPACIAL COMPRENSIÓN ESPACIAL El áre e COMPRENSIÓN ESPACIAL pretene evlur ls estrezs el spirnte pr periir y omprener, trvés e l Representión Gráfi: 1.- Forms y Cuerpos Geométrios ásios y ls reliones entre sus respetivos

Más detalles

OBTENCIÓN DEL DOMINIO DE DEFINICIÓN A PARTIR DE LA GRÁFICA

OBTENCIÓN DEL DOMINIO DE DEFINICIÓN A PARTIR DE LA GRÁFICA . DOMINIO inio de o cmpo de eistenci de es el conjunto de vlores pr los que está deinid l unción, es decir, el conjunto de vlores que tom l vrible independiente. Se denot por. { R / y R con y } OBTENCIÓN

Más detalles

FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL

FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL El prolem de l práol horizontl Qué relión h entre ls propieddes nlítis de l funión udráti ls propieddes geométris de l práol horizontl? Como

Más detalles

Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff.

Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff. Resolución de circuitos complejos de corriente continu: Leyes de Kirchhoff. Jun P. Cmpillo Nicolás 4 de diciemre de 2013 1. Leyes de Kirchhoff. Algunos circuitos de corriente continu están formdos por

Más detalles

OBJETIVOS MÍNIMOS Y TRABAJO DE VERANO MATEMÁTICAS 2013

OBJETIVOS MÍNIMOS Y TRABAJO DE VERANO MATEMÁTICAS 2013 MATEMÁTICAS 0 OBJETIVOS MÍNIMOS REQUERIDOS - Operiones omins on números enteros. - Potenis ríes urs. - Operiones on friones. - Operiones on números eimles. - Euiones e primer seguno gro. - Usr e form eu

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

Taller: Sistemas de ecuaciones lineales

Taller: Sistemas de ecuaciones lineales Deprtmento de ienis ásis Asigntur: Mtemátis I Doente: Vitor Hugo Gil Avendño Apellidos-Nomres: 0 de mrzo de 08 Tller: Sistems de euiones lineles Un sistem de euiones es un onjunto de dos o más euiones

Más detalles

7. Integrales Impropias

7. Integrales Impropias Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Dierencil e Integrl 08-2 Bsdo en el punte del curso Cálculo (2d semestre), de Roerto Cominetti, Mrtín Mtml y Jorge

Más detalles

51 EJERCICIOS DE VECTORES

51 EJERCICIOS DE VECTORES 51 EJERCICIOS DE VECTORES 1. ) Representr en el mismo plno los vectores: = (3,1) b = ( 1,5) c = (, 4) = ( 3, 1) i = (1,0) j = (0,1) e = (3,0) f = (0, 5) b) Escribir ls coorens e los vectores fijos e l

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II CURSO 0/06 PRIMERA SEMANA Dí 24/0/06 ls 9 hors MATERIAL AUXILIAR: Cluldor finnier DURACIÓN: 2 hors 1. Préstmos ) Teorí. Estudir rzondmente los préstmos que

Más detalles

RADICALES. 1.2.1 Teorema fundamental de la radicación. 1.2.3 Reducción de radicales a índice común. 1.2.4 Potenciación de exponente fraccionario

RADICALES. 1.2.1 Teorema fundamental de la radicación. 1.2.3 Reducción de radicales a índice común. 1.2.4 Potenciación de exponente fraccionario RDICLES. Rdiles. Trsformioes de rdiles.. Teorem fudmetl de l rdiió.. Simplifiió de rdiles.. Reduió de rdiles ídie omú.. Poteiió de epoete friorio. Operioes o rdiles.. Produto de rdiles.... Etrió de ftores

