Capítulo 7. Series Numéricas y Series de Potencias.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Capítulo 7. Series Numéricas y Series de Potencias."

Transcripción

1 Cpítulo Series Numérics y Series de Potecis.. Itroducció. E este cpítulo le dremos setido l cocepto de sum ifiit de úmeros ó serie uméric, es decir, diremos que sigific sumr u ifiidd de úmeros... 4 El cocepto de serie es muy utilizdo pr represetr cierts fucioes o ctiddes umérics que, de otr mer, resultrí difícil estudir. Se hce l clrció de que el tem de series es summete eteso y que su iclusió e este curso es mermete itroductorio, pretediédose destcr ls priciples propieddes que permit su utilizció e otros cotetos como el álisis umérico y ls ecucioes difereciles.. Motivció. Ates de dr l defiició forml de lo que es u serie, trtremos de llegr ell de u mer ituitiv. Es coveiete otr que o siempre será posible sumr u ifiidd de úmeros pues, uque o dispogmos u de u defiició precis, podemos firmr que, por ejemplo, l siguiete sum: o correspode u úmero rel pues medid que gregmos sumdos, l sum crece y lo hce más llá de culquier límite. Si queremos obteer l siguiete sum: probblemete estemos tetdos, por uestr eperieci co sums fiits, decir que est sum vle cero, pues si los summos de dos e dos, estremos obteiedo u sum ifiit de ceros, que clrmete deberí vler cero, es decir: 65

2 ( - ) ( - ) ( - ) ( - ) Obsérvese que estmos utilizdo l propiedd socitiv de l sum. Si grupmos de l siguiete mer - ( - ) - ( - ) - ( - ) obteemos u resultdo cotrdictorio. Es rzoble pedir que, si los térmios de u serie se puede sumr, el vlor de l sum se úico y, e este cso, tedrímos dos posibles vlores pr l sum, lo cul os llev cocluir que est serie o es posible sumrl. Otr coclusió imedit es que, pr sums ifiits, o es válid l propiedd socitiv.. Epsioes decimles como sums U situció cotidi e l que ecotrmos el cocepto de serie, uque se de mer ocult, se d l represetr los úmeros reles e otció deciml. Cudo epresmos u úmero rel e otció deciml, cd dígito tiee u vlor segú l posició que ocup, por ejemplo S.69 sigific eteros más décims más 6 cetésims más 9 milésims, es decir, S 6 9 es decir este úmero lo podemos epresr como u sum fiit de úmeros reles. Si embrgo cudo represetmos de est mer, por el lgoritmo de l divisió sbemos que tiee u represetció deciml ifiit periódic.... lo cul sigific que... Así pues, este úmero se epres como u sum ifiit de úmeros reles. 66

3 A difereci del ejemplo de l sum de todos los turles, e este cso l gregr sumdos, evidetemete l sum crece, sólo que l precer, l sum o ecede de.4, es decir estos vlores so.,.,.,., etc ls cules so proimcioes cd vez mejores /. Epresdo ests epsioes decimles fiits como sums, podemos decir que ls siguietes sums fiits so proimcioes cd vez mejores de /. S S. S S. S S. S... S... veces el tres / / E vist de lo terior prece rzoble esperr que ls sums fiits teg / como límite, es decir lim S lo cul podemos verificrlo utilizdo l coocid fórmul pr l sum de u progresió geométric r r... r r r si r E uestro cso 6

4 S S (/) / (/) 9 / Como lim (/) lim S lim 9 / 9 / 9 Est situció reflej muy precismete el sigificdo de ls sums ifiits y que escribimos e l siguiete defiició:.4 Defiició y Ejemplos. Defiició: Se { } u sucesió de úmeros reles., l epresió se llm SERIE NUMÉRICA. A prtir de l sucesió { } formmos u uev sucesió { } S S S S... S... de sums prciles 68

5 y diremos que l serie es CONVERGENTE (sus térmios se puede sumr) si lim S eiste. De lo cotrrio diremos que l serie es DIVERGENTE (sus térmios o se puede sumr). Si epresmos S y S e otció sumtori S... k k S... k k l serie covergete se epresrí como k k lim k lo cul epres u serie como el límite de ls sums fiits (sums prciles) k Ejemplo. Determie si l serie es covergete. Solució. E l secció terior probmos justmete que el límite de ls sums prciles vle /. S k k k k (/) 9 / k k lim S lim (/) 9 / 9 / 9 Ejemplo. Determie si l serie ( ) es covergete. 69

6 Solució. Est serie fue l lizd teriormete ( )... Sus sums prciles so S S - S - S Y clrmete su límite o eiste por lo que l serie es divergete..5 L serie Geométric. U serie geométric es u de l form r r r r... Pr coocer los vlores de r pr los cules est serie coverge, seguimos el mismo procedimieto que e el cso prticulr de l serie geométric que represet /. S r r... r r r pr r pr r S y clrmete l serie serí divergete e este cso. Pr r > r cudo y por lo tto, l serie es divergete. Pr r <

7 r lim r y por lo t to lim S lim r r Así pues l serie geométric es covergete solmete cudo el vlor bsoluto de l rzó es estrictmete meor que uo, y r r si r < A cotiució euciremos dos propieddes de ls series covergetes, ls cules so fáciles de probr pues mbs so válids pr ls sums prciles. Propieddes:. Si y b so series covergetes, etoces ( b ) es covergete y ( b ) b. Si es covergete y k es culquier úmero rel, etoces k es covergete y se cumple k k Ejemplo Ecuetre el vlor de l serie Solució: Auque formlmete o es u serie geométric, utilizdo l propiedd, podemos trsformrl e u serie geométric de rzó /.

8 ... dode l serie del prétesis es l serie complet meos los dos primeros térmios:... por lo tto 4 6 Otr form de llegr este resultdo, es fctorizdo el primer térmio Observció: Pr que u sucesió ifiit de úmeros teg l posibilidd de ser sumdos y obteer u ctidd fiit, es ecesrio que, coforme crece, los térmios se cd vez más próimos cero, como se observó e los ejemplos de series covergetes, es decir, covergete lim Lo cul se cumple siempre pr series covergetes, pues sus sums prciles coverge l serie lim S dode S... Despejdo l térmio -ésimo de l serie

9 S S y tomdo límite lim lim( S S ) lim S lim S..6 L Serie Armóic. Reitermos que lim es u codició ecesri pr que l serie se covergete, pero, desfortudmete, l codició o es suficiete, como lo veremos e l siguiete serie, llmd serie rmóic, e l cul se cumple que el térmio -ésimo tiede cero pero l serie es divergete, es decir lim covergete Ejemplo 4 Pruebe que l serie... es divergete. 4 5 Solució. Pr probr que est serie es divergete, veremos que ls sums prciles tom vlores cd vez más grdes tediedo l ifiito. E prticulr veremos que ls sums prciles tiede ifiito cudo k tmbié tiede ifiito. S k S S S 4 S > pues > 4 y 4 4 Utilizdo el mismo rzomieto pr S 8 :

