P9: ENSAYO DE VACÍO Y CORTOCIRCUITO DEL TRANSFORMADOR MONOFÁSICO FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "P9: ENSAYO DE VACÍO Y CORTOCIRCUITO DEL TRANSFORMADOR MONOFÁSICO FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA"

Transcripción

1 ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA INDUSTRIAL (BILBAO) Departamento de Ingeniería Eléctrica INDUSTRI INGENIARITZA TEKNIKORAKO UNIBERTSITATE-ESKOLA (BILBO) Ingeniaritza Elektriko Saila ALUMNO P9: ENSAYO DE VACÍO Y CORTOCIRCUITO DEL TRANSFORMADOR MONOFÁSICO ASIGNATURA FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA TITULACIÓN PROFESOR GRADO EN INGENIERÍA ELECTRÓNICA INDUSTRIAL Y AUTOMÁTICA D. JUAN CARLOS LOSÁÑEZ GONZÁLEZ CURSO 2º GRUPO 01 CURSO ACADÉMICO

2 PRÁCTICA Nº 9: ENSAYO DE VACÍO Y CORTOCIRCUITO DEL TRANSFORMADOR MONOFÁSICO 1. FUNDAMENTOS TEÓRICOS. Un transformador es una máquina eléctrica estática que transfiere energía eléctrica de un circuito a otro, transformando, mediante la acción de un campo magnético variable, un sistema de corriente alterna en otro de la misma frecuencia pero de características de tensión e intensidad diferentes. Un transformador monofásico (básicamente) está formado por un núcleo ferromagnético, sobre el que se enrollan dos devanados de material conductor aislado, generalmente con diferente número de espiras. Entre ambos devanados no existe conexión eléctrica alguna; la relación que se da entre dichos devanados es mediante el flujo magnético alterno que se establece en el núcleo ferromagnético común a ambos bobinados. Uno de los devanados se conecta a la red de alimentación y se denomina devanado primario (con N 1 espiras), el otro devanado se conecta al consumo y se denomina devanado secundario (con N 2 espiras). Las magnitudes eléctricas fundamentales de los transformadores son la tensión e intensidad, tanto en el devanado primario como en el secundario. En el estudio del transformador se utiliza su circuito eléctrico equivalente, que relaciona entre sí las magnitudes fundamentales del transformador. Figura 1. Circuito equivalente del transformador monofásico reducido al primario. Los ensayos en vacío y cortocircuito sirven para determinar los valores de los parámetros del circuito equivalente. Fecha: 26 de febrero de

3 1.1. Ensayo de vacío. El ensayo consiste en dejar abierto uno de los devanados mientras se alimenta con la tensión sinusoidal y frecuencia nominal el otro devanado. Lo habitual es alimentar el devanado de menor tensión nominal, con el fin de reducir la tensión del ensayo. Figura 2. Circuito equivalente del transformador en vacío y diagrama fasorial. Los datos del transformador obtenidos con el ensayo en vacío son la potencia absorbida en vacío por el transformador, que coincide con las pérdidas en el hierro, y los parámetros de la rama en paralelo del circuito equivalente aproximado: B μ1 y G Fe1. También se obtiene la relación de transformación Ensayo de cortocircuito. Consiste en cerrar en cortocircuito uno de los devanados, mientras se alimenta a una tensión reducida el otro devanado; generalmente se alimenta el devanado de mayor tensión nominal, con el fin de no tener que medir intensidades excesivamente altas y obtener más fácilmente la tensión reducida de alimentación. La tensión reducida se obtiene aumentando progresivamente la tensión de alimentación, desde cero hasta que por los devanados circule la corriente nominal. Los aparatos analógicos de medida se construyen para medir corrientes de 5A. Cuando la corriente a medir es mayor se puede optar por realizar el ensayo con una intensidad menor que la nominal o utilizar transformadores de intensidad. Si elegimos una corriente menor que la nominal, para obtener los valores reales de las pérdidas en el cobre y la tensión de cortocircuito; si usamos un transformador de intensidad, podemos manejar una intensidad en su secundario que es un submúltiplo de la que circula por su primario; la relación de transformación en un transformador de intensidad es Ip/Is. Fecha: 26 de febrero de

4 Figura 3. Circuito para realizar el ensayo de cortocircuito. A la hora de calcular el circuito equivalente se desprecia la rama en paralelo, ya que la corriente que circula por ella es muy pequeña en comparación con la que recorre el resto del circuito (equivalente). Figura 4. Si el ensayo en cortocircuito no se realiza con la intensidad nominal, se calculan la resistencia, reactancia e impedancia del circuito en las condiciones de ensayo y se utilizan, teniendo en cuenta que estos parámetros son fijos, para calcular la tensión y potencia de cortocircuito, por extrapolación, aprovechando la linealidad que presentan las funciones de que dependen los datos. La tensión de cortocircuito representa una pequeña parte de la nominal del transformador y es costumbre representarla como un porcentaje de ella, y puede además expresarse por separado la tensión debida a la carga óhmica del transformador y la debida a la reactancia inductiva. La corriente de falta es la corriente que circularía por el transformador si se presentara el cortocircuito cuando la alimentación conectada fuera la nominal y se obtiene dividiendo la tensión nominal entre la impedancia de cortocircuito. Está claro que esta corriente es muy alta y la potencia disipada por ella destruiría el transformador en poco tiempo, por lo que el ensayo se hace siempre con una tensión mucho menor. Fecha: 26 de febrero de

5 Del ensayo de cortocircuito obtenemos la potencia activa consumida en el transformador (lectura del vatímetro), que coincide con las pérdidas en el cobre, y la tensión de cortocircuito (lectura del voltímetro). Puesto que conocemos los valores de la potencia activa y de la tensión, calculamos la resistencia (Rcc); ya que conocemos también la corriente, es posible calcular la impedancia y, con ellas, la reactancia (Xcc). También se pueden conocer con facilidad las tensiones en la resistencia y en la reactancia (en la realidad no existen estos dispositivos por separado). 2. PRESENTACIÓN DE RESULTADOS. Vamos a realizar dos ensayos, correspondientes a dos montajes totalmente distintos, y los datos obtenidos en cada uno de ellos se tratará de forma independiente, dada su naturaleza Ensayo de vacío. Para el primer ensayo (de vacío) conectamos uno de los devanados a la red eléctrica; habitualmente se conecta el de menor tensión, para manejar tensiones menores, ya que usaremos la tensión nominal, sin embargo, dado que no hay mucha diferencia entre ellas, conectaremos el devanado de 220 V, para ganar en precisión de la medida; utilizamos el regulador para que las medidas correspondan exactamente a la tensión nominal del transformador. Conectaremos un amperímetro en serie con el primario, un voltímetro en paralelo con el primario y otro con el secundario y por último un vatímetro, midiendo la corriente y la tensión del primario. Figura 5. Montaje del ensayo de vacío. El amperímetro ha de tener una escala baja, ya que la corriente será pequeña, por estar el secundario abierto (se supone que el voltímetro tiene una impedancia infinita); por su parte, el vatímetro será especial para potencias muy bajas y factores de potencia muy bajos. Los voltímetros deberán dar las medidas de las tensiones nominales del primario y del secundario. Fecha: 26 de febrero de