Más detalles

DETERMINANTES SELECTIVIDAD ZARAGOZA

DETERMINANTES SELECTIVIDAD ZARAGOZA DETERMINANTES SELECTIVIDAD ZARAGOZA. (S-97)Hllr el rngo de l mtriz B 0 0 según se el vlor del prámetro [,5 puntos] Puesto que el menor 0 0 rgb 0 () 0 ( ) 0 ) Pr 0 r(b) ) Pr 0 0 - B 0-0 0 - r(b) 0-0 - 0-0

Más detalles

ANÁLISIS ESTRUCTURAL DE MECANISMOS PLANOS

ANÁLISIS ESTRUCTURAL DE MECANISMOS PLANOS ANÁLISIS ESTRUCTURAL DE MECANISMOS PLANOS Cinemáti e Menismos Tem 3 Itzir Mrtij López Mier Loizg Grmeni Deprtmento e Ingenierí Meáni Meknik Ingeniritz Sil 2 ANÁLISIS ESTRUCTURAL DE MECANISMOS PLANOS 1.

Más detalles

perspectiva cónica & proyección de sombras

perspectiva cónica & proyección de sombras expresión grái rojs mioletti primer ño este ossier es sólo un poyo el ontenio pso en lses, pensno en reorzr oneptos que pueen ser un tnto omplejos e explir... y más, e entener. l prouni on l que se ps

Más detalles

Ejercicios TIPO de estequiometría Factores Conversión 4º ESO diciembre

Ejercicios TIPO de estequiometría Factores Conversión 4º ESO diciembre Ejeriios TIPO e estequiometrí Ftores Conversión 4º ESO iiemre 011 1 1. Cálulos ms ms. Cálulos ms volumen. Cálulos volumen volumen 4. Cálulos on retivos impuros 5. Cálulos on renimiento istinto el 100 %

Más detalles

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3 Máximo común divisor El máximo común divisor de dos números nturles y es el número más grnde que divide tnto como. se denot mcd,. Lists: (tl vez, el más intuitivo, pero el menos eficiente) Encontrr mcd

Más detalles

Tema IV Elección Social. El Análisis Positivo, Votación, Teorema de May, Teorema de Imposibilidad de Arrow

Tema IV Elección Social. El Análisis Positivo, Votación, Teorema de May, Teorema de Imposibilidad de Arrow Tem IV Eleión Soil El Análisis Positivo, Votión, Teorem de My, Teorem de Imposiilidd de Arrow 1 Qué hiimos en el tem nterior? Repso Estudimos ul deerí ser l ominión de reursos (en un eonomí de intermio)

Más detalles

Integrales dobles. divide al rectángulo I ab, cd. , j 1, 2,, m. n m ij i i 1 j j 1

Integrales dobles. divide al rectángulo I ab, cd. , j 1, 2,, m. n m ij i i 1 j j 1 ntegrles oles NTEGRALES OBLES e l mism mner que el onepto e integrl efini pr funiones e un vrile sirve pr resolver e un moo generl, el prolem e l eterminión e áres e figurs plns, el onepto e integrl ole

Más detalles

PRUEBA DE MATEMÁTICA 2014 CUARTO GRADO DE PRIMARIA

PRUEBA DE MATEMÁTICA 2014 CUARTO GRADO DE PRIMARIA ELABORACIÓN: PROF. MANUEL LUQUE LLANQUI-FORMADOR DE ACOMPAÑANTES PEDAGÓGICOS 1 Mediión de Logro de Cpiddes en Comprensión Letor y Mtemáti Curto Grdo de Eduión Primri-2014 Diretiv N 18-2014-DGP-DRSET/GOB.REG.TACNA

Más detalles

SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS

SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS nstituto Dr. Jun Segundo Fernández Áre y urso: Mtemáti 4º ño. Profesor: Griel Bejr TRABAJO PRÁCTICO Nº. SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS RESOLUCIÓN DE SISTEMAS DE ECUACIONES Ténis de

Más detalles

Ejercicios de Probabilidad. Parte 3 (4º ESO)

