Particiones binarias del espacio (BSP)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Particiones binarias del espacio (BSP)"

Transcripción

1 (BSP)

2 Contenido 1. Introducción. 2. Quadtrees. 3. Árboles BSP. 4. Aplicación al algoritmo del pintor. 5. Construcción de un árbol BSP. 6. Conclusiones.

3 Contenido 1. Introducción. 2. Quadtrees. 3. Árboles BSP. 4. Aplicación al algoritmo del pintor. 5. Construcción de un árbol BSP. 6. Conclusiones.

4 Para representar en pantalla parte del mundo virtual almacenado en memoria hay que determinar para cada píxel de la pantalla el objeto que es visible en ese píxel: Eliminación de superficies ocultas. Otras aplicaciones: Localización. Detección de colisiones.

5 Algoritmo z-buffer Algoritmo del pintor

6 Particiones del espacio * Subdividen el espacio creando un árbol, de forma que en cada región la geometría sea simple. * Técnicas de subdivisión Basadas en el espacio: quadtrees, octrees. Basadas en los objetos: BSP. Los dos tipos tienen ventajas e inconvenientes, y el rendimiento depende muchas veces de la aplicación y el tipo de datos que aparezcan.

7 Contenido 1. Introducción. 2. Quadtrees. 3. Árboles BSP. 4. Aplicación al algoritmo del pintor. 5. Construcción de un árbol BSP. 6. Conclusiones.

8 Quadtrees

9 Quadtrees

10 Quadtrees

11 Quadtrees

12 Quadtrees Q 0 Q 1 Q 2 Q 3 Q 4 Q 5 Q 6 Q 7 Q 8 Q 9 Q 10 Q 11 Q 12

13 Quadtrees Análogo 3-dimensional: octrees. Aplicaciones: Localización. Detección de colisiones. Intersección de regiones. Ventaja: facilidad de construcción y manejo. Inconveniente: no se adapta a la geometría.

14 Contenido 1. Introducción. 2. Quadtrees. 3. Árboles BSP. 4. Aplicación al algoritmo del pintor. 5. Construcción de un árbol BSP. 6. Conclusiones.

15 Definición del árbol BSP La BSP se obtiene dividiendo recursivamente con una ĺınea. Las ĺıneas divisorias cortan también los objetos en fragmentos. La división continúa hasta que hay sólo un fragmento en el interior de cada región.

16 Definición del árbol BSP Árbol que corresponde a la BSP. Cada hoja corresponde a una cara de la subdivisión final, y el fragmento que hay en esa cara se almacena en la hoja. Cada nodo interno corresponde a una ĺınea divisoria, almacenada en el nodo.

17 8< : d Definición del árbol BSP = 2, h recta ax+by+c=0; h +, h semiplanos; d = 3, h plano ax+by+cz+d=0; h +, h semiespacios. S Conjunto de objetos T (S) Árbol binario correspondiente

18 Definición recursiva del árbol binario T (S): - Si card(s) 1: T (S) es una hoja, v; En la hoja se almacena el objeto (si existe), S(v). - Si card(s) > 1: La raíz ν de T (S) almacena: una recta (plano) h ν, conjunto S(ν) de objetos contenidos en h ν. Hijo izquierdo de ν: raíz de un árbol T (S ), con S = {h ν S : s S}. Hijo derecho de ν: raíz de un árbol T (S + ), con S + = {h + ν S : s S}.

19 Hojas del árbol T (S)? Regiones (convexas) con un solo objeto. Tamaño del árbol T (S)? Se define como el tamaño total de los conjuntos S(ν), ν T. Observación: Si no utilizamos divisiones inútiles, el número de nodos es lineal en el tamaño del árbol.

20 Contenido 1. Introducción. 2. Quadtrees. 3. Árboles BSP. 4. Aplicación al algoritmo del pintor. 5. Construcción de un árbol BSP. 6. Conclusiones.

21 Si el observador está en h + ν, ningún elemento en h ν ninguno en h + ν. tapa a p: punto de vista. h + ν h p h ν

22 Algoritmo PINTOR (T, p) 1. Sea ν la raíz de T. 2. if ν es una hoja 3. then pintar objetos en S(ν) 4. else if p h + ν 5. then PINTOR (T, p) 6. pintar objetos en S(ν) 7. PINTOR (T +, p) 8. else if p h ν 9. then PINTOR (T +, p) 10. pintar objetos en S(ν) 11. PINTOR (T, p) 12. else % p h ν % 13. PINTOR (T +, p) 14. PINTOR (T, p)

23 De qué depende la eficiencia del algoritmo?

24 De qué depende la eficiencia del algoritmo? Esencialmente, del tamaño del BSP.

25 De qué depende la eficiencia del algoritmo? Esencialmente, del tamaño del BSP. Dado un conjunto de objetos en R 2 ó R 3, admiten un BSP de tamaño pequeño?

26 Contenido 1. Introducción. 2. Quadtrees. 3. Árboles BSP. 4. Aplicación al algoritmo del pintor. 5. Construcción de un árbol BSP. 6. Conclusiones.

27 Sea S R 2 un conjunto de segmentos rectiĺıneos que no se cortan.

28 Sea S R 2 un conjunto de segmentos rectiĺıneos que no se cortan. Consideraremos auto-particiones, i.e., sólo consideramos ĺıneas que contienen uno de los segmentos como ĺıneas divisoras.

29 Sea S R 2 un conjunto de segmentos rectiĺıneos que no se cortan. Consideraremos auto-particiones, i.e., sólo consideramos ĺıneas que contienen uno de los segmentos como ĺıneas divisoras. Sea l(s) la ĺınea que contiene un segmento s.

30 Sea S R 2 un conjunto de segmentos rectiĺıneos que no se cortan. Consideraremos auto-particiones, i.e., sólo consideramos ĺıneas que contienen uno de los segmentos como ĺıneas divisoras. Sea l(s) la ĺınea que contiene un segmento s. Algoritmo recursivo para construir un BSP.

31 Algoritmo 2DBSP(S) Input. Conjunto S = {s 1, s 2,..., s n } de segmentos. Output. Un árbol BSP de S. 1. if card(s 1) 2. then crear árbol T con una sóla hoja y almacenar S en dicha hoja. 3. return T 4. else % usar l(s 1 ) como línea divisoria % 5. S + = {s l(s 1 ) + : s S}; T + := 2DBSP (S + ) 6. S = {s l(s 1 ) : s S}; T := 2DBSP (S ) 7. Crear BSP con raíz ν, subárbol izqdo T, subárbol dcho T +, S(v) = {s S : s l(s 1 )}. 8. return T.