10 S 8 S S4 > Medite u rgumeto iductivo cocluimos que k S k > pr todo turl k y, por lo tto, ls sums prciles crece si límite, y esto prueb que l serie rmóic es divergete.. Series de Térmios o-egtivos: El Criterio de Comprció. Ls series pr ls cules es más fácil lizr su covergeci o divergeci so ls series de térmios positivos, pues evidetemete sus sums prciles costituye u sucesió creciete y sólo bstrá comprobr que está cotds o o pr determir su turlez. Ejemplo 5. Determie si l siguiete serie es covergete o divergete. Solució. Primermete otmos que los térmios de est serie so meores o igules que los de l serie geométric Es decir pr se cumple que lo cul implic que, e cosecueci ls sums prciles de uestr serie, S o ecederá ls sums prciles T de l serie geométric, es decir, S T y como lim T, l sucesió S de ls sums prciles estrá cotd; es decir: 4

11 S T Esto implic que lim S eiste y por lo tto l serie es covergete. Observció. Como l comprció etre ls sums prciles se dio prtir de e relidd hemos probdo que l serie que coverge es: lo cul clrmete implic que l serie complet tmbié coverge pues sólo flt gregrle u térmio, es decir El procedimieto seguido e este ejercicio es el llmdo Criterio de Comprció, el cul eucimos cotiució: Criterio de Comprció (Pr covergeci): Si es u serie covergete de térmios positivos y es u serie de térmios positivos que stisfce b b b pr todo etoces l serie es covergete. Aceptremos si demostrció que l serie es covergete. Ejemplo 6. Pruebe usdo el criterio de comprció que l serie Solució. es covergete. 5

12 Al utilizr el criterio de comprció debemos teer l mo l serie co l cul l queremos comprr, e este cso l comprremos co l serie covergete. Como pr tod turl, etoces y por lo tto covergete. Observcioes: es. Al utilizr el criterio de comprció hemos probdo que u ciert serie es covergete pero o determimos su vlor.. El cso prticulr del ejemplo terior se geerliz pr culquier poteci myor que uo, es decir p es covergete pr p >. El criterio de comprció tmbié puede utilizrse pr determir divergeci de series de térmios positivos como se muestr e el siguiete ejemplo. Ejemplo. Determie si l siguiete serie es covergete o divergete. Solució. Primermete otmos que los térmios de est serie so myores o igules que los de l serie rmóic pues como pr todo turl, etoces lo cul implic que ls sums prciles de uestr serie, S so myores o igules que ls sums prciles T de l serie rmóic, es decir, S T 6

13 y como ls sums prciles T crece si límite por ser divergete l serie rmóic, l sucesió S tmbié crecerá si límite y por lo tto l serie es divergete. Observció: E geerl l serie p es divergete pr p El procedimieto del ejercicio terior lo podemos plsmr e el siguiete criterio: Criterio de Comprció (Pr divergeci): Si es u serie divergete de térmios positivos y b es u serie de térmios positivos que stisfce b pr todo etoces l serie es divergete. A cotiució euciremos si demostrció dos importtes criterios de covergeci, los cules está bsdos e el criterio de comprció. b Criterio del Cociete. Si l serie stisfce:. lim <, etoces l serie es covergete.. lim >, etoces l serie es divergete. Criterio de l Ríz. Si l serie stisfce:. lim <, etoces l serie es covergete.. lim >, etoces l serie es divergete. Ejemplo 8. Determie l covergeci de l siguiete serie.

14 ! Solució. Utilizremos el criterio del cociete, tomdo! ( )! ( )!! y como lim, etoces l serie! coverge. Observcioes:. U procedimieto similr l terior os llev que l serie k coverge pr! culquier vlor rel de k.. Como el límite del térmio -ésimo de u serie covergete tiede cero, hemos obteido de mer idirect que k lim! pr todo úmero rel k. Ejemplo 9. Determie l covergeci de l siguiete serie. 5 Solució. Utilizremos el criterio del cociete, tomdo 5 5 ( ) y como lim <, etoces l serie coverge. 8

15 .8 Series de Potecis. Cudo lizmos l serie geométric ecotrmos que est coverge pr < y diverge pr, es decir si cosidermos l fució f ( ) su domiio será D f (, ). Esto os llev cosiderr u uev clse de fucioes: quells represetbles por medio de series. Defiició: U Serie de Potecis es u serie de l form... dode k so úmeros reles. Clrmete tods ls series de potecis coverge pr. Puede demostrrse, lo cul se sle del lcce de este teto, que este tipo de series coverge e itervlos cetrdos e, icluyedo tod l rect rel, los cules se les llm Itervlos de Covergeci. Si recordmos l fórmul de Tylor de lgus fucioes, tedremos represetcioes e series de potecis Ejemplo. Ecuetre l serie de potecis pr l fució f() e. Solució. E el cpítulo, ecotrmos l fórmul de Tylor (Mc Luri) pr est fució e... E!! ( )! 9

16 dode E es el residuo ddo por el Teorem de Tylor E e! c dode c se ecuetr etre o y. Si le llmmos S l sucesió de ls sums prciles de l serie de potecis, despejdo E de l fórmul de Tylor, E e - S y utilizdo el hecho de l secció terior: lim! pr todo rel, c c lim E lim e e lim!! y e cosecueci ls sums prciles coverge e, lim S e lo cul os represet l fució epoecil e serie de potecis pr todo rel. e... otció sumtori:!! e! de mer completmete álog, podemos ecotrr l represetció e series de potecis de ls fucioes seo y coseo, pr todo rel: 5 se... e otció sumtori:! 5!! se ( ) ( )! 8

17 4 6 cos... e otció sumtori:! 4! 6! cos ( )! Observció: Si dmitimos, como relmete sucede e el itervlo de covergeci, que ls series de potecis se puede derivr e itegrr térmio térmio, podremos comprobr hechos como: d d ( ) ( )! ( )! d, ó d!! es decir, ls coocids fórmuls de derivció d d se cos y d d e e. 8

18 EJERCICIOS I. Ecuetre el vlor de ls siguietes series geométrics. ) 9 ) ) 5 4) 5) 9 6) 5 II. Utilizdo los criterios de covergeci, determie l turlez de ls siguietes series. ) ) 5 ) 4) 5) se ( 9) 6) 6 )! 8)! 9) (!) ()! )! III. Utilizdo el hecho de que pr se cumple: 8

19 ...,. Ecuetre l serie de potecis pr f() Sugereci: Remplce por - e l fórmul terior.. Ecuetre l serie de potecis pr f ( ) Sugereci: Remplce por e l fórmul terior. Ecuetre l serie de potecis pr f() rct Sugereci: Itegre e mbos ldos e l fórmul terior. IV. Utilizdo l serie de potecis pr f() terior,, obteid e el ejercicio. Ecuetre l serie de potecis pr f() l( ) Sugereci: Itegre e mbos ldos e l serie de potecis.. Ecuetre l serie de potecis pr f() l Sugereci: Remplce por - e l fórmul terior. V. Utilizdo l represetció e series de potecis pr ls fucioes se y e e itegrdo térmio térmio, ecuetre l serie de potecis de:. se ) d ) e d 8

Tema 2 Sucesiones Matemáticas I 1º Bachillerato. 1

Tema 2 Sucesiones Matemáticas I 1º Bachillerato. 1 Tem Sucesioes Mtemátics I º Bchillerto. TEMA SUCESIONES. CONCEPTO DE SUCESIÓN DEFINICIÓN DE SUCESIÓN Se llm sucesió u cojuto de úmeros ddos ordedmete de modo que se pued umerr: primero, segudo, tercero,...