6 Tabla 1. Medidas del ensayo de vacío. La lectura del voltímetro del primario nos indica la tensión a la que hemos ajustado la fuente (la nominal, 220 V); junto con la del amperímetro (0,21 A) tenemos que la potencia aparente del montaje es de 46,2 VA. La lectura del vatímetro nos da la potencia activa consumida en el ensayo, que es de 10 W. Con estos datos podemos construir el triángulo de potencias, que nos da el factor de potencia, o el triángulo de intensidades. A partir de las corrientes se pueden calcular tanto la resistencia como la reactancia (inductiva) y la impedancia del transformador. Figura 6. Triángulo de impedancias. Y el factor de potencia se puede calcular en función de las potencias o de las corrientes: Fecha: 26 de febrero de

7 Se observa alguna ligera diferencia entre los resultados del cálculo, según los datos utilizados, pero el error es mínimo. Finalmente, calculamos la relación de transformación, dividiendo la tensión del primario (aplicada) entre la tensión del secundario Ensayo de cortocircuito. Para realizar el ensayo de cortocircuito se conectará el devanado de mayor tensión a la red (con una tensión mucho más baja que la nominal), con el fin de que la corriente que hemos de medir no sea excesivamente alta; debemos conocer el valor de la intensidad nominal del primario, para lo que dividiremos la potencia aparente nominal (1.100 VA) entre la tensión nominal (220 V), obteniendo 5 A. No debemos superar esta intensidad en el primario al realizar el ensayo, pues correría peligro el transformador. Realizamos el montaje igual que el del ensayo de vacío, pero sustituimos el voltímetro del secundario por un cortocircuito. Figura 7. Montaje para el ensayo de cortocircuito. Aunque el esquema teórico del montaje es igual, debemos usar un amperímetro que sea capaz de medir la intensidad nominal (5 A), un voltímetro que sea capaz de medir con buena precisión una tensión inferior a 10 V y un vatímetro que soporte esta misma corriente y sea capaz de medir con esta tensión. Conectamos el primario a una fuente regulable de tensión alterna y vamos incrementándola, mientras vigilamos el amperímetro, hasta conseguir que circule por el primario la intensidad nominal (5 A). En estas condiciones la potencia en el circuito del Fecha: 26 de febrero de

8 secundario es nula, ya que la tensión en el cortocircuito es, por definición, nula, por lo que la potencia medida en el primario corresponde a la suma de las pérdidas; ya que la tensión aplicada es tan baja, podemos despreciar la potencia en la rama en paralelo (pérdidas en el hierro), por lo que sólo nos quedan las pérdidas en el cobre. Tabla 2. Medidas del ensayo de cortocircuito. Trasladamos las medidas al circuito equivalente reducido (la resistencias del primario y equivalente del secundario se conectan en serie y la reactancia del primario y la equivalente del secundario también, mientras que la rama en paralelo se desprecia) y calculamos sus valores. Figura 8. Circuito equivalente del transformador en cortocircuito. Podemos calcular las tensiones que se presentan en bornes de la resistencia y de la reactancia (ambas ficticias, ya que no existen componentes separados que asuman estas funciones), teniendo en cuenta que, por estar conectados en serie, la corriente a través de ellas es la misma. Fecha: 26 de febrero de

9 Y con estos datos construimos el diagrama fasorial, que incluye la corriente que circula por los dos elementos (por estar en serie) y las tensiones en cada una de las partes (resistencia y reactancia), desfasadas 90º entre ellas. Figura 9. Diagrama fasorial del corriente y tensiones en cortocircuito. Las pérdidas en el cobre suponen la potencia activa, medida por el vatímetro en el ensayo de cortocircuito (27 W), y la tensión de cortocircuito es la que se ha medido con el voltímetro (6,30 V); ambas se expresan en porcentajes. La corriente de falta es la que se presentaría en caso de conectar el montaje en cortocircuito a la tensión nominal; puesto que conocemos la impedancia y la tensión nominal, sabemos que la corriente crece proporcionalmente con la tensión; calculamos la intensidad en el primario y en el secundario. Dado que la intensidad nominal del primario era de 5 A, este valor se encuentra dentro del rango de medida del amperímetro (en el límite), por lo que no será necesario usar un transformador de intensidad ni medir con corrientes por debajo del nominal, con el inconveniente de extrapolar las medidas obtenidas a la hora de conocer los valores de las pérdidas en el cobre y la tensión de cortocircuito. Fecha: 26 de febrero de

10 3. CUESTIONARIO Qué datos aparecen en la placa de características del transformador? Tensión nominal del primario (220 V), tensión nominal del secundario (110 V) y potencia máxima (aparente, V.A.) Cuáles serían las pérdidas si el transformador trabajara a mitad de carga? Las pérdidas en el hierro (constante) y las pérdidas en el cobre, proporcionales a la intensidad, por lo tanto la mitad de las pérdidas en el cobre medidas en el ensayo de cortocircuito (10+27/2=23,5 VA) Determinar la caída de tensión (analítica o gráficamente) y el rendimiento (Boucherot) para la intenisdad nominal y factor de potencia=0,8 inductivo. El índice de carga (C) es 1, o sea 100%, ya que realizaremos los cálculos para la intensidad nominal. Puesto que el factor de potencia es 0,8 inductivo, conocemos el coseno de φ. Calculamos la impedancia (Z) como el cociente entre la tensión y la intensidad, ambas conocidas, si trabajamos con los parámetros referidos al primario. La caída de tensión para la intensidad nominal con fdp de 0,8 es del 10%. La potencia absorbida es la potencia total, suma de la potencia útil más las pérdidas en el cobre y en el hierro Cuáles serían los parámetros del transformador referidos al secundario? Para obtener los parámetros referidos al secundario, dividimos todos los valores de f.e.m. y tensión por la relación de transformación m, multiplicamos por m el valor de la intensidad y dividimos por el cuadrado de m los valores de resistencia, reactancia e impedancia. Fecha: 26 de febrero de

11 3.5. Cómo influiría el alimentar el transformador a la misma tensión, pero a 60 Hz? Ya que la reactancia inductiva depende de la frecuencia (proporcionalmente), si se aumenta hasta 60 Hz. la intensidad en vacío disminuirá (sólo la correspondiente a la reactancia Xµ) e igualmente descenderá la intensidad debida a las pérdidas del cobre, en su componente debida a la reactancia Xcc Qué crees que sucedería si el ensayo de cortocircuito se hiciera a la tensión nominal del transformador? Si se hiciera a la tensión nominal del transformador, la corriente, tanto en el primario como en el secundario, aumentaría de forma proporcional (tanto la tensión como la intensidad se multiplican por la tensión nominal y se dividen por la tensión de cortocircuito), y la potencia lo haría en proporción al cuadrado de este cociente. Según los resultados obtenidos en los ensayos, la potencia A qué es debido el ruido que emite el transformador cuando funciona? El flujo magnético generado por el paso de la corriente es oscilante y provoca la deformación del núcleo (aunque muy pequeña) al mismo ritmo que cambia el campo y estas deformaciones se trasmiten el exterior en forma de sonido. Este fenómeno se conoce como magnetostricción Puede el campo magnético del transformador generar interferencias en circuitos cercanos? La única fuente de interferencias cuando el transformador está funcionando es el flujo de dispersión, el flujo magnético que sale del núcleo Para qué se utiliza el transformador de intensidad? Qué datos aparecen en su placa de características? Cómo no se debe dejar nunca el secundario de un transformador de intensidad, en cortotircuito o a circuito abierto y por qué? El transformador de intensidad se utiliza para poder medir corrientes que están fuera del rango de medida del amperímetro del que disponemos; es un transformador normal, en el que se aprovecha que la intensidad del secundario es la del primario, dividida por el factor de transformación. En su placa de características aparece la relación de transformación y la carga del secundario. La medida de intensidad con un transformador de este tipo es similar a un ensayo en cortocircuito, donde el corto del secundario lo hace el amperímetro. Nunca se debe dejar con el secundario a circuito abierto, pues, como en el ensayo en vacío, la tensión del circuito que alimenta el primario se presentaría en éste (su impedancia es muy alta), haciendo que se multiplicara (por el mismo factor que se divide la intensidad) en el secundario, representando un peligro potencial. Fecha: 26 de febrero de

12 4. CONCLUSIONES. El ensayo de vacío y cortocircuito que realizamos con un transformador tiene como fin calcular las pérdidas de este componente. Como siempre, nos encontramos con pérdidas en el cobre, debidas al efecto Joule, y pérdidas en el hierro, éstas como consecuencia de las corrientes parásitas de Foucault y del ciclo de histéresis del núcleo. Hemos podico apreciar cómo la potencia medida en el vatímetro coincide con las pérdidas en el hierro, durante el ensayo de vacío, mientras que lo potencia medida por el vatímetro en el ensayo de cortocircuito refleja el valor de las pérdidas en el cobre, despreciando en este caso la corriente debida a las pérdidas en el hierro, porque se suponen mucho menores. Cabe destacar que las pérdidas en el hierro son siempre (mientras se mantiene el primario del transformador sometido a la tensión nominal) constantes, mientras que las pérdidas en el cobre son función de la corriente, resultando proporcionales a ella, de forma que el total de las pérdidas es función de la corriente, pero no se mantiene una proporción constante con ella. Fecha: 26 de febrero de

PROBLEMAS DE TRANSFORMADORES

PROBLEMAS DE TRANSFORMADORES PROBLEMAS DE TRANSFORMADORES Problema 1: Problemas de transformadores Un transformador tiene N 1 40 espiras en el arrollamiento primario y N 2 100 espiras en el arrollamiento secundario. Calcular: a. La

Más detalles

P5: CORRIENTE ALTERNA MONOFÁSICA II FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA D. FAUSTINO DE LA BODEGA Y BILBAO CURSO 2º GRUPO 01

P5: CORRIENTE ALTERNA MONOFÁSICA II FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA D. FAUSTINO DE LA BODEGA Y BILBAO CURSO 2º GRUPO 01 ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA INDUSTRIAL (BILBAO) Departamento de Ingeniería Eléctrica INDUSTRI INGENIARITZA TEKNIKORAKO UNIBERTSITATE-ESKOLA (BILBO) Ingeniaritza Elektriko Saila ALUMNO P5:

Más detalles

TRANSFORMADORES. 7.1 Introducción. 7.2 Transformador monofásico

TRANSFORMADORES. 7.1 Introducción. 7.2 Transformador monofásico TRASFORMADORES 7. ntroducción El transformador es un dispositivo que permite modificar potencia eléctrica de corriente alterna con un determinado valor de tensión y corriente en otra potencia de casi el

Más detalles

Escuela 4-016 Ing. Marcelo Antonio Arboit - Junín

Escuela 4-016 Ing. Marcelo Antonio Arboit - Junín Un transformador se compone de dos arrollamientos aislados eléctricamente entre sí y devanados sobre un mismo núcleo de hierro. Una corriente alterna que circule por uno de los arrollamientos crea en el

Más detalles

UNIDAD. Transformadores

UNIDAD. Transformadores NIDAD 8 Transformadores Transformador de una subestación. (A.L.B.) E l transformador nos resulta muy familiar en el ámbito doméstico. Su uso más común y conocido es para adaptar la tensión de la red a

Más detalles

Medidas de Intensidad

Medidas de Intensidad Unidad Didáctica Medidas de Intensidad Programa de Formación Abierta y Flexible Obra colectiva de FONDO FORMACION Coordinación Diseño y maquetación Servicio de Producción Didáctica de FONDO FORMACION (Dirección

Más detalles

Apellidos y nombre: Número de matrícula: DNI:

Apellidos y nombre: Número de matrícula: DNI: EXAMEN ESCRITO I Apellidos y nombre: Número de matrícula: DNI: ARTE : REGUNTAS DE TEST (5% del total del examen) Cada respuestas incorrectas descuentan una correcta º) ara un material rromagnético dado

Más detalles

DETERMINACIÓN DE LAS CAÍDAS DE TENSIÓN DE UN TRANSFORMADOR DE POTENCIA

DETERMINACIÓN DE LAS CAÍDAS DE TENSIÓN DE UN TRANSFORMADOR DE POTENCIA PRÁCTICA Nº 8 DETERMINACIÓN DE LAS CAÍDAS DE TENSIÓN DE UN TRANSFORMADOR DE POTENCIA Departamento de Ingeniería Eléctrica E.T.S.I.I. Página 1 de 14 PRÁCTICA Nº 8 DETERMINACIÓN DE LAS CAÍDAS DE TENSIÓN

Más detalles

PRACTICA 6 SOLENOIDES, BOBINAS Y TRANSFORMADORES. 6.1. Solenoides y Bobinas

PRACTICA 6 SOLENOIDES, BOBINAS Y TRANSFORMADORES. 6.1. Solenoides y Bobinas PACTICA 6 SOLEOIDES, BOBIAS Y TASFOMADOES 6.. Solenoides y Bobinas Se demostrado que al hacer circular una corriente por un conductor rectilíneo, alrededor de éste se crea un campo magnético ( B r ) que

Más detalles

TEMA 2. CIRCUITOS ELÉCTRICOS.

TEMA 2. CIRCUITOS ELÉCTRICOS. TEMA 2. CIRCUITOS ELÉCTRICOS. 1. INTRODUCCIÓN. A lo largo del presente tema vamos a estudiar los circuitos eléctricos, para lo cual es necesario recordar una serie de conceptos previos tales como la estructura

Más detalles

4.2 Transformadores de potencia

4.2 Transformadores de potencia 4. Transformadores de potencia 4.. Generalidades Descripción Circuito magnético Circuito eléctrico Refrigeración Aspectos constructivos 4.. Principio de funcionamiento El transformador ideal Funcionamiento

Más detalles

PARALELO DE TRANSFORMADORES

PARALELO DE TRANSFORMADORES GUIA DE TRABAJOS PRACTICOS DE LABORATORIO TPN 2 PARALELO DE TRANSFORMADORES 1. Objetivos Estudio teórico y práctico de las condiciones que se deben cumplir para realizar el conexionado en paralelo de dos

Más detalles

TRANSFORMADORES. (parte 2) Mg. Amancio R. Rojas Flores

TRANSFORMADORES. (parte 2) Mg. Amancio R. Rojas Flores TRANSFORMADORES (parte ) Mg. Amancio R. Rojas Flores CRCUTO EQUALENTE DE UN TRANSFORMADOR La ventaja de desarrollar circuitos equivalentes de máquinas eléctricas es poder aplicar todo el potencial de la

Más detalles

Temas de electricidad II

Temas de electricidad II Temas de electricidad II CAMBIANDO MATERIALES Ahora volvemos al circuito patrón ya usado. Tal como se indica en la figura, conecte un hilo de cobre y luego uno de níquel-cromo. Qué ocurre con el brillo

Más detalles

Conceptos y determinaciones aplicables a transformadores de intensidad

Conceptos y determinaciones aplicables a transformadores de intensidad Definiciones: Error de Calibración de un instrumento o Error de Clase: es el mayor error absoluto que acusa un instrumento en algún punto de la escala Cuando este error se expresa referido al máximo valor

Más detalles

TEMA 6. Fundamentos de las máquinas rotativas de corriente alterna.

TEMA 6. Fundamentos de las máquinas rotativas de corriente alterna. TEMA 6. Fundamentos de las máquinas rotativas de corriente alterna. CONTENIDO: 6.1. El motor asíncrono trifásico, principio de funcionamiento. 6.2. Conjuntos constructivos. 6.3. Potencia, par y rendimiento.

Más detalles

Unidad Didáctica. Transformadores Trifásicos

Unidad Didáctica. Transformadores Trifásicos Unidad Didáctica Transformadores Trifásicos Programa de Formación Abierta y Flexible Obra colectiva de FONDO FORMACION Coordinación Diseño y maquetación Servicio de Producción Didáctica de FONDO FORMACION

Más detalles

Districte Universitari de Catalunya

Districte Universitari de Catalunya Proves d accés a la universitat Convocatòria 2014 Electrotecnia Serie 3 La prueba consta de dos partes de dos ejercicios cada una. La primera parte es común y la segunda tiene dos opciones (A y B). Resuelva

Más detalles

Instrucciones: No se permitirá el uso de calculadoras programables ni gráficas. La puntuación de cada pregunta está indicada en las mismas.

Instrucciones: No se permitirá el uso de calculadoras programables ni gráficas. La puntuación de cada pregunta está indicada en las mismas. PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B ELECTROTECNIA DATOS DEL ASPIRANTE Apellidos: CALIFICACIÓN PRUEBA Nombre: D.N.I. o Pasaporte: Fecha de nacimiento: / / Instrucciones: No se permitirá

Más detalles

Máquinas eléctricas de corriente alterna. Capítulo 2 Máquina Asíncrona

Máquinas eléctricas de corriente alterna. Capítulo 2 Máquina Asíncrona Universidad Carlos III de Madrid Dept. Ingenería eléctrica Máquinas eléctricas de corriente alterna Capítulo 2 Máquina Asíncrona David Santos Martín CAPÍTULO 2 Máquina Asíncrona 2.1.- Introducción 2.2.-

Más detalles

TRANSFORMADORES EN PARALELO

TRANSFORMADORES EN PARALELO UNIVERIDD DE CNTRI TRNFORMDORE EN PRLELO Miguel ngel Rodríguez Pozueta Condiciones para que varios transformadores se puedan conectar en paralelo Fig. 0: Dos transformadores monofásicos ( y ) conectados

Más detalles

TEMA 8 Reguladores e interruptores estáticos de alterna

TEMA 8 Reguladores e interruptores estáticos de alterna TEMA 8 : Reguladores e interruptores estáticos de alterna. TEMA 8 Reguladores e interruptores estáticos de alterna Índice 8.1.- Introducción.... 1 8.2.- Interruptores estáticos de corriente alterna...

Más detalles

FACTOR DE POTENCIA. Cos φ

FACTOR DE POTENCIA. Cos φ FACTOR DE POTENCIA Cos φ El Factor de Potencia, es el indicador del correcto aprovechamiento de la energía Eléctrica y puede tomar valores, entre 0 y 1, lo que significa que: Factor de Potencia, es un

Más detalles

GUIA DE EJERCICIOS SOBRE TRANSFORMADORES MONOFÁSICOS Y AUTOTRANSFORMADORES

GUIA DE EJERCICIOS SOBRE TRANSFORMADORES MONOFÁSICOS Y AUTOTRANSFORMADORES GUIA DE EJERCICIOS SOBRE TRANSFORMADORES MONOFÁSICOS Y AUTOTRANSFORMADORES N0VIEMBRE_2003 1.- El primario de un transformador, con fuerte acoplamiento, tiene una inductancia de 20 H, un coeficiente de

Más detalles

Circuitos de corriente continua

Circuitos de corriente continua nidad didáctica 3 Circuitos de corriente continua Qué aprenderemos? Cuáles son las leyes experimentales más importantes para analizar un circuito en corriente continua. Cómo resolver circuitos en corriente

Más detalles

Problemas resueltos. Consideramos despreciable la caída de tensión en las escobillas, por lo que podremos escribir:

Problemas resueltos. Consideramos despreciable la caída de tensión en las escobillas, por lo que podremos escribir: Problemas resueltos Problema 1. Un motor de c.c (excitado según el circuito del dibujo) tiene una tensión en bornes de 230 v., si la fuerza contraelectromotriz generada en el inducido es de 224 v. y absorbe

Más detalles

Máster Universitario en Profesorado

Máster Universitario en Profesorado Máster Universitario en Profesorado Complementos para la formación disciplinar en Tecnología y procesos industriales Aspectos básicos de la Tecnología Eléctrica Contenido (II) SEGUNDA PARTE: corriente

Más detalles

MEDIDAS ELÉCTRICAS. PRÁCTICA Nº 1 MEDIDAS ELÉCTRICAS (I).- Medidas eléctricas básicas

MEDIDAS ELÉCTRICAS. PRÁCTICA Nº 1 MEDIDAS ELÉCTRICAS (I).- Medidas eléctricas básicas MEDIDAS ELÉCTRICAS PRÁCTICA Nº 1 MEDIDAS ELÉCTRICAS (I).- Medidas eléctricas básicas PRÁCTICA Nº 2 MEDIDAS ELÉCTRICAS (II).- Medidas en circuitos de corriente alterna PRÁCTICA Nº 4 MEDIDAS ELÉCTRICAS (III).-

Más detalles

COMPONENTES PASIVOS DE UN CIRCUITO ELECTRICO

COMPONENTES PASIVOS DE UN CIRCUITO ELECTRICO COMPONENTES PASIVOS DE UN CIRCUITO ELECTRICO 1.- INTRODUCCION Los tres componentes pasivos que, en general, forman parte de los circuitos eléctricos son los resistores, los inductores y los capacitores.

Más detalles

8. Tipos de motores de corriente continua

8. Tipos de motores de corriente continua 8. Tipos de motores de corriente continua Antes de enumerar los diferentes tipos de motores, conviene aclarar un concepto básico que debe conocerse de un motor: el concepto de funcionamiento con carga

Más detalles

1.1. Sección del núcleo

1.1. Sección del núcleo 1. CALCULO ANALÍTICO DE TRANSFORMADORES DE PEQUEÑA POTENCIA Los transformadores tienen rendimiento muy alto; aunque éste no lo sea tanto en la pequeña potencia, podemos considerar que la potencia del primario

Más detalles

Tema 7. MOTORES ELÉCTRICOS DE CORRIENTE CONTINUA

Tema 7. MOTORES ELÉCTRICOS DE CORRIENTE CONTINUA Tema 7. MOTORES ELÉCTRICOS DE CORRIENTE CONTINUA 1. MAGNETISMO Y ELECTRICIDAD...2 Fuerza electromotriz inducida (Ley de inducción de Faraday)...2 Fuerza electromagnética (2ª Ley de Laplace)...2 2. LAS

Más detalles

Introducción ELECTROTECNIA

Introducción ELECTROTECNIA Introducción Podríamos definir la Electrotecnia como la técnica de la electricidad ; desde esta perspectiva la Electrotecnia abarca un extenso campo que puede comprender desde la producción, transporte,

Más detalles

Instrumentos y aparatos de medida: Medida de intensidad, tensión y resistencia

Instrumentos y aparatos de medida: Medida de intensidad, tensión y resistencia Instrumentos y aparatos de medida: Medida de intensidad, tensión y resistencia Podemos decir que en electricidad y electrónica las medidas que con mayor frecuencia se hacen son de intensidad, tensión y

Más detalles

QUE ES LA CORRIENTE ALTERNA?

QUE ES LA CORRIENTE ALTERNA? QUE ES LA CORRIENTE ALTERNA? Se describe como el movimiento de electrones libres a lo largo de un conductor conectado a un circuito en el que hay una diferencia de potencial. La corriente alterna fluye

Más detalles

Práctica 1 y 2: Medidas de tensión e intensidad. Adaptadores de medida. 1. Conceptos generales. 2. Resistencias en derivación (Shunts)

Práctica 1 y 2: Medidas de tensión e intensidad. Adaptadores de medida. 1. Conceptos generales. 2. Resistencias en derivación (Shunts) Medidas de tensión e intensidad. daptadores de medida: Práctica y Práctica y : Medidas de tensión e intensidad. daptadores de medida. Conceptos generales La corriente eléctrica que circula por un instrumento

Más detalles

TRANSFORMADOR REAL. Norberto A. Lemozy

TRANSFORMADOR REAL. Norberto A. Lemozy NTRODCCÓN TRANSFORMADOR RAL Norberto A. Lemozy n los transformadores reales no se cumplen las premisas que definían a los ideales, pero se les aproximan mucho, especialmente en las unidades de gran potencia,

Más detalles

Los transformadores. Inducción en una bobina

Los transformadores. Inducción en una bobina Los transformadores Los transformadores eléctricos han sido uno de los inventos más relevantes de la tecnología eléctrica. Sin la existencia de los transformadores, sería imposible la distribución de la

Más detalles

UNIDAD DE TRABAJO Nº2. INSTALACIONES DE MEGAFONÍA. UNIDAD DE TRABAJO Nº2.1. Descripción de Componentes. Simbología AURICULARES

UNIDAD DE TRABAJO Nº2. INSTALACIONES DE MEGAFONÍA. UNIDAD DE TRABAJO Nº2.1. Descripción de Componentes. Simbología AURICULARES UNIDAD DE TRABAJO Nº2. INSTALACIONES DE MEGAFONÍA UNIDAD DE TRABAJO Nº2.1. Descripción de Componentes. Simbología 2. Auriculares. Descripción. AURICULARES Son transductores electroacústicos que, al igual

Más detalles

Megger Megger Megger Megger Megger

Megger Megger Megger Megger Megger 5 Formas de ejecutar Ensayos en Transformadores de Intensidad/Corriente 5 veces mas Eficiente Washington Cabrera Gerente de Ventas para México Dallas, Texas, Estados Unidos Diego Robalino, PhD, PMP Octubre

Más detalles

Símbolo. EXPERIENCIA DE LABORATORIO No. 6 TRANSFORMADOR - CIRCUITOS RLC. Area de Física Experimental Manual de Laboratorio 1

Símbolo. EXPERIENCIA DE LABORATORIO No. 6 TRANSFORMADOR - CIRCUITOS RLC. Area de Física Experimental Manual de Laboratorio 1 rea de Física Experimental Manual de Laboratorio 1 EXPEIENI DE LBOTOIO No. 6 TNSFOMDO - IUITOS L En esta experiencia de laboratorio Ud. realizará mediciones en circuitos de corriente alterna que involucran

Más detalles

Equipo que transforma la energía. Figura 6.1 Flujo de energía

Equipo que transforma la energía. Figura 6.1 Flujo de energía ÉRDIDAS Y CALENTAMIENTO EN MÁQUINAS ELÉCTRICAS 6.1 Introducción En todo proceso de transformación de la energía, se produce una diferencia entre la potencia que entrega el equipo para su utilización (otencia

Más detalles

CAPITULO 6 POTENCIA COMPLEJA 6.1 INTRODUCCION. Si V VmSen wt v. P Vm Sen wt v Sen wt i. Cos v i Cos wt v i 2 2. P VICos v i.

CAPITULO 6 POTENCIA COMPLEJA 6.1 INTRODUCCION. Si V VmSen wt v. P Vm Sen wt v Sen wt i. Cos v i Cos wt v i 2 2. P VICos v i. CAULO 6 OENCA COMLEJA 6. NRODUCCON La potencia compleja (cuya magnitud se conoce como potencia aparente) de un circuito eléctrico de corriente alterna, es la suma (vectorial) de la potencia que disipa

Más detalles

Principio del Transformador

Principio del Transformador Transformadores Oil tank High voltage bushing Low voltage bushing Profesor: Ing. César Chilet Cooling radiators Principio del Transformador La bobina primaria crea un flujo magnético variable, que circula

Más detalles

En un transformador, el núcleo tiene dos misiones fundamentales:

En un transformador, el núcleo tiene dos misiones fundamentales: Transformador El transformador es un dispositivo que convierte energía eléctrica de un cierto nivel de voltaje, en energía eléctrica de otro nivel de voltaje, por medio de la acción de un campo magnético.

Más detalles

CURSO TALLER ACTIVIDAD 15 TRANSFORMADOR

CURSO TALLER ACTIVIDAD 15 TRANSFORMADOR CURSO TALLER ACTIVIDAD 15 TRANSFORMADOR Un transformador es un elemento que transfiere energía de un circuito a otro mediante inducción electromagnética. Es un dispositivo eléctrico que sirve para bajar

Más detalles

TEMA 9 Cicloconvertidores

TEMA 9 Cicloconvertidores TEMA 9 Cicloconvertidores 9.1.- Introducción.... 1 9.2.- Principio de Funcionamiento... 1 9.3.- Montajes utilizados.... 4 9.4.- Estudio de la tensión de salida.... 6 9.5.- Modos de funcionamiento... 7

Más detalles

Y ACONDICIONADORES TEMA

Y ACONDICIONADORES TEMA SENSORES Y ACONDICIONADORES TEMA 6 SENSORES CAPACITIVOS Profesores: Enrique Mandado Pérez Antonio Murillo Roldan Camilo Quintáns Graña Tema 6-1 SENSORES CAPACITIVOS Sensores basados en la variación de

Más detalles

ESTUDIO DE LA MÁQUINA ASÍNCRONA

ESTUDIO DE LA MÁQUINA ASÍNCRONA ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA Práctica nº : Sistemas Eléctricos ESTUDIO DE LA MÁQUINA ASÍNCRONA Sistemas Eléctricos 009-00.La Máquina de Inducción o Asíncrona

Más detalles

2003/2004. Boletín de Problemas MÁQUINAS ELÉCTRICAS: TRANSFORMADORES 3º DE INGENIEROS INDUSTRIALES. Dpto. de Ingeniería Eléctrica

2003/2004. Boletín de Problemas MÁQUINAS ELÉCTRICAS: TRANSFORMADORES 3º DE INGENIEROS INDUSTRIALES. Dpto. de Ingeniería Eléctrica Dpto. de ngeniería léctrica.t.s. de ngenieros ndustriales Universidad de Valladolid 003/004 MÁQUNAS LÉCTRCAS: TRANSFORMADORS 3º D NGNROS NDUSTRALS Boletín de Problemas TRANSFORMADORS Problemas propuestos

Más detalles

PROGRAMA IEM-212 Unidad II: Circuitos acoplados Magnéticamente.

PROGRAMA IEM-212 Unidad II: Circuitos acoplados Magnéticamente. PROGRAMA IEM-212 Unidad II: Circuitos acoplados Magnéticamente. 2.1 Inductancia Mutua. Inductancia mutua. Sabemos que siempre que fluye una corriente por un conductor, se genera un campo magnético a través

Más detalles

ISSN 1988-6047 DEP. LEGAL: GR 2922/2007 Nº 19 JUNIO DE 2009 RADIO DE GALENA

ISSN 1988-6047 DEP. LEGAL: GR 2922/2007 Nº 19 JUNIO DE 2009 RADIO DE GALENA RADIO DE GALENA AUTORÍA MAURICIO ARANCÓN IZQUIERDO TEMÁTICA RECURSO PARA EL AULA-TALLER DE TECNOLOGÍA ETAPA 3º Y 4º ESO Resumen Con este proyecto-construcción de una radio de galena se pretende que el

Más detalles

MOTOR DE INDUCCION MONOFASICO

MOTOR DE INDUCCION MONOFASICO MAQUINAS ELÉCTRICAS ROTATIVAS MOTOR DE INDUCCION MONOFASICO Mg. Amancio R. Rojas Flores 1. Principio de funcionamiento Básicamente, un motor de inducción monofásico está formado por un rotor en jaula de

Más detalles

Capítulo 4. Energía y Potencia

Capítulo 4. Energía y Potencia Capítulo 4 Energía y Potencia 4.1 ntroducción 4.2 Energía de la corriente eléctrica. Ley de Joule 4.3 Generador 4.4 Receptor 4.5 Diferencia de potencial entre dos puntos de un circuito 4.6 Ecuación del

Más detalles

TEMA I. Teoría de Circuitos

TEMA I. Teoría de Circuitos TEMA I Teoría de Circuitos Electrónica II 2009-2010 1 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos:

Más detalles

Mantenimiento de máquinas eléctricas

Mantenimiento de máquinas eléctricas Mantenimiento de máquinas eléctricas GUÍA DIDÁCTICA DEL PROFESOR (Nombre del autor) Índice 1. Presentación de la guía... 3 2. Introducción al módulo... 4 3. Capacidades terminales y criterios de evaluación...

Más detalles

TEMA 2: CIRCUITOS ELÉCTRICOS: CIRCUITOS SERIE, PARALELO Y MIXTOS. CÁLCULO DE MAGNITUDES EN UN CIRCUITO.

TEMA 2: CIRCUITOS ELÉCTRICOS: CIRCUITOS SERIE, PARALELO Y MIXTOS. CÁLCULO DE MAGNITUDES EN UN CIRCUITO. CPI Antonio Orza Couto 3º ESO TECNOLOGÍA TEMA-2 ELECTRICIDAD: CIRCUITOS TEMA 2: CIRCUITOS ELÉCTRICOS: CIRCUITOS SERIE, PARALELO Y MIXTOS. CÁLCULO DE MAGNITUDES EN UN CIRCUITO. 1. CIRCUITO ELÉCTRICO Definición

Más detalles

Instrumentos y aparatos de medida: Medidas de potencia y energía

Instrumentos y aparatos de medida: Medidas de potencia y energía Instrumentos y aparatos de medida: Medidas de potencia y energía Probablemente por tu edad seas ya plenamente consciente de la importancia que los recursos energéticos tienen para un país. El petróleo

Más detalles

Pruebas de funcionamiento. Historial de un motor de c. a.

Pruebas de funcionamiento. Historial de un motor de c. a. Pruebas de funcionamiento Historial de un motor de c. a. Una vez terminadas las operaciones de bobinado, y cuando las circunstancias lo permitan, se deben realizar, al motor reparado, todas las pruebas

Más detalles

Mejora del factor de potencia

Mejora del factor de potencia Práctica de corriente alterna. Mejora del factor de potencia Luis Íñiguez de Onzoño Sanz Fundamentos Físicos para Ingenieros III 28 de noviembre de 2007 Índice 1. Conceptos relacionados I 2. Principios

Más detalles

MÁQUINAS ELECTRICAS DE C.C y C.A.. ELECTROMECANICA UNIDAD 4 Generadores de Corriente Continua. Partes de una maquina eléctrica de corriente continua.

MÁQUINAS ELECTRICAS DE C.C y C.A.. ELECTROMECANICA UNIDAD 4 Generadores de Corriente Continua. Partes de una maquina eléctrica de corriente continua. Página19 UNIDAD 4 Generadores de Corriente Continua. Introducción En la actualidad, la generación de C.C. se realiza mediante pilas y acumuladores o se obtiene de la conversión de C.A. a C.C. mediante

Más detalles

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA BOLETÍN DE PROBLEMAS TRANSFORMADOR 2009/2010

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA BOLETÍN DE PROBLEMAS TRANSFORMADOR 2009/2010 DPARTAMNTO D NGNRÍA LÉCTRCA BOLTÍN D PROBLMAS TRANSFORMADOR 009/010 TRANSFORMADORS Problemas propuestos 1. Dibujar un diagrama vectorial para un transformador monofásico cargado y con relación de transformación

Más detalles

Resolución paso a paso de problemas de máquinas eléctricas

Resolución paso a paso de problemas de máquinas eléctricas Resolución paso a paso de problemas de máquinas eléctricas Mario Ortiz García Sergio Valero Verdú Carolina Senabre Blanes Título: Autor: Resolución paso a paso de problemas de máquinas eléctricas 2ed Mario

Más detalles

TRANSFORMADOR NÚCLEOS

TRANSFORMADOR NÚCLEOS TRANSFORMADOR El transformador es un dispositivo que convierte energía eléctrica de un cierto nivel de voltaje, en energía eléctrica de otro nivel de voltaje, por medio de la acción de un campo magnético.

Más detalles

3. 1 Generalidades y clasificación de los generadores. Según sea la energía absorbida, los generadores pueden ser:

3. 1 Generalidades y clasificación de los generadores. Según sea la energía absorbida, los generadores pueden ser: CAPITULO 3 GNRADORS LÉCTRICOS 3. 1 Generalidades y clasificación de los generadores. Se llama generador eléctrico todo aparato o máquina capaz de producir o generar energía eléctrica a expensas de otra

Más detalles

Máquinas de corriente alterna polifásicas máquina sincrónica

Máquinas de corriente alterna polifásicas máquina sincrónica Máquinas de corriente alterna polifásicas máquina sincrónica 1 Objetivo: o Establecer una nomenclatura uniforme de los parámetros o Estudiar el desarrollo, a lo largo del entrehierro y su variación con

Más detalles

1. INTRODUCCIÓN A LOS CONVERTIDORES CA/CC

1. INTRODUCCIÓN A LOS CONVERTIDORES CA/CC 1. INTRODUCCIÓN A LOS CONVERTIDORES CA/CC 1.1. Introducción Un convertidor ca/cc transforma corriente alterna en corriente continua. El término continua hace referencia a que la corriente fluye en un único

Más detalles

4 - DESARROLLO DE UN MOTOR LINEAL TUBULAR BIFÁSICO (M-2)

4 - DESARROLLO DE UN MOTOR LINEAL TUBULAR BIFÁSICO (M-2) 4 - DESARROLLO DE UN MOTOR LINEAL TUBULAR BIFÁSICO (M-2) 4.1- Construcción de un prototipo de motor lineal para adquisición y posterior discusión de datos. En estudios anteriores 2 se estudió el efecto

Más detalles

José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo

José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo 2 PUNTOS OBJETO DE ESTUDIO Introducción Transformador ideal Transformador real Ensayos de

Más detalles

El motor eléctrico. Física. Liceo integrado de zipaquira MOTOR ELECTRICO

El motor eléctrico. Física. Liceo integrado de zipaquira MOTOR ELECTRICO El motor eléctrico Física Liceo integrado de zipaquira MOTOR ELECTRICO Motores y generadores eléctricos, grupo de aparatos que se utilizan para convertir la energía mecánica en eléctrica, o a la inversa,

Más detalles

PRÁCTICA 1 RED ELÉCTRICA

PRÁCTICA 1 RED ELÉCTRICA PRÁCTICA 1 RED ELÉCTRICA PARTE 1.- MEDIDA DE POTENCIAS EN UN CIRCUITO MONOFÁSICO. CORRECCIÓN DEL FACTOR DE POTENCIA OBJETIVOS - Diferenciar entre los tres tipos de potencia que se ponen en juego en un

Más detalles

TEMA 5: APLICACIONES DEL EFECTO TÉRMICO

TEMA 5: APLICACIONES DEL EFECTO TÉRMICO Elementos de caldeo TEMA 5: APLICACIONES DEL EFECTO TÉRMICO Son resistencias preparadas para transformar la energía eléctrica en calor (Figura). Se utilizan para la fabricación de estufas, placas de cocina,

Más detalles

MEDICIONES ELECTRICAS I

MEDICIONES ELECTRICAS I Año:... Alumno:... Comisión:... MEDICIONES ELECTRICAS I Trabajo Práctico N 4 Tema: FACTOR DE FORMA Y DE LECTURA. RESPUESTA EN FRECUENCIA DE INSTRUMENTOS. Tipos de instrumentos Según el principio en que

Más detalles

Propiedades de la corriente alterna

Propiedades de la corriente alterna Propiedades de la corriente alterna Se denomina corriente alterna (abreviada CA en español y AC en inglés, de Alternating Current) a la corriente eléctrica en la que la magnitud y dirección varían cíclicamente.

Más detalles

PROBLEMAS DE ELECTROTECNIA

PROBLEMAS DE ELECTROTECNIA PROBLEMAS DE ELECTROTECNIA MATERIAL DIDÁCTICO Ingenierías nº 23 Otros títulos de la colección. 1 Planos acotados: expresión gráfica (2ª ed.) Ricardo Bartolomé Ramírez 2003, 306 pags. ISBN 84-95301-74-1

Más detalles

El coeficiente de acoplamiento k especifica el grado de acercamiento de la inductancia mutua al límite l

El coeficiente de acoplamiento k especifica el grado de acercamiento de la inductancia mutua al límite l Energía a en un circuito acoplado La energía a almacenada en un inductor es w = La energía a total instantánea nea almacenada en bobinas magnéticamente acopladas es El signo positivo se selecciona si ambas

Más detalles

Capítulo IV. Modelo de transmisión inalámbrica de energía

Capítulo IV. Modelo de transmisión inalámbrica de energía Capítulo IV. Modelo de transmisión inalámbrica de energía 4.1. Análisis del transformador ideal Un transformador ideal es un dispositivo sin pérdidas que tiene un devanado de entrada y un devanado de salida

Más detalles

TRANSFORMADORES TRANSFORMADORES

TRANSFORMADORES TRANSFORMADORES Sean dos bobinas N 1 y N 2 acopladas magnéticamente. Si la bobina N 1 se conecta a una tensión alterna sinusoidal v 1 se genera en la bobina N 2 una tensión alterna v 2. Las variaciones de flujo en la

Más detalles

En el capítulo anterior se observaron los conceptos teóricos para comprender el concepto de

En el capítulo anterior se observaron los conceptos teóricos para comprender el concepto de Análisis para la selección de los sensores a utilizar 3.1 Introducción En el capítulo anterior se observaron los conceptos teóricos para comprender el concepto de pruebas de tensión en materiales. Uno

Más detalles

Ensayo de transformadores

Ensayo de transformadores 4 Ensayo de transformadores 4.1 Transformador en vacío Como hemos visto anteriormente, el transformador está basado en que la energía se puede transportar eficazmente por inducción electromagnética desde

Más detalles

Capacitores de película de sulfuro de polifenileno (PPS) para montaje superficial

Capacitores de película de sulfuro de polifenileno (PPS) para montaje superficial CAPACITORES INTRODUCCIÓN Los capacitores son componentes eléctricos y electrónicos capaces de almacenar energía eléctrica, la cantidad de energía almacenada dependerá de las características del mismo componente.

Más detalles

Ejercicios Propuestos Inducción Electromagnética.

Ejercicios Propuestos Inducción Electromagnética. Ejercicios Propuestos Inducción Electromagnética. 1. Un solenoide de 2 5[] de diámetro y 30 [] de longitud tiene 300 vueltas y lleva una intensidad de corriente de 12 [A]. Calcule el flujo a través de

Más detalles

CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION

CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION Como hemos dicho anteriormente, los instrumentos de medición hacen posible la observación de los fenómenos eléctricos y su cuantificación. Ahora

Más detalles

SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética.

SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. A diferencia de los sistemas monofásicos de C.A., estudiados hasta ahora, que utilizan dos conductores

Más detalles

LOS EFECTOS DE LOS ARMÓNICOS y SUS SOLUCIONES

LOS EFECTOS DE LOS ARMÓNICOS y SUS SOLUCIONES LOS EFECTOS DE LOS ARMÓNICOS y SUS SOLUCIONES Los armónicos provocan una baja calidad en el suministro de la energía eléctrica Se ha observado un elevado nivel de corrientes armónicas múltiples impares

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 000-001 - CONVOCATORIA: ELECTROTECNIA EL ALUMNO ELEGIRÁ UNO DE LOS DOS MODELOS Criterios de calificación.- Expresión clara y precisa dentro del lenguaje

Más detalles

Medida de magnitudes mecánicas

Medida de magnitudes mecánicas Medida de magnitudes mecánicas Introducción Sensores potenciométricos Galgas extensiométricas Sensores piezoeléctricos Sensores capacitivos Sensores inductivos Sensores basados en efecto Hall Sensores

Más detalles

ELECTRICIDAD Secundaria

ELECTRICIDAD Secundaria ELECTRICIDAD Secundaria Carga eléctrica. Los átomos que constituyen la materia están formados por otras partículas todavía más pequeñas, llamadas protones, neutrones y electrones. Los protones y los electrones

Más detalles

MEDICIÓN DE ENERGÍA ELÉCTRICA ACTIVA

MEDICIÓN DE ENERGÍA ELÉCTRICA ACTIVA ELT 8.MEDICION DE ENERGIA ELECTRICA ACTIVA.- INTRODUCIÓN MEDICIÓN DE ENERGÍA ELÉCTRICA ACTIVA La medición de energía eléctrica activa se realiza con el medidor de KWH de tipo inducción y con el medidor

Más detalles

PARÁMETROS DEL TRANSISTOR

PARÁMETROS DEL TRANSISTOR 13 PARÁMETROS DEL TRANSISTOR 0.- INTRODUCCIÓN (2) 1.- SONDA DETECTORA (4) 2.- MEDIDA DE LA ft (5) 2.1 Realización práctica (7) 3.- PARÁMETRO DE TRANSFERENCIA INVERSA (10) 3.1 Realización práctica (10)

Más detalles

Elementos Instalación Energía Solar Fotov. Iluminación. Juan D. Aguilar; F.Garrido. Departamento de Electrónica. Universidad de Jaén 1

Elementos Instalación Energía Solar Fotov. Iluminación. Juan D. Aguilar; F.Garrido. Departamento de Electrónica. Universidad de Jaén 1 Elementos Instalación Energía Solar Fotov. Iluminación Juan D. Aguilar; F.Garrido. Departamento de Electrónica. Universidad de Jaén 1 Iluminación : Balastos Electrónicos y su aplicación a Instalaciones

Más detalles

ORIENTACIONES DIDÁCTICAS PARA EL ALUMNADO

ORIENTACIONES DIDÁCTICAS PARA EL ALUMNADO ORIENTACIONES DIDÁCTICAS PARA EL ALUMNADO "Contenido adscrito a la Licéncia "Creative Commons" CC ES en las opciones "Reconocimiento -No Comercial- Compartir Igual". Autor: Ángel Mahiques Benavent ÍNDICE

Más detalles

Condensador con tensión alterna sinusoidal

Condensador con tensión alterna sinusoidal Capacitancia e Inductancia en Circuito de Corriente Alterna 1.- OBJETIVO: Experiencia Nº 10 El objetivo fundamental en este experimento es el estudio de la corriente alterna en un circuito RC y RL. 2.-

Más detalles

CALIDAD DE LA ENERGIA ELECTRICA

CALIDAD DE LA ENERGIA ELECTRICA CALIDAD DE LA ENERGIA ELECTRICA ARMONICAS FENOMENO PERTURBADOR Alguna vez ha sido testigo de la presencia de distorsión armónica, cortes en el suministro de electricidad, oscilaciones de la tensión, caídas

Más detalles

CATEDRA: ELECTROTECNIA Y MAQUINAS ELECTRICAS TRABAJO PRACTICO DE LABORATORIO Nº 2 TITULO: CIRCUITOS DE CORRIENTE ALTERNA USO DEL OSCILOSCOPIO

CATEDRA: ELECTROTECNIA Y MAQUINAS ELECTRICAS TRABAJO PRACTICO DE LABORATORIO Nº 2 TITULO: CIRCUITOS DE CORRIENTE ALTERNA USO DEL OSCILOSCOPIO UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL ROSARIO DEPARTAMENTO DE INGENIERIA ELECTRICA CATEDRA: ELECTROTECNIA Y MAQUINAS ELECTRICAS TRABAJO PRACTICO DE LABORATORIO Nº 2 TITULO: CIRCUITOS DE CORRIENTE

Más detalles

Sistema Integrador Ciencia y tecnología CIRCUITOS ELECTRICOS

Sistema Integrador Ciencia y tecnología CIRCUITOS ELECTRICOS Sistema Integrador Ciencia y tecnología CIRCUITOS ELECTRICOS FUNDAMENTOS La electricidad La electricidad es un fenómeno físico cuyo origen se encuentra en las cargas eléctricas y cuya energía se manifiesta

Más detalles

Trabajo Práctico de Laboratorio N 6 Circuitos excitados con corrientes dependientes del tiempo

Trabajo Práctico de Laboratorio N 6 Circuitos excitados con corrientes dependientes del tiempo Trabajo Práctico de Laboratorio N 6 Circuitos excitados con corrientes dependientes del tiempo Introducción teórica En el cuadro de la última página resumimos las caídas de tensión, potencia instantánea

Más detalles

Motor lineal. - los motores de corriente continua, - los motores sincrónicos - los motores asincrónicos

Motor lineal. - los motores de corriente continua, - los motores sincrónicos - los motores asincrónicos 1.- Generalidades.- Motor lineal 1 El motor lineal como concepto básico al igual que la mayoría de las máquinas eléctricas data de fines del siglo pasado. Existe una patente de motor lineal fechada en

Más detalles

CAPITULO 1. Motores de Inducción.

CAPITULO 1. Motores de Inducción. CAPITULO 1. Motores de Inducción. 1.1 Introducción. Los motores asíncronos o de inducción, son prácticamente motores trifásicos. Están basados en el accionamiento de una masa metálica por la acción de

Más detalles

MEDIDA DE POTENCIA Y CORRECCIÓN DEL FACTOR DE POTENCIA

MEDIDA DE POTENCIA Y CORRECCIÓN DEL FACTOR DE POTENCIA MEDIDA DE POTENCIA Y CORRECCIÓN DEL FACTOR DE POTENCIA OBJETIVOS: I Utilizar el vatímetro análogo y el digital para medir la potencia activa absorbida por una puerta. II Repasar los fundamentos teóricos

Más detalles