Práctica 2: Comportamiento dinámico de los dispositivos optoelectrónicos

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Práctica 2: Comportamiento dinámico de los dispositivos optoelectrónicos"

Transcripción

1 II Práctica 2: Comportamiento dinámico de los dispositivos optoelectrónicos En esta práctica se estudiará el comportamiento dinámico de los emisores y receptores ópticos y el comportamiento de la fibra en su respuesta temporal. MATERIAL NECESARIO Caja de emisores Caja de detectores Caja de generadores Osciloscopio Medidor de potencia óptica (FC) Latiguillo de fibra MM FC Polímetro Cable BNC-Bananas Generador de baja frecuencia Carrete de fibra MM aprox. 5 km 3 cables BNC-BNC 1 conector BNC en T 1 adaptador BNC 50 (o un segundo BNC en T y un terminador de 50 ) Secador de pelo

2 Laboratorio de Comunicaciones Ópticas Dpto. Tecnología Fotónica Es importante que estudie la parte introductoria de manejo del osciloscopio que utiliza en el laboratorio. Repase asimismo, las técnicas de medida de tiempos de subida y bajada utilizando el vernier. Recuerde que cuando el osciloscopio del laboratorio trabaja en modo x-y, el eje y corresponde al canal 1 y el eje x al canal 2. II.1. SEÑAL Y POLARIZACIÓN EN LEDS. Objetivos: Analizar el comportamiento del LED en baja frecuencia y la influencia del punto de polarización. Trazado de la curva I-P en el osciloscopio. Método de medida: En la figura se presenta el esquema simplificado del montaje a realizar: I pol I AC LED FO p-i-n 10 V sensor V = 10 x I R L V out Analog-out Por medio del mando de control de potencia correspondiente al LED de 1300, en la caja de emisores, se puede variar la corriente de polarización (I pol ) aplicada al LED. Si, estando el conmutador en la posición AN., se aplica una señal de baja frecuencia (f < 5 MHz) a la entrada ANALOG IN, se sumará a I pol una corriente (i AC ) proporcional a la tensión aplicada. La corriente total aplicada al LED (I pol + i AC ) puede monitorizarse en V sensor. La señal óptica producida por el LED se acopla al detector PIN de InGaAs de la caja de detectores por medio de un latiguillo de fibra. Siempre que la tensión de polarización del fotodiodo (Vcc) lo mantenga polarizado en inversa, se generará una fotocorriente (i ph ) proporcional a la potencia óptica recibida. En resumen, con el botón control de potencia se puede ajustar el valor de corriente continua de polarización del LED. La señal de modulación se aplica al conector ANALOG IN y el valor de la coriente instantánea aplicada al LED puede medirse en V sensor. Por otra parte, la coriente instantánea generada en el fotodiodo puede medirse a través de la resistencia de carga (R L ) en V out. II-2

3 Práctica 2: Comportamiento dinámico Aplicando la señal V sensor de la caja de emisores al eje X del osciloscopio y V out de la caja de detectores al eje Y se obtendrá una traza de la curva corriente-potencia del LED. Procedimiento experimental: 1 II.1.A. Coloque el mando de control de potencia del LED de 1300nm en una posición intermedia y mida la potencia óptica (en W). Desconecte el medidor y lleve el conector a la entrada del fotodiodo PIN InGaAs. Gire totalmente el mando de tensión de polarización V cc del detector en el sentido de las agujas del reloj. Así asegurará que el fotodiodo se encuentra polarizado en inversa. Seleccione 30 k como resistencia de carga (R L ) y mida la tensión en V out (ANALOG OUT). Calcule la relación entre V out y la potencia que incide sobre el fotodiodo [V/W]. Calcule la responsividad del p-i-n [A/W]. II.1.B. Module el LED con una señal senoidal de 0,5 V pp, 100 Hz y offset nulo 2, conectando el generador en Analog IN. Observe en el osciloscopio esta señal y la presente en V sensor de forma simultánea,. Calcule la relación entre la corriente alterna en el LED y la tensión alterna aplicada. II.1.C. Conecte la señal V out, del receptor, al canal 1 del osciloscopio y V sensor al canal 2. Variando el punto de polarización del LED observe que la señal 2 queda recortada en la parte superior o inferior. Explique por qué. II.1.D. Aumente la señal del generador y ajuste el punto de polarización hasta que la señal quede recortada en la parte superior e inferior. Pase el osciloscopio a modo X-Y y haga la imagen lo mayor posible con los mandos de sensibilidad de los canales 1 y 2 y aumentando la amplitud de la señal del generador, sin que se salga de la pantalla. Describa la imagen obtenida y represéntela en papel milimetrado. Puesto que el osciloscopio mide señales de tensión y ya ha medido los factores de conversión necesarios, utilice en la representación como eje X el valor en ma de la corriente aplicada al LED y como eje Y la potencia óptica generada en W, sin considerar las pérdidas en el latiguillo de fibra. Calcule la pendiente de la curva (P opt /I led ). 1 Es importante que todas las medidas en el osciloscopio se realicen en modo DC de forma que las señales puedan observarse en componente continua y amplitud. 2 Cuando se ajuste un nivel de tensión a la entrada de los drivers, siempre se debe hacer con el generador conectado al driver, pues el driver carga al generador. II-3

4 Laboratorio de Comunicaciones Ópticas Dpto. Tecnología Fotónica Montaje del Apartado II.1.C. El mismo esquema es válido para el Apartado II.2 empleando el módulo láser II.2. SEÑAL Y POLARIZACIÓN EN EL DIODO LÁSER. CÁLCULO DE LA TEMPERATURA CARACTERÍSTICA Objetivos: Igual que en apartado anterior, pero en un diodo láser. Adicionalmente se medirá la temperatura característica del diodo. Método de medida: Repita los apartados anteriores utilizando el diodo láser a 1300nm en lugar del LED. El mando de estabilización deberá estar en posición de CORRIENTE para que el funcionamiento del circuito de polarización del láser sea idéntico al del LED. Sobre la curva X-Y mida la corriente umbral del láser. A partir de la medida de la pendiente (ŋ) diga de cual de los dos tipos de láseres (LST2525 o FU-423SLD-F3) es el de su caja de emisores. La temperatura tiene un efecto limitado sobre los LEDs, pero afecta notablemente la emisión de los diodos láser, especialmente su corriente umbral. Antes de desmontar el montaje del apartado D, se medirá la temperatura característica (T 0 ) del diodo láser, según la ecuación: I th I 0 T exp T 0 II-4