Más detalles

Integral Definida. Aplicaciones

Integral Definida. Aplicaciones Itegrl Defiid. Apliccioes. Itegrl defiid. Defiició Se f(x u fució cotiu e u itervlo cerrdo [, b] y cosideremos el itervlo dividido e prtes igules x < x < x s < < x b. Pr cd subitervlo [x i, x i ], l fució

Más detalles

Tema IV. Sucesiones y Series

Tema IV. Sucesiones y Series 00 Tem IV. Sucesioes y Series Σ Gil Sdro Gómez Stos UASD 03/04/00 Tem IV. Sucesioes y Series Ídice Sucesió... 4 Límite de u sucesió... 4 Teorem 4.. Límite de u sucesió... 5 Teorem 4.. Leyes de límites

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Sucesiones numéricas. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria

Matemáticas 1 1 EJERCICIOS RESUELTOS: Sucesiones numéricas. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria Mtemátics EJERCICIOS RESUELTOS: Sucesioes umérics Ele Álvrez Sáiz Dpto. Mtemátic Aplicd y C. Computció Uiversidd de Ctbri Igeierí de Telecomuicció Fudmetos Mtemáticos I Ejercicios: Sucesioes umérics Sucesioes

Más detalles

Sucesiones sumables (Series) Mario Augusto Bunge Ciclo Básico Común Universidad de Buenos Aires

Sucesiones sumables (Series) Mario Augusto Bunge Ciclo Básico Común Universidad de Buenos Aires ucesioes sumbles (eries) Mrio Augusto Buge Ciclo Básico Comú Uiversidd de Bueos Aires El símbolo de sumtori upógse dd u ctidd fiit de úmeros, digmos,, 3,, y cosidermos su sum + + 3 +... + E ocsioes es

Más detalles

Unidad 2: SUCESIONES Y SERIES NUMÉRICAS.

Unidad 2: SUCESIONES Y SERIES NUMÉRICAS. Uidd : SUCESIONES Y SERIES NUMÉRICAS. U sucesió es u cojuto ordedo de elemetos que respode u ley de formció. L sucesió suele brevirse: (,...) ( ) =,, 3,..., 3 Siedo el primer térmio, el segudo térmio,

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas son equivalentes porque 2 10 4 5.

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas son equivalentes porque 2 10 4 5. Itroducció º ESO º ESO Pr operr co frccioes se sigue el mismo método que pr operr co úmeros eteros. Es decir, hy que respetr u jerrquí. Recordémosl: 1. Corchetes y prétesis.. Multipliccioes y divisioes..

Más detalles

1.3.6 Fracciones y porcentaje

1.3.6 Fracciones y porcentaje Ejemplo : Se hor u situció e l que ecesitmos clculr l frcció de otr frcció. Por ejemplo de. Pr u mejor iterpretció de l regl terior, recurrimos l represetció gráfic. Represetemos l frcció de Es decir:

Más detalles

Definición: Es un conjunto ordenado de términos. Se representan mediante una función cuyo dominio es el conjunto de los números naturales.

Definición: Es un conjunto ordenado de términos. Se representan mediante una función cuyo dominio es el conjunto de los números naturales. SUCESIONES Y SERIES Sucesió Es u cojuto ordedo de térmios. Se represet medite u ució cuyo domiio es el cojuto de los úmeros turles. Se expres l ució que geer los térmios de l sucesió como ( ) =. Al térmio

Más detalles

En este capítulo expondremos brevemente (a modo de repaso) conceptos básicos sobre los sistemas de numeración.

En este capítulo expondremos brevemente (a modo de repaso) conceptos básicos sobre los sistemas de numeración. Arquitectur del Computdor ots de Teórico SISTEMAS DE UMERACIÓ. Itroducció E este cpítulo expodremos brevemete ( modo de repso) coceptos básicos sobre los sistems de umerció. o por secillo el tem dej de

Más detalles

Z={...,-4,-3,-2,-1,0,1,2,3,4,...}

Z={...,-4,-3,-2,-1,0,1,2,3,4,...} TEMA Prelimires: Números y cojutos P- Números eteros: Se deomi úmeros turles (tmbié llmdos eteros positivos) los úmeros que os sirve pr cotr objetos:,,,4,5,... El cojuto de los úmeros turles se desig por

Más detalles

APUNTE: Introducción a las Sucesiones y Series Numéricas

APUNTE: Introducción a las Sucesiones y Series Numéricas APUNTE: Itroducció ls Sucesioes y Series Numérics UNIVERSIDAD NACIONAL DE RIO NEGRO Asigtur: Mtemátic Crrers: Lic. e Admiistrció Lic. e Turismo Lic. e Hotelerí Profesor: Prof. Mbel Chresti Semestre: do

Más detalles

8 1 2n 2. 2( n 1) 1 2n 1 2n 1 2n 1

8 1 2n 2. 2( n 1) 1 2n 1 2n 1 2n 1 E.T.S.I. Idustriles y Telecomuicció Curso 00-0 Grdos E.T.S.I. Idustriles y Telecomuicció Asigtur: Cálculo I Tem : Sucesioes y Series Numérics. Series de Potecis. Ejercicios resueltos Estudir l mootoí de

Más detalles

MATEMÁTICAS 1214, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES. 1. Para cada sucesión infinita abajo, determine si converge o no a un valor finito.

MATEMÁTICAS 1214, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES. 1. Para cada sucesión infinita abajo, determine si converge o no a un valor finito. MATEMÁTICAS 24, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES JOHN GOODRICK. Para cada sucesió ifiita abajo, determie si coverge o o a u valor fiito. (a) {! } e = (a): No coverge. El úmero e está etre

Más detalles

Este documento es de distribución gratuita y llega gracias a www.cienciamatematica.com El mayor portal de recursos educativos a tu servicio!