Ejercicios de Probabilidad. Parte 3 (4º ESO) Ejeriios e Proili. Prte 3 (4º ESO) 1) En un grupo e migos el 80% está so. Entre los sos, el 75% tiene trjo. Finlmente, un 5% no están sos y tmpoo tiene trjo. ) Qué porentje no tienen trjo? ) Si uno tiene

Más detalles

INTEGRALES IMPROPIAS

INTEGRALES IMPROPIAS INTEGRALES IMPROPIAS INDICE.- Integrles impropis de primer espeie....- Integrles impropis de segund espeie.- Integrles impropis del tipo C... 8 4.- Criterios de omprión 8.- Biliogrfi 0 DEFINICION DE INTEGRALES

Más detalles

Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a:

Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a: odelo. Proble B.- (Clificción ái puntos) Se consider el siste linel de ecuciones dependiente del práetro rel ) Discútse en función de los vlores del práetro R. b) Resuélvse pr.. l siste se clsific en función

Más detalles

Integrales impropias

Integrales impropias Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección

Más detalles

LOS NÚMEROS REALES. Los número 1,2,3 se denominan números naturales. El conjunto de los números naturales se representan con la letra N, así

LOS NÚMEROS REALES. Los número 1,2,3 se denominan números naturales. El conjunto de los números naturales se representan con la letra N, así LOS NÚMEROS REALES Los número,, se enominn números nturles. El onjunto e los números nturles se representn on l letr N, sí N {,,K } Si se sumn os números nturles el resulto es otro nturl, pero si se rest

Más detalles

a vectores a y b se muestra en la figura del lado derecho.

a vectores a y b se muestra en la figura del lado derecho. Produto ruz o produto vetoril Otr form nturl de definir un produto entre vetores es trvés del áre del prlelogrmo determindo por dihos vetores. El prlelogrmo definido por los h vetores y se muestr en l

Más detalles

Conceptos básicos de la Teoría de Grafos

Conceptos básicos de la Teoría de Grafos Mtemáti Disret y Lógi 2 Coneptos ásios e l Teorí e Grfos 1. Definiiones A menuo, uno se utiliz un mp e rreters interes oservr omo ir e un puelo otro por ls rreters inis en el mismo. En onseueni se tienen

Más detalles

MATRICES DE NÚMEROS REALES

MATRICES DE NÚMEROS REALES MTRICES. MTURITS Luis Gil Guerr.- DEFINICIÓN MTRICES DE NÚMEROS RELES Llmmos mtriz de números reles de orden m x n un conjunto ordendo de m. n números reles dispuestos en m fils y en n columns i m i m

Más detalles

Una ecuación lineal con dos incógnitas tiene infinitas soluciones y si las representamos forman una recta.

Una ecuación lineal con dos incógnitas tiene infinitas soluciones y si las representamos forman una recta. TEMA : SISTEMAS DE ECUACIONES ECUACIONES LINEALES CON DOS INCÓGNITAS Un euión linel on os inógnits es un igul lgeri el tipo: + = one e son ls inógnits,, son números onoios. Un soluión e un euión linel

Más detalles

Triángulos y generalidades

Triángulos y generalidades Geometrí Pln y Trigonometrí (ldor) Septiemre Diiemre 2008 INOE 5/1 pítulo 5. Ejeriios Resueltos (pp. 62 63) (1) Los ldos de un triángulo miden 6 m, 7 m y 9 m. onstruir el triángulo y lulr su perímetro

Más detalles

Programación: el método de bisección

Programación: el método de bisección Progrmión: el método de iseión Este texto fue esrito por Egor Mximenko y Mri de los Angeles Isidro Perez. Ojetivos. Enter l ide del método de iseión, progrmr el método de iseión usndo un ilo while, pror

Más detalles

Problemas puertas lógicas, karnaugh...