32 Cuál es el tamaño del BSP?

33 Cuál es el tamaño del BSP? puede llegar a ser cuadrático.

34 Cuál es el tamaño del BSP? puede llegar a ser cuadrático. Podemos escoger s 1 con más cuidado?

35 Cuál es el tamaño del BSP? puede llegar a ser cuadrático. Podemos escoger s 1 con más cuidado? Quizás sí, pero resulta complicado

36 Cuál es el tamaño del BSP? puede llegar a ser cuadrático. Podemos escoger s 1 con más cuidado? Quizás sí, pero resulta complicado Qué ocurre si lo escogemos aleatoriamente?

37 Proposición.- Sea S una permutación aleatoria de los segmentos de S. El número esperado de fragmentos generados por 2DBSP(S ) es O(n log n).

38 Proposición.- Sea S una permutación aleatoria de los segmentos de S. El número esperado de fragmentos generados por 2DBSP(S ) es O(n log n). Dem. s i segmento fijo. Si cortamos por l(s i ), a cuántos segmentos cortamos?

39 Proposición.- Sea S una permutación aleatoria de los segmentos de S. El número esperado de fragmentos generados por 2DBSP(S ) es O(n log n). Dem. s i segmento fijo. Si cortamos por l(s i ), a cuántos segmentos cortamos? d = 2 d = 1 s i d = 1 d = 0 d = 0 d = 2

40 Sean N = # segmentos que cortan l(s i ) entre s i y s j

41 Sean N = # segmentos que cortan l(s i ) entre s i y s j dist si (s j ) = 8< : N, si l(s i ) s j ;, en otro caso.

42 Sean N = # segmentos que cortan l(s i ) entre s i y s j dist si (s j ) = 8< : N, si l(s i ) s j ;, en otro caso. s j1, s j2,..., s j2, los segmentos entre s i y s j.

43 Sean N = # segmentos que cortan l(s i ) entre s i y s j dist si (s j ) = 8< : N, si l(s i ) s j ;, en otro caso. s j1, s j2,..., s j2, los segmentos entre s i y s j. Entonces: P r[l(s i ) corte s j ] = dist si (s j ).

44 Sean N = # segmentos que cortan l(s i ) entre s i y s j dist si (s j ) = 8< : N, si l(s i ) s j ;, en otro caso. s j1, s j2,..., s j2, los segmentos entre s i y s j. Entonces: P r[l(s i ) corte s j ] = dist si (s j ). (i debe ser el menor índice del conjunto {i, j, j 1,..., j k })

45 Podemos acotar el número esperado de cortes generados por s i : E[# cortes generados por s i ] X j i 2 Xn 2 k= dist si (s j ) 1 k ln n

46 Podemos acotar el número esperado de cortes generados por s i : Por tanto, E[# cortes generados por s i ] X j i 2 Xn 2 k= dist si (s j ) 1 k ln n E[# cortes generados por todos los segmentos ] 2n ln n

47 Podemos acotar el número esperado de cortes generados por s i : Por tanto, E[# cortes generados por s i ] X j i 2 Xn 2 k= dist si (s j ) 1 k ln n E[# cortes generados por todos los segmentos ] 2n ln n Observación: Se puede demostrar que al menos la mitad de las permutaciones conducen a una BSP de tamaño n + 4n ln n

48 Cuál es la complejidad del algoritmo?

49 Cuál es la complejidad del algoritmo? n ln n llamadas recursivas, O(n) para cada llamada, En total, O(n 2 ln n)

50 Problema abierto Es cierto que para un conjunto S de segmentos en el plano existe siempre un BSP de tamaño O(n), o existen conjuntos que requieren O(n ln n)?

51 Problema abierto Es cierto que para un conjunto S de segmentos en el plano existe siempre un BSP de tamaño O(n), o existen conjuntos que requieren O(n ln n)? En R 3, todo análogo pero más complicado. En particular, S: conjunto de n triángulos. El tamaño esperado del BSP es O(n 2 ).

52 Contenido 1. Introducción. 2. Quadtrees. 3. Árboles BSP. 4. Aplicación al algoritmo del pintor. 5. Construcción de un árbol BSP. 6. Conclusiones.

53 Particiones binarias del espacio * Herramientas originalmente desarrolladas para eliminar partes ocultas. * Útil también para clipping-culling detección de colisiones * Parte esencial de juegos como Doom ó Quake.

54 Otras aplicaciones de las BSP Para representar en pantalla parte del mundo virtual en memoria hay que: Determinar qué parte del modelo queda dentro del volumen de visión - clipping, culling. Representar los objetos del volumen de visión en pantalla: Eliminación de partes ocultas z-buffer Algoritmo del pintor Rasterización (nivel de pixel) Si el entorno es dinámico, detectar colisiones.

55 Preguntas?

2 Representación poligonal

2 Representación poligonal INGENIERÍA INFORMÁTICA 2 Representación poligonal Introducción Modelo poligonal Teselación Simplificación Prof. Miguel Chover Introducción Modelado geométrico Creación del modelo 3D en el ordenador Técnica

Más detalles

Capítulo V Operaciones Booleanas

Capítulo V Operaciones Booleanas 85 Capítulo V Operaciones Booleanas 5.1 Introducción Es muy posible que en muchos casos sea necesario comparar dos objetos y determinar cuál es su parte común. Esto implica intersectar los dos objetos

Más detalles

Ampliación de Estructuras de Datos

Ampliación de Estructuras de Datos Ampliación de Estructuras de Datos Amalia Duch Barcelona, marzo de 2007 Índice 1. Diccionarios implementados con árboles binarios de búsqueda 1 2. TAD Cola de Prioridad 4 3. Heapsort 8 1. Diccionarios

Más detalles

Estructuras de Datos. Montículos. Montículos. Montículos. Tema 3. Montículos. Definiciones básicas: Definiciones básicas:

Estructuras de Datos. Montículos. Montículos. Montículos. Tema 3. Montículos. Definiciones básicas: Definiciones básicas: Estructuras de Datos Tema. 1. Definiciones básicas 2. Implementación. Operaciones con montículos 4. Definiciones básicas: En un árbol binario completo todos los niveles del árbol (excepto tal vez el último)

Más detalles

Programación Genética

Programación Genética Programación Genética Programación Genética consiste en la evolución automática de programas usando ideas basadas en la selección natural (Darwin). No sólo se ha utilizado para generar programas, sino

Más detalles

ELO320 Estructuras de Datos y Algoritmos. Arboles Binarios. Tomás Arredondo Vidal

ELO320 Estructuras de Datos y Algoritmos. Arboles Binarios. Tomás Arredondo Vidal ELO320 Estructuras de Datos y Algoritmos Arboles Binarios Tomás Arredondo Vidal Este material está basado en: Robert Sedgewick, "Algorithms in C", (third edition), Addison-Wesley, 2001 Thomas Cormen et