Este documento es de distribución gratuita y llega gracias a www.cienciamatematica.com El mayor portal de recursos educativos a tu servicio! Este documeto es de distribució grtuit y lleg grcis Cieci Mtemátic El myor portl de recursos eductivos tu servicio! Los poliomios de Beroulli y sus pliccioes Pblo De Nápoli versió 0.. Los poliomios de

Más detalles

Licenciatura en Electrónica y Computación: Métodos Numéricos

Licenciatura en Electrónica y Computación: Métodos Numéricos CIICp VLORES Y VECTORES PROPIOS Los vlores y vectores propios se cooce tmié como eigevlores y eigevectores. Estos vlores y vectores propios se utiliz geerlmete e sistems lieles de ecucioes homogéeos que

Más detalles

EL TEOREMA DEL PUNTO FIJO Y APLICACIONES SEGUNDA PARTE. Alberto E. J. Manacorda*

EL TEOREMA DEL PUNTO FIJO Y APLICACIONES SEGUNDA PARTE. Alberto E. J. Manacorda* EL TEOREA DEL PUNTO FIJO Y APLICACIONES SEGUNDA PARTE Alerto E. J. cord* *Igeiero Geogrfo Profesor Titulr de Alisis temtico II Fcultd de Ciecis Ecoomics Estdistic Uiversidd Nciol de Rosrio 5.- Aliccioes

Más detalles

FÓRMULA DE TAYLOR 1. Introducción formula de Taylor Brook Taylor 2. Objetivos Aproximación de funciones por polinomios f(x) P(x) f(x)

FÓRMULA DE TAYLOR 1. Introducción formula de Taylor Brook Taylor 2. Objetivos Aproximación de funciones por polinomios f(x) P(x) f(x) FÓRMULA DE TAYLOR. Itroducció Los poliomios igur etre ls ucioes más secills que se estudi e Aálisis. So decuds pr trjr e cálculos uméricos por que sus vlores se puede oteer eectudo u úmero iito de multipliccioes

Más detalles

LÍMITES DE SUCESIONES. EL NÚMERO e

LÍMITES DE SUCESIONES. EL NÚMERO e www.mtesxrod.et José A. Jiméez Nieto LÍMITES DE SUCESIONES. EL NÚMERO e. LÍMITE DE UNA SUCESIÓN... Aproximció l cocepto de límite. Vmos cercros l cocepto de límite hlldo lguos térmios de distits sucesioes

Más detalles

TEMA 1. FUNCIONES REALES. DEFINICIÓN Y LÍMITES

TEMA 1. FUNCIONES REALES. DEFINICIÓN Y LÍMITES Uidd. Fucioes. Defiició y Líites TEMA. FUNCIONES REALES. DEFINICIÓN Y LÍMITES. Fucioes reles de vrible rel. Doiio de u fució.. Doiios de ls fucioes ás hbitules. Coposició de fucioes. Propieddes. Fució

Más detalles

Introducción a las SUCESIONES y a las SERIES NUMERICAS

Introducción a las SUCESIONES y a las SERIES NUMERICAS Itroducció ls SUCESIONES y ls SERIES NUMERICAS UNIVERSIDAD NACIONAL DE RIO NEGRO Asigtur: Mtemátic Crrers: Lic. e Ecoomí Profesor: Prof. Mbel Chresti Semestre: ero Año: 0 Sucesioes Numérics Defiició U

Más detalles

Prácticas Matlab. Para calcular la suma entre dos valores de una expresión simbólica. Práctica 7: Convergencia Series de Términos Positivos.

Prácticas Matlab. Para calcular la suma entre dos valores de una expresión simbólica. Práctica 7: Convergencia Series de Términos Positivos. PRÁCTICA SERIES Práctics Mtlb Objetivos Práctic 7: Covergeci Series de Térmios Positivos Estudir l covergeci o divergeci de u serie de térmios positivos utilizdo distitos criterios combido ls coclusioes

Más detalles

2. Sucesiones, límites y continuidad en R

2. Sucesiones, límites y continuidad en R . Sucesioes, límites y cotiuidd e R. Sucesioes de úmeros reles { } =,,...,,... es u sucesió: cd turl correspode u rel. Mtemáticmete, como u fució sig cd elemeto de u cojuto u úico elemeto de otro: : N

Más detalles

Sucesiones de números reales

Sucesiones de números reales Apédice A Sucesioes de úmeros reles Ejercicios resueltos. Está l sucesió de térmio geerl U cot iferior es pues 5 cotd? 5 5 4 4 lo cul se cumple culquier que se el úmero turl. U cot superior es pues 5 5

Más detalles

Sucesiones y series de números reales

Sucesiones y series de números reales 79 Mtemátics : Series umérics Cpítulo Sucesioes y series de úmeros reles. Sucesioes Defiició 330.- Llmremos sucesió de úmeros reles culquier plicció f: N R y l represetremos por {, dode = f(). Por comodidd,

Más detalles

SUCESIONES DE NÚMEROS REALES

SUCESIONES DE NÚMEROS REALES SUCESIONES DE NÚMEROS REALES Sucesioes de úmeros reles Se llm sucesió de úmeros reles u plicció del cojuto N * (cojuto de todos los úmeros turles excluido el cero) e el cojuto R de los úmeros reles. N

Más detalles

Práctico 10 - Integrales impropias y Series. 1. Integrales impropias

Práctico 10 - Integrales impropias y Series. 1. Integrales impropias Uiversidd de l Repúblic Cálculo Fcultd de Igeierí - IMERL Segudo semestre 6 Práctico - Itegrles impropis y Series. Itegrles impropis. Se f : [,) R u fució cotiu tl que f (t) y defiimos F() = f (t)dt. Demostrr

Más detalles

Tema IV. Sucesiones y Series

Tema IV. Sucesiones y Series 03 Tem IV. Sucesioes y Series Σ Gil Sdro Gómez Stos 0/0/03 UASD Tem IV. Sucesioes y Series Coteido Itroducció... 3 4. Sucesió... 4 4. Límite de u sucesió... 4 4.3 Tipos de sucesioes... 6 4.4 Series...

Más detalles

( a b c) n = a n b n c n ( a : b) n = a n : b n a n a m = a n+m a n :a m = a n-m (a n ) m = a n.m

( a b c) n = a n b n c n ( a : b) n = a n : b n a n a m = a n+m a n :a m = a n-m (a n ) m = a n.m Igreso Potecició e R: Ddo u úmero rel, que le llmremos bse y u umero turl, l que le llmremos epoete. defiimos: =.... Propieddes de l potecició: veces ( epoete) Ests propieddes se eplic mejor si se etiede

Más detalles

CALCULO GRADO EN INGEN. INFORM. DEL SOFTWARE TEMA 3. SUCESIONES Y SERIES. Sucesiones de números reales: monotonía, acotación y convergencia.

CALCULO GRADO EN INGEN. INFORM. DEL SOFTWARE TEMA 3. SUCESIONES Y SERIES. Sucesiones de números reales: monotonía, acotación y convergencia. Muel José Ferádez, mjfg@uiovi.es CALCULO GRADO EN INGEN. INFORM. DEL SOFTWARE. - TEMA. SUCESIONES Y SERIES.: Sucesioes umérics. Sucesioes de úmeros reles: mootoí, cotció y covergeci. Se llm sucesió de

Más detalles

CURSO DE ANÁLISIS MATEMÁTICO: DE LAS FUNCIONES REALES DE VARIABLE REAL A LA APLICACIÓN DE LAS INTEGRALES

CURSO DE ANÁLISIS MATEMÁTICO: DE LAS FUNCIONES REALES DE VARIABLE REAL A LA APLICACIÓN DE LAS INTEGRALES CURSO DE ANÁLISIS MATEMÁTICO: DE LAS FUNCIONES REALES DE VARIABLE REAL A LA APLICACIÓN DE LAS INTEGRALES ISBN: 978-84-69-79-6 Pedro J. López Cello Idice geerl Itroducció. Fucioes reles de vrile rel. Fucioes

Más detalles

COTAS Y EXTREMOS DE CONJUNTOS DE NUMEROS REALES

COTAS Y EXTREMOS DE CONJUNTOS DE NUMEROS REALES VALORES ABSOLUTOS Defiició: si 0 =, si < 0 = Por lo tto 0 R Teorem 2 = 2 Demostrció: si 0 2 = 2, si < 0 2 = ( ) 2 = 2 PROPIEDADES. =. = + + (desiguldd trigulr) = Teorem x x Demostrció: x x 2 2 x 2 2 x

Más detalles

Sucesiones de números reales

Sucesiones de números reales Tem 5 Sucesioes de úmeros reles Defiició 5.1 Llmremos sucesió de úmeros reles culquier plicció f: IN IR y l represetremos por { } =1, dode = f(. Por comodidd, diremos tmbié que l sucesió es el cojuto ordedo

Más detalles

1.4. Sucesión de funciones continuas ( )

1.4. Sucesión de funciones continuas ( ) 1.4. Sucesió de fucioes cotius (6.1.017) Propiedd: Se {f } u sucesió de fucioes f, defiids e I. Si {f } coverge uiformemete f e I y ls f so cotius e I, etoces f es cotiu e I. Demostrció: Hemos de probr

Más detalles

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación RESUMEN TEMA SUCESIONES

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación RESUMEN TEMA SUCESIONES E.T.S.I. Idustriles y Telecomuicció Curso 22-23 Grdos E.T.S.I. Idustriles y Telecomuicció Asigtur: Cálculo I DEFINICIONES BÁSICAS Existe muchos feómeos que o se comport de mer cotiu, sio que ecesit u determido

Más detalles

1.4 SERIES NUMÉRICAS.SUMA DE SERIES. (46 Problemas ) sabiendo que n

1.4 SERIES NUMÉRICAS.SUMA DE SERIES. (46 Problemas ) sabiendo que n . SERIES NUMÉRICAS.SUMA DE SERIES. (6 Problems.- Estudir el crácter de ls series:! 0 b + si >0, segú vlores de. 0.- Clculr cos α sbiedo que x x e 0! 0! 3.- Estudir l serie de térmio geerl. π se.- Cosidermos

Más detalles

DELTA MASTER FORMACIÓN UNIVERSTARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID

DELTA MASTER FORMACIÓN UNIVERSTARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID / Grl. Ampudi, 6 Teléf.: 9 5-9 55 9 ADRID FBRRO 5 UNIVRSIDAD PONTIFIIA D SALAANA ATÁTIAS DISRTAS FBRRO 5 (TARD) PROBLA : Se cooce el siguiete comportmieto de Luis e u resturte l que v comer: - No es verdd

Más detalles

La Integral Definida

La Integral Definida Cpítulo 5 L Itegrl Defiid 5.. Prtició U cojuto fiito de putos P = {x, x, x,, x } es u prtició de [, b] si, y solmete si, = x x x x = b. 5.. Sum Superior y Sum Iferior Se y = f(x), u fució cotiu e [, b].

Más detalles

Integrales impropias

Integrales impropias Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección

Más detalles

Tema 7: Series Funcionales

Tema 7: Series Funcionales I.T.Telecomuiccioes Curso 99/ Tem 7: Series Fucioles Al estudir el teorem de Tylor se oservó l posiilidd de epresr u fució f ifiitmete derivle como u sum ifiit de fucioes moomiles, lgo sí como u poliomio

Más detalles

A. DEFINICIÓN DE FUNCIÓN INTEGRABLE. PRIMERAS PROPIEDADES.

A. DEFINICIÓN DE FUNCIÓN INTEGRABLE. PRIMERAS PROPIEDADES. CAPÍTULO X. INTEGRACIÓN DEFINIDA SECCIONES A. Defiició de fució itegrble. Primers propieddes. B. Teorems fudmetles del cálculo itegrl. C. Ejercicios propuestos. A. DEFINICIÓN DE FUNCIÓN INTEGRABLE. PRIMERAS

Más detalles

Segunda definición.- Se llama sucesión de números reales a una aplicación del conjunto N* = N {0} en el conjunto de los números reales

Segunda definición.- Se llama sucesión de números reales a una aplicación del conjunto N* = N {0} en el conjunto de los números reales SUCESIONES DE NÚMEROS REALES. LÍMITE DE SUCESIONES. INTRODUCCIÓN.- Relció - Relció es tod propiedd que comuic los elemetos de dos cojutos o bie comuic etre sí los elemetos de u mismo cojuto. E geerl u

Más detalles

Matemáticas 1 EJERCICIOS RESUELTOS:

Matemáticas 1 EJERCICIOS RESUELTOS: Mtemátics EJERCICIOS RESUELTOS: Series umérics Ele Álvrez Sáiz Dpto. Mtemátic Aplicd y C. Computció Uiversidd de Ctbri Igeierí de Telecomuicció Fudmetos Mtemáticos I Ejercicios: Series umérics Clculr l

Más detalles

Sucesiones de funciones

Sucesiones de funciones Tem 7 Sucesioes de fucioes Defiició 7. Se A IR y F A, IR el cojuto de ls fucioes de A e IR. Llmremos sucesió de fucioes de A culquier plicció de IN F A, IR, y l deotremos por f } = ó f } =. 7. Covergeci

Más detalles

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor.

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Fucioes y derivada. 5. Aproimació de fucioes: poliomios de Taylor y teorema de Taylor. Alguas veces podemos aproimar fucioes complicadas mediate otras

Más detalles

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0 Tema 4 Series de Potecias Ua expresió de la forma a 0 + a 1 (x c) + a 2 (x c) 2 +... + a (x c) +... = recibe el ombre de serie de potecias cetrada e c. a (x c) Ua serie de potecias puede ser iterpretada

Más detalles

Potenciación en R 2º Año. Matemática

Potenciación en R 2º Año. Matemática Potecició e R º Año Mtemátic Cód. 0-7 P r o f. M r í d e l L u j á M r t í e z P r o f. V e r ó i c F i l o t t i P r o f. J u C r l o s B u e Dpto. de Mtemátic Poteci de epoete etero. POTENCIACIÓN EN

Más detalles

Profesorado de Informática - Ciencias de la Computación - INET DFPD Matemática II 2010 Sucesiones

Profesorado de Informática - Ciencias de la Computación - INET DFPD Matemática II 2010 Sucesiones Profesordo de Iformátic - Ciecis de l Computció - INET DFPD Mtemátic II Sucesioes Sucesioes Tems: Límites de sucesioes. Sucesioes moótos y sus límites. Pres de sucesioes moótos covergetes. Número e. Opercioes

Más detalles

Sucesiones de Números Reales

Sucesiones de Números Reales Apédice A Sucesioes de Números Reles A.. Defiicioes U sucesió de úmeros reles es u correspodeci A que soci, cd úmero turl, u úmero rel A ( ) El cojuto de los úmeros turles, cotiee ifiitos elemetos e u

Más detalles

ANÁLISIS MATEMÁTICO I. Coordinadora: Mg. Alicia Tinnirello SUCESIONES Y SERIES

ANÁLISIS MATEMÁTICO I. Coordinadora: Mg. Alicia Tinnirello SUCESIONES Y SERIES Cátedr: Crrer: ANÁLISIS MATEMÁTICO I ISI Coordidor: Mg. Alici Tiirello SUCESIONES Y SERIES Práctic del libro Cálculo. Trscedetes Temprs º Ed.- Jmes Stewrt - Ig. Mirt Mechi Ig. Edurdo Ggo Año 0 Sucesioes

Más detalles

INSTRUCTIVO PARA TUTORÍAS

INSTRUCTIVO PARA TUTORÍAS INSTRUCTIVO PARA TUTORÍAS Ls tutorís correspode los espcios cdémicos e los que el estudite del Politécico Los Alpes puede profudizr y reforzr sus coocimietos e diferetes tems de cr l eme de dmisió de l

Más detalles

REALES EALES. DEFINICIÓN Y LÍMITES

REALES EALES. DEFINICIÓN Y LÍMITES Uidd. Fucioes. Defiició y Líites TEMA. FUNCIONES REALES EALES. DEFINICIÓN Y LÍMITES. Fucioes reles de vrile rel. Doiio de u fució.. Doiios de ls fucioes ás hitules. Coposició de fucioes. Propieddes. Fució

Más detalles

1. CONJUNTOS DE NÚMEROS

1. CONJUNTOS DE NÚMEROS Águed Mt y Miguel Reyes, Dpto. de Mtemátic Aplicd, FI-UPM. 1 1. CONJUNTOS DE NÚMEROS 1.1. NÚMEROS REALES Culquier úmero rciol tiee u expresió deciml fiit o periódic y vicevers, es decir, culquier expresió

Más detalles

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n)

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n) 1 Sucesioes De ició. Ua sucesió, a, es ua fució que tiee como domiio el cojuto de los úmeros aturales y como cotradomiio el cojuto de los úmeros reales: a : N! R. Se usa la siguiete otació: a () = a :

Más detalles

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación E.T.S.I. Idustriles y Telecomuicció Curso 200-20 Grdos E.T.S.I. Idustriles y Telecomuicció Asigtur: Cálculo I Tem 3: Sucesioes y Series Numérics. Series de Potecis. Coocimietos previos Pr poder seguir

Más detalles

UNIDAD 5 Series de Fourier

UNIDAD 5 Series de Fourier Series de Fourier 5. Fucioes ortogoles, cojutos ortogoles y cojutos ortoormles Se dice que dos fucioes f ( x ) y f x so ortogoles e el itervlo < x< si cumple co: f x = Est ide se hce extesiv u cojuto de

Más detalles

Tema 6. Sucesiones y Series. Teorema de Taylor

Tema 6. Sucesiones y Series. Teorema de Taylor Nota: Las siguietes líeas so u resume de las cuestioes que se ha tratado e clase sobre este tema. El desarrollo de todos los tópicos tratados está recogido e la bibliografía recomedada e la Programació

Más detalles

. En tal caso f se llama suma de la serie y se denota por S. Así mismo diremos que f n converge a f.

. En tal caso f se llama suma de la serie y se denota por S. Así mismo diremos que f n converge a f. B. Covergeci de series de fucioes: DEFINICION 9. Se f :[,b] IR u sucesió de fucioes. U serie de fucioes es u pr de sucesioes f y s cuyos térmios está relciodos por: i) s ( ) = f( ) i (sums prciles) ii)

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

Algunas funciones elementales

Algunas funciones elementales Apédice B Algus fucioes eleetles B Fució poteci -ési U fució poteci -ési es u fució de l for f ( ) dode l se es u vrile y el epoete u úero turl Es l for ás secill de ls fucioes polióics f ( ) Ls fucioes

Más detalles

Progresiones aritméticas y geométricas

Progresiones aritméticas y geométricas Progresioes ritmétics y geométrics Progresioes ritmétics y geométrics. Esquem de l uidd PROGRESIONES Progresioes Aritmétics Progresioes Geométrics Iterés compuesto Sum de térmios Sum de térmios Producto

Más detalles

Guía de actividades. PROGRESIONES SERIES Profesor Fernando Viso

Guía de actividades. PROGRESIONES SERIES Profesor Fernando Viso Guí de ctividdes PROGRESIONES SERIES Profesor Ferdo Viso GUIA DE TRABAJO Mteri: Mtemátics Guí #. Tem: Progresioes ritmétics Fech: Profesor: Ferdo Viso Nombre del lumo: Secció del lumo: CONDICIONES: Trbjo

Más detalles

Práctica 6. Calcular la suma de los primeros K números naturales y k k. . 2 Calcular la suma de los cuadrados de los primeros k números

Práctica 6. Calcular la suma de los primeros K números naturales y k k. . 2 Calcular la suma de los cuadrados de los primeros k números PRÁCTICA SERIES NUMÉRICAS Práctics Mtlb Objetivos Práctic 6 Estudir l covergeci o divergeci de u serie de térmios positivos utilizdo distitos criterios combido ls coclusioes experimetles (el ordedor) co

Más detalles

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 4º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 4º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre Escuel Púlic Experimetl Descocetrd Nº Dr. Crlos Ju Rodríguez Mtemátic º Año Ciclo Básico de Secudri Teorí Nº Primer Trimestre Cojuto de los úmeros rcioles Los úmeros rcioles so quellos que puede ser expresdos

Más detalles

el blog de mate de aida. NÚMEROS REALES 4º ESO pág. 1 NÚMEROS REALES

el blog de mate de aida. NÚMEROS REALES 4º ESO pág. 1 NÚMEROS REALES el log de mte de id. NÚMEROS REALES 4º ESO pág. NÚMEROS REALES Expresió deciml de los úmeros rcioles. Pr psr u úmero rciol de form frcciori form deciml st dividir el umerdor por el deomidor. Como l hcer

Más detalles

POTENCIAS Y RAÍCES DE NÚMEROS RACIONALES

POTENCIAS Y RAÍCES DE NÚMEROS RACIONALES Lecció : POTENCIAS Y RAÍCES DE NÚMEROS RACIONALES.1.- POTENCIA DE UNA FRACCIÓN Si se tiee e cuet que ls frccioes so cocietes idicdos y que l poteci de u cociete es igul l cociete de potecis, se puede decir

Más detalles

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales y a los enteros negativos.

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales y a los enteros negativos. Tem 1: Números Reles 1.0 Símbolos Mtemáticos Distito Aproximdo Meor o igul Myor o igul Uió Itersecció Cojuto vcío Existe No existe Perteece No perteece Subcojuto Implic Equivlete 1.1 Cojuto de los úmeros

Más detalles

Distinguir diferentes sistemas numéricos de números reales, sus operaciones, estructura algebraica y propiedades de orden.

Distinguir diferentes sistemas numéricos de números reales, sus operaciones, estructura algebraica y propiedades de orden. Clse : Sistems uméricos de úmeros reles Distiguir diferetes sistems uméricos de úmeros reles, sus opercioes, estructur lgebric y propieddes de orde. Clculr expresioes de úmeros reles usdo ls propieddes

Más detalles

Repaso general de matemáticas básicas

Repaso general de matemáticas básicas Repso geerl de mtemátics básics Expoetes y rdicles Regl de l multiplicció: Cudo dos ctiddes co l mism bse se multiplic, su producto se obtiee sumdo lgebricmete los expoetes. m m Expoete egtivo U térmio

Más detalles

ANALISIS MATEMATICO I Ciclo Lectivo 2009. Guía de Estudio y Práctica 11 SUCESIONES Y SERIES. Ing. Jorge J. L. Ferrante

ANALISIS MATEMATICO I Ciclo Lectivo 2009. Guía de Estudio y Práctica 11 SUCESIONES Y SERIES. Ing. Jorge J. L. Ferrante ANALII MATEMATICO I Ciclo Lectivo 009 Guí de Estudio y Práctic UCEIONE Y ERIE Ig. Jorge J. L. Ferrte I CONOLIDACIÓN DE CONCEPTO e iici est Guí de Estudio y Práctic co u meció especil Leordo de Pis, llmdo

Más detalles

DEFINICIONES BÁSICAS, EXPONENTES Y RADICALES

DEFINICIONES BÁSICAS, EXPONENTES Y RADICALES . TERMINOLOGÍA Y NOTACIÓN A prtir de los coociietos de ritétic, se desrrollrá u leguje edite síolos térios, pr elorr u serie de técics de cálculo; el leguje ls técics, costitue u r iportte de l teátic,

Más detalles

RAÍCES Y SUS PROPIEDADES Guía para el aprendizaje (Presentar el día martes 29 de abril 2014)

RAÍCES Y SUS PROPIEDADES Guía para el aprendizaje (Presentar el día martes 29 de abril 2014) NOMBRE DEL ESTUDIANTE:: RAÍCES Y SUS PROPIEDADES Guí pr el predizje (Presetr el dí mrtes 9 de ril 0) CURSO: RADICALES Se llm ríz -ésim de u úmero, se escrie, u úmero que elevdo de. 9, porque 9 7, porque.0,

Más detalles

Anillos de Newton Fundamento

Anillos de Newton Fundamento Aillos de Newto Fudmeto Los illos de Newto so producidos por itererecis cudo dos hces de luz, procedetes de l mism uete, recorre cmios ópticos dieretes. Eiste distitos modos de logrr este eómeo, el que

Más detalles

CALCULO INTEGRAL TEMAS PORQUE ESTUDIAR. Escribir una cita aquí. Teorema fundamental del cálculo. Métodos de integración e integral indefinida.

CALCULO INTEGRAL TEMAS PORQUE ESTUDIAR. Escribir una cita aquí. Teorema fundamental del cálculo. Métodos de integración e integral indefinida. CALCULO INTEGRAL PORQUE ESTUDIAR CALCULO INTEGRAL l itegrl defiid es l herrmiet pr clculr y defiir diverss mgitudes, como áres, volúmees, logitudes de tryectoris curvs, proiliddes, promedios, cosumo de

Más detalles

PAIEP. Sumas de Riemann

PAIEP. Sumas de Riemann Progrm de Acceso Iclusivo, Equidd y Permeci PAIEP Uiversidd de Stigo de Chile Sums de Riem Ddo u itervlo de l form [, b], co y b e R, < b, u prtició del itervlo [, b] es u colecció de putos P = {x, x,...,

Más detalles

INTEGRACION NUMERICA Método se Simpson

INTEGRACION NUMERICA Método se Simpson cerque@gmil.com Ojetivos: Geerles Específicos Oservcioes Prelimires Clculo de Áres El método de Simpso Desrrollo del modelo de Simpso Ejemplos Progrm e diferetes legujes L jerrquí de clses INTEGRACION

Más detalles

Grado en Ingeniería Mecánica

Grado en Ingeniería Mecánica Tem Grdo e Igeierí Mecáic SERIES NUMÉRICAS Y SERIES DE POTENCIAS CONOCIMIENTOS PREVIOS Pr poder seguir decudmete este tem, se requiere que el lumo repse y pog l dí sus coocimietos e los siguietes coteidos:

Más detalles

a se denomina serie a es convergente y SERIES = si r <1 S n La suma de los términos de una sucesión infinita { } n n=1 infinita o simplemente serie

a se denomina serie a es convergente y SERIES = si r <1 S n La suma de los términos de una sucesión infinita { } n n=1 infinita o simplemente serie SERIES L sum de los térmios de u suesió ifiit { } = ifiit o simplemete serie se deomi serie Y se represet o el símbolo = Defiiió: = 4 KK Dd l serie = ésim sum pril = 4 K K, se desigrá S su S = = = 4 K

Más detalles

Unidad didáctica 3 Las potencias

Unidad didáctica 3 Las potencias Uidd didáctic Ls potecis 1.- Qué es u poteci? U poteci, es u producto de fctores igules que se repite vris veces. veces El fctor que se repite se llm bse,. El úmero de veces que se repite l bse es el expoete,.

Más detalles

RADICALES. 1.2.1 Teorema fundamental de la radicación. 1.2.3 Reducción de radicales a índice común. 1.2.4 Potenciación de exponente fraccionario

RADICALES. 1.2.1 Teorema fundamental de la radicación. 1.2.3 Reducción de radicales a índice común. 1.2.4 Potenciación de exponente fraccionario RDICLES. Rdiles. Trsformioes de rdiles.. Teorem fudmetl de l rdiió.. Simplifiió de rdiles.. Reduió de rdiles ídie omú.. Poteiió de epoete friorio. Operioes o rdiles.. Produto de rdiles.... Etrió de ftores

Más detalles

POTENCIACIÓN Y RADICACIÓN EN. Recordemos en primer lugar algunas definiciones y propiedades de la potenciación y de la radicación de números reales:

POTENCIACIÓN Y RADICACIÓN EN. Recordemos en primer lugar algunas definiciones y propiedades de la potenciación y de la radicación de números reales: POTENCIACIÓN Y RADICACIÓN EN Recordemos e primer lugr lgus defiicioes y propieddes de l potecició y de l rdicció de úmeros reles: PROPIEDADES DE LA POTENCIACIÓN Poteci de expoete cero : 0 = por defiició,

Más detalles

Capítulo 3. Potencias de números enteros

Capítulo 3. Potencias de números enteros Cpítulo. Potecis de úmeros eteros U poteci es u epresió de l form, dode es l bse de l poteci y el epoete. Se lee: elevdo. U poteci es el producto de l bse por sí mism tts veces como idic el epoete. se

Más detalles

Cálculo II (0252) TEMA 5 SERIES NUMÉRICAS. Semestre

Cálculo II (0252) TEMA 5 SERIES NUMÉRICAS. Semestre Cálculo II (05) Semestre -0 TEMA 5 SERIES NUMÉRICAS Semestre -0 José Luis Quitero Julio 0 Deprtmeto de Mtemátic Aplicd U.C.V. F.I.U.C.V. CÁLCULO II (05) José Luis Quitero Ls ots presetds cotiució tiee

Más detalles

Tema 1: Números reales.

Tema 1: Números reales. Tem : Números reles. REALES se utiliz pr Medir mgitudes se obtiee Ctiddes todos so Números Errores viee fectds de errores Aproximcioes clses se represet Rect rel Aproximcioes decimles Redodeos Trucmieto

Más detalles

Profesora: María José Sánchez Quevedo FUNCIÓN DERIVADA

Profesora: María José Sánchez Quevedo FUNCIÓN DERIVADA FUNCIÓN DERIVADA Cosideremos, de etrd, u fució f cotiu, Ituitivmete diremos que l fució f es derivble si es de vrició suve, esto es, que o preset cmbios bruscos como picos o cmbios vertigiosos pediete

Más detalles

EJEMPLO CADENA DE CORREOS.

EJEMPLO CADENA DE CORREOS. Uidd 4 (2) CADENA DE CORREOS MCCVT EJEMPLO CADENA DE CORREOS. ----------------------------------------------------------------------------- Actulmete hy e el mudo u totl de 7, 323, 557, 942.0 (iicios de

Más detalles

Álgebra para ingenieros de la Universidad Alfonso X

Álgebra para ingenieros de la Universidad Alfonso X Crrer: UAX Asigtur: temátics Fech: Pági de 9 Álger pr igeieros de l Uiversidd Alfoso X -trices y sistems de ecucioes lieles Opercioes co mtrices: A= m m B= m p p q q pq Sum: - s mtrices sumr tiee que teer

Más detalles

TEMA 8: SUCESIONES DE NÚMEROS. PROGRESIONES. a 1, a 2, a 3,, a n

TEMA 8: SUCESIONES DE NÚMEROS. PROGRESIONES. a 1, a 2, a 3,, a n TEMA 8: UCEIONE DE NÚMERO. PROGREIONE.- UCEIONE DE NÚMERO RACIONALE: U sucesió es u cojuto ordedo de úmeros reles:,,,, - Los úmeros turles se llm ídices. El subídice idic el lugr que el térmio ocup e l

Más detalles

Mg. Marco Antonio Plaza Vidaurre 1 LA TASA DE INTERÉS ANTICIPADA Y SUS APLICACIONES

Mg. Marco Antonio Plaza Vidaurre 1 LA TASA DE INTERÉS ANTICIPADA Y SUS APLICACIONES Mg. Mrco Atoio Plz Viurre LA TASA E ITERÉS ATICIPAA Y SUS APLICACIOES L ts e iterés veci es quell que se utiliz e u operció ficier cuy liquició se efectú l fil el u perioo y l ts e iterés ticip, ifereci

Más detalles

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Por: Lic. Eleazar J. García. República Bolivariaa de Veezuela Tiaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Usted está familiarizado co alguas operacioes iversas. La adició y la sustracció so operacioes

Más detalles

Unidad 4. Función Exponencial

Unidad 4. Función Exponencial Fució Epoecil Uidd Cocepto Al bombrder u átomo de urio co eutroes, su úcleo se divide e dos úcleos más livios, liberdo eergí y eutroes. Bjo cierts codicioes, es decir, si eiste u ms crític de urio, se

Más detalles

4º ESO Opción A ARITMÉTICA Esquema resumen

4º ESO Opción A ARITMÉTICA Esquema resumen 4º ESO Opció A ARITMÉTICA Esquem resume NÚMEROS Números Nturles ( N ): so los que sirve pr cotr. So,, Números Eteros ( Z ): so los turles y sus simétricos egtivos. So -, -, -, 0,, 4 Números Rcioles ( Q

Más detalles

SERIES NUMÉRICAS. Estudiar el carácter de las series de término general a n. n n n n n = 3. Solución: Converge. 1.- a

SERIES NUMÉRICAS. Estudiar el carácter de las series de término general a n. n n n n n = 3. Solución: Converge. 1.- a Escuel de Igeieros de Bilbo Deprtmeto Mtemátic Aplicd EIE NUMÉICA Estudir el crácter de ls series de térmio geerl :.-! Es u serie de térmios positivos. Podemos hcerlo de dos mers: ) Aplicdo el criterio

Más detalles

EXPRESIÓN DECIMAL DE LOS NÚMEROS RACIONALES ABSOLUTOS:

EXPRESIÓN DECIMAL DE LOS NÚMEROS RACIONALES ABSOLUTOS: Mtemátic II do Mgisterio IFD Celoes XPRSIÓN DCIMAL D LOS NÚMROS RACIONALS ABSOLUTOS: Vmos clsificr los úmeros rcioles solutos e dos cojutos disjutos D y D P ( D D φ ). P D Q D P Se / el represette cóico

Más detalles

1.-INTEGRAL DEFINIDA.

1.-INTEGRAL DEFINIDA. INTEGRAL DEFINIDA .-INTEGRAL DEFINIDA. e y ƒ( u fució cotiu e u itervlo [, ]. Not.- Pr simplificr l demostrció se cosider positiv, ƒ( > 0, e todo puto del itervlo. e divide el itervlo [, ] e "" suitervlos

Más detalles

Teorema Maestro. Introducción. Arturo Díaz Pérez. Recurrencia general para estrategias divide y vencerás. Análisis y Complejidad de Algoritmos 1

Teorema Maestro. Introducción. Arturo Díaz Pérez. Recurrencia general para estrategias divide y vencerás. Análisis y Complejidad de Algoritmos 1 Arturo Díz Pérez Aálisis y Diseño e Aloritmos Teorem Mestro Arturo Díz Pérez Aálisis y Diseño e Aloritmos Mestro- Itroucció Recurreci eerl pr estrteis ivie y vecerás T + T T Aálisis y Diseño e Aloritmos

Más detalles

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr

Más detalles