Problemas puertas lógicas, karnaugh... ENUNCIADOS Prolems puerts lógis, krnugh... 1. Psr el iruito formo por puerts lógis o iruito ominionl funión lógi o Boolen 2. Psr puerts lógis ls funiones oolens siguientes : F= AB'C'+D'+A+B'' F = A+B'+C'D''+A'+B''CA+B''

Más detalles

x 2 + ( x + 1 ) 2 + ( x + 2 ) 2 = 365 x 2 + x 2 + 2 x + 1 + x 2 + 4x + 4 = 365 3 x 2 + 6x 360 = 0

x 2 + ( x + 1 ) 2 + ( x + 2 ) 2 = 365 x 2 + x 2 + 2 x + 1 + x 2 + 4x + 4 = 365 3 x 2 + 6x 360 = 0 Ecuciones cudrátics con un incógnit Sen, 1 y los tres números nturles consecutivos uscdos. El prolem nos indic que ( 1 ) ( ) 365 Un número con misterio! El número 365 tiene l crcterístic de ser l sum de

Más detalles

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles

Elipse: Ecuación de la elipse dados ciertos elementos

Elipse: Ecuación de la elipse dados ciertos elementos Elipse: Euión de l elipse ddos iertos elementos Tinoo, G. (013). Euión de l elipse ddos iertos elementos. [Mnusrito no publido]. Méxio: UAEM. Espio de Formión Multimodl Elipse vertil Si l elipse tiene

Más detalles

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este

Más detalles

INFORME DE LA PRÁCTICA nº 2: LA RUEDA DE MAXWELL. Fernando Hueso González. Carlos Huertas Barra. (1º Fís.), L1, 21-XI-07 - 0 -

INFORME DE LA PRÁCTICA nº 2: LA RUEDA DE MAXWELL. Fernando Hueso González. Carlos Huertas Barra. (1º Fís.), L1, 21-XI-07 - 0 - INFORME DE LA PRÁCTICA nº : LA RUEDA DE MAXWELL Fernndo Hueso González. Crlos Huerts Brr. (1º Fís.), L1, 1-XI-7 - - RESUMEN L práctic de l rued de Mxwell consiste en medir el tiempo que trd en descender

Más detalles

I.3.1.3 Hidroformilación bifásica de 1-octeno con sistemas de Rh/fosfina perfluorada P(C 6 H 4 -p-och 2 C 7 F 15 ) 3

I.3.1.3 Hidroformilación bifásica de 1-octeno con sistemas de Rh/fosfina perfluorada P(C 6 H 4 -p-och 2 C 7 F 15 ) 3 I.3 Discusión de resultdos I.3.1.3 Hidroformilción ifásic de 1-octeno con sistems de Rh/fosfin perfluord P(C 6 H 4 -p-och 2 C 7 F 15 ) 3 Como y se h comentdo en l introducción l ctálisis ifásic en sistems

Más detalles

MAGISTER OPOSICIONES AL PROFESORADO Educación Primaria TEMA 22

MAGISTER OPOSICIONES AL PROFESORADO Educación Primaria TEMA 22 MAGISTER OPOSICIONES AL PROFESORADO Euión Primri TEMA LOS NÚMEROS Y EL CÁLCULO NUMÉRICO. NÚMEROS NATURALES, ENTEROS, FRACCIONARIOS Y DECIMALES. SISTEMAS DE NUMERACIÓN. RELACIÓN ENTRE LOS NÚMEROS. OPERACIONES

Más detalles

EXAMEN PSICOTÉCNICOS GUARDIA CIVIL

EXAMEN PSICOTÉCNICOS GUARDIA CIVIL EXAMEN PSICOTÉCNICOS GUARDIA CIVIL Este exmen onst e DOS prtes esrits: L primer es un prue e ortogrfí, l segun es un psioténio. Pr un e ests prtes existe un tiempo que se le inirá en seión. Est prte (ortogrfí)

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas Deprtmento e Mtemátis PROBLEMAS DE TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS. 1º Un señl e rreter ini que l peniente e ese trmo es el 1%, lo que quiere eir que por metros que reorre en horizontl siene 1

Más detalles

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g).

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g). 64 Tercer Año Medio Mtemátic Ministerio de Educción Actividd 3 Resuelven inecuciones y sistems de inecuciones con un incógnit; expresn ls soluciones en form gráfic y en notción de desigulddes; nlizn ls

Más detalles

Matemática Demostrando

Matemática Demostrando Mtemáti Demostrno lo que prenimos 2. seunri Nomre: Número e oren: Seión: 2 Kit e evluión 1. L erolíne INKA ontilizó l nti e vuelos nionles relizos ese Lim en el mes e iiemre. Oserv: Destino Vuelos Cuzo

Más detalles

Sinopsis. Caracterización de ángulos en su entorno. Se recomienda recurso interactivo. Adobe Edge Animator. Para dibujos: Adobe Illustrator Corel Draw

Sinopsis. Caracterización de ángulos en su entorno. Se recomienda recurso interactivo. Adobe Edge Animator. Para dibujos: Adobe Illustrator Corel Draw AN_M_G08_U04_L02_03_04 Se reomiend reurso intertivo Sinopsis Un vtr similr Ninj expli el tem ángulos lternos internos y externos, olterles, orrespondientes y opuestos l vértie. Adoe Edge Animtor Pr diujos:

Más detalles

5. Qué frecuencia tiene el sonido que forma una 5ª Justa ascendente con el La4 (440 hercios)? a. 880 Hercios b. 660 Hercios c.

5. Qué frecuencia tiene el sonido que forma una 5ª Justa ascendente con el La4 (440 hercios)? a. 880 Hercios b. 660 Hercios c. UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2013-2014 MATERIA: LENGUAJE Y PRÁCTICA MUSICAL INSTRUCCIONES GENERALES Y CALIFICACIÓN

Más detalles

TEMA 2. Determinantes Problemas Resueltos

TEMA 2. Determinantes Problemas Resueltos Memáis II (hillero de Cienis). Soluiones de los prolems propuesos. Tem Clulo de deerminnes TEM. Deerminnes Prolems Resuelos. Hll el vlor de los siguienes deerminnes ) ) ) C Soluión ) Se desrroll por l

Más detalles

Visualización de triángulos. Curso de Matemáticas para Física. Trigonometría. Trigonometría. Física I, Internet A b.

Visualización de triángulos. Curso de Matemáticas para Física. Trigonometría. Trigonometría. Física I, Internet A b. Visulizión de triángulos Curso de Mtemátis pr Físi Curso de Mtemátis pr Físi Físi I, vi@ Internet 2004 B A C Físi I, vi@ Internet 2004 Visulizión de triángulos Fijémonos en un triángulo ulquier. Curso

Más detalles

A modo de repaso. Preliminares

A modo de repaso. Preliminares UNIDAD I A modo de repso. Preliminres Conjuntos numéricos. Operciones. Intervlos. Conjuntos numéricos Los números se clsificn de cuerdo con los siguientes conjuntos: Números nturles.- Son los elementos

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID MATERIA: LENGUAJE Y PRÁCTICA MUSICAL

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID MATERIA: LENGUAJE Y PRÁCTICA MUSICAL UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2011-2012 MATERIA: LENGUAJE Y PRÁCTICA MUSICAL MODELO INSTRUCCIONES Y CRITERIOS

Más detalles

SOLUCIONES DE LOS EJERCICIOS DE CORRIENTE CONTINUA -1 er TRIMESTRE-. problemas:11, 12 y 14

SOLUCIONES DE LOS EJERCICIOS DE CORRIENTE CONTINUA -1 er TRIMESTRE-. problemas:11, 12 y 14 R= SOLUCONES DE LOS PROLEMS DE ELECTRCDD DE C.C. SOLUCONES DE LOS EJERCCOS DE CORRENTE CONTNU - er TRMESTRE-. prolems:, y ª ) Soluionremos este prolem por el método generl de nálisis por lzos ásios, omprondo

Más detalles