5 Práctica 2: Comportamiento dinámico siendo I th la corriente umbral e I 0 una constante. La temperatura del láser se obtiene midiendo con el polímetro la tensión existente en DIGITAL IN del módulo láser. Este BNC está conectado en realidad a un sensor LM-335 colocado sobre el diodo. Está ajustado para producir un valor de tensión tal que sus decimales indican directamente la temperatura del dispositivo en ºC. Por ejemplo si la tensión media es de 1,25 v. el láser tendrá una temperatura de 25ºC. Para obtener la temperatura característica, es necesario tomar valores de corriente umbral a varias temperaturas. Tales valores se obtendrán con el osciloscopio en modo x-y, tal como estaba en el apartado D. Para que las medidas sean correctas, deberá desplegar la curva completa del diodo láser hasta el origen, aumentando la señal de modulación si es necesario. Cuando la señal llega hasta cero, se observa un punto brillante en la traza x-y. Ajuste ese punto al extremo izquierdo de la pantalla como referencia. Conecte el sensor al polímetro y mida la temperatura ambiente. Anote el valor de la corriente umbral. Aplique el secador de pelo a las ranuras de ventilación de la caja de emisores. Observe cómo se desplaza la corriente umbral. Controlando los valores medidos en el polímetro, eleve la temperatura unos 30-35ºC. A no más de 60ºC porque podría deteriorarse el módulo. No tome medidas durante la subida ya que el sistema no está termalizado. A continuación apague el secador de pelo, y deje que la temperatura descienda unos 5ºC antes de tomar la primera medida. Obtenga 4-5 medidas a intervalos durante el enfriamiento, represéntelas gráficamente en escala semilogarítmica, ajústelas a una recta y calcule la temperatura característica a partir de la misma. II.3. SEÑALES DIGITALES EN LED. El circuito de ataque analógico al LED (driver) tiene un ancho de banda pequeño, como indicamos anteriormente, sin embargo el digital aprovecha mucho más las capacidades de conmutación del LED. Debe señalarse que este comportamiento es propio de los circuitos desarrollados para las prácticas y no es general, es decir, se pueden diseñar drivers analógicos tan rápidos como los digitales. Objetivos: Obtener un primer contacto con el comportamiento en conmutación de los elementos optoelectrónicos. Medida de la velocidad de transmisión de las señales ópticas en la fibra. II-5

6 Laboratorio de Comunicaciones Ópticas Dpto. Tecnología Fotónica Método de medida: Se va a medir la velocidad de grupo de las señales en una fibra óptica, es decir, la velocidad a la que se propaga la señal de un extremo a otro de la fibra. Como es sabido, la luz se propaga en el vacío con una velocidad de m/s, en el caso de transmitirse por un medio transparente su velocidad se reduce en un factor denominado índice de refracción efectivo. En el caso de las fibras multimodo y debido a la pequeña diferencia de índices de refracción entre el núcleo y la cubierta, el índice de refracción efectivo coincide prácticamente con el índice de refracción del material. Normalmente, el tiempo que emplea la información en atravesar la fibra no es el efecto más importante a considerar. En la transmisión es mucho más importante el efecto de la dispersión temporal, es decir, el ensanchamiento progresivo de los impulsos luminosos al circular por un medio que los guían. Esta dispersión puede deberse a dos efectos, la diferente velocidad de propagación de los distintos modos (dispersión intermodal), y la variación de la constante de propagación de un modo en función de la longitud de onda (dispersión cromática). En esta práctica no distinguiremos entre ambas dispersiones, sino que observaremos simplemente su efecto en la transmisión de una señal pseudoaleatoria. Montaje del Apartado II.3.A. El mismo esquema es válido para el Apartado II.3.B empleando como fuente la señal de datos 1 de la caja de generadores y sincronizando con la señal de reloj 2. Conmutador en DIG. (digital) II-6

7 Práctica 2: Comportamiento dinámico Procedimiento experimental: II.3.A. Teniendo en cuenta que el índice de refracción efectivo esperado estará entre 1 y 2, el rango de velocidades estará entre y 1, m/s. Emplearemos un carrete de fibra óptica de, aproximadamente, 5 km de longitud, así que el tiempo que empleará un impulso de luz en atravesarlo estará entre 17 y 33 s. Como señal se utilizará la salida TTL del generador analógico o, si no la hubiera, se generará con una señal cuadrada de 5Vpp y +2,5V de offset. El procedimiento será el siguiente, llevaremos la señal de entrada al driver digital (DIGITAL IN) del LED de 820 nm al canal 1 del osciloscopio, mientras que la salida analógica del detector de 820 nm la aplicaremos al canal 2 (acoplada en alterna e invertida, ya que el emisor invierte la señal y el receptor añade un cierto valor de offset). Utilice una frecuencia cuyo periodo sea mucho mayor que el retardo máximo esperado para evitar incertidumbres en los impulsos a medir. Conociendo la longitud del carrete de fibra y el retardo entre ambas trazas, calcularemos la velocidad de propagación y el índice efectivo. Compruebe, sustituyendo el carrete de fibra por un latiguillo, que el retardo introducido por los sistemas electrónicos es despreciable. II.3.B. En este caso utilizaremos como generador la señal de datos 1 de la caja de generadores, con una tasa de 5 Mbps. Aplicaremos esta señal a la entrada digital del driver de 820 nm, cuya salida óptica aplicaremos al carrete de 5 km de fibra. La salida del módulo receptor correspondiente, la aplicaremos al canal 1 del osciloscopio. Compruebe como la señal visualizada mejora al adaptar impedancias, colocando el adaptador de 50 en la entrada del osciloscopio. Para observar todas las posibles transiciones, sincronizaremos el osciloscopio con una señal de reloj síncrona con los datos, aunque de frecuencia muy inferior a la tasa binaria, por ejemplo la salida reloj 2 a 625 khz de la caja de generadores. El resultado será un diagrama de ojo del canal. Maximice y centre la señal en la pantalla y mida la pendiente los flancos de subida y bajada. De nuevo, para asegurarse de que el efecto es producido por la fibra, sustitúyala por un latiguillo y compruebe que los flancos son mucho más abruptos. POR FAVOR, AL ACABAR LA PRÁCTICA RECOJAN TODO Y DÉJENLO COMO ESTABA AL PRINCIPIO. SUS COMPAÑEROS SE LO AGRADECERÁN. II-7

III. Práctica 3: Tiempos de Respuesta de los Componentes de un Enlace

III. Práctica 3: Tiempos de Respuesta de los Componentes de un Enlace III. Práctica 3: Tiempos de Respuesta de los Componentes de un Enlace En esta Práctica se medirá el ancho de banda de un sistema óptico. Se estudiarán diferentes enlaces variando los elementos que lo componen

Más detalles

INTRODUCCIÓN A LA INSTRUMENTACIÓN BÁSICA. Nociones básicas sobre el manejo de LOS EQUIPOS DEL LABORATORIO

INTRODUCCIÓN A LA INSTRUMENTACIÓN BÁSICA. Nociones básicas sobre el manejo de LOS EQUIPOS DEL LABORATORIO INTRODUCCIÓN A LA INSTRUMENTACIÓN BÁSICA Esta documentación tiene como objetivo facilitar el primer contacto del alumno con la instrumentación básica de un. Como material de apoyo para el manejo de la

Más detalles

Transmisión de una señal por fibra óptica

Transmisión de una señal por fibra óptica PRÁCTICA 6 Transmisión de una señal por fibra óptica 1º INTRODUCCIÓN. En esta práctica haremos uso diversos tipos de fibra óptica para transmitir luz entre un fotoemisor y un fotodetector. Con este fin