Más detalles

Almacenamiento y Recuperación de la Información

Almacenamiento y Recuperación de la Información Almacenamiento y Recuperación de la Información Estructuras basicas de archivos Archivos Secuenciales 2do Semestre 2005 Wenceslao Palma M. www.inf.utfsm.cl/~wpalma/ari Una estructura

Más detalles

Descomposicion en Polígonos Monótonos. comp-420

Descomposicion en Polígonos Monótonos. comp-420 Descomposicion en Polígonos Monótonos comp-420 Triangulación de Polígonos Teorema 1: Todo polígono simple admite una triangulación, y cualquier triangulación de un polígono simple con n vértices consta

Más detalles

Capítulo 12: Indexación y asociación

Capítulo 12: Indexación y asociación Capítulo 12: Indexación y asociación Conceptos básicos Índices ordenados Archivos de índice de árbol B+ Archivos de índice de árbol B Asociación estática Asociación dinámica Comparación entre indexación

Más detalles

DEFINICION. Ing. M.Sc. Fulbia Torres Asignatura: Estructuras de Datos Barquisimeto 2006

DEFINICION. Ing. M.Sc. Fulbia Torres Asignatura: Estructuras de Datos Barquisimeto 2006 ARBOLES ESTRUCTURAS DE DATOS 2006 DEFINICION Un árbol (tree) es un conjunto finito de nodos. Es una estructura jerárquica aplicable sobre una colección de elementos u objetos llamados nodos; uno de los

Más detalles

Clase 32: Árbol balanceado AVL

Clase 32: Árbol balanceado AVL Clase 32: Árbol balanceado AVL http://computacion.cs.cinvestav.mx/~efranco @efranco_escom efranco.docencia@gmail.com (Prof. Edgardo A. Franco) 1 Contenido Problema de los árboles binarios de búsqueda Variantes

Más detalles

Tecnólogo Informático- Estructuras de Datos y Algoritmos- 2009

Tecnólogo Informático- Estructuras de Datos y Algoritmos- 2009 Árboles Ejemplos de estructuras arborescentes: con forma de árbol Regla de Alcance: los objetos visibles en un procedimiento son aquellos declarados en él mismo o en cualquier ancestro de él (cualquier

Más detalles

Árboles AVL. Laboratorio de Programación II

Árboles AVL. Laboratorio de Programación II Árboles AVL Laboratorio de Programación II Definición Un árbol AVL es un árbol binario de búsqueda que cumple con la condición de que la diferencia entre las alturas de los subárboles de cada uno de sus

Más detalles

ALGORITMO DE RECORTES Y DE NIVELES DE DETALLES PARA EL INCREMENTO DE LA VELOCIDAD DE VISUALIZACIÓN DE MODELOS 3D EN DISPOSITIVOS DE BAJO COSTE.

ALGORITMO DE RECORTES Y DE NIVELES DE DETALLES PARA EL INCREMENTO DE LA VELOCIDAD DE VISUALIZACIÓN DE MODELOS 3D EN DISPOSITIVOS DE BAJO COSTE. Revista de investigación Editada por Área de Innovación y Desarrollo, S.L. Envío: 08-07-2013 Aceptación: 4-08-2013 Publicación: 30-09-2013 ALGORITMO DE RECORTES Y DE NIVELES DE DETALLES PARA EL INCREMENTO

Más detalles

Árboles binarios de búsqueda ( BST )

Árboles binarios de búsqueda ( BST ) Árboles binarios de búsqueda ( BST ) mat-151 Alonso Ramírez Manzanares Computación y Algoritmos 24.04.2015 Arbol Binario de Búsqueda Un árbol binario de búsqueda (Binary Search Tree [BST]) es un árbol

Más detalles

VI Colas de prioridad

VI Colas de prioridad VI Colas de prioridad Una cola de prioridad (cat: cua de prioritat; ing: priority queue) es una colección de elementos donde cada elemento tiene asociado un valor susceptible de ordenación denominado prioridad.

Más detalles

PRÁCTICA No. 13 ÁRBOL BINARIO DE BÚSQUEDA

PRÁCTICA No. 13 ÁRBOL BINARIO DE BÚSQUEDA INSTITUTO POLITÉCNICO NACIONAL SECRETARIA ACADÉMICA DIRECCIÓN DE EDUCACIÓN SUPERIOR ESIME CULHUACAN NOMBRE ALUMNO: FECHA DIA MES AÑO INGENIERÍA EN COMPUTACIÓN ASIGNATURA 1. Objetivo Apellido paterno ESTRUCTURAS

Más detalles

El pipeline gráfico Figura 3.1

El pipeline gráfico Figura 3.1 El pipeline gráfico Para llevar a cabo una representación virtual de un ambiente tridimensional, se realiza un modelado del escenario. Dicho modelo incluye la representación geométrica de los objetos presentes,

Más detalles

TABLA DE CONTENIDO SÍMBOLOS PROPOSICIONALES. CUANTIFICADORAS SUBCONJUNTOS. INTERSECCIÓN Y REUNIÓN APLICACIÓN. NOMENCLATURA Y NOTACIONES

TABLA DE CONTENIDO SÍMBOLOS PROPOSICIONALES. CUANTIFICADORAS SUBCONJUNTOS. INTERSECCIÓN Y REUNIÓN APLICACIÓN. NOMENCLATURA Y NOTACIONES TABLA DE CONTENIDO LECCIÓN 1 CAP. I. - CONJUNTO. NOTACIONES SÍMBOLOS PROPOSICIONALES. CUANTIFICADORAS SUBCONJUNTOS. INTERSECCIÓN Y REUNIÓN CONJUNTO PRODUCTO LECCIÓN 2 APLICACIÓN. NOMENCLATURA Y NOTACIONES

Más detalles

Árboles. Árboles. Árboles binarios de búsqueda. Árboles. Inserción en un árbol. Árbol binario de búsqueda

Árboles. Árboles. Árboles binarios de búsqueda. Árboles. Inserción en un árbol. Árbol binario de búsqueda Árboles Árboles Mario Medina C. mariomedina@udec.cl Árboles Estructura recursiva Árbol vacío 0 o más árboles hijos Altura ilimitada Árbol binario A lo más dos hijos: izquierdo y derecho Árboles Árboles

Más detalles

En cualquier caso, tampoco es demasiado importante el significado de la "B", si es que lo tiene, lo interesante realmente es el algoritmo.

En cualquier caso, tampoco es demasiado importante el significado de la B, si es que lo tiene, lo interesante realmente es el algoritmo. Arboles-B Características Los árboles-b son árboles de búsqueda. La "B" probablemente se debe a que el algoritmo fue desarrollado por "Rudolf Bayer" y "Eduard M. McCreight", que trabajan para la empresa

Más detalles

Resumen de técnicas para resolver problemas de programación entera. 15.053 Martes, 9 de abril. Enumeración. Un árbol de enumeración

Resumen de técnicas para resolver problemas de programación entera. 15.053 Martes, 9 de abril. Enumeración. Un árbol de enumeración 5053 Martes, 9 de abril Ramificación y acotamiento () Entregas: material de clase Resumen de técnicas para resolver problemas de programación entera Técnicas de enumeración Enumeración completa hace una

Más detalles

NIVEL 15: ESTRUCTURAS RECURSIVAS BINARIAS

NIVEL 15: ESTRUCTURAS RECURSIVAS BINARIAS 1 NIVEL 15: ESTRUCTURAS RECURSIVAS BINARIAS Árboles Binarios y Árboles Binarios Ordenados 2 Contenido Árboles binarios Iteradores Árboles binarios ordenados 3 Árboles binarios Algunas definiciones para

Más detalles

ARBOLES ARBOLES BINARIOS ORDENADOS. REPRESENTACIÓN Y OPERACIONES

ARBOLES ARBOLES BINARIOS ORDENADOS. REPRESENTACIÓN Y OPERACIONES ARBOLES ARBOLES BINARIOS ORDENADOS. REPRESENTACIÓN Y OPERACIONES Introducción al tema a. Formar grupos de 4 personas b. Tomar una hoja en blanco y una lapicera o lápiz c. En la hoja en blanco diseña un

Más detalles

Capítulo 2 Silueta. Figura 2.1 Tetera capturada por la cámara con la silueta resaltada

Capítulo 2 Silueta. Figura 2.1 Tetera capturada por la cámara con la silueta resaltada Capítulo 2 Silueta 2.1 Silueta La silueta de un objeto es muy importante porque es lo que nos da las pistas visuales de cómo es que está formado, nos dice dónde están sus límites y ayuda a diferenciar

Más detalles

Árbol binario. Elaborado por Ricardo Cárdenas cruz Jeremías Martínez Guadarrama Que es un árbol Introducción

Árbol binario. Elaborado por Ricardo Cárdenas cruz Jeremías Martínez Guadarrama Que es un árbol Introducción Árbol binario Elaborado por Ricardo Cárdenas cruz Jeremías Martínez Guadarrama Que es un árbol Introducción Un Árbol Binario es un conjunto finito de Elementos, de nombre Nodos de forma que: El Árbol Binario

Más detalles

Estructura de datos Tema 6: Tablas de dispersión (hashing)

Estructura de datos Tema 6: Tablas de dispersión (hashing) Universidad de Valladolid Departamento de informática Campus de Segovia Estructura de datos Tema 6: Tablas de dispersión (hashing) Prof. Montserrat Serrano Montero ÍNDICE Conceptos básicos Funciones hash

Más detalles

Estructuras de datos: Árboles binarios de

Estructuras de datos: Árboles binarios de Estructuras de datos: Árboles binarios de búsqueda, Dep. de Computación - Fac. de Informática Universidad de A Coruña Santiago Jorge santiago.jorge@udc.es Árboles binarios de búsqueda, Table of Contents

Más detalles

Análisis y Complejidad de Algoritmos. Arboles Binarios. Arturo Díaz Pérez

Análisis y Complejidad de Algoritmos. Arboles Binarios. Arturo Díaz Pérez Análisis y Complejidad de Algoritmos Arboles Binarios Arturo Díaz Pérez Arboles Definiciones Recorridos Arboles Binarios Profundidad y Número de Nodos Arboles-1 Arbol Un árbol es una colección de elementos,

Más detalles

Cómo ordenar una lista de números?

Cómo ordenar una lista de números? Cómo ordenar una lista de números? Germán Ariel Torres Resumen. Este trabajo trata acerca de métodos y técnicas usadas para el ordenamiento eficiente de listas de números. Se analizan los métodos básicos,

Más detalles

Operaciones Con Imágenes Binarias

Operaciones Con Imágenes Binarias Operaciones Con Imágenes Binarias - Basadas En Árboles Binarios - 1 ÍNDICE 1. INTRODUCCION 2. ANÁLISIS 3. IMPLEMENTACIÓN 4. OPERACIONES Y EJEMPLOS 5. CONCLUSIÓN 2 1.INTRODUCCIÓN - En que consiste este

Más detalles

TRAZADO DE LA GRÁFICA DE LAS DERIVADA DE UNA FUNCIÓN

TRAZADO DE LA GRÁFICA DE LAS DERIVADA DE UNA FUNCIÓN UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO COLEGIO DE CIENCIAS Y HUMANIDADES PLANTEL VALLEJO ÁREA DE MATEMÁTICAS CÁLCULO DIFERENCIAL E INTEGRA I TRAZADO DE LA GRÁFICA DE LAS DERIVADA DE UNA FUNCIÓN ELEAZAR

Más detalles

Sistema de Ficheros. Sistemas Operativos - ITIG. Álvaro Polo Valdenebro. Abril 2009. apoloval@gsyc.es. GSyC - 2009 Introducción 1

Sistema de Ficheros. Sistemas Operativos - ITIG. Álvaro Polo Valdenebro. Abril 2009. apoloval@gsyc.es. GSyC - 2009 Introducción 1 Sistema de Ficheros Sistemas Operativos - ITIG Álvaro Polo Valdenebro apoloval@gsyc.es Abril 2009 GSyC - 2009 Introducción 1 c 2009 GSyC Algunos derechos reservados. Este trabajo se distribuye bajo la

Más detalles

ÁRBOLES GENERALES Y Y ESTRUCTURAS DE ÍNDICES DEFINICIONES Y REPRESENTACIONES DEFINICIONES Y REPRESENTACIONES. NOMENCLATURA SOBRE ÁRBOLES. DECLARACIÓN Y REPRESENTACIÓN.. CONSTRUCCIÓN.. ÁRBOLES 2-3-4. ÁRBOLES

Más detalles

Reporte de Reactivos PLANEA MS 2015 (Total de alumnos que contestaron el reactivo y porcentaje que respondió correctamente)

Reporte de Reactivos PLANEA MS 2015 (Total de alumnos que contestaron el reactivo y porcentaje que respondió correctamente) ( de alumnos que contestaron el reactivo y porcentaje que respondió correctamente) LENGUAJE Y COMUNICACIÓN COORD. ZONA TRES U. DIAGNÓSTICA APELATIVO 001 IDENTIFICAR EL ASUNTO CENTRAL QUE SE PLANTEA EN

Más detalles

Tema 10- Representación Jerárquica: Tema 10- Representación Jerárquica: Árboles Binarios

Tema 10- Representación Jerárquica: Tema 10- Representación Jerárquica: Árboles Binarios Tema 10- Representación Jerárquica: Árboles Binarios Tema 10- Representación Jerárquica: Árboles Binarios Germán Moltó Escuela Técnica Superior de Ingeniería Informática Universidad Politécnica de Valencia

Más detalles

SIG. CIAF Centro de Investigación y Desarrollo en Información Geográfica. Fundamentos de Sistemas de Información Geográfica C U R S O.

SIG. CIAF Centro de Investigación y Desarrollo en Información Geográfica. Fundamentos de Sistemas de Información Geográfica C U R S O. Grupo SIG C U R S O Fundamentos de Sistemas de Información Geográfica UNIDAD 2 Datos geográficos y métodos de almacenamiento Tema 2 Modelos y estructuras de datos CIAF Centro de Investigación y Desarrollo

Más detalles

Cómo se usa Data Mining hoy?

Cómo se usa Data Mining hoy? Cómo se usa Data Mining hoy? 1 Conocer a los clientes Detectar segmentos Calcular perfiles Cross-selling Detectar buenos clientes Evitar el churning, attrition Detección de morosidad Mejora de respuesta

Más detalles

Tema 10: Árbol binario de búsqueda

Tema 10: Árbol binario de búsqueda Tema 10: Árbol binario de búsqueda M. en C. Edgardo Adrián Franco Martínez http://www.eafranco.com edfrancom@ipn.mx @edfrancom edgardoadrianfrancom (Prof. Edgardo A. Franco) 1 Contenido Árbol binario de

Más detalles

Árboles. Cursos Propedéuticos 2015. Dr. René Cumplido M. en C. Luis Rodríguez Flores

Árboles. Cursos Propedéuticos 2015. Dr. René Cumplido M. en C. Luis Rodríguez Flores Árboles Cursos Propedéuticos 2015 Dr. René Cumplido M. en C. Luis Rodríguez Flores Contenido de la sección Introducción Árbol genérico Definición y representación Árboles binarios Definición, implementación,

Más detalles

Árboles balanceados. Alonso Ramírez Manzanares Computación y Algoritmos 28.04.2015 1. Thursday, April 30, 15

Árboles balanceados. Alonso Ramírez Manzanares Computación y Algoritmos 28.04.2015 1. Thursday, April 30, 15 Árboles balanceados Alonso Ramírez Manzanares Computación y Algoritmos 28.04.2015 1 Árboles balanceados Los algoritmos en árboles binarios de búsqueda dan buenos resultados en el caso promedio pero el

Más detalles

Criptografía y Seguridad Computacional 2016-01. Clase 5: 30/03/2016. Tenemos el siguiente esquema donde se manda un mensaje con tag t de verificación:

Criptografía y Seguridad Computacional 2016-01. Clase 5: 30/03/2016. Tenemos el siguiente esquema donde se manda un mensaje con tag t de verificación: Criptografía y Seguridad Computacional 2016-01 Clase 5: 30/03/2016 Profesor: Fernando Krell Notas: Diego Peña 1. Seguridad en Verificación Tenemos el siguiente esquema donde se manda un mensaje con tag

Más detalles

DESIGUALDADES E INTERVALOS

DESIGUALDADES E INTERVALOS DESIGUALDADES E INTERVALOS 1. INTERVALOS: Son regiones comprendidas entre dos números reales. En general, si los etremos pertenecen al intervalo, se dice que cerrado, si por el contrario no pertenecen

Más detalles

Analisis de algoritmos

Analisis de algoritmos Analisis de algoritmos Eficiencia Es la capacidad de disponer de un recurso. En el caso de los algoritmos, la eficiencia se logra haciendo el mejor uso posible de los recursos del sistema. Recursos Qué

Más detalles

ARBOLES ARBOLES BINARIOS ORDENADOS. REPRESENTACIÓN Y OPERACIONES

ARBOLES ARBOLES BINARIOS ORDENADOS. REPRESENTACIÓN Y OPERACIONES ARBOLES ARBOLES BINARIOS ORDENADOS. REPRESENTACIÓN Y OPERACIONES Características ARBOLES - CONCEPTOS Cada elemento del árbol se relaciona con cero o más elementos a quienes llama hijos. Si el árbol no

Más detalles

f(x) = 0; x [a, b] de la que, por simplicidad, suponemos que f : [a, b] R es una función derivable tres veces.

f(x) = 0; x [a, b] de la que, por simplicidad, suponemos que f : [a, b] R es una función derivable tres veces. Práctica 5 Método de Newton 5.1. Introducción En esta práctica damos al alumno un guión y una relación de referencias para que con su trabajo personal, que estimamos de 6 horas, realice un pequeño estudio

Más detalles

SEMINARIO DE ESPECIFICACIONES ALGEBRAICAS

SEMINARIO DE ESPECIFICACIONES ALGEBRAICAS Algoritmos y Estructuras de Datos Ingeniería en Informática, Curso 2º, Año 2004/2005 SEMINARIO DE ESPECIFICACIONES ALGEBRAICAS Contenidos: 1. Descripción general de Maude 2. Comandos básicos 3. Formato

Más detalles

Estructuras de Datos. Estructuras de Datos para Conjuntos Disjuntos

Estructuras de Datos. Estructuras de Datos para Conjuntos Disjuntos Estructuras de Datos. Estructuras de Datos para Conjuntos Disjuntos Santiago Zanella 2008 1 Introducción Para ciertas aplicaciones se requiere mantener n elementos distintos agrupándolos en una colección

Más detalles

1. Ecuaciones no lineales

1. Ecuaciones no lineales 1. Ecuaciones no lineales 1.1 Ejercicios resueltos Ejercicio 1.1 Dada la ecuación xe x 1 = 0, se pide: a) Estudiar gráficamente sus raíces reales y acotarlas. b) Aplicar el método de la bisección y acotar

Más detalles

Laboratorio 7 Motor de búsqueda web basado en el TAD Árbol Binario de Búsqueda GUIÓN DEL LABORATORIO

Laboratorio 7 Motor de búsqueda web basado en el TAD Árbol Binario de Búsqueda GUIÓN DEL LABORATORIO Laboratorio 7 Motor de búsqueda web basado en el TAD Árbol Binario de Búsqueda GUIÓN DEL LABORATORIO 1.- Objetivos del laboratorio Diseño de clases en C++ Comprensión y uso del TAD Árbol Binario de Búsqueda

Más detalles

Prof. Sandra Baldassarri. Objetivos del modelado. ordenador. Modelado Geométrico

Prof. Sandra Baldassarri. Objetivos del modelado. ordenador. Modelado Geométrico Clasificación de los modelos geométricos Representación de objetos en 3D Modelos de Puntos Modelos de Curvas y Superficies Modelos de Sólidos Prof. Sandra Baldassarri Objetivos del modelado Modelos geométricos

Más detalles

Algoritmos de Búsqueda y Ordenación. Rosalía Laza Fidalgo. Departamento de Informática. Universidad de Vigo

Algoritmos de Búsqueda y Ordenación. Rosalía Laza Fidalgo. Departamento de Informática. Universidad de Vigo Algoritmos de Búsqueda y Ordenación. Rosalía Laza Fidalgo. Departamento de Informática. Universidad de Vigo Complejidad Cómo podemos medir y comparar algoritmos, si estos se ejecutan a distintas velocidades

Más detalles

Tema 8: Árboles de Clasificación

Tema 8: Árboles de Clasificación Tema 8: Árboles de Clasificación p. 1/11 Tema 8: Árboles de Clasificación Abdelmalik Moujahid, Iñaki Inza, Pedro Larrañaga Departamento de Ciencias de la Computación e Inteligencia Artificial Universidad

Más detalles

Arboles Binarios de Búsqueda

Arboles Binarios de Búsqueda Arboles Binarios de Búsqueda Algoritmos y Estructuras de Datos Departamento de Electricidad y Electrónica (UPV/EHU) Arboles Binarios de Búsqueda p.1/52 Arboles Binarios Arbol binario: árbol ordenado de

Más detalles

ALGORITMOS GEOMÉTRICOS. Análisis y diseño de algoritmos II- 2009

ALGORITMOS GEOMÉTRICOS. Análisis y diseño de algoritmos II- 2009 ALGORITMOS GEOMÉTRICOS Análisis y diseño de algoritmos II- 2009 La geometría computacional es una rama de la ciencia de la computación que estudia algoritmos para resolver problemas geométricos. Aplicaciones

Más detalles

ACTIVIDADES UNIDAD 6: Funciones

ACTIVIDADES UNIDAD 6: Funciones ACTIVIDADES UNIDAD 6: Funciones 1. Indica las características de la siguiente función: Dominio:, 1 1,1 1, 1,1 Imagen o recorrido:,0 1, Monotonía: - Creciente:, 1 1,0 - Decreciente: 0,11, - Máimos relativos:

Más detalles

Capítulo 6. ÁRBOLES.

Capítulo 6. ÁRBOLES. 67 Capítulo 6. ÁRBOLES. 6.1 Árboles binarios. Un árbol binario es un conjunto finito de elementos, el cual está vacío o dividido en tres subconjuntos separados: El primer subconjunto contiene un elemento

Más detalles

Ejercicios. 1. Definir en Maxima las siguientes funciones y evaluarlas en los puntos que se indican:

Ejercicios. 1. Definir en Maxima las siguientes funciones y evaluarlas en los puntos que se indican: Ejercicios. 1. Definir en Maxima las siguientes funciones y evaluarlas en los puntos que se indican: 2. Graficar las funciones anteriores, definiendo adecuadamente los rangos de x e y, para visualizar

Más detalles

El soporte del sistema operativo. Hace que un computador sea más fácil de usar. Permite que los recursos del computador se aprovechen mejor.

El soporte del sistema operativo. Hace que un computador sea más fácil de usar. Permite que los recursos del computador se aprovechen mejor. El soporte del sistema operativo Objetivos y funciones del sistema operativo Comodidad Hace que un computador sea más fácil de usar. Eficiencia Permite que los recursos del computador se aprovechen mejor.

Más detalles

Árboles de Búsqueda Binaria. Agustín J. González ELO-320: Estructura de Datos y Algoritmos

Árboles de Búsqueda Binaria. Agustín J. González ELO-320: Estructura de Datos y Algoritmos Árboles de Búsqueda Binaria Agustín J. González ELO-320: Estructura de Datos y Algoritmos 1 Introducción Los árboles de búsqueda son estructuras de datos que soportan las siguientes operaciones de conjuntos

Más detalles

TALLER DE MATEMÁTICAS NOTAS. Toda expresión algebraica del tipo. a n x n + a n 1 x n 1 +... + a 1 x + a 0. es un polinomio de grado n, si a n 0.

TALLER DE MATEMÁTICAS NOTAS. Toda expresión algebraica del tipo. a n x n + a n 1 x n 1 +... + a 1 x + a 0. es un polinomio de grado n, si a n 0. NOTAS Toda expresión algebraica del tipo es un polinomio de grado n, si a n 0. a n x n + a n 1 x n 1 +... + a 1 x + a 0 RELACIONES DE DIVISIBILIDAD 1) x n a n = (x a)(x n 1 + ax n 2 + a 2 x n 3 +... +

Más detalles

Representaciones compactas de datos LiDAR

Representaciones compactas de datos LiDAR Representaciones compactas de datos LiDAR Miguel R. Luaces luaces@udc.es Laboratorio de Bases de Datos Universidade da Coruña 1 Motivación 2 Motivación La obtención y el acceso a nubes de puntos LiDAR

Más detalles

MINISTERIO DE EDUCACIÓN Concurso Nacional de Matemática Educación Preuniversitaria Curso 2009 2010 Temario por Grados

MINISTERIO DE EDUCACIÓN Concurso Nacional de Matemática Educación Preuniversitaria Curso 2009 2010 Temario por Grados MINISTERIO DE EDUCACIÓN Concurso Nacional de Matemática Educación Preuniversitaria Curso 009 010 Temario por Grados Nombre: Grado: Escuela: Provincia: Municipio: Número C.I.: Calif: La distribución de

Más detalles

PRUEBA DE MATEMÁTICAS

PRUEBA DE MATEMÁTICAS PRUEBA DE MATEMÁTICAS PRIMERO, SEGUNDO Y TERCERO DE BACHILLERATO El presente instructivo tiene como finalidad orientarlo en la selección y el estudio de los contenidos fundamentales de matemáticas para

Más detalles

Conjunto de computadores, equipos de comunicaciones y otros dispositivos que se pueden comunicar entre sí, a través de un medio en particular.

Conjunto de computadores, equipos de comunicaciones y otros dispositivos que se pueden comunicar entre sí, a través de un medio en particular. Que es una red? Conjunto de computadores, equipos de comunicaciones y otros dispositivos que se pueden comunicar entre sí, a través de un medio en particular. Cuantos tipos de redes hay? Red de área personal,

Más detalles

Tema 8: Algoritmos de ordenación y búsqueda

Tema 8: Algoritmos de ordenación y búsqueda Tema 8: Algoritmos de ordenación y búsqueda Objetivos: en este tema se presentan algoritmos que permiten buscar un elemento dentro de una colección y ordenar una colección en base a algún criterio (el

Más detalles

Tema 4:Segmentación de imágenes

Tema 4:Segmentación de imágenes Tema 4:Segmentación de imágenes La segmentación de imágenes divide la imagen en sus partes constituyentes hasta un nivel de subdivisión en el que se aíslen las regiones u objetos de interés. Los algoritmos

Más detalles

1. Números Reales 1.1 Clasificación y propiedades

1. Números Reales 1.1 Clasificación y propiedades 1. Números Reales 1.1 Clasificación y propiedades 1.1.1 Definición Número real, cualquier número racional o irracional. Los números reales pueden expresarse en forma decimal mediante un número entero,

Más detalles

Programación de Sistemas

Programación de Sistemas Programación de Sistemas Algoritmos de Ordenación Índice Por qué es importante la ordenación? Un par de ejemplos InsertionSort QuickSort Para cada uno veremos: En qué consisten, Casos extremos Eficiencia

Más detalles

Sistemas de dos ecuaciones lineales con dos incógnitas

Sistemas de dos ecuaciones lineales con dos incógnitas Sistemas de dos ecuaciones lineales con dos incógnitas Una ecuación lineal con dos incógnitas es una epresión de la forma a b c donde a, b c son los coeficientes (números) e son las incógnitas. Gráficamente

Más detalles

Análisis amortizado El plan:

Análisis amortizado El plan: Análisis amortizado El plan: Conceptos básicos: Método agregado Método contable Método potencial Primer ejemplo: análisis de tablas hash dinámicas Montículos agregables (binomiales y de Fibonacci) Estructuras

Más detalles

árbol como un conjunto de nodos y líneas

árbol como un conjunto de nodos y líneas ÁRBOLES CAPÍTULO 6 ÁRBOLES Desde el punto de vista conceptual, un árbol es un objeto que comienza con una raíz (root) y se extiende en varias ramificaciones o líneas (edges), cada una de las cuales puede

Más detalles

1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado,

1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado, FICHA 1: Teorema de Pitágoras 1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado, cuando proceda): a) Hallar la hipotenusa de un triángulo rectángulo

Más detalles

En este capitulo se presentan los métodos y algoritmos utilizados para el desarrollo del

En este capitulo se presentan los métodos y algoritmos utilizados para el desarrollo del 33 En este capitulo se presentan los métodos y algoritmos utilizados para el desarrollo del sistema de procesamiento de imágenes para controlar un robot manipulador y se describen en la forma como serán

Más detalles

Superficies Visibles. Dpto. de Informática Fac. Cs. Físico-Mat. y Nat. Universidad Nacional De San Luis Argentina

Superficies Visibles. Dpto. de Informática Fac. Cs. Físico-Mat. y Nat. Universidad Nacional De San Luis Argentina Superficies Visibles Dpto. de Informática Fac. Cs. Físico-Mat. y Nat. Universidad Nacional De San Luis Argentina Superficies Visibles Introducción En teorías anteriores se aprendió a transformar la geometría

Más detalles

Eduardo Mosqueira Rey Bertha Guijarro Berdiñas Mariano Cabrero Canosa

Eduardo Mosqueira Rey Bertha Guijarro Berdiñas Mariano Cabrero Canosa Estructura de Datos y de la Información Eduardo Mosqueira Rey Bertha Guijarro Berdiñas Mariano Cabrero Canosa Laboratorio de Investigación y Desarrollo en Inteligencia Artificial Departamento de Computación

Más detalles

Capítulo 6. Aplicaciones de la Integral

Capítulo 6. Aplicaciones de la Integral Capítulo 6 Aplicaciones de la Integral 6. Introducción. En las aplicaciones que desarrollaremos en este capítulo, utilizaremos una variante de la definición de integral la cual es equivalente a la que

Más detalles

Ecuaciones diferenciales de orden superior

Ecuaciones diferenciales de orden superior CAPÍTULO 4 Ecuaciones diferenciales de orden superior 4.4.2 ED lineales homogéneas con coeficientes constantes de orden n 3 En la sección anterior hemos obtenido las soluciones de la ED lineal homogénea

Más detalles

lo básico para programar El Modelado Para la Arqueologia

lo básico para programar El Modelado Para la Arqueologia lo básico para programar El Modelado Para la Arqueologia El Modelado Para la Arqueologia lo básico para programar Recursos Se puede descargar simple_program programa de NetLogo de: http://www.public.asu.edu/~cmbarton/

Más detalles

Álgebra y Trigonometría CNM-108

Álgebra y Trigonometría CNM-108 Álgebra y Trigonometría CNM-108 Clase 2 Ecuaciones, desigualdades y funciones Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

SISTEMAS INTELIGENTES

SISTEMAS INTELIGENTES SISTEMAS INTELIGENTES T11: Métodos Kernel: Máquinas de vectores soporte {jdiez, juanjo} @ aic.uniovi.es Índice Funciones y métodos kernel Concepto: representación de datos Características y ventajas Funciones

Más detalles

MATEMÁTICAS II APUNTES DE TEORÍA CURSO ACADÉMICO 2012-13. Carlos Ivorra

MATEMÁTICAS II APUNTES DE TEORÍA CURSO ACADÉMICO 2012-13. Carlos Ivorra MATEMÁTICAS II APUNTES DE TEORÍA CURSO ACADÉMICO 2012-13 Carlos Ivorra Índice 1 Introducción a la optimización 1 2 Programación entera 18 3 Introducción a la programación lineal 24 4 El método símplex

Más detalles

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido Tema 3 Medidas de tendencia central Contenido 31 Introducción 1 32 Media aritmética 2 33 Media ponderada 3 34 Media geométrica 4 35 Mediana 5 351 Cálculo de la mediana para datos agrupados 5 36 Moda 6

Más detalles

Profesorado de Informática Ciencias de la Computación INET- DFPD Matemática I - Matemática Discreta usando el computador Ing. Prof.

Profesorado de Informática Ciencias de la Computación INET- DFPD Matemática I - Matemática Discreta usando el computador Ing. Prof. Árboles Profesorado de Informática Ciencias de la Computación INET- DFPD Matemática I - Matemática Discreta usando el computador Ing. Prof. Paula Echenique Una de las estructuras de datos más importantes

Más detalles

DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES

DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES UNIDAD 6 DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES Página 5 Problema y f () 5 5 9 Halla, mirando la gráfica y las rectas trazadas, f'(), f'(9) y f'(). f'() 0; f'(9) ; f'() Di otros tres puntos en

Más detalles

Bachillerato. Matemáticas. Ciencias y tecnología

Bachillerato. Matemáticas. Ciencias y tecnología Bachillerato º Matemáticas Ciencias y tecnología Índice Unidad 0 Números reales........................................... 7. Evolución histórica................................... 8. Números reales......................................

Más detalles

+ 7 es una ecuación de segundo grado. es una ecuación de tercer grado.

+ 7 es una ecuación de segundo grado. es una ecuación de tercer grado. ECUACIONES Y DESIGUALDADES UNIDAD VII VII. CONCEPTO DE ECUACIÓN Una igualdad es una relación de equivalencia entre dos epresiones, numéricas o literales, que se cumple para algún, algunos o todos los valores

Más detalles

Instrumentación Virtual con LabVIEW

Instrumentación Virtual con LabVIEW Instrumentación Virtual con LabVIEW ESTRUCTURAS ESTRUCTURAS WHILE FOR.. CASE SEQUENCE Opciones de selección de CASE Controles Visibles Variables Locales y Globales Personalizar controles 1.- ENTORNO DE

Más detalles

Metodología de la Programación II. Recursividad

Metodología de la Programación II. Recursividad Metodología de la Programación II Recursividad Objetivos Entender el concepto de recursividad. Conocer los fundamentos del diseño de algoritmos recursivos. Comprender la ejecución de algoritmos recursivos.

Más detalles

El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima. OPCIÓN A. 2 1 1 y C 4 2 2 1 0 0

El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima. OPCIÓN A. 2 1 1 y C 4 2 2 1 0 0 Prueba de Acceso a la Universidad. JUNIO 0. El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máima. OPCIÓN A. Considerar las matrices 0 A 0,

Más detalles

DESARROLLANDO TÉCNICAS Y RUTINAS DE PROGRAMACIÓN EN EL GEÓMETRA.

DESARROLLANDO TÉCNICAS Y RUTINAS DE PROGRAMACIÓN EN EL GEÓMETRA. IV CIEMAC J.J Fallas, J. Chavarría 1 DESARROLLANDO TÉCNICAS Y RUTINAS DE PROGRAMACIÓN EN EL GEÓMETRA. Juan José Fallas Monge 1 Jeffry Chavarría Molina. Resumen Frecuentemente al Geómetra se le relaciona

Más detalles

Funciones Reales de Variable Real

Funciones Reales de Variable Real 1 Capítulo 6 Funciones Reales de Variable Real M.Sc. Alcides Astorga M., Lic. Julio Rodríguez S. Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet

Más detalles

Guía de Inicio Rápido

Guía de Inicio Rápido Windows 8 Tablet App Capto una aplicación en instantes ellos, la matemática para siempre GeoGebra Septiembre 2013 Traducción Liliana Saidon de www.centrobabbage.com Qué es GeoGebra? Un conjunto unificado

Más detalles

PARÁBOLA. 1) para la parte positiva: 2) para la parte negativa: 3) para la parte positiva: 4) para la parte negativa:

PARÁBOLA. 1) para la parte positiva: 2) para la parte negativa: 3) para la parte positiva: 4) para la parte negativa: Página 90 5 LA PARÁBOLA 5.1 DEFINICIONES La parábola es el lugar geométrico 4 de todos los puntos cuyas distancias a una recta fija, llamada, y a un punto fijo, llamado foco, son iguales entre sí. Hay

Más detalles

TEMA 3 PROFESOR: M.C. ALEJANDRO GUTIÉRREZ DÍAZ 2 3. PROCESAMIENTO DE CONSULTAS DISTRIBUIDAS

TEMA 3 PROFESOR: M.C. ALEJANDRO GUTIÉRREZ DÍAZ 2 3. PROCESAMIENTO DE CONSULTAS DISTRIBUIDAS 1 1 BASES DE DATOS DISTRIBUIDAS TEMA 3 PROFESOR: M.C. ALEJANDRO GUTIÉRREZ DÍAZ 2 3. PROCESAMIENTO DE CONSULTAS DISTRIBUIDAS 3.1 Metodología del procesamiento de consultas distribuidas 3.2 Estrategias de

Más detalles

Un grafo G es un par (V,E) donde V es un conjunto (llamado conjunto de vértices) y E un subconjunto de VxV (conjunto de aristas).

Un grafo G es un par (V,E) donde V es un conjunto (llamado conjunto de vértices) y E un subconjunto de VxV (conjunto de aristas). TEMA 5.- GRAFOS 5.1.- DEFINICIONES BÁSICAS Un grafo G es un par (V,E) donde V es un conjunto (llamado conjunto de vértices) y E un subconjunto de VxV (conjunto de aristas). Gráficamente representaremos

Más detalles

Detección de bordes en una imagen.

Detección de bordes en una imagen. Detección de bordes en una imagen. Departamento de Ingeniería electrónica, Telecomunicación y Automática. Área de Ingeniería de Sistemas y Automática OBJETIVOS: Utilizar distintas máscaras empleadas para

Más detalles

HOJA DE AMPLIACIONES, PROYECTOS Y EJERCICIOS

HOJA DE AMPLIACIONES, PROYECTOS Y EJERCICIOS FUNDAMENTOS DE COMPUTACIÓN Universidad de Cantabria, 2010/11 Grado en ingeniería de los recursos mineros Grado en ingeniería de los recursos energeticos HOJA DE AMPLIACIONES, PROYECTOS Y EJERCICIOS BLOQUE

Más detalles

GEOMETRÍA. 307. Cuántas cajitas de 5 cm de largo, 1 cm de fondo y 3 cm de alto, caben en una caja de 28 cm de lago por 18 cm de fondo y 50 cm de alto?

GEOMETRÍA. 307. Cuántas cajitas de 5 cm de largo, 1 cm de fondo y 3 cm de alto, caben en una caja de 28 cm de lago por 18 cm de fondo y 50 cm de alto? GEOMETRÍA 307. Cuántas cajitas de 5 cm de largo, 1 cm de fondo y 3 cm de alto, caben en una caja de 28 cm de lago por 18 cm de fondo y 50 cm de alto? A) 740 B) 840 C) 540 D) 640 308. El largo de un rectángulo

Más detalles

Estructura de Datos Árboles Árboles 2-3

Estructura de Datos Árboles Árboles 2-3 Estructura de Datos Árboles 1-2-3 Árboles 2-3 Prof.: Mauricio Solar Prof.: Lorna Figueroa Primer Semestre, 2010 1 Arboles 1-2-3 Árbol n-ario ordenado de orden 3 Cada nodo tiene 1 ó 2 elementos 75 Nodo

Más detalles