Más detalles

EMOBD-5: Emisor de video/datos por una fibra óptica monomodo

EMOBD-5: Emisor de video/datos por una fibra óptica monomodo EMOBD-5: Emisor de video/datos por una fibra óptica Doc: 0013-GEN EFO-HC Página: 1 de 3 Características Generales Emisor óptico láser/receptor óptico PIN. Longitud de onda 1550/1310 nm Fibra óptica Soporta

Más detalles

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA E INFORMÁTICA INSTITUTO TECNOLÓGICO DE MASSACHUSETTS CAMBRIDGE, MASSACHUSETTS 02139

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA E INFORMÁTICA INSTITUTO TECNOLÓGICO DE MASSACHUSETTS CAMBRIDGE, MASSACHUSETTS 02139 DEPARTAMENTO DE INGENIERÍA ELÉCTRICA E INFORMÁTICA INSTITUTO TECNOLÓGICO DE MASSACHUSETTS CAMBRIDGE, MASSACHUSETTS 019 TRABAJO DE LECTURA.101 Práctica introductoria de electrónica analógica Práctica En

Más detalles

RMDV-22: Receptor de video doble por dos fibras ópticas multimodo

RMDV-22: Receptor de video doble por dos fibras ópticas multimodo RMDV-22: Receptor de video doble por dos fibras ópticas multimodo Doc: 0010-GEN EFO-HC Página: 1 de 3 Características Generales Receptor óptico PIN. Longitud de onda 850 nm.. Distancia máxima. Modulación

Más detalles

ENTRENADOR DE COMUNICACIONES ÓPTICAS, FIBRAS ÓPTICAS Y LÁSER MANUAL DE PRÁCTICAS EF-970B-E - 0 MI1001 -

ENTRENADOR DE COMUNICACIONES ÓPTICAS, FIBRAS ÓPTICAS Y LÁSER MANUAL DE PRÁCTICAS EF-970B-E - 0 MI1001 - ENTRENADOR DE COMUNICACIONES ÓPTICAS, FIBRAS ÓPTICAS Y LÁSER MANUAL DE PRÁCTICAS EF-970B-E - 0 MI1001 - I N D I C E 0. INTRODUCCIÓN...1 PRÁCTICA 1...3 1. MEDIDA DE LA POTENCIA ÓPTICA...3 1.1 Objetivos...3

Más detalles

MANEJO DE LA INSTRUMENTACIÓN ESPECÍFICA DEL LABORATORIO

MANEJO DE LA INSTRUMENTACIÓN ESPECÍFICA DEL LABORATORIO MANEJO DE LA INSTRUMENTACIÓN ESPECÍFICA DEL LABORATORIO I. Fibras Ópticas y Dispositivos Pasivos En el Laboratorio de Comunicaciones Ópticas se manejan varios tipos de fibras ópticas (FO) que a su vez

Más detalles

EMOB-12: Emisor de video/receptor de telemando por una fibra óptica monomodo

EMOB-12: Emisor de video/receptor de telemando por una fibra óptica monomodo EMOB-12: Emisor de video/receptor de telemando por Doc: 0007-GEN EFO-HC Página: 1 de 3 Características Generales Emisor óptico láser/receptor óptico PIN. Longitud de onda 1550/1310 nm Fibra óptica monomodo

Más detalles

Práctica B.3: Diseño y verificación de un termómetro digital con visualizador LCD

Práctica B.3: Diseño y verificación de un termómetro digital con visualizador LCD Práctica B.3: Diseño y verificación de un termómetro digital con visualizador LCD En la presente práctica se va a estudiar el funcionamiento de un termómetro digital de precisión, basado en un sensor RTD

Más detalles

El generador de señales:

El generador de señales: Pàgina 1 de 8 PRÁCTICA 1 : CONCEPTOS BÁSICOS DE ELECTRÓNICA Y ÓPTICA Para poder medir las magnitudes eléctricas y ópticas necesitamos algún tipo de detector y conversor de señal. Vamos a utilizar los materiales

Más detalles

Descripción y manejo del Osciloscopio

Descripción y manejo del Osciloscopio PRACTICA Nº 1 EL OSCILOSCOPIO Objetivos Esta práctica persigue dos objetivos: alcanzar una comprensión adecuada del funcionamiento de un osciloscopio y, en base a esta comprensión, aprender a utilizarlo

Más detalles

CORRIENTE ALTERNA. CIRCUITO RLC. MANEJO DEL OSCILOSCOPIO

CORRIENTE ALTERNA. CIRCUITO RLC. MANEJO DEL OSCILOSCOPIO eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA

Más detalles

PRACTICA Nº 4 EL OSCILOSCOPIO

PRACTICA Nº 4 EL OSCILOSCOPIO PRACTICA Nº 4 EL OSCILOSCOPIO Objetivos Comprender el principio de funcionamiento del osciloscopio analógico y estar en capacidad de identificar los diferentes bloques de controles en los instrumentos

Más detalles

TRANSFORMADOR DIFERENCIAL DE VARIACION LINEAL

TRANSFORMADOR DIFERENCIAL DE VARIACION LINEAL TRANSFORMADOR DIFERENCIAL DE VARIACION LINEAL TRANSDUCTORES DE POSICION Para determinar una posición lineal o angular se requiere medir la longitud de un segmento, o bien un ángulo comprendido entre dos

Más detalles

6. Amplificadores con transistores

6. Amplificadores con transistores 6. Amplificadores con transistores Objetivos: Obtención, mediante simulación y con los equipos del laboratorio, de las carácterísticas de entrada y salida de un transistor bipolar. Obtención de los modelos

Más detalles

Práctica B.1: Aplicación de dispositivos detectores de luz: fotorresistencia, fotodiodo y fototransistor.

Práctica B.1: Aplicación de dispositivos detectores de luz: fotorresistencia, fotodiodo y fototransistor. Práctica B.1: Aplicación de dispositivos detectores de luz: fotorresistencia, fotodiodo y fototransistor. Material Fotorresistencia (luz visible) NORP12. Leds rojo y verde. Fotodiodo (luz visible) BPW21

Más detalles

PRACTICA 6 SOLENOIDES, BOBINAS Y TRANSFORMADORES. 6.1. Solenoides y Bobinas

PRACTICA 6 SOLENOIDES, BOBINAS Y TRANSFORMADORES. 6.1. Solenoides y Bobinas PACTICA 6 SOLEOIDES, BOBIAS Y TASFOMADOES 6.. Solenoides y Bobinas Se demostrado que al hacer circular una corriente por un conductor rectilíneo, alrededor de éste se crea un campo magnético ( B r ) que

Más detalles

1.3. Mediciones básicas de parámetros ópticos, acústicos y de calor. 1.3.1. Parámetros. 1.3.2. Sensores Ópticos.

1.3. Mediciones básicas de parámetros ópticos, acústicos y de calor. 1.3.1. Parámetros. 1.3.2. Sensores Ópticos. 1.3. Mediciones básicas de parámetros ópticos, acústicos y de calor. 1.3.1. Parámetros. 1.3.2. Sensores Ópticos. En los sensores optoelectrónicos, los componentes fotoeléctricos emisores se utilizan para

Más detalles

OSCILOSCOPIO FUNCIONAMIENTO:

OSCILOSCOPIO FUNCIONAMIENTO: OSCILOSCOPIO El osciloscopio es un instrumento electrónico - digital o analógico- que permite visualizar y efectuar medidas sobre señales eléctricas. Para esto cuenta con una pantalla con un sistema de

Más detalles

SISTEMA DE CONTROL DE TEMPERATURA

SISTEMA DE CONTROL DE TEMPERATURA Práctica 2 SISTEMA DE CONTROL DE TEMPERATURA 2.1 Introducción Esta práctica tiene como principal finalidad el trabajar con un sistema realimentado con un retraso importante entre el instante en que se

Más detalles

ANEXO Nº 2 : Introducción al Manejo del Osciloscopio Analógico ( parte A )

ANEXO Nº 2 : Introducción al Manejo del Osciloscopio Analógico ( parte A ) Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Física ANEXO Nº 2 : Introducción al Manejo del Osciloscopio Analógico ( parte A ) Objetivo: La presente guía pretende dar

Más detalles

Óptica. Determinación de la velocidad de la luz en el aire a partir del recorrido y la duración de un pulso corto de luz. LD Hojas de Física P5.6.2.

Óptica. Determinación de la velocidad de la luz en el aire a partir del recorrido y la duración de un pulso corto de luz. LD Hojas de Física P5.6.2. Óptica Velocidad de la luz Medición con pulsos cortos de luz LD Hojas de Física Determinación de la velocidad de la luz en el aire a partir del recorrido y la duración de un pulso corto de luz Objetivos

Más detalles

USO DE LA PRESENTACION X-Y DEL OSCILOSCOPIO CARACTERISTICAS CORRIENTE- VOLTAJE DE ELEMENTOS LINEALES Y NO LINEALES

USO DE LA PRESENTACION X-Y DEL OSCILOSCOPIO CARACTERISTICAS CORRIENTE- VOLTAJE DE ELEMENTOS LINEALES Y NO LINEALES PRACTICA Nº 5 Objetivos USO DE LA PRESENTACION X-Y DEL OSCILOSCOPIO CARACTERISTICAS CORRIENTE- VOLTAJE DE ELEMENTOS LINEALES Y NO LINEALES Profundizar en el conocimiento del osciloscopio y familiarizar

Más detalles

GENERADOR DE FUNCIONES GF-230

GENERADOR DE FUNCIONES GF-230 GENERADOR DE FUNCIONES GF-230 GENERALIDADES Descripción El Generador de Funciones GF-230 es un equipo de gran versatilidad,cualidad que se desprende de sus propias características: Amplio margen de frecuencias:

Más detalles

SISTEMA DE CONTROL DE TEMPERATURA

SISTEMA DE CONTROL DE TEMPERATURA Práctica 5 SISTEMA DE CONTROL DE TEMPERATURA 5.1 Introducción Esta práctica tiene como principal finalidad el trabajar con un sistema realimentado con un retraso importante entre el instante en que se

Más detalles

USO DE INSTRUMENTOS DE LABORATORIO

USO DE INSTRUMENTOS DE LABORATORIO 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). USO DE INSTRUMENTOS DE LABORATORIO Objetivo General Obtener

Más detalles

AUTOMATIZACIÓN INDUSTRIAL DESCRIPCIÓN Y MANEJO DEL SERVOMOTOR DE PRÁCTICAS

AUTOMATIZACIÓN INDUSTRIAL DESCRIPCIÓN Y MANEJO DEL SERVOMOTOR DE PRÁCTICAS 3º INGENIERÍA TÉCNICA INDUSTRIAL, ESPECIALIDAD MECÁNICA AUTOMATIZACIÓN INDUSTRIAL PRÁCTICA 5 DESCRIPCIÓN Y MANEJO DEL SERVOMOTOR DE PRÁCTICAS OBJETIVOS DE LA PRÁCTICA Identificar sobre un montaje real

Más detalles

PRÁCTICA 2 CALIBRACIÓN Y USO DEL OSCILOSCOPIO

PRÁCTICA 2 CALIBRACIÓN Y USO DEL OSCILOSCOPIO PRÁCTICA 2 CALIBRACIÓN Y USO DEL OSCILOSCOPIO OBJETIVOS: Comprender la utilidad, el principio de operación y el uso correcto del osciloscopio. ANTECEDENTES TEÓRICOS EL OSCILOSCOPIO Puesta en funcionamiento

Más detalles

Osciloscopio. Primeros pasos

Osciloscopio. Primeros pasos Osciloscopio. Primeros pasos Objetivos Conocer el funcionamiento básico de un osciloscopio analógico. Aprender a medir amplitudes y periodos en un osciloscopio. Introducción. Los osciloscopios son de gran

Más detalles

INTRODUCCIÓN. Comunicaciones ópticas. Laboratorio de Optoelectrónica. Observa los distintos componentes del módulo. Circuito de audio.

INTRODUCCIÓN. Comunicaciones ópticas. Laboratorio de Optoelectrónica. Observa los distintos componentes del módulo. Circuito de audio. INTRODUCCIÓN Observa los distintos componentes del módulo Circuito de audio Transmisor Generador de señales Receptor Altavoz PRÁCTICA 1: FIBRA OPTICA COMO TRANSMISOR DE VOZ Material: Dos módulos transmisor-receptor

Más detalles

PRÁCTICA 1: INSTRUMENTACIÓN BÁSICA

PRÁCTICA 1: INSTRUMENTACIÓN BÁSICA PRÁCTICA 1: INSTRUMENTACIÓN BÁSICA OBJETIVOS Que el alumno se familiarice con en el manejo de los aparatos de instrumentación y medida más habituales tales como osciloscopio, fuente de alimentación, generador

Más detalles

MEDICIONES ELECTRICAS I

MEDICIONES ELECTRICAS I Año:... Alumno:... Comisión:... MEDICIONES ELECTRICAS I Trabajo Práctico N 5 Tema: OSCILOSCOPIO MEDICIÓN DE TIEMPO, FRECUENCIA Y FASE Introducción El osciloscopio es uno de los instrumentos de medida más

Más detalles

Tema 1. Introducción a las redes de comunicaciones.

Tema 1. Introducción a las redes de comunicaciones. Tema 1. Introducción a las redes de comunicaciones. 1.- Cuando se realiza una llamada telefónica local a otra persona, qué tipo de configuración se está utilizando? a) Punto a punto b) Punto a multipunto

Más detalles

Control de corriente constante del Diodo Láser (LD) El Diodo Láser presenta de manera normal variaciones de potencia dependiendo

Control de corriente constante del Diodo Láser (LD) El Diodo Láser presenta de manera normal variaciones de potencia dependiendo Apéndice D Control de corriente constante del Diodo Láser (LD) Hoja 1 de 4 El Diodo Láser presenta de manera normal variaciones de potencia dependiendo de las condiciones de uso (tiempo y temperatura),

Más detalles

Emisor ópticodevídeo enbandabase

Emisor ópticodevídeo enbandabase MANUALDEINSTRUCCIONES Emisor ópticodevídeo enbandabase MODELO A103 ÍNDICE GENERAL... 1 DESCRIPCIÓN... 5 INSTALACIÓN... 7 OPERACIÓN... 9 MANTENIMIENTO... 11 CARACTERÍSTICAS TÉCNICAS... 13 i EQUITEL A103

Más detalles

PRÁCTICA NÚMERO 1. MANEJO DEL OSCILOSCOPIO Y DEL GENERADOR DE SEÑALES.

PRÁCTICA NÚMERO 1. MANEJO DEL OSCILOSCOPIO Y DEL GENERADOR DE SEÑALES. PRÁCTICA NÚMERO 1. MANEJO DEL OSCILOSCOPIO Y DEL GENERADOR DE SEÑALES. 1.1. Introducción Teórica. (a) El osciloscopio El osciloscopio es básicamente un dispositivo de visualización gráfica que muestra

Más detalles

SISTEMAS DE CONTROL PRÁCTICAS DE SISTEMAS DE CONTROL IDENTIFICACIÓN EN EL DOMINIO DE LA FRECUENCIA

SISTEMAS DE CONTROL PRÁCTICAS DE SISTEMAS DE CONTROL IDENTIFICACIÓN EN EL DOMINIO DE LA FRECUENCIA SISTEMAS DE CONTROL PRÁCTICAS DE SISTEMAS DE CONTROL IDENTIFICACIÓN EN EL DOMINIO DE LA FRECUENCIA 1. SISTEMA A IDENTIFICAR El sistema a identificar es el conjunto motor eléctrico-freno conocido de otras

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO 8: USO DEL OSCILOSCOPIO a) Aplicar las técnicas de ajuste en

Más detalles

MEDICIONES ELECTRICAS I

MEDICIONES ELECTRICAS I Año:... Alumno:... Comisión:... MEDICIONES ELECTRICAS I Trabajo Práctico N 4 Tema: FACTOR DE FORMA Y DE LECTURA. RESPUESTA EN FRECUENCIA DE INSTRUMENTOS. Tipos de instrumentos Según el principio en que

Más detalles

UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº

UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº 4 Objetivos EL OSCILOSCOPIO Comprender el principio de funcionamiento del osciloscopio

Más detalles

Laboratorio de Electrónica Industrial

Laboratorio de Electrónica Industrial Laboratorio de Electrónica Industrial Ing. Joel Figueroa DESCRIPCIÓN DEL EQUIPO TABLETA DE CONEXIONES Tableta blanca y de forma rectangular, figura 1.1, en la figura se observa cómo están dispuestas las

Más detalles

Práctica No. 6 del Curso Meteorología y Transductores. "Mediciones de valor medio y valor eficaz"

Práctica No. 6 del Curso Meteorología y Transductores. Mediciones de valor medio y valor eficaz Objetivo. Práctica No. 6 del Curso Meteorología y Transductores. "Mediciones de valor medio y valor eficaz" Graficar varias señales del generador de señales y comprobar en forma experimental el voltaje

Más detalles

P5: CORRIENTE ALTERNA MONOFÁSICA II FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA D. FAUSTINO DE LA BODEGA Y BILBAO CURSO 2º GRUPO 01

P5: CORRIENTE ALTERNA MONOFÁSICA II FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA D. FAUSTINO DE LA BODEGA Y BILBAO CURSO 2º GRUPO 01 ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA INDUSTRIAL (BILBAO) Departamento de Ingeniería Eléctrica INDUSTRI INGENIARITZA TEKNIKORAKO UNIBERTSITATE-ESKOLA (BILBO) Ingeniaritza Elektriko Saila ALUMNO P5:

Más detalles

UNIDAD VI. También cuenta con diferentes escalas de amplitud para cada canal, así como también en la base de tiempo.

UNIDAD VI. También cuenta con diferentes escalas de amplitud para cada canal, así como también en la base de tiempo. UNIDAD VI 6.1 Plano X-Y, escalas. El osciloscopio es un medidor de indicación cartesiana x-y, es decir, grafica formas de onda en dos planos que pueden ser voltajes vs. tiempo, voltaje vs. voltaje, etc.

Más detalles

UNIVERSIDAD NACIONAL DE COLOMBIA

UNIVERSIDAD NACIONAL DE COLOMBIA UNIVERSIDAD NACIONAL DE COLOMBIA FACULTAD DE MINAS CALIBRACIÓN Y USO DEL OSCILOSCOPIO CURSO DOCENTE : LABORATORIO CIRCUITOS ELÉCTRICOS : PABLO A. SEPÚLVEDA OSPINA OBJETIVOS: Comprender la utilidad, el

Más detalles

SISTEMAS DE COMUNICACIÓN A & D -- Práctica de laboratorio FRECUENCIA MODULADA EN EL DOMINIO DEL TIEMPO Y FRECUENCIA

SISTEMAS DE COMUNICACIÓN A & D -- Práctica de laboratorio FRECUENCIA MODULADA EN EL DOMINIO DEL TIEMPO Y FRECUENCIA 1 SISTEMAS DE COMUNICACIÓN A & D -- Práctica de laboratorio FRECUENCIA MODULADA EN EL DOMINIO DEL TIEMPO Y FRECUENCIA I. OBJETIVOS 1. Implementar un modulador de frecuencia utilizando el XR-2206. 2. Complementar

Más detalles

Universidad de Pamplona. Laboratorio de Electronica Li211-Li212. Manual de Funcionamiento GoldStar OS-9060D

Universidad de Pamplona. Laboratorio de Electronica Li211-Li212. Manual de Funcionamiento GoldStar OS-9060D Universidad de Pamplona Laboratorio de Electronica Li211-Li212 Manual de Funcionamiento GoldStar OS-9060D Objetivo. Conocer, manejar y aplicar el osciloscopio analogo goldstar os-9060d Descripción. 1.

Más detalles

3. Dibuje los circuitos que usaría para medir con el osciloscopio los siguientes casos e incluya la posición de los controles

3. Dibuje los circuitos que usaría para medir con el osciloscopio los siguientes casos e incluya la posición de los controles PRÁCTICA No.1 Semana: 12/10/2015 16/10/2015 Tema: Familiarización con el equipo de laboratorio. Objetivo: Desarrollar en el estudiante suficiente habilidad para que utilice adecuadamente los equipos del

Más detalles

La Fibra Óptica. Carlos Eduardo Molina C. www.redtauros.com cemolina@redtauros.com

La Fibra Óptica. Carlos Eduardo Molina C. www.redtauros.com cemolina@redtauros.com Los sistemas clásicos de comunicación utilizan señales eléctricas soportadas por cable coaxial, radio, etc., según el tipo de aplicación. Estos sistemas presentan algunos inconvenientes que hacen necesario

Más detalles

Experimento 4: Curvas características de componentes de tres terminales (transistores)

Experimento 4: Curvas características de componentes de tres terminales (transistores) Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica Profesores: Ing. Sergio Morales, Ing. Pablo Alvarado, Ing. Eduardo Interiano Laboratorio de Elementos Activos II Semestre 2006 I Experimento

Más detalles

EMISORES y DETECTORES

EMISORES y DETECTORES EMISORES y DETECTORES Los dispositivos utilizados como emisores y detectores de radiación luminosa en los sistemas de comunicaciones ópticas son el láser de semiconductores (diodo láser) y el LED (diodo

Más detalles

Test (1,5 puntos) Marque la respuesta CORRECTA. Respuesta correcta = +0,15 Respuesta en blanco = +0,0 Respuesta errónea = 0,15.

Test (1,5 puntos) Marque la respuesta CORRECTA. Respuesta correcta = +0,15 Respuesta en blanco = +0,0 Respuesta errónea = 0,15. Universidad de Alcalá Escuela Politécnica Superior Departamento de Teoría de la Señal y Comunicaciones Sistemas de Comunicación Apellidos: Nombre: DNI: Fecha Estelar Parte 1: Test y Cuestiones Para aprobar

Más detalles

Preguntas teóricas de la Clase N 5

Preguntas teóricas de la Clase N 5 Preguntas teóricas de la Clase N 5 1) Respecto a la cadena de amplificación del sistema vertical (eje Y) de un osciloscopio de rayos catódicos (ORC) Qué entiende por: 1. Impedancia de entrada? Componentes

Más detalles

INTERFERENCIA Y REFLEXIÓN CON ONDAS DE ULTRASONIDOS. Esta práctica pretende alcanzar dos objetivos fundamentales:

INTERFERENCIA Y REFLEXIÓN CON ONDAS DE ULTRASONIDOS. Esta práctica pretende alcanzar dos objetivos fundamentales: INTERFERENCIA Y REFLEXIÓN CON ONDAS DE ULTRASONIDOS 1.- OBJETIVOS Esta práctica pretende alcanzar dos objetivos fundamentales: a) El manejo de una serie de instrumentos básicos como el osciloscopio y el

Más detalles

PRACTICA Nº 4 CARACTERISTICAS DEL MOSFET, AMPLIFICADOR DRAIN COMUN

PRACTICA Nº 4 CARACTERISTICAS DEL MOSFET, AMPLIFICADOR DRAIN COMUN UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS CIRCUITOS ELECTRONICOS I EC1177 PRACTICA Nº 4 CARACTERISTICAS DEL MOSFET, AMPLIFICADOR DRAIN COMUN OBJETIVO Familiarizar al estudiante con el uso

Más detalles

OTRAS APLICACIONES CON FIBRAS ÓPTICAS

OTRAS APLICACIONES CON FIBRAS ÓPTICAS APLICACIONES El campo de aplicación de las fibras ópticas es muy amplio y aumenta día a día. Algunas de las aplicaciones más importantes son: - Telecomunicaciones: En este apartado cabe incluir la red

Más detalles

Última modificación: 1 de agosto de 2010. www.coimbraweb.com

Última modificación: 1 de agosto de 2010. www.coimbraweb.com TRANSMISORES Y RECEPTORES ÓPTICOS Contenido 1.- Sistema óptico básico. 2.- Diodo emisor de luz LED. 3.- Diodo láser. 4.- Modulación óptica. 5.- Detectores de luz. Objetivo.- Al finalizar, el lector será

Más detalles

1. Instrumentos de medida. 2. Fundamentos teóricos. 3. El Analizador de Espectro. Asignatura: Comunicaciones

1. Instrumentos de medida. 2. Fundamentos teóricos. 3. El Analizador de Espectro. Asignatura: Comunicaciones Grado en Ingeniería de Tecnologías de Telecomunicación ETSIIT Universidad de Cantabria Asignatura: Comunicaciones Curso 2015-2016 Práctica 1: Medida del espectro de señales Objetivo Esta primera práctica

Más detalles

PRUEBAS Y MEDICIONES PRUEBAS Y MEDICIONES COMUNICACIONES OPTICAS; UCV 1

PRUEBAS Y MEDICIONES PRUEBAS Y MEDICIONES COMUNICACIONES OPTICAS; UCV 1 PRUEBAS Y MEDICIONES COMUNICACIONES OPTICAS; UCV 1 PRECAUCION PARA MEDICIONES ALINEACION DE LA FIBRA Es de suma importancia controlar y asegurar la correcta alineación de la fibra con los dispositivos

Más detalles

Amplificadores Operacionales (I)

Amplificadores Operacionales (I) Amplificadores Operacionales (I) Concepto general de amplificador operacional: Amplificador diferencial con una ganancia de tensión elevada, acoplo directo y diseñado para facilitar la inclusión de una

Más detalles

Práctica 4: EL OSCILOSCOPIO ALUMNO:... GRUPO PRÁCTICAS... OBSERVACIÓN DE MAGNITUDES VARIABLES CON EL TIEMPO MEDIANTE UN OSCILOSCOPIO.

Práctica 4: EL OSCILOSCOPIO ALUMNO:... GRUPO PRÁCTICAS... OBSERVACIÓN DE MAGNITUDES VARIABLES CON EL TIEMPO MEDIANTE UN OSCILOSCOPIO. Práctica 4: EL OSCILOSCOPIO ALUMNO:... GRUPO PRÁCTICAS... OBSERVACIÓN DE MAGNITUDES VARIABLES CON EL TIEMPO MEDIANTE UN OSCILOSCOPIO. Esta práctica persigue dos objetivos: alcanzar una comprensión adecuada

Más detalles

Instructivo de Laboratorio 2 Introducción al analizador de espectros y al generador de RF

Instructivo de Laboratorio 2 Introducción al analizador de espectros y al generador de RF Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica Laboratorio de Teoría Electromagnética II Prof. Ing. Luis Carlos Rosales Instructivo de Laboratorio 2 Introducción al analizador de

Más detalles

Ley de Ohm (II). Potencia Eléctrica. Corriente Alterna.

Ley de Ohm (II). Potencia Eléctrica. Corriente Alterna. Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Física Laboratorio de Física II FI-35 A Guía 03 Ley de Ohm (II). Potencia Eléctrica. Corriente Alterna. Objetivos - Validez

Más detalles

INACAP ELECTRICIDAD- 2 GUIA DE LABORATORIO 1 USO DEL OSCILOSCOPIO. 2.- 3.- Curso:

INACAP ELECTRICIDAD- 2 GUIA DE LABORATORIO 1 USO DEL OSCILOSCOPIO. 2.- 3.- Curso: INACAP ELECTRICIDAD- 2 GUIA DE LABORATORIO 1 USO DEL OSCILOSCOPIO Alumnos 1.- Fecha: 2.- 3.- Curso: OBJETIVO Usar el osciloscopio como instrumento para visualizar señales y medir en ellas voltaje, frecuencia

Más detalles

OSCILOSCOPIO. - Un cañón de electrones que los emite, los acelera y los enfoca. - Un sistema deflector - Una pantalla de observación S

OSCILOSCOPIO. - Un cañón de electrones que los emite, los acelera y los enfoca. - Un sistema deflector - Una pantalla de observación S OSCILOSCOPIO Objetivos - Conocer los aspectos básicos que permiten comprender el funcionamiento del osciloscopio - Manejar el osciloscopio como instrumento de medición de magnitudes eléctricas de alta

Más detalles

Mediciones Eléctricas I. Introducción a los instrumentos digitales

Mediciones Eléctricas I. Introducción a los instrumentos digitales Mediciones Eléctricas I Introducción a los instrumentos digitales 1 Instrumentos digitales V e Condicionador Conversor A/D Lógica Contador Contador 1999 R U I 2 Amplificador Integrador 3 Convertidor Simple

Más detalles

Determine literal y razonadamente:

Determine literal y razonadamente: Problemas propuestos - Comunicaciones Ópticas - Curso 2008/2009 - Diseño y Sistemas 1. Se tiene un sistema de comunicaciones por fibra óptica que utiliza tres regeneradores intermedios. Se sabe que los

Más detalles

DRTS 64. El DRTS 64 puede ensayar todos los relés siguientes:

DRTS 64. El DRTS 64 puede ensayar todos los relés siguientes: La nueva generación de equipos de ensayo avanzados para Relés, Convertidores de Medida, Contadores de Energía y Medidores de la Calidad de la Onda Ensayo para todo tipo de tecnologías de relé: electromecánicos,

Más detalles

Instrumentación biomédica Prácticas de laboratorio

Instrumentación biomédica Prácticas de laboratorio Instrumentación biomédica Prácticas de laboratorio Práctica 0. Primera parte: Introducción al laboratorio Semana BB Mireya Fernandez Chimeno Miguel Ángel García González UPC-Departament d Enginyeria Electrònica

Más detalles

Guía 01. La ley de Ohm

Guía 01. La ley de Ohm Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Física Laboratorio de Física II FI-5 A Guía 0 La ley de Ohm Objetivos Conocer la Ley de Ohm y las Leyes de Kirchoff - Estudiar

Más detalles

Estructura de la referencia

Estructura de la referencia Relés de estado sólido G3R-I/-O SSR compactos para interfaz de E/S con requisitos exigentes de rigidez dieléctrica Existen modelos de alta velocidad con valores nominales de entrada óptimos para una gran

Más detalles

Un par de puntas de prueba que comunican el instrumento con el circuito bajo prueba.

Un par de puntas de prueba que comunican el instrumento con el circuito bajo prueba. INSTRUMENTACIÓN ELÉCTRICA Medición de tensión con diferentes instrumentos de medida MULTÍMETROS ANALOGOS De todas las herramientas y equipos que un electricista pueda poseer en su banco o en su maletín

Más detalles

Detección y características del receptor

Detección y características del receptor Capítulo 7 Detección y características del receptor El receptor en un sistema de comunicación por fibra óptica para transmisión no coherente consiste en un fotodoetector más un amplificador y unos circuitos

Más detalles

2. Características Técnicas

2. Características Técnicas 2. Características Técnicas 2.1 Tensión de la alimentación auxiliar... 2-2 2.2 Cargas... 2-2 2.3 Entradas de intensidad... 2-2 2.4 Exactitud en la medida... 2-2 2.5 Repetitividad... 2-3 2.6 Sobrealcance

Más detalles

Práctica de Laboratorio: Introducción al laboratorio de Radiocomunicaciones

Práctica de Laboratorio: Introducción al laboratorio de Radiocomunicaciones Práctica de Laboratorio: Introducción al laboratorio de Radiocomunicaciones Apellidos, nombre Departamento Centro Bachiller Martín, Carmen (mabacmar@dcom.upv.es) Fuster Escuder, José Miguel (jfuster@dcom.upv.es)

Más detalles

Registrador multicanal electrónico para sensores HART o RS-485/MODBUS RTU MPI-D, MPI-DN

Registrador multicanal electrónico para sensores HART o RS-485/MODBUS RTU MPI-D, MPI-DN TI-P333-92 MIU Issue 1 Registrador multicanal electrónico para sensores HART o RS-485/MODBUS RTU MPI-D, MPI-DN DESCRIPCIÓN Registrador multicanal electrónico para sensores HART o RS-485/MODBUS RTU 18 canales

Más detalles

Medida de magnitudes mecánicas

Medida de magnitudes mecánicas Medida de magnitudes mecánicas Introducción es potenciométricos Galgas extensiométricas es piezoeléctricos es capacitivos es inductivos es basados en efecto es optoelectrónicos es de ultrasonidos 5.1 Introducción

Más detalles

Componentes Electrónicos. Prácticas - Laboratorio. Práctica 6: Amplificadores Operacionales

Componentes Electrónicos. Prácticas - Laboratorio. Práctica 6: Amplificadores Operacionales "#$%&'()*&,#.#'(/$%*(%(&#%( **.%.,%"(&%#,.#*"( %'(%(8%#.*&*9:'(&%#,.#'(( Prácticas Laboratorio Práctica : mplificadores Operacionales "#$%&'()*,.*##( Práctica : mplificadores operacionales (Montaje y medida

Más detalles

Grado de Óptica y Optometría Asignatura: FÍSICA Curso: 2010-11

Grado de Óptica y Optometría Asignatura: FÍSICA Curso: 2010-11 FULTAD DE CIENCIAS UNIVERSIDAD DE ALICANTE Grado de Óptica y Optometría Asignatura: FÍSICA Curso: 0- Práctica nº4. MEDIDAS DE AMPLITUD Y FRECUENCIA CON EL OSCILOSCOPIO. RESONANCIA CON ONDAS SONORAS Parte

Más detalles

Tema I: Elementos de un circuito

Tema I: Elementos de un circuito Elementos de un circuito 1 Tema I: Elementos de un circuito 1 Placa de soporte Los elementos pasivos de interés desde la perspectiva de este manual son dispositivos de dos terminales. Para configurar el

Más detalles

ANTECEDENTES TEÓRICOS. EL OSCILOSCOPIO Puesta en funcionamiento

ANTECEDENTES TEÓRICOS. EL OSCILOSCOPIO Puesta en funcionamiento ANTECEDENTES TEÓRICOS EL OSCILOSCOPIO Puesta en funcionamiento Poner a tierra Una buena conexión a tierra es muy importante para realizar medidas con un osciloscopio. Colocar a tierra el Osciloscopio Por

Más detalles

PRACTICA 2B EL OSCILOSCOPIO DE PROPÓSITO GENERAL. 1. Procurar mantener el osciloscopio en un lugar fijo, en caso de tener que trasladarlo:

PRACTICA 2B EL OSCILOSCOPIO DE PROPÓSITO GENERAL. 1. Procurar mantener el osciloscopio en un lugar fijo, en caso de tener que trasladarlo: PRECAUCIONES ANTES DEL ENCENDIDO PRACTICA 2B EL OSCILOSCOPIO DE PROPÓSITO GENERAL 1. Procurar mantener el osciloscopio en un lugar fijo, en caso de tener que trasladarlo: a) Hacerlo sujetando la manija

Más detalles

PRACTICA 2A EL OSCILOSCOPIO DE PROPÓSITO GENERAL

PRACTICA 2A EL OSCILOSCOPIO DE PROPÓSITO GENERAL PRACTICA 2A EL OSCILOSCOPIO DE PROPÓSITO GENERAL OBJETIVOS: Al término de esta práctica, el alumno podrá: Explicar el funcionamiento del tubo de rayos catódicos como un subsistema del osciloscopio. Identificar

Más detalles

Instrucciones operativas. Sensor de presión electrónico PP70XX. Nr. de artículo 701500/03 08/01

Instrucciones operativas. Sensor de presión electrónico PP70XX. Nr. de artículo 701500/03 08/01 Instrucciones operativas R ensor de presión electrónico PP70XX Nr. de artículo 701500/03 08/01 Indicaciones de seguridad Lea la descripción del producto antes de la puesta en servicio del aparato. Cerciórese

Más detalles

Nota: antes de iniciar el experimento lea el manual de operación del osciloscopio.

Nota: antes de iniciar el experimento lea el manual de operación del osciloscopio. Colegio Vocacional Monseñor Sanabria DEPARTAMENTO DE ELECTROTECNIA PROFESOR: Lic. Luis Fernando Corrales C UNIDAD DE ESTUDIO: Corriente Directa P R A C T I C A : 1 FECHA: P R O P O S I T O : Preparar el

Más detalles

- Tecnología que permite la distribución de RF modulando la portadora transmitida desde una estación base.

- Tecnología que permite la distribución de RF modulando la portadora transmitida desde una estación base. - Tecnología que permite la distribución de RF modulando la portadora transmitida desde una estación base. - Normalmente se utiliza en sistemas cuyo acceso es la naturaleza inalámbrica. - Sus características

Más detalles

CIRCUITOS ELECTRÓNICOS DIGITALES (II-IS) Práctica 3: Función combinacional con puertas NAND

CIRCUITOS ELECTRÓNICOS DIGITALES (II-IS) Práctica 3: Función combinacional con puertas NAND CIRCUITOS ELECTRÓNICOS DIGITALES (II-IS) Práctica 3: Función combinacional con puertas NAND 1. OBJETIVOS DE LA PRÁCTICA - Comprobar que la puerta NAND es un operador completo en la realización de funciones

Más detalles

MEDICIONES EN AC CON EL OSCILOSCOPIO EL OSCILOSCOPIO DIGITAL

MEDICIONES EN AC CON EL OSCILOSCOPIO EL OSCILOSCOPIO DIGITAL UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº 8 MEDICIONES EN AC CON EL OSCILOSCOPIO EL OSCILOSCOPIO DIGITAL Familiarizarse

Más detalles

QUÉ ES UN OSCILOSCOPIO? Qué podemos hacer con un osciloscopio?. Qué tipos de osciloscopios existen? Qué controles posee un osciloscopio típico?

QUÉ ES UN OSCILOSCOPIO? Qué podemos hacer con un osciloscopio?. Qué tipos de osciloscopios existen? Qué controles posee un osciloscopio típico? QUÉ ES UN OSCILOSCOPIO? El osciloscopio es básicamente un dispositivo de visualización gráfica que muestra señales eléctricas variables en el tiempo. El eje vertical, a partir de ahora denominado Y, representa

Más detalles

LÍNEA DE TRANSMISIÓN

LÍNEA DE TRANSMISIÓN 11 LÍNEA DE TRANSMISIÓN 1. DESCRIPCION DEL ESQUEMA DEL GENERADOR DE PULSOS PM 5715 1.1 DESCRIPCIÓN DEL ESQUEMA DE BLOQUES 1.1.1 Multivibrador astable 1.1.2 Circuito de disparo 1.1.3 Puerta, amplificador

Más detalles

PRÁCTICA #1.- OSCILOSCOPIOS

PRÁCTICA #1.- OSCILOSCOPIOS 1 PRÁCTICA #1.- OSCILOSCOPIOS OBJETIVOS -Revisar el funcionamiento básico de los osciloscopios, y a partir de esta base teórica, ser capaz de manejar y realizar mediciones con el osciloscopio existente

Más detalles

GENERADOR DE FUNCIONES Modelo 9205C. Manual de instrucciones

GENERADOR DE FUNCIONES Modelo 9205C. Manual de instrucciones GENERADOR DE FUNCIONES Modelo 9205C Manual de instrucciones SUMARIO DE SEGURIDAD El uso de los equipos de medición le expone a un riesgo por choque eléctrico ya que en las mediciones realizadas a menudo

Más detalles

El generador de funciones y el osciloscopio

El generador de funciones y el osciloscopio Práctica 3 El generador de funciones y el osciloscopio 3.1. Objetivo de la práctica En esta tercera práctica se termina de conocer el funcionamiento básico de los instrumentos que tenemos en el laboratorio.

Más detalles

Introducción. Frecuencia, longitud de onda y período. Dominio de tiempo y dominio de frecuencia. Ancho de banda

Introducción. Frecuencia, longitud de onda y período. Dominio de tiempo y dominio de frecuencia. Ancho de banda Introducción El nivel físico es el encargado de establecer una conexión entre dos nodos y de enviar los datos como unos y ceros (u otra forma análoga). Para ello, este nivel define detalles físicos como

Más detalles

INDICE Capitulo 1. Las comunicaciones ópticas Capitulo 2. Propagación Capitulo 3. Parámetros de transmisión Capitulo 4. Fibras: clasificación

INDICE Capitulo 1. Las comunicaciones ópticas Capitulo 2. Propagación Capitulo 3. Parámetros de transmisión Capitulo 4. Fibras: clasificación INDICE Capitulo 1. Las comunicaciones ópticas 1.1. antecedentes 19 1.2. justificación de lasa comunicaciones ópticas 20 1.2.1. La luz como soporte de información 21 1.2.2. el medio de propagación 23 1.3.

Más detalles

TRABAJO PRACTICO N 1 MEDICIONES CON OSCILOSCOPIO DISPARADO USO DE PUNTAS DE PRUEBAS Y APLICACIONES

TRABAJO PRACTICO N 1 MEDICIONES CON OSCILOSCOPIO DISPARADO USO DE PUNTAS DE PRUEBAS Y APLICACIONES U..N. - F.R.M. MEDIDAS ELECRÓNICAS II RABAJO PRACICO N 1 MEDICIONES CON OSCILOSCOPIO DISPARADO USO DE PUNAS DE PRUEBAS Y APLICACIONES INRODUCCION EORICA Un Osciloscopio es un instrumento gráfico que permite

Más detalles

LABORATORIO DE FUNDAMENTOS FÍSICOS II LEY DE INDUCCIÓN DE FARADAY

LABORATORIO DE FUNDAMENTOS FÍSICOS II LEY DE INDUCCIÓN DE FARADAY Departamento de Física ------------------------------------------------------------------------------------------------------------------------ LABORATORIO DE FUNDAMENTOS FÍSICOS II Grados TIC PRÁCTICA

Más detalles

Comunicaciones ópticas II. Colección de Problemas

Comunicaciones ópticas II. Colección de Problemas Comunicaciones ópticas II. Colección de Problemas ROCÍO J. PÉREZ DE PRADO 1 COLECCIÓN DE PROBLEMAS. COMUNICACIONES ÓPTICAS 2012-2013 Departamento Ingeniería de Telecomunicación. Área de Teoría de la Señal

Más detalles

Práctica 6. Variación de la intensidad de la luz: I) Atenuación de. I) Atenuación de la iluminancia con la distancia

Práctica 6. Variación de la intensidad de la luz: I) Atenuación de. I) Atenuación de la iluminancia con la distancia Práctica 6. Variación de la intensidad de la luz: I) Atenuación de la iluminancia con la distancia; II) Absorción en disoluciones I) Atenuación de la iluminancia con la distancia 1. OBJETIVO Estudio de

Más